1 /*	$NetBSD: sys_sched.c,v 1.45 2016/07/07 06:55:43 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * System calls relating to the scheduler.
31  *
32  * Lock order:
33  *
34  *	cpu_lock ->
35  *	    proc_lock ->
36  *		proc_t::p_lock ->
37  *		    lwp_t::lwp_lock
38  *
39  * TODO:
40  *  - Handle pthread_setschedprio() as defined by POSIX;
41  *  - Handle sched_yield() case for SCHED_FIFO as defined by POSIX;
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.45 2016/07/07 06:55:43 msaitoh Exp $");
46 
47 #include <sys/param.h>
48 
49 #include <sys/cpu.h>
50 #include <sys/kauth.h>
51 #include <sys/kmem.h>
52 #include <sys/lwp.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/pset.h>
56 #include <sys/sched.h>
57 #include <sys/syscallargs.h>
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/types.h>
61 #include <sys/unistd.h>
62 
63 static struct sysctllog *sched_sysctl_log;
64 static kauth_listener_t sched_listener;
65 
66 /*
67  * Convert user priority or the in-kernel priority or convert the current
68  * priority to the appropriate range according to the policy change.
69  */
70 static pri_t
convert_pri(lwp_t * l,int policy,pri_t pri)71 convert_pri(lwp_t *l, int policy, pri_t pri)
72 {
73 
74 	/* Convert user priority to the in-kernel */
75 	if (pri != PRI_NONE) {
76 		/* Only for real-time threads */
77 		KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
78 		KASSERT(policy != SCHED_OTHER);
79 		return PRI_USER_RT + pri;
80 	}
81 
82 	/* Neither policy, nor priority change */
83 	if (l->l_class == policy)
84 		return l->l_priority;
85 
86 	/* Time-sharing -> real-time */
87 	if (l->l_class == SCHED_OTHER) {
88 		KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
89 		return PRI_USER_RT;
90 	}
91 
92 	/* Real-time -> time-sharing */
93 	if (policy == SCHED_OTHER) {
94 		KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
95 		/*
96 		 * this is a bit arbitrary because the priority is dynamic
97 		 * for SCHED_OTHER threads and will likely be changed by
98 		 * the scheduler soon anyway.
99 		 */
100 		return l->l_priority - PRI_USER_RT;
101 	}
102 
103 	/* Real-time -> real-time */
104 	return l->l_priority;
105 }
106 
107 int
do_sched_setparam(pid_t pid,lwpid_t lid,int policy,const struct sched_param * params)108 do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
109     const struct sched_param *params)
110 {
111 	struct proc *p;
112 	struct lwp *t;
113 	pri_t pri;
114 	u_int lcnt;
115 	int error;
116 
117 	error = 0;
118 
119 	pri = params->sched_priority;
120 
121 	/* If no parameters specified, just return (this should not happen) */
122 	if (pri == PRI_NONE && policy == SCHED_NONE)
123 		return 0;
124 
125 	/* Validate scheduling class */
126 	if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
127 		return EINVAL;
128 
129 	/* Validate priority */
130 	if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
131 		return EINVAL;
132 
133 	if (pid != 0) {
134 		/* Find the process */
135 		mutex_enter(proc_lock);
136 		p = proc_find(pid);
137 		if (p == NULL) {
138 			mutex_exit(proc_lock);
139 			return ESRCH;
140 		}
141 		mutex_enter(p->p_lock);
142 		mutex_exit(proc_lock);
143 		/* Disallow modification of system processes */
144 		if ((p->p_flag & PK_SYSTEM) != 0) {
145 			mutex_exit(p->p_lock);
146 			return EPERM;
147 		}
148 	} else {
149 		/* Use the calling process */
150 		p = curlwp->l_proc;
151 		mutex_enter(p->p_lock);
152 	}
153 
154 	/* Find the LWP(s) */
155 	lcnt = 0;
156 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
157 		pri_t kpri;
158 		int lpolicy;
159 
160 		if (lid && lid != t->l_lid)
161 			continue;
162 
163 		lcnt++;
164 		lwp_lock(t);
165 		lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
166 
167 		/* Disallow setting of priority for SCHED_OTHER threads */
168 		if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
169 			lwp_unlock(t);
170 			error = EINVAL;
171 			break;
172 		}
173 
174 		/* Convert priority, if needed */
175 		kpri = convert_pri(t, lpolicy, pri);
176 
177 		/* Check the permission */
178 		error = kauth_authorize_process(kauth_cred_get(),
179 		    KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
180 		    KAUTH_ARG(kpri));
181 		if (error) {
182 			lwp_unlock(t);
183 			break;
184 		}
185 
186 		/* Set the scheduling class, change the priority */
187 		t->l_class = lpolicy;
188 		lwp_changepri(t, kpri);
189 		lwp_unlock(t);
190 	}
191 	mutex_exit(p->p_lock);
192 	return (lcnt == 0) ? ESRCH : error;
193 }
194 
195 /*
196  * Set scheduling parameters.
197  */
198 int
sys__sched_setparam(struct lwp * l,const struct sys__sched_setparam_args * uap,register_t * retval)199 sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
200     register_t *retval)
201 {
202 	/* {
203 		syscallarg(pid_t) pid;
204 		syscallarg(lwpid_t) lid;
205 		syscallarg(int) policy;
206 		syscallarg(const struct sched_param *) params;
207 	} */
208 	struct sched_param params;
209 	int error;
210 
211 	/* Get the parameters from the user-space */
212 	error = copyin(SCARG(uap, params), &params, sizeof(params));
213 	if (error)
214 		goto out;
215 
216 	error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
217 	    SCARG(uap, policy), &params);
218 out:
219 	return error;
220 }
221 
222 /*
223  * do_sched_getparam:
224  *
225  * if lid=0, returns the parameter of the first LWP in the process.
226  */
227 int
do_sched_getparam(pid_t pid,lwpid_t lid,int * policy,struct sched_param * params)228 do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
229     struct sched_param *params)
230 {
231 	struct sched_param lparams;
232 	struct lwp *t;
233 	int error, lpolicy;
234 
235 	t = lwp_find2(pid, lid); /* acquire p_lock */
236 	if (t == NULL)
237 		return ESRCH;
238 
239 	/* Check the permission */
240 	error = kauth_authorize_process(kauth_cred_get(),
241 	    KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
242 	if (error != 0) {
243 		mutex_exit(t->l_proc->p_lock);
244 		return error;
245 	}
246 
247 	lwp_lock(t);
248 	lparams.sched_priority = t->l_priority;
249 	lpolicy = t->l_class;
250 	lwp_unlock(t);
251 	mutex_exit(t->l_proc->p_lock);
252 
253 	/*
254 	 * convert to the user-visible priority value.
255 	 * it's an inversion of convert_pri().
256 	 *
257 	 * the SCHED_OTHER case is a bit arbitrary given that
258 	 *	- we don't allow setting the priority.
259 	 *	- the priority is dynamic.
260 	 */
261 	switch (lpolicy) {
262 	case SCHED_OTHER:
263 		lparams.sched_priority -= PRI_USER;
264 		break;
265 	case SCHED_RR:
266 	case SCHED_FIFO:
267 		lparams.sched_priority -= PRI_USER_RT;
268 		break;
269 	}
270 
271 	if (policy != NULL)
272 		*policy = lpolicy;
273 
274 	if (params != NULL)
275 		*params = lparams;
276 
277 	return error;
278 }
279 
280 /*
281  * Get scheduling parameters.
282  */
283 int
sys__sched_getparam(struct lwp * l,const struct sys__sched_getparam_args * uap,register_t * retval)284 sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
285     register_t *retval)
286 {
287 	/* {
288 		syscallarg(pid_t) pid;
289 		syscallarg(lwpid_t) lid;
290 		syscallarg(int *) policy;
291 		syscallarg(struct sched_param *) params;
292 	} */
293 	struct sched_param params;
294 	int error, policy;
295 
296 	error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
297 	    &params);
298 	if (error)
299 		goto out;
300 
301 	error = copyout(&params, SCARG(uap, params), sizeof(params));
302 	if (error == 0 && SCARG(uap, policy) != NULL)
303 		error = copyout(&policy, SCARG(uap, policy), sizeof(int));
304 out:
305 	return error;
306 }
307 
308 /*
309  * Allocate the CPU set, and get it from userspace.
310  */
311 static int
genkcpuset(kcpuset_t ** dset,const cpuset_t * sset,size_t size)312 genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
313 {
314 	kcpuset_t *kset;
315 	int error;
316 
317 	kcpuset_create(&kset, true);
318 	error = kcpuset_copyin(sset, kset, size);
319 	if (error) {
320 		kcpuset_unuse(kset, NULL);
321 	} else {
322 		*dset = kset;
323 	}
324 	return error;
325 }
326 
327 /*
328  * Set affinity.
329  */
330 int
sys__sched_setaffinity(struct lwp * l,const struct sys__sched_setaffinity_args * uap,register_t * retval)331 sys__sched_setaffinity(struct lwp *l,
332     const struct sys__sched_setaffinity_args *uap, register_t *retval)
333 {
334 	/* {
335 		syscallarg(pid_t) pid;
336 		syscallarg(lwpid_t) lid;
337 		syscallarg(size_t) size;
338 		syscallarg(const cpuset_t *) cpuset;
339 	} */
340 	kcpuset_t *kcset, *kcpulst = NULL;
341 	struct cpu_info *ici, *ci;
342 	struct proc *p;
343 	struct lwp *t;
344 	CPU_INFO_ITERATOR cii;
345 	bool alloff;
346 	lwpid_t lid;
347 	u_int lcnt;
348 	int error;
349 
350 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
351 	if (error)
352 		return error;
353 
354 	/*
355 	 * Traverse _each_ CPU to:
356 	 *  - Check that CPUs in the mask have no assigned processor set.
357 	 *  - Check that at least one CPU from the mask is online.
358 	 *  - Find the first target CPU to migrate.
359 	 *
360 	 * To avoid the race with CPU online/offline calls and processor sets,
361 	 * cpu_lock will be locked for the entire operation.
362 	 */
363 	ci = NULL;
364 	alloff = false;
365 	mutex_enter(&cpu_lock);
366 	for (CPU_INFO_FOREACH(cii, ici)) {
367 		struct schedstate_percpu *ispc;
368 
369 		if (!kcpuset_isset(kcset, cpu_index(ici))) {
370 			continue;
371 		}
372 
373 		ispc = &ici->ci_schedstate;
374 		/* Check that CPU is not in the processor-set */
375 		if (ispc->spc_psid != PS_NONE) {
376 			error = EPERM;
377 			goto out;
378 		}
379 		/* Skip offline CPUs */
380 		if (ispc->spc_flags & SPCF_OFFLINE) {
381 			alloff = true;
382 			continue;
383 		}
384 		/* Target CPU to migrate */
385 		if (ci == NULL) {
386 			ci = ici;
387 		}
388 	}
389 	if (ci == NULL) {
390 		if (alloff) {
391 			/* All CPUs in the set are offline */
392 			error = EPERM;
393 			goto out;
394 		}
395 		/* Empty set */
396 		kcpuset_unuse(kcset, &kcpulst);
397 		kcset = NULL;
398 	}
399 
400 	if (SCARG(uap, pid) != 0) {
401 		/* Find the process */
402 		mutex_enter(proc_lock);
403 		p = proc_find(SCARG(uap, pid));
404 		if (p == NULL) {
405 			mutex_exit(proc_lock);
406 			error = ESRCH;
407 			goto out;
408 		}
409 		mutex_enter(p->p_lock);
410 		mutex_exit(proc_lock);
411 		/* Disallow modification of system processes. */
412 		if ((p->p_flag & PK_SYSTEM) != 0) {
413 			mutex_exit(p->p_lock);
414 			error = EPERM;
415 			goto out;
416 		}
417 	} else {
418 		/* Use the calling process */
419 		p = l->l_proc;
420 		mutex_enter(p->p_lock);
421 	}
422 
423 	/*
424 	 * Check the permission.
425 	 */
426 	error = kauth_authorize_process(l->l_cred,
427 	    KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
428 	if (error != 0) {
429 		mutex_exit(p->p_lock);
430 		goto out;
431 	}
432 
433 	/* Iterate through LWP(s). */
434 	lcnt = 0;
435 	lid = SCARG(uap, lid);
436 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
437 		if (lid && lid != t->l_lid) {
438 			continue;
439 		}
440 		lwp_lock(t);
441 		/* No affinity for zombie LWPs. */
442 		if (t->l_stat == LSZOMB) {
443 			lwp_unlock(t);
444 			continue;
445 		}
446 		/* First, release existing affinity, if any. */
447 		if (t->l_affinity) {
448 			kcpuset_unuse(t->l_affinity, &kcpulst);
449 		}
450 		if (kcset) {
451 			/*
452 			 * Hold a reference on affinity mask, assign mask to
453 			 * LWP and migrate it to another CPU (unlocks LWP).
454 			 */
455 			kcpuset_use(kcset);
456 			t->l_affinity = kcset;
457 			lwp_migrate(t, ci);
458 		} else {
459 			/* Old affinity mask is released, just clear. */
460 			t->l_affinity = NULL;
461 			lwp_unlock(t);
462 		}
463 		lcnt++;
464 	}
465 	mutex_exit(p->p_lock);
466 	if (lcnt == 0) {
467 		error = ESRCH;
468 	}
469 out:
470 	mutex_exit(&cpu_lock);
471 
472 	/*
473 	 * Drop the initial reference (LWPs, if any, have the ownership now),
474 	 * and destroy whatever is in the G/C list, if filled.
475 	 */
476 	if (kcset) {
477 		kcpuset_unuse(kcset, &kcpulst);
478 	}
479 	if (kcpulst) {
480 		kcpuset_destroy(kcpulst);
481 	}
482 	return error;
483 }
484 
485 /*
486  * Get affinity.
487  */
488 int
sys__sched_getaffinity(struct lwp * l,const struct sys__sched_getaffinity_args * uap,register_t * retval)489 sys__sched_getaffinity(struct lwp *l,
490     const struct sys__sched_getaffinity_args *uap, register_t *retval)
491 {
492 	/* {
493 		syscallarg(pid_t) pid;
494 		syscallarg(lwpid_t) lid;
495 		syscallarg(size_t) size;
496 		syscallarg(cpuset_t *) cpuset;
497 	} */
498 	struct lwp *t;
499 	kcpuset_t *kcset;
500 	int error;
501 
502 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
503 	if (error)
504 		return error;
505 
506 	/* Locks the LWP */
507 	t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
508 	if (t == NULL) {
509 		error = ESRCH;
510 		goto out;
511 	}
512 	/* Check the permission */
513 	if (kauth_authorize_process(l->l_cred,
514 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
515 		mutex_exit(t->l_proc->p_lock);
516 		error = EPERM;
517 		goto out;
518 	}
519 	lwp_lock(t);
520 	if (t->l_affinity) {
521 		kcpuset_copy(kcset, t->l_affinity);
522 	} else {
523 		kcpuset_zero(kcset);
524 	}
525 	lwp_unlock(t);
526 	mutex_exit(t->l_proc->p_lock);
527 
528 	error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
529 out:
530 	kcpuset_unuse(kcset, NULL);
531 	return error;
532 }
533 
534 /*
535  * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
536  * analogue of priority inheritance: temp raise the priority
537  * of the caller when accessing a protected resource.
538  */
539 int
sys__sched_protect(struct lwp * l,const struct sys__sched_protect_args * uap,register_t * retval)540 sys__sched_protect(struct lwp *l,
541     const struct sys__sched_protect_args *uap, register_t *retval)
542 {
543         /* {
544                 syscallarg(int) priority;
545 		syscallarg(int *) opriority;
546         } */
547 	int error;
548 	pri_t pri;
549 
550 	KASSERT(l->l_inheritedprio == -1);
551 	KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
552 
553 	pri = SCARG(uap, priority);
554 	error = 0;
555 	lwp_lock(l);
556 	if (pri == -1) {
557 		/* back out priority changes */
558 		switch(l->l_protectdepth) {
559 		case 0:
560 			error = EINVAL;
561 			break;
562 		case 1:
563 			l->l_protectdepth = 0;
564 			l->l_protectprio = -1;
565 			l->l_auxprio = -1;
566 			break;
567 		default:
568 			l->l_protectdepth--;
569 			break;
570 		}
571 	} else if (pri < 0) {
572 		/* Just retrieve the current value, for debugging */
573 		if (l->l_protectprio != -1)
574 			error = ENOENT;
575 		else
576 			*retval = l->l_protectprio - PRI_USER_RT;
577 	} else if (__predict_false(pri < SCHED_PRI_MIN ||
578 	    pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
579 		/* must fail if existing priority is higher */
580 		error = EPERM;
581 	} else {
582 		/* play along but make no changes if not a realtime LWP. */
583 		l->l_protectdepth++;
584 		pri += PRI_USER_RT;
585 		if (__predict_true(l->l_class != SCHED_OTHER &&
586 		    pri > l->l_protectprio)) {
587 			l->l_protectprio = pri;
588 			l->l_auxprio = pri;
589 		}
590 	}
591 	lwp_unlock(l);
592 
593 	return error;
594 }
595 
596 /*
597  * Yield.
598  */
599 int
sys_sched_yield(struct lwp * l,const void * v,register_t * retval)600 sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
601 {
602 
603 	yield();
604 	return 0;
605 }
606 
607 /*
608  * Sysctl nodes and initialization.
609  */
610 static void
sysctl_sched_setup(struct sysctllog ** clog)611 sysctl_sched_setup(struct sysctllog **clog)
612 {
613 	const struct sysctlnode *node = NULL;
614 
615 	sysctl_createv(clog, 0, NULL, NULL,
616 		CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
617 		CTLTYPE_INT, "posix_sched",
618 		SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
619 			     "Process Scheduling option to which the "
620 			     "system attempts to conform"),
621 		NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
622 		CTL_KERN, CTL_CREATE, CTL_EOL);
623 	sysctl_createv(clog, 0, NULL, &node,
624 		CTLFLAG_PERMANENT,
625 		CTLTYPE_NODE, "sched",
626 		SYSCTL_DESCR("Scheduler options"),
627 		NULL, 0, NULL, 0,
628 		CTL_KERN, CTL_CREATE, CTL_EOL);
629 
630 	if (node == NULL)
631 		return;
632 
633 	sysctl_createv(clog, 0, &node, NULL,
634 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
635 		CTLTYPE_INT, "pri_min",
636 		SYSCTL_DESCR("Minimal POSIX real-time priority"),
637 		NULL, SCHED_PRI_MIN, NULL, 0,
638 		CTL_CREATE, CTL_EOL);
639 	sysctl_createv(clog, 0, &node, NULL,
640 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
641 		CTLTYPE_INT, "pri_max",
642 		SYSCTL_DESCR("Maximal POSIX real-time priority"),
643 		NULL, SCHED_PRI_MAX, NULL, 0,
644 		CTL_CREATE, CTL_EOL);
645 }
646 
647 static int
sched_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)648 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
649     void *arg0, void *arg1, void *arg2, void *arg3)
650 {
651 	struct proc *p;
652 	int result;
653 
654 	result = KAUTH_RESULT_DEFER;
655 	p = arg0;
656 
657 	switch (action) {
658 	case KAUTH_PROCESS_SCHEDULER_GETPARAM:
659 		if (kauth_cred_uidmatch(cred, p->p_cred))
660 			result = KAUTH_RESULT_ALLOW;
661 		break;
662 
663 	case KAUTH_PROCESS_SCHEDULER_SETPARAM:
664 		if (kauth_cred_uidmatch(cred, p->p_cred)) {
665 			struct lwp *l;
666 			int policy;
667 			pri_t priority;
668 
669 			l = arg1;
670 			policy = (int)(unsigned long)arg2;
671 			priority = (pri_t)(unsigned long)arg3;
672 
673 			if ((policy == l->l_class ||
674 			    (policy != SCHED_FIFO && policy != SCHED_RR)) &&
675 			    priority <= l->l_priority)
676 				result = KAUTH_RESULT_ALLOW;
677 		}
678 
679 		break;
680 
681 	case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
682 		result = KAUTH_RESULT_ALLOW;
683 		break;
684 
685 	case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
686 		/* Privileged; we let the secmodel handle this. */
687 		break;
688 
689 	default:
690 		break;
691 	}
692 
693 	return result;
694 }
695 
696 void
sched_init(void)697 sched_init(void)
698 {
699 
700 	sysctl_sched_setup(&sched_sysctl_log);
701 
702 	sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
703 	    sched_listener_cb, NULL);
704 }
705