xref: /netbsd/sys/kern/kern_fork.c (revision e8eebf99)
1 /*	$NetBSD: kern_fork.c,v 1.230 2023/02/25 08:22:00 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.230 2023/02/25 08:22:00 skrll Exp $");
72 
73 #include "opt_ktrace.h"
74 #include "opt_dtrace.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/filedesc.h>
79 #include <sys/kernel.h>
80 #include <sys/pool.h>
81 #include <sys/mount.h>
82 #include <sys/proc.h>
83 #include <sys/ras.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vnode.h>
86 #include <sys/file.h>
87 #include <sys/acct.h>
88 #include <sys/ktrace.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/syscall.h>
92 #include <sys/kauth.h>
93 #include <sys/atomic.h>
94 #include <sys/syscallargs.h>
95 #include <sys/uidinfo.h>
96 #include <sys/sdt.h>
97 #include <sys/ptrace.h>
98 
99 /*
100  * DTrace SDT provider definitions
101  */
102 SDT_PROVIDER_DECLARE(proc);
103 SDT_PROBE_DEFINE3(proc, kernel, , create,
104     "struct proc *", /* new process */
105     "struct proc *", /* parent process */
106     "int" /* flags */);
107 
108 u_int	nprocs __cacheline_aligned = 1;		/* process 0 */
109 
110 /*
111  * Number of ticks to sleep if fork() would fail due to process hitting
112  * limits. Exported in miliseconds to userland via sysctl.
113  */
114 int	forkfsleep = 0;
115 
116 int
sys_fork(struct lwp * l,const void * v,register_t * retval)117 sys_fork(struct lwp *l, const void *v, register_t *retval)
118 {
119 
120 	return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
121 }
122 
123 /*
124  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
125  * Address space is not shared, but parent is blocked until child exit.
126  */
127 int
sys_vfork(struct lwp * l,const void * v,register_t * retval)128 sys_vfork(struct lwp *l, const void *v, register_t *retval)
129 {
130 
131 	return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
132 	    retval);
133 }
134 
135 /*
136  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
137  * semantics.  Address space is shared, and parent is blocked until child exit.
138  */
139 int
sys___vfork14(struct lwp * l,const void * v,register_t * retval)140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 {
142 
143 	return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 	    NULL, NULL, retval);
145 }
146 
147 /*
148  * Linux-compatible __clone(2) system call.
149  */
150 int
sys___clone(struct lwp * l,const struct sys___clone_args * uap,register_t * retval)151 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
152     register_t *retval)
153 {
154 	/* {
155 		syscallarg(int) flags;
156 		syscallarg(void *) stack;
157 	} */
158 	int flags, sig;
159 
160 	/*
161 	 * We don't support the CLONE_PTRACE flag.
162 	 */
163 	if (SCARG(uap, flags) & (CLONE_PTRACE))
164 		return EINVAL;
165 
166 	/*
167 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
168 	 */
169 	if (SCARG(uap, flags) & CLONE_SIGHAND
170 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
171 		return EINVAL;
172 
173 	flags = 0;
174 
175 	if (SCARG(uap, flags) & CLONE_VM)
176 		flags |= FORK_SHAREVM;
177 	if (SCARG(uap, flags) & CLONE_FS)
178 		flags |= FORK_SHARECWD;
179 	if (SCARG(uap, flags) & CLONE_FILES)
180 		flags |= FORK_SHAREFILES;
181 	if (SCARG(uap, flags) & CLONE_SIGHAND)
182 		flags |= FORK_SHARESIGS;
183 	if (SCARG(uap, flags) & CLONE_VFORK)
184 		flags |= FORK_PPWAIT;
185 
186 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
187 	if (sig < 0 || sig >= _NSIG)
188 		return EINVAL;
189 
190 	/*
191 	 * Note that the Linux API does not provide a portable way of
192 	 * specifying the stack area; the caller must know if the stack
193 	 * grows up or down.  So, we pass a stack size of 0, so that the
194 	 * code that makes this adjustment is a noop.
195 	 */
196 	return fork1(l, flags, sig, SCARG(uap, stack), 0,
197 	    NULL, NULL, retval);
198 }
199 
200 /*
201  * Print the 'table full' message once per 10 seconds.
202  */
203 static struct timeval fork_tfmrate = { 10, 0 };
204 
205 /*
206  * Check if a process is traced and shall inform about FORK events.
207  */
208 static inline bool
tracefork(struct proc * p,int flags)209 tracefork(struct proc *p, int flags)
210 {
211 
212 	return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
213 	    (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
214 }
215 
216 /*
217  * Check if a process is traced and shall inform about VFORK events.
218  */
219 static inline bool
tracevfork(struct proc * p,int flags)220 tracevfork(struct proc *p, int flags)
221 {
222 
223 	return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
224 	    (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
225 }
226 
227 /*
228  * Check if a process is traced and shall inform about VFORK_DONE events.
229  */
230 static inline bool
tracevforkdone(struct proc * p,int flags)231 tracevforkdone(struct proc *p, int flags)
232 {
233 
234 	return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
235 	    (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
236 }
237 
238 /*
239  * General fork call.  Note that another LWP in the process may call exec()
240  * or exit() while we are forking.  It's safe to continue here, because
241  * neither operation will complete until all LWPs have exited the process.
242  */
243 int
fork1(struct lwp * l1,int flags,int exitsig,void * stack,size_t stacksize,void (* func)(void *),void * arg,register_t * retval)244 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
245     void (*func)(void *), void *arg, register_t *retval)
246 {
247 	struct proc	*p1, *p2, *parent;
248 	struct plimit   *p1_lim;
249 	uid_t		uid;
250 	struct lwp	*l2;
251 	int		count;
252 	vaddr_t		uaddr;
253 	int		tnprocs;
254 	int		error = 0;
255 
256 	p1 = l1->l_proc;
257 	uid = kauth_cred_getuid(l1->l_cred);
258 	tnprocs = atomic_inc_uint_nv(&nprocs);
259 
260 	/*
261 	 * Although process entries are dynamically created, we still keep
262 	 * a global limit on the maximum number we will create.
263 	 */
264 	if (__predict_false(tnprocs >= maxproc))
265 		error = -1;
266 	else
267 		error = kauth_authorize_process(l1->l_cred,
268 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
269 
270 	if (error) {
271 		static struct timeval lasttfm;
272 		atomic_dec_uint(&nprocs);
273 		if (ratecheck(&lasttfm, &fork_tfmrate))
274 			tablefull("proc", "increase kern.maxproc or NPROC");
275 		if (forkfsleep)
276 			kpause("forkmx", false, forkfsleep, NULL);
277 		return EAGAIN;
278 	}
279 
280 	/*
281 	 * Enforce limits.
282 	 */
283 	count = chgproccnt(uid, 1);
284 	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
285 		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
286 		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
287 		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
288 			(void)chgproccnt(uid, -1);
289 			atomic_dec_uint(&nprocs);
290 			if (forkfsleep)
291 				kpause("forkulim", false, forkfsleep, NULL);
292 			return EAGAIN;
293 		}
294 	}
295 
296 	/*
297 	 * Allocate virtual address space for the U-area now, while it
298 	 * is still easy to abort the fork operation if we're out of
299 	 * kernel virtual address space.
300 	 */
301 	uaddr = uvm_uarea_alloc();
302 	if (__predict_false(uaddr == 0)) {
303 		(void)chgproccnt(uid, -1);
304 		atomic_dec_uint(&nprocs);
305 		return ENOMEM;
306 	}
307 
308 	/* Allocate new proc. */
309 	p2 = proc_alloc();
310 	if (p2 == NULL) {
311 		/* We were unable to allocate a process ID. */
312 		uvm_uarea_free(uaddr);
313 		mutex_enter(p1->p_lock);
314 		uid = kauth_cred_getuid(p1->p_cred);
315 		(void)chgproccnt(uid, -1);
316 		mutex_exit(p1->p_lock);
317 		atomic_dec_uint(&nprocs);
318 		return EAGAIN;
319 	}
320 
321 	/*
322 	 * We are now committed to the fork.  From here on, we may
323 	 * block on resources, but resource allocation may NOT fail.
324 	 */
325 
326 	/*
327 	 * Make a proc table entry for the new process.
328 	 * Start by zeroing the section of proc that is zero-initialized,
329 	 * then copy the section that is copied directly from the parent.
330 	 */
331 	memset(&p2->p_startzero, 0,
332 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
333 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
334 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
335 
336 	TAILQ_INIT(&p2->p_sigpend.sp_info);
337 
338 	LIST_INIT(&p2->p_lwps);
339 	LIST_INIT(&p2->p_sigwaiters);
340 
341 	/*
342 	 * Duplicate sub-structures as needed.
343 	 * Increase reference counts on shared objects.
344 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
345 	 * handling are important in order to keep a consistent behaviour
346 	 * for the child after the fork.  If we are a 32-bit process, the
347 	 * child will be too.
348 	 */
349 	p2->p_flag =
350 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
351 	p2->p_emul = p1->p_emul;
352 	p2->p_execsw = p1->p_execsw;
353 
354 	if (flags & FORK_SYSTEM) {
355 		/*
356 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
357 		 * children are reparented to init(8) when they exit.
358 		 * init(8) can easily wait them out for us.
359 		 */
360 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
361 	}
362 
363 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
364 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
365 	rw_init(&p2->p_reflock);
366 	cv_init(&p2->p_waitcv, "wait");
367 	cv_init(&p2->p_lwpcv, "lwpwait");
368 
369 	/*
370 	 * Share a lock between the processes if they are to share signal
371 	 * state: we must synchronize access to it.
372 	 */
373 	if (flags & FORK_SHARESIGS) {
374 		p2->p_lock = p1->p_lock;
375 		mutex_obj_hold(p1->p_lock);
376 	} else
377 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
378 
379 	kauth_proc_fork(p1, p2);
380 
381 	p2->p_raslist = NULL;
382 #if defined(__HAVE_RAS)
383 	ras_fork(p1, p2);
384 #endif
385 
386 	/* bump references to the text vnode (for procfs) */
387 	p2->p_textvp = p1->p_textvp;
388 	if (p2->p_textvp)
389 		vref(p2->p_textvp);
390 	if (p1->p_path)
391 		p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
392 	else
393 		p2->p_path = NULL;
394 
395 	if (flags & FORK_SHAREFILES)
396 		fd_share(p2);
397 	else if (flags & FORK_CLEANFILES)
398 		p2->p_fd = fd_init(NULL);
399 	else
400 		p2->p_fd = fd_copy();
401 
402 	/* XXX racy */
403 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
404 
405 	if (flags & FORK_SHARECWD)
406 		cwdshare(p2);
407 	else
408 		p2->p_cwdi = cwdinit();
409 
410 	/*
411 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
412 	 * we just need increase pl_refcnt.
413 	 */
414 	p1_lim = p1->p_limit;
415 	if (!p1_lim->pl_writeable) {
416 		lim_addref(p1_lim);
417 		p2->p_limit = p1_lim;
418 	} else {
419 		p2->p_limit = lim_copy(p1_lim);
420 	}
421 
422 	if (flags & FORK_PPWAIT) {
423 		/* Mark ourselves as waiting for a child. */
424 		p2->p_lflag = PL_PPWAIT;
425 		l1->l_vforkwaiting = true;
426 		p2->p_vforklwp = l1;
427 	} else {
428 		p2->p_lflag = 0;
429 		l1->l_vforkwaiting = false;
430 	}
431 	p2->p_sflag = 0;
432 	p2->p_slflag = 0;
433 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
434 	p2->p_pptr = parent;
435 	p2->p_ppid = parent->p_pid;
436 	LIST_INIT(&p2->p_children);
437 
438 	p2->p_aio = NULL;
439 
440 #ifdef KTRACE
441 	/*
442 	 * Copy traceflag and tracefile if enabled.
443 	 * If not inherited, these were zeroed above.
444 	 */
445 	if (p1->p_traceflag & KTRFAC_INHERIT) {
446 		mutex_enter(&ktrace_lock);
447 		p2->p_traceflag = p1->p_traceflag;
448 		if ((p2->p_tracep = p1->p_tracep) != NULL)
449 			ktradref(p2);
450 		mutex_exit(&ktrace_lock);
451 	}
452 #endif
453 
454 	/*
455 	 * Create signal actions for the child process.
456 	 */
457 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
458 	mutex_enter(p1->p_lock);
459 	p2->p_sflag |=
460 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
461 	sched_proc_fork(p1, p2);
462 	mutex_exit(p1->p_lock);
463 
464 	p2->p_stflag = p1->p_stflag;
465 
466 	/*
467 	 * p_stats.
468 	 * Copy parts of p_stats, and zero out the rest.
469 	 */
470 	p2->p_stats = pstatscopy(p1->p_stats);
471 
472 	/*
473 	 * Set up the new process address space.
474 	 */
475 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
476 
477 	/*
478 	 * Finish creating the child process.
479 	 * It will return through a different path later.
480 	 */
481 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
482 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
483 	    l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
484 
485 	/*
486 	 * Inherit l_private from the parent.
487 	 * Note that we cannot use lwp_setprivate() here since that
488 	 * also sets the CPU TLS register, which is incorrect if the
489 	 * process has changed that without letting the kernel know.
490 	 */
491 	l2->l_private = l1->l_private;
492 
493 	/*
494 	 * If emulation has a process fork hook, call it now.
495 	 */
496 	if (p2->p_emul->e_proc_fork)
497 		(*p2->p_emul->e_proc_fork)(p2, l1, flags);
498 
499 	/*
500 	 * ...and finally, any other random fork hooks that subsystems
501 	 * might have registered.
502 	 */
503 	doforkhooks(p2, p1);
504 
505 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
506 
507 	/*
508 	 * It's now safe for the scheduler and other processes to see the
509 	 * child process.
510 	 */
511 	mutex_enter(&proc_lock);
512 
513 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
514 		p2->p_lflag |= PL_CONTROLT;
515 
516 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
517 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
518 
519 	/*
520 	 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
521 	 */
522 	if (tracefork(p1, flags) || tracevfork(p1, flags)) {
523 		proc_changeparent(p2, p1->p_pptr);
524 		SET(p2->p_slflag, PSL_TRACEDCHILD);
525 	}
526 
527 	p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
528 
529 	LIST_INSERT_AFTER(p1, p2, p_pglist);
530 	LIST_INSERT_HEAD(&allproc, p2, p_list);
531 
532 	p2->p_trace_enabled = trace_is_enabled(p2);
533 #ifdef __HAVE_SYSCALL_INTERN
534 	(*p2->p_emul->e_syscall_intern)(p2);
535 #endif
536 
537 	/*
538 	 * Update stats now that we know the fork was successful.
539 	 */
540 	KPREEMPT_DISABLE(l1);
541 	CPU_COUNT(CPU_COUNT_FORKS, 1);
542 	if (flags & FORK_PPWAIT)
543 		CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1);
544 	if (flags & FORK_SHAREVM)
545 		CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1);
546 	KPREEMPT_ENABLE(l1);
547 
548 	if (ktrpoint(KTR_EMUL))
549 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
550 
551 	/*
552 	 * Notify any interested parties about the new process.
553 	 */
554 	if (!SLIST_EMPTY(&p1->p_klist)) {
555 		mutex_exit(&proc_lock);
556 		knote_proc_fork(p1, p2);
557 		mutex_enter(&proc_lock);
558 	}
559 
560 	/*
561 	 * Make child runnable, set start time, and add to run queue except
562 	 * if the parent requested the child to start in SSTOP state.
563 	 */
564 	mutex_enter(p2->p_lock);
565 
566 	/*
567 	 * Start profiling.
568 	 */
569 	if ((p2->p_stflag & PST_PROFIL) != 0) {
570 		mutex_spin_enter(&p2->p_stmutex);
571 		startprofclock(p2);
572 		mutex_spin_exit(&p2->p_stmutex);
573 	}
574 
575 	getmicrotime(&p2->p_stats->p_start);
576 	p2->p_acflag = AFORK;
577 	lwp_lock(l2);
578 	KASSERT(p2->p_nrlwps == 1);
579 	KASSERT(l2->l_stat == LSIDL);
580 	if (p2->p_sflag & PS_STOPFORK) {
581 		p2->p_nrlwps = 0;
582 		p2->p_stat = SSTOP;
583 		p2->p_waited = 0;
584 		p1->p_nstopchild++;
585 		l2->l_stat = LSSTOP;
586 		KASSERT(l2->l_wchan == NULL);
587 		lwp_unlock(l2);
588 	} else {
589 		p2->p_nrlwps = 1;
590 		p2->p_stat = SACTIVE;
591 		setrunnable(l2);
592 		/* LWP now unlocked */
593 	}
594 
595 	/*
596 	 * Return child pid to parent process,
597 	 * marking us as parent via retval[1].
598 	 */
599 	if (retval != NULL) {
600 		retval[0] = p2->p_pid;
601 		retval[1] = 0;
602 	}
603 
604 	mutex_exit(p2->p_lock);
605 
606 	/*
607 	 * Let the parent know that we are tracing its child.
608 	 */
609 	if (tracefork(p1, flags) || tracevfork(p1, flags)) {
610 		mutex_enter(p1->p_lock);
611 		eventswitch(TRAP_CHLD,
612 		    tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK,
613 		    retval[0]);
614 		mutex_enter(&proc_lock);
615 	}
616 
617 	/*
618 	 * Preserve synchronization semantics of vfork.  If waiting for
619 	 * child to exec or exit, sleep until it clears p_vforkwaiting.
620 	 */
621 	while (l1->l_vforkwaiting)
622 		cv_wait(&l1->l_waitcv, &proc_lock);
623 
624 	/*
625 	 * Let the parent know that we are tracing its child.
626 	 */
627 	if (tracevforkdone(p1, flags)) {
628 		mutex_enter(p1->p_lock);
629 		eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]);
630 	} else
631 		mutex_exit(&proc_lock);
632 
633 	return 0;
634 }
635 
636 /*
637  * MI code executed in each newly spawned process before returning to userland.
638  */
639 void
child_return(void * arg)640 child_return(void *arg)
641 {
642 	struct lwp *l = curlwp;
643 	struct proc *p = l->l_proc;
644 
645 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
646 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
647 		eventswitchchild(p, TRAP_CHLD,
648 		    ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK);
649 	}
650 
651 	md_child_return(l);
652 
653 	/*
654 	 * Return SYS_fork for all fork types, including vfork(2) and clone(2).
655 	 *
656 	 * This approach simplifies the code and avoids extra locking.
657 	 */
658 	ktrsysret(SYS_fork, 0, 0);
659 }
660