xref: /openbsd/sys/kern/kern_sysctl.c (revision ffff71aa)
1 /*	$OpenBSD: kern_sysctl.c,v 1.462 2025/01/14 18:37:51 mvs Exp $	*/
2 /*	$NetBSD: kern_sysctl.c,v 1.17 1996/05/20 17:49:05 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Mike Karels at Berkeley Software Design, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_sysctl.c	8.4 (Berkeley) 4/14/94
36  */
37 
38 /*
39  * sysctl system call.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/atomic.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/pool.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/vnode.h>
55 #include <sys/unistd.h>
56 #include <sys/buf.h>
57 #include <sys/clockintr.h>
58 #include <sys/tty.h>
59 #include <sys/disklabel.h>
60 #include <sys/disk.h>
61 #include <sys/sysctl.h>
62 #include <sys/msgbuf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/namei.h>
65 #include <sys/exec.h>
66 #include <sys/mbuf.h>
67 #include <sys/percpu.h>
68 #include <sys/sensors.h>
69 #include <sys/pipe.h>
70 #include <sys/eventvar.h>
71 #include <sys/socketvar.h>
72 #include <sys/socket.h>
73 #include <sys/domain.h>
74 #include <sys/protosw.h>
75 #include <sys/pledge.h>
76 #include <sys/timetc.h>
77 #include <sys/evcount.h>
78 #include <sys/un.h>
79 #include <sys/unpcb.h>
80 #include <sys/sched.h>
81 #include <sys/mount.h>
82 #include <sys/syscallargs.h>
83 #include <sys/wait.h>
84 #include <sys/witness.h>
85 
86 #include <uvm/uvm_extern.h>
87 
88 #include <dev/cons.h>
89 
90 #include <dev/usb/ucomvar.h>
91 
92 #include <net/route.h>
93 #include <netinet/in.h>
94 #include <netinet/ip.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/ip6.h>
98 #include <netinet/tcp.h>
99 #include <netinet/tcp_timer.h>
100 #include <netinet/tcp_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #include <netinet6/ip6_var.h>
104 
105 #ifdef DDB
106 #include <ddb/db_var.h>
107 #endif
108 
109 #ifdef SYSVMSG
110 #include <sys/msg.h>
111 #endif
112 #ifdef SYSVSEM
113 #include <sys/sem.h>
114 #endif
115 #ifdef SYSVSHM
116 #include <sys/shm.h>
117 #endif
118 
119 #include "audio.h"
120 #include "dt.h"
121 #include "pf.h"
122 #include "ucom.h"
123 #include "video.h"
124 
125 /*
126  * Locks used to protect data:
127  *	a	atomic
128  */
129 
130 extern struct forkstat forkstat;
131 extern struct nchstats nchstats;
132 extern int fscale;
133 extern fixpt_t ccpu;
134 extern long numvnodes;
135 extern int allowdt;
136 extern int audio_record_enable;
137 extern int video_record_enable;
138 extern int autoconf_serial;
139 
140 int allowkmem;		/* [a] */
141 
142 int sysctl_securelevel(void *, size_t *, void *, size_t, struct proc *);
143 int sysctl_diskinit(int, struct proc *);
144 int sysctl_proc_args(int *, u_int, void *, size_t *, struct proc *);
145 int sysctl_proc_cwd(int *, u_int, void *, size_t *, struct proc *);
146 int sysctl_proc_nobroadcastkill(int *, u_int, void *, size_t, void *, size_t *,
147 	struct proc *);
148 int sysctl_proc_vmmap(int *, u_int, void *, size_t *, struct proc *);
149 int sysctl_intrcnt(int *, u_int, void *, size_t *);
150 int sysctl_sensors(int *, u_int, void *, size_t *, void *, size_t);
151 int sysctl_cptime2(int *, u_int, void *, size_t *, void *, size_t);
152 int sysctl_audio(int *, u_int, void *, size_t *, void *, size_t);
153 int sysctl_video(int *, u_int, void *, size_t *, void *, size_t);
154 int sysctl_cpustats(int *, u_int, void *, size_t *, void *, size_t);
155 int sysctl_utc_offset(void *, size_t *, void *, size_t);
156 int sysctl_hwbattery(int *, u_int, void *, size_t *, void *, size_t);
157 
158 void fill_file(struct kinfo_file *, struct file *, struct filedesc *, int,
159     struct vnode *, struct process *, struct proc *, struct socket *, int);
160 void fill_kproc(struct process *, struct kinfo_proc *, struct proc *, int);
161 
162 int kern_sysctl_locked(int *, u_int, void *, size_t *, void *, size_t,
163 	struct proc *);
164 int kern_sysctl_dirs(int, int *, u_int, void *, size_t *, void *,
165 	size_t, struct proc *);
166 int kern_sysctl_dirs_locked(int, int *, u_int, void *, size_t *, void *,
167 	size_t, struct proc *);
168 int hw_sysctl_locked(int *, u_int, void *, size_t *,void *, size_t,
169 	struct proc *);
170 
171 int (*cpu_cpuspeed)(int *);
172 
173 /*
174  * Lock to avoid too many processes vslocking a large amount of memory
175  * at the same time.
176  */
177 struct rwlock sysctl_lock = RWLOCK_INITIALIZER("sysctllk");
178 struct rwlock sysctl_disklock = RWLOCK_INITIALIZER("sysctldlk");
179 
180 int
sysctl_vslock(void * addr,size_t len)181 sysctl_vslock(void *addr, size_t len)
182 {
183 	int error;
184 
185 	error = rw_enter(&sysctl_lock, RW_WRITE|RW_INTR);
186 	if (error)
187 		return (error);
188 	KERNEL_LOCK();
189 
190 	if (addr) {
191 		if (atop(len) > uvmexp.wiredmax - uvmexp.wired) {
192 			error = ENOMEM;
193 			goto out;
194 		}
195 		error = uvm_vslock(curproc, addr, len, PROT_READ | PROT_WRITE);
196 		if (error)
197 			goto out;
198 	}
199 
200 	return (0);
201 out:
202 	KERNEL_UNLOCK();
203 	rw_exit_write(&sysctl_lock);
204 	return (error);
205 }
206 
207 void
sysctl_vsunlock(void * addr,size_t len)208 sysctl_vsunlock(void *addr, size_t len)
209 {
210 	KERNEL_ASSERT_LOCKED();
211 
212 	if (addr)
213 		uvm_vsunlock(curproc, addr, len);
214 	KERNEL_UNLOCK();
215 	rw_exit_write(&sysctl_lock);
216 }
217 
218 int
sys_sysctl(struct proc * p,void * v,register_t * retval)219 sys_sysctl(struct proc *p, void *v, register_t *retval)
220 {
221 	struct sys_sysctl_args /* {
222 		syscallarg(const int *) name;
223 		syscallarg(u_int) namelen;
224 		syscallarg(void *) old;
225 		syscallarg(size_t *) oldlenp;
226 		syscallarg(void *) new;
227 		syscallarg(size_t) newlen;
228 	} */ *uap = v;
229 	int error, dolock = 1;
230 	size_t savelen = 0, oldlen = 0;
231 	sysctlfn *fn;
232 	int name[CTL_MAXNAME];
233 
234 	if (SCARG(uap, new) != NULL &&
235 	    (error = suser(p)))
236 		return (error);
237 	/*
238 	 * all top-level sysctl names are non-terminal
239 	 */
240 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
241 		return (EINVAL);
242 	error = copyin(SCARG(uap, name), name,
243 		       SCARG(uap, namelen) * sizeof(int));
244 	if (error)
245 		return (error);
246 
247 	error = pledge_sysctl(p, SCARG(uap, namelen),
248 	    name, SCARG(uap, new));
249 	if (error)
250 		return (error);
251 
252 	switch (name[0]) {
253 	case CTL_KERN:
254 		dolock = 0;
255 		fn = kern_sysctl;
256 		break;
257 	case CTL_HW:
258 		dolock = 0;
259 		fn = hw_sysctl;
260 		break;
261 	case CTL_VM:
262 		fn = uvm_sysctl;
263 		break;
264 	case CTL_NET:
265 		dolock = 0;
266 		fn = net_sysctl;
267 		break;
268 	case CTL_FS:
269 		dolock = 0;
270 		fn = fs_sysctl;
271 		break;
272 	case CTL_VFS:
273 		fn = vfs_sysctl;
274 		break;
275 	case CTL_MACHDEP:
276 		fn = cpu_sysctl;
277 		break;
278 #ifdef DEBUG_SYSCTL
279 	case CTL_DEBUG:
280 		fn = debug_sysctl;
281 		break;
282 #endif
283 #ifdef DDB
284 	case CTL_DDB:
285 		fn = ddb_sysctl;
286 		break;
287 #endif
288 	default:
289 		return (EOPNOTSUPP);
290 	}
291 
292 	if (SCARG(uap, oldlenp) &&
293 	    (error = copyin(SCARG(uap, oldlenp), &oldlen, sizeof(oldlen))))
294 		return (error);
295 
296 	if (dolock) {
297 		error = sysctl_vslock(SCARG(uap, old), oldlen);
298 		if (error)
299 			return (error);
300 		savelen = oldlen;
301 	}
302 	error = (*fn)(&name[1], SCARG(uap, namelen) - 1, SCARG(uap, old),
303 	    &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
304 	if (dolock)
305 		sysctl_vsunlock(SCARG(uap, old), savelen);
306 
307 	if (error)
308 		return (error);
309 	if (SCARG(uap, oldlenp))
310 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
311 	return (error);
312 }
313 
314 /*
315  * Attributes stored in the kernel.
316  */
317 char hostname[MAXHOSTNAMELEN];
318 int hostnamelen;
319 char domainname[MAXHOSTNAMELEN];
320 int domainnamelen;
321 int hostid;
322 char *disknames = NULL;
323 size_t disknameslen;
324 struct diskstats *diskstats = NULL;
325 size_t diskstatslen;
326 int securelevel;
327 
328 /* morally const values reported by sysctl_bounded_arr */
329 static int arg_max = ARG_MAX;
330 static int openbsd = OpenBSD;
331 static int posix_version = _POSIX_VERSION;
332 static int ngroups_max = NGROUPS_MAX;
333 static int int_zero = 0;
334 static int int_one = 1;
335 static int maxpartitions = MAXPARTITIONS;
336 static int raw_part = RAW_PART;
337 
338 extern int somaxconn, sominconn;
339 extern int nosuidcoredump;
340 extern int maxlocksperuid;
341 extern int uvm_wxabort;
342 extern int global_ptrace;
343 
344 const struct sysctl_bounded_args kern_vars[] = {
345 	{KERN_OSREV, &openbsd, SYSCTL_INT_READONLY},
346 	{KERN_MAXVNODES, &maxvnodes, 0, INT_MAX},
347 	{KERN_MAXPROC, &maxprocess, 0, INT_MAX},
348 	{KERN_MAXFILES, &maxfiles, 0, INT_MAX},
349 	{KERN_NFILES, &numfiles, SYSCTL_INT_READONLY},
350 	{KERN_TTYCOUNT, &tty_count, SYSCTL_INT_READONLY},
351 	{KERN_ARGMAX, &arg_max, SYSCTL_INT_READONLY},
352 	{KERN_POSIX1, &posix_version, SYSCTL_INT_READONLY},
353 	{KERN_NGROUPS, &ngroups_max, SYSCTL_INT_READONLY},
354 	{KERN_JOB_CONTROL, &int_one, SYSCTL_INT_READONLY},
355 	{KERN_SAVED_IDS, &int_one, SYSCTL_INT_READONLY},
356 	{KERN_MAXPARTITIONS, &maxpartitions, SYSCTL_INT_READONLY},
357 	{KERN_RAWPARTITION, &raw_part, SYSCTL_INT_READONLY},
358 	{KERN_MAXTHREAD, &maxthread, 0, INT_MAX},
359 	{KERN_NTHREADS, &nthreads, SYSCTL_INT_READONLY},
360 	{KERN_SOMAXCONN, &somaxconn, 0, SHRT_MAX},
361 	{KERN_SOMINCONN, &sominconn, 0, SHRT_MAX},
362 	{KERN_NOSUIDCOREDUMP, &nosuidcoredump, 0, 3},
363 	{KERN_FSYNC, &int_one, SYSCTL_INT_READONLY},
364 	{KERN_SYSVMSG,
365 #ifdef SYSVMSG
366 	 &int_one,
367 #else
368 	 &int_zero,
369 #endif
370 	 SYSCTL_INT_READONLY},
371 	{KERN_SYSVSEM,
372 #ifdef SYSVSEM
373 	 &int_one,
374 #else
375 	 &int_zero,
376 #endif
377 	 SYSCTL_INT_READONLY},
378 	{KERN_SYSVSHM,
379 #ifdef SYSVSHM
380 	 &int_one,
381 #else
382 	 &int_zero,
383 #endif
384 	 SYSCTL_INT_READONLY},
385 	{KERN_FSCALE, &fscale, SYSCTL_INT_READONLY},
386 	{KERN_CCPU, &ccpu, SYSCTL_INT_READONLY},
387 	{KERN_NPROCS, &nprocesses, SYSCTL_INT_READONLY},
388 	{KERN_SPLASSERT, &splassert_ctl, 0, 3},
389 	{KERN_MAXLOCKSPERUID, &maxlocksperuid, 0, INT_MAX},
390 	{KERN_WXABORT, &uvm_wxabort, 0, 1},
391 	{KERN_NETLIVELOCKS, &int_zero, SYSCTL_INT_READONLY},
392 #ifdef PTRACE
393 	{KERN_GLOBAL_PTRACE, &global_ptrace, 0, 1},
394 #endif
395 	{KERN_AUTOCONF_SERIAL, &autoconf_serial, SYSCTL_INT_READONLY},
396 };
397 
398 int
kern_sysctl_dirs(int top_name,int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)399 kern_sysctl_dirs(int top_name, int *name, u_int namelen,
400     void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p)
401 {
402 	size_t savelen;
403 	int error;
404 
405 	switch (top_name) {
406 	case KERN_MALLOCSTATS:
407 		return (sysctl_malloc(name, namelen, oldp, oldlenp,
408 		    newp, newlen, p));
409 	case KERN_POOL:
410 		return (sysctl_dopool(name, namelen, oldp, oldlenp));
411 #if NAUDIO > 0
412 	case KERN_AUDIO:
413 		return (sysctl_audio(name, namelen, oldp, oldlenp,
414 		    newp, newlen));
415 #endif
416 #if NVIDEO > 0
417 	case KERN_VIDEO:
418 		return (sysctl_video(name, namelen, oldp, oldlenp,
419 		    newp, newlen));
420 #endif
421 	default:
422 		break;
423 	}
424 
425 	savelen = *oldlenp;
426 	if ((error = sysctl_vslock(oldp, savelen)))
427 		return (error);
428 	error = kern_sysctl_dirs_locked(top_name, name, namelen,
429 	    oldp, oldlenp, newp, newlen, p);
430 	sysctl_vsunlock(oldp, savelen);
431 
432 	return (error);
433 }
434 
435 int
kern_sysctl_dirs_locked(int top_name,int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)436 kern_sysctl_dirs_locked(int top_name, int *name, u_int namelen,
437     void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p)
438 {
439 	switch (top_name) {
440 #ifndef SMALL_KERNEL
441 	case KERN_PROC:
442 		return (sysctl_doproc(name, namelen, oldp, oldlenp));
443 	case KERN_PROC_ARGS:
444 		return (sysctl_proc_args(name, namelen, oldp, oldlenp, p));
445 	case KERN_PROC_CWD:
446 		return (sysctl_proc_cwd(name, namelen, oldp, oldlenp, p));
447 	case KERN_PROC_NOBROADCASTKILL:
448 		return (sysctl_proc_nobroadcastkill(name, namelen,
449 		     newp, newlen, oldp, oldlenp, p));
450 	case KERN_PROC_VMMAP:
451 		return (sysctl_proc_vmmap(name, namelen, oldp, oldlenp, p));
452 	case KERN_FILE:
453 		return (sysctl_file(name, namelen, oldp, oldlenp, p));
454 #endif
455 #if defined(GPROF) || defined(DDBPROF)
456 	case KERN_PROF:
457 		return (sysctl_doprof(name, namelen, oldp, oldlenp,
458 		    newp, newlen));
459 #endif
460 	case KERN_TTY:
461 		return (sysctl_tty(name, namelen, oldp, oldlenp,
462 		    newp, newlen));
463 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
464 	case KERN_SYSVIPC_INFO:
465 		return (sysctl_sysvipc(name, namelen, oldp, oldlenp));
466 #endif
467 #ifdef SYSVSEM
468 	case KERN_SEMINFO:
469 		return (sysctl_sysvsem(name, namelen, oldp, oldlenp,
470 		    newp, newlen));
471 #endif
472 #ifdef SYSVSHM
473 	case KERN_SHMINFO:
474 		return (sysctl_sysvshm(name, namelen, oldp, oldlenp,
475 		    newp, newlen));
476 #endif
477 #ifndef SMALL_KERNEL
478 	case KERN_INTRCNT:
479 		return (sysctl_intrcnt(name, namelen, oldp, oldlenp));
480 	case KERN_WATCHDOG:
481 		return (sysctl_wdog(name, namelen, oldp, oldlenp,
482 		    newp, newlen));
483 #endif
484 #ifndef SMALL_KERNEL
485 	case KERN_EVCOUNT:
486 		return (evcount_sysctl(name, namelen, oldp, oldlenp,
487 		    newp, newlen));
488 #endif
489 	case KERN_TIMECOUNTER:
490 		return (sysctl_tc(name, namelen, oldp, oldlenp, newp, newlen));
491 	case KERN_CPTIME2:
492 		return (sysctl_cptime2(name, namelen, oldp, oldlenp,
493 		    newp, newlen));
494 #ifdef WITNESS
495 	case KERN_WITNESSWATCH:
496 		return witness_sysctl_watch(oldp, oldlenp, newp, newlen);
497 	case KERN_WITNESS:
498 		return witness_sysctl(name, namelen, oldp, oldlenp,
499 		    newp, newlen);
500 #endif
501 	case KERN_CPUSTATS:
502 		return (sysctl_cpustats(name, namelen, oldp, oldlenp,
503 		    newp, newlen));
504 	case KERN_CLOCKINTR:
505 		return sysctl_clockintr(name, namelen, oldp, oldlenp, newp,
506 		    newlen);
507 	default:
508 		return (ENOTDIR);	/* overloaded */
509 	}
510 }
511 
512 /*
513  * kernel related system variables.
514  */
515 int
kern_sysctl(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)516 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
517     size_t newlen, struct proc *p)
518 {
519 	int error;
520 	size_t savelen;
521 
522 	/* dispatch the non-terminal nodes first */
523 	if (namelen != 1)
524 		return (kern_sysctl_dirs(name[0], name + 1, namelen - 1,
525 		    oldp, oldlenp, newp, newlen, p));
526 
527 	switch (name[0]) {
528 	case KERN_ALLOWKMEM:
529 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
530 		    &allowkmem));
531 	case KERN_OSTYPE:
532 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
533 	case KERN_OSRELEASE:
534 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
535 	case KERN_OSVERSION:
536 		return (sysctl_rdstring(oldp, oldlenp, newp, osversion));
537 	case KERN_VERSION:
538 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
539 	case KERN_NUMVNODES:  /* XXX numvnodes is a long */
540 		return (sysctl_rdint(oldp, oldlenp, newp, numvnodes));
541 #if NDT > 0
542 	case KERN_ALLOWDT:
543 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
544 		    &allowdt));
545 #endif
546 	case KERN_HOSTID:
547 		return (sysctl_int(oldp, oldlenp, newp, newlen, &hostid));
548 	case KERN_CLOCKRATE:
549 		return (sysctl_clockrate(oldp, oldlenp, newp));
550 	case KERN_BOOTTIME: {
551 		struct timeval bt;
552 		memset(&bt, 0, sizeof bt);
553 		microboottime(&bt);
554 		return (sysctl_rdstruct(oldp, oldlenp, newp, &bt, sizeof bt));
555 	}
556 	case KERN_MBSTAT: {
557 		uint64_t counters[MBSTAT_COUNT];
558 		struct mbstat mbs;
559 		unsigned int i;
560 
561 		memset(&mbs, 0, sizeof(mbs));
562 		counters_read(mbstat, counters, MBSTAT_COUNT, NULL);
563 		for (i = 0; i < MBSTAT_TYPES; i++)
564 			mbs.m_mtypes[i] = counters[i];
565 
566 		mbs.m_drops = counters[MBSTAT_DROPS];
567 		mbs.m_wait = counters[MBSTAT_WAIT];
568 		mbs.m_drain = counters[MBSTAT_DRAIN];
569 		mbs.m_defrag_alloc = counters[MBSTAT_DEFRAG_ALLOC];
570 		mbs.m_prepend_alloc = counters[MBSTAT_PREPEND_ALLOC];
571 		mbs.m_pullup_alloc = counters[MBSTAT_PULLUP_ALLOC];
572 		mbs.m_pullup_copy = counters[MBSTAT_PULLUP_COPY];
573 		mbs.m_pulldown_alloc = counters[MBSTAT_PULLDOWN_ALLOC];
574 		mbs.m_pulldown_copy = counters[MBSTAT_PULLDOWN_COPY];
575 
576 		return (sysctl_rdstruct(oldp, oldlenp, newp,
577 		    &mbs, sizeof(mbs)));
578 	}
579 	case KERN_MSGBUFSIZE:
580 	case KERN_CONSBUFSIZE: {
581 		struct msgbuf *mp;
582 		mp = (name[0] == KERN_MSGBUFSIZE) ? msgbufp : consbufp;
583 		/*
584 		 * deal with cases where the message buffer has
585 		 * become corrupted.
586 		 */
587 		if (!mp || mp->msg_magic != MSG_MAGIC)
588 			return (ENXIO);
589 		return (sysctl_rdint(oldp, oldlenp, newp, mp->msg_bufs));
590 	}
591 	case KERN_TIMEOUT_STATS:
592 		return (timeout_sysctl(oldp, oldlenp, newp, newlen));
593 	case KERN_OSREV:
594 	case KERN_MAXPROC:
595 	case KERN_MAXFILES:
596 	case KERN_NFILES:
597 	case KERN_TTYCOUNT:
598 	case KERN_ARGMAX:
599 	case KERN_POSIX1:
600 	case KERN_NGROUPS:
601 	case KERN_JOB_CONTROL:
602 	case KERN_SAVED_IDS:
603 	case KERN_MAXPARTITIONS:
604 	case KERN_RAWPARTITION:
605 	case KERN_MAXTHREAD:
606 	case KERN_NTHREADS:
607 	case KERN_SOMAXCONN:
608 	case KERN_SOMINCONN:
609 	case KERN_NOSUIDCOREDUMP:
610 	case KERN_FSYNC:
611 	case KERN_SYSVMSG:
612 	case KERN_SYSVSEM:
613 	case KERN_SYSVSHM:
614 	case KERN_FSCALE:
615 	case KERN_CCPU:
616 	case KERN_NPROCS:
617 	case KERN_WXABORT:
618 	case KERN_NETLIVELOCKS:
619 	case KERN_GLOBAL_PTRACE:
620 	case KERN_AUTOCONF_SERIAL:
621 		return (sysctl_bounded_arr(kern_vars, nitems(kern_vars), name,
622 		    namelen, oldp, oldlenp, newp, newlen));
623 	}
624 
625 	savelen = *oldlenp;
626 	if ((error = sysctl_vslock(oldp, savelen)))
627 		return (error);
628 	error = kern_sysctl_locked(name, namelen, oldp, oldlenp,
629 	    newp, newlen, p);
630 	sysctl_vsunlock(oldp, savelen);
631 
632 	return (error);
633 }
634 
635 int
kern_sysctl_locked(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)636 kern_sysctl_locked(int *name, u_int namelen, void *oldp, size_t *oldlenp,
637     void *newp, size_t newlen, struct proc *p)
638 {
639 	int error, stackgap;
640 	dev_t dev;
641 	extern int pool_debug;
642 
643 	switch (name[0]) {
644 	case KERN_SECURELVL:
645 		return (sysctl_securelevel(oldp, oldlenp, newp, newlen, p));
646 	case KERN_HOSTNAME:
647 		error = sysctl_tstring(oldp, oldlenp, newp, newlen,
648 		    hostname, sizeof(hostname));
649 		if (newp && !error)
650 			hostnamelen = newlen;
651 		return (error);
652 	case KERN_DOMAINNAME:
653 		if (securelevel >= 1 && domainnamelen && newp)
654 			error = EPERM;
655 		else
656 			error = sysctl_tstring(oldp, oldlenp, newp, newlen,
657 			    domainname, sizeof(domainname));
658 		if (newp && !error)
659 			domainnamelen = newlen;
660 		return (error);
661 	case KERN_CONSBUF:
662 		if ((error = suser(p)))
663 			return (error);
664 		/* FALLTHROUGH */
665 	case KERN_MSGBUF: {
666 		struct msgbuf *mp;
667 		mp = (name[0] == KERN_MSGBUF) ? msgbufp : consbufp;
668 		/*
669 		 * deal with cases where the message buffer has
670 		 * become corrupted.
671 		 */
672 		if (!mp || mp->msg_magic != MSG_MAGIC)
673 			return (ENXIO);
674 		return (sysctl_rdstruct(oldp, oldlenp, newp, mp,
675 		    mp->msg_bufs + offsetof(struct msgbuf, msg_bufc)));
676 	}
677 	case KERN_CPTIME:
678 	{
679 		CPU_INFO_ITERATOR cii;
680 		struct cpu_info *ci;
681 		long cp_time[CPUSTATES];
682 		int i, n = 0;
683 
684 		memset(cp_time, 0, sizeof(cp_time));
685 
686 		CPU_INFO_FOREACH(cii, ci) {
687 			if (!cpu_is_online(ci))
688 				continue;
689 			n++;
690 			for (i = 0; i < CPUSTATES; i++)
691 				cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
692 		}
693 
694 		for (i = 0; i < CPUSTATES; i++)
695 			cp_time[i] /= n;
696 
697 		return (sysctl_rdstruct(oldp, oldlenp, newp, &cp_time,
698 		    sizeof(cp_time)));
699 	}
700 	case KERN_NCHSTATS:
701 		return (sysctl_rdstruct(oldp, oldlenp, newp, &nchstats,
702 		    sizeof(struct nchstats)));
703 	case KERN_FORKSTAT:
704 		return (sysctl_rdstruct(oldp, oldlenp, newp, &forkstat,
705 		    sizeof(struct forkstat)));
706 	case KERN_STACKGAPRANDOM:
707 		stackgap = stackgap_random;
708 		error = sysctl_int(oldp, oldlenp, newp, newlen, &stackgap);
709 		if (error)
710 			return (error);
711 		/*
712 		 * Safety harness.
713 		 */
714 		if ((stackgap < ALIGNBYTES && stackgap != 0) ||
715 		    !powerof2(stackgap) || stackgap >= MAXSSIZ)
716 			return (EINVAL);
717 		stackgap_random = stackgap;
718 		return (0);
719 	case KERN_MAXCLUSTERS: {
720 		int val = nmbclust;
721 		error = sysctl_int(oldp, oldlenp, newp, newlen, &val);
722 		if (error == 0 && val != nmbclust)
723 			error = nmbclust_update(val);
724 		return (error);
725 	}
726 	case KERN_CACHEPCT: {
727 		u_int64_t dmapages;
728 		int opct, pgs;
729 		opct = bufcachepercent;
730 		error = sysctl_int(oldp, oldlenp, newp, newlen,
731 		    &bufcachepercent);
732 		if (error)
733 			return(error);
734 		if (bufcachepercent > 90 || bufcachepercent < 5) {
735 			bufcachepercent = opct;
736 			return (EINVAL);
737 		}
738 		dmapages = uvm_pagecount(&dma_constraint);
739 		if (bufcachepercent != opct) {
740 			pgs = bufcachepercent * dmapages / 100;
741 			bufadjust(pgs); /* adjust bufpages */
742 			bufhighpages = bufpages; /* set high water mark */
743 		}
744 		return(0);
745 	}
746 	case KERN_CONSDEV:
747 		if (cn_tab != NULL)
748 			dev = cn_tab->cn_dev;
749 		else
750 			dev = NODEV;
751 		return sysctl_rdstruct(oldp, oldlenp, newp, &dev, sizeof(dev));
752 	case KERN_POOL_DEBUG: {
753 		int old_pool_debug = pool_debug;
754 
755 		error = sysctl_int(oldp, oldlenp, newp, newlen,
756 		    &pool_debug);
757 		if (error == 0 && pool_debug != old_pool_debug)
758 			pool_reclaim_all();
759 		return (error);
760 	}
761 #if NPF > 0
762 	case KERN_PFSTATUS:
763 		return (pf_sysctl(oldp, oldlenp, newp, newlen));
764 #endif
765 	case KERN_UTC_OFFSET:
766 		return (sysctl_utc_offset(oldp, oldlenp, newp, newlen));
767 	default:
768 		return (sysctl_bounded_arr(kern_vars, nitems(kern_vars), name,
769 		    namelen, oldp, oldlenp, newp, newlen));
770 	}
771 	/* NOTREACHED */
772 }
773 
774 /*
775  * hardware related system variables.
776  */
777 char *hw_vendor, *hw_prod, *hw_uuid, *hw_serial, *hw_ver;
778 int allowpowerdown = 1;
779 int hw_power = 1;
780 
781 /* morally const values reported by sysctl_bounded_arr */
782 static int byte_order = BYTE_ORDER;
783 
784 const struct sysctl_bounded_args hw_vars[] = {
785 	{HW_NCPU, &ncpus, SYSCTL_INT_READONLY},
786 	{HW_NCPUFOUND, &ncpusfound, SYSCTL_INT_READONLY},
787 	{HW_BYTEORDER, &byte_order, SYSCTL_INT_READONLY},
788 	{HW_PAGESIZE, &uvmexp.pagesize, SYSCTL_INT_READONLY},
789 	{HW_DISKCOUNT, &disk_count, SYSCTL_INT_READONLY},
790 	{HW_POWER, &hw_power, SYSCTL_INT_READONLY},
791 };
792 
793 int
hw_sysctl(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)794 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
795     size_t newlen, struct proc *p)
796 {
797 	extern char machine[], cpu_model[];
798 	int err;
799 
800 	/*
801 	 * all sysctl names at this level except sensors and battery
802 	 * are terminal
803 	 */
804 	if (name[0] != HW_SENSORS && name[0] != HW_BATTERY && namelen != 1)
805 		return (ENOTDIR);		/* overloaded */
806 
807 	switch (name[0]) {
808 	case HW_MACHINE:
809 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
810 	case HW_MODEL:
811 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
812 	case HW_NCPUONLINE:
813 		return (sysctl_rdint(oldp, oldlenp, newp,
814 		    sysctl_hwncpuonline()));
815 	case HW_PHYSMEM:
816 		return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem)));
817 	case HW_USERMEM:
818 		return (sysctl_rdint(oldp, oldlenp, newp,
819 		    ptoa(physmem - uvmexp.wired)));
820 	case HW_DISKNAMES:
821 	case HW_DISKSTATS:
822 	case HW_CPUSPEED:
823 #ifndef	SMALL_KERNEL
824 	case HW_SENSORS:
825 	case HW_SETPERF:
826 	case HW_PERFPOLICY:
827 	case HW_BATTERY:
828 #endif /* !SMALL_KERNEL */
829 	case HW_ALLOWPOWERDOWN:
830 	case HW_UCOMNAMES:
831 #ifdef __HAVE_CPU_TOPOLOGY
832 	case HW_SMT:
833 #endif
834 	{
835 		size_t savelen = *oldlenp;
836 		if ((err = sysctl_vslock(oldp, savelen)))
837 			return (err);
838 		err = hw_sysctl_locked(name, namelen, oldp, oldlenp,
839 		    newp, newlen, p);
840 		sysctl_vsunlock(oldp, savelen);
841 		return (err);
842 	}
843 	case HW_VENDOR:
844 		if (hw_vendor)
845 			return (sysctl_rdstring(oldp, oldlenp, newp,
846 			    hw_vendor));
847 		else
848 			return (EOPNOTSUPP);
849 	case HW_PRODUCT:
850 		if (hw_prod)
851 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_prod));
852 		else
853 			return (EOPNOTSUPP);
854 	case HW_VERSION:
855 		if (hw_ver)
856 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_ver));
857 		else
858 			return (EOPNOTSUPP);
859 	case HW_SERIALNO:
860 		if (hw_serial)
861 			return (sysctl_rdstring(oldp, oldlenp, newp,
862 			    hw_serial));
863 		else
864 			return (EOPNOTSUPP);
865 	case HW_UUID:
866 		if (hw_uuid)
867 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_uuid));
868 		else
869 			return (EOPNOTSUPP);
870 	case HW_PHYSMEM64:
871 		return (sysctl_rdquad(oldp, oldlenp, newp,
872 		    ptoa((psize_t)physmem)));
873 	case HW_USERMEM64:
874 		return (sysctl_rdquad(oldp, oldlenp, newp,
875 		    ptoa((psize_t)physmem - uvmexp.wired)));
876 	default:
877 		return sysctl_bounded_arr(hw_vars, nitems(hw_vars), name,
878 		    namelen, oldp, oldlenp, newp, newlen);
879 	}
880 	/* NOTREACHED */
881 }
882 
883 int
hw_sysctl_locked(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)884 hw_sysctl_locked(int *name, u_int namelen, void *oldp, size_t *oldlenp,
885     void *newp, size_t newlen, struct proc *p)
886 {
887 	int err, cpuspeed;
888 
889 	switch (name[0]) {
890 	case HW_DISKNAMES:
891 		err = sysctl_diskinit(0, p);
892 		if (err)
893 			return err;
894 		if (disknames)
895 			return (sysctl_rdstring(oldp, oldlenp, newp,
896 			    disknames));
897 		else
898 			return (sysctl_rdstring(oldp, oldlenp, newp, ""));
899 	case HW_DISKSTATS:
900 		err = sysctl_diskinit(1, p);
901 		if (err)
902 			return err;
903 		return (sysctl_rdstruct(oldp, oldlenp, newp, diskstats,
904 		    disk_count * sizeof(struct diskstats)));
905 	case HW_CPUSPEED:
906 		if (!cpu_cpuspeed)
907 			return (EOPNOTSUPP);
908 		err = cpu_cpuspeed(&cpuspeed);
909 		if (err)
910 			return err;
911 		return (sysctl_rdint(oldp, oldlenp, newp, cpuspeed));
912 #ifndef SMALL_KERNEL
913 	case HW_SENSORS:
914 		return (sysctl_sensors(name + 1, namelen - 1, oldp, oldlenp,
915 		    newp, newlen));
916 	case HW_SETPERF:
917 		return (sysctl_hwsetperf(oldp, oldlenp, newp, newlen));
918 	case HW_PERFPOLICY:
919 		return (sysctl_hwperfpolicy(oldp, oldlenp, newp, newlen));
920 #endif /* !SMALL_KERNEL */
921 	case HW_ALLOWPOWERDOWN:
922 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
923 		    &allowpowerdown));
924 	case HW_UCOMNAMES: {
925 		const char *str = "";
926 #if NUCOM > 0
927 		str = sysctl_ucominit();
928 #endif	/* NUCOM > 0 */
929 		return (sysctl_rdstring(oldp, oldlenp, newp, str));
930 	}
931 #ifdef __HAVE_CPU_TOPOLOGY
932 	case HW_SMT:
933 		return (sysctl_hwsmt(oldp, oldlenp, newp, newlen));
934 #endif
935 #ifndef SMALL_KERNEL
936 	case HW_BATTERY:
937 		return (sysctl_hwbattery(name + 1, namelen - 1, oldp, oldlenp,
938 		    newp, newlen));
939 #endif
940 	default:
941 		return (EOPNOTSUPP);
942 	}
943 	/* NOTREACHED */
944 }
945 
946 #ifndef SMALL_KERNEL
947 
948 int hw_battery_chargemode;
949 int hw_battery_chargestart;
950 int hw_battery_chargestop;
951 int (*hw_battery_setchargemode)(int);
952 int (*hw_battery_setchargestart)(int);
953 int (*hw_battery_setchargestop)(int);
954 
955 int
sysctl_hwchargemode(void * oldp,size_t * oldlenp,void * newp,size_t newlen)956 sysctl_hwchargemode(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
957 {
958 	int mode = hw_battery_chargemode;
959 	int error;
960 
961 	if (!hw_battery_setchargemode)
962 		return EOPNOTSUPP;
963 
964 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
965 	    &mode, -1, 1);
966 	if (error)
967 		return error;
968 
969 	if (newp != NULL)
970 		error = hw_battery_setchargemode(mode);
971 
972 	return error;
973 }
974 
975 int
sysctl_hwchargestart(void * oldp,size_t * oldlenp,void * newp,size_t newlen)976 sysctl_hwchargestart(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
977 {
978 	int start = hw_battery_chargestart;
979 	int error;
980 
981 	if (!hw_battery_setchargestart)
982 		return EOPNOTSUPP;
983 
984 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
985 	    &start, 0, 100);
986 	if (error)
987 		return error;
988 
989 	if (newp != NULL)
990 		error = hw_battery_setchargestart(start);
991 
992 	return error;
993 }
994 
995 int
sysctl_hwchargestop(void * oldp,size_t * oldlenp,void * newp,size_t newlen)996 sysctl_hwchargestop(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
997 {
998 	int stop = hw_battery_chargestop;
999 	int error;
1000 
1001 	if (!hw_battery_setchargestop)
1002 		return EOPNOTSUPP;
1003 
1004 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
1005 	    &stop, 0, 100);
1006 	if (error)
1007 		return error;
1008 
1009 	if (newp != NULL)
1010 		error = hw_battery_setchargestop(stop);
1011 
1012 	return error;
1013 }
1014 
1015 int
sysctl_hwbattery(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)1016 sysctl_hwbattery(int *name, u_int namelen, void *oldp, size_t *oldlenp,
1017     void *newp, size_t newlen)
1018 {
1019 	if (namelen != 1)
1020 		return (ENOTDIR);
1021 
1022 	switch (name[0]) {
1023 	case HW_BATTERY_CHARGEMODE:
1024 		return (sysctl_hwchargemode(oldp, oldlenp, newp, newlen));
1025 	case HW_BATTERY_CHARGESTART:
1026 		return (sysctl_hwchargestart(oldp, oldlenp, newp, newlen));
1027 	case HW_BATTERY_CHARGESTOP:
1028 		return (sysctl_hwchargestop(oldp, oldlenp, newp, newlen));
1029 	default:
1030 		return (EOPNOTSUPP);
1031 	}
1032 	/* NOTREACHED */
1033 }
1034 
1035 #endif
1036 
1037 #ifdef DEBUG_SYSCTL
1038 /*
1039  * Debugging related system variables.
1040  */
1041 extern struct ctldebug debug_vfs_busyprt;
1042 struct ctldebug debug1, debug2, debug3, debug4;
1043 struct ctldebug debug5, debug6, debug7, debug8, debug9;
1044 struct ctldebug debug10, debug11, debug12, debug13, debug14;
1045 struct ctldebug debug15, debug16, debug17, debug18, debug19;
1046 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
1047 	&debug_vfs_busyprt,
1048 	&debug1, &debug2, &debug3, &debug4,
1049 	&debug5, &debug6, &debug7, &debug8, &debug9,
1050 	&debug10, &debug11, &debug12, &debug13, &debug14,
1051 	&debug15, &debug16, &debug17, &debug18, &debug19,
1052 };
1053 int
debug_sysctl(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)1054 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1055     size_t newlen, struct proc *p)
1056 {
1057 	struct ctldebug *cdp;
1058 
1059 	/* all sysctl names at this level are name and field */
1060 	if (namelen != 2)
1061 		return (ENOTDIR);		/* overloaded */
1062 	if (name[0] < 0 || name[0] >= nitems(debugvars))
1063 		return (EOPNOTSUPP);
1064 	cdp = debugvars[name[0]];
1065 	if (cdp->debugname == 0)
1066 		return (EOPNOTSUPP);
1067 	switch (name[1]) {
1068 	case CTL_DEBUG_NAME:
1069 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
1070 	case CTL_DEBUG_VALUE:
1071 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
1072 	default:
1073 		return (EOPNOTSUPP);
1074 	}
1075 	/* NOTREACHED */
1076 }
1077 #endif /* DEBUG_SYSCTL */
1078 
1079 /*
1080  * Reads, or writes that lower the value
1081  */
1082 int
sysctl_int_lower(void * oldp,size_t * oldlenp,void * newp,size_t newlen,int * valp)1083 sysctl_int_lower(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1084     int *valp)
1085 {
1086 	unsigned int oldval, newval;
1087 	int error;
1088 
1089 	if (oldp && *oldlenp < sizeof(int))
1090 		return (ENOMEM);
1091 	if (newp && newlen != sizeof(int))
1092 		return (EINVAL);
1093 	*oldlenp = sizeof(int);
1094 
1095 	if (newp) {
1096 		if ((error = copyin(newp, &newval, sizeof(int))))
1097 			return (error);
1098 		do {
1099 			oldval = atomic_load_int(valp);
1100 			if (oldval < (unsigned int)newval)
1101 				return (EPERM);	/* do not allow raising */
1102 		} while (atomic_cas_uint(valp, oldval, newval) != oldval);
1103 
1104 		if (oldp) {
1105 			/* new value has been set although user gets error */
1106 			if ((error = copyout(&oldval, oldp, sizeof(int))))
1107 				return (error);
1108 		}
1109 	} else if (oldp) {
1110 		oldval = atomic_load_int(valp);
1111 
1112 		if ((error = copyout(&oldval, oldp, sizeof(int))))
1113 			return (error);
1114 	}
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Validate parameters and get old / set new parameters
1121  * for an integer-valued sysctl function.
1122  */
1123 int
sysctl_int(void * oldp,size_t * oldlenp,void * newp,size_t newlen,int * valp)1124 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
1125 {
1126 	return (sysctl_int_bounded(oldp, oldlenp, newp, newlen, valp,
1127 	    INT_MIN, INT_MAX));
1128 }
1129 
1130 /*
1131  * As above, but read-only.
1132  */
1133 int
sysctl_rdint(void * oldp,size_t * oldlenp,void * newp,int val)1134 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1135 {
1136 	int error = 0;
1137 
1138 	if (oldp && *oldlenp < sizeof(int))
1139 		return (ENOMEM);
1140 	if (newp)
1141 		return (EPERM);
1142 	*oldlenp = sizeof(int);
1143 	if (oldp)
1144 		error = copyout((caddr_t)&val, oldp, sizeof(int));
1145 	return (error);
1146 }
1147 
1148 int
sysctl_securelevel(void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)1149 sysctl_securelevel(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1150     struct proc *p)
1151 {
1152 	int oldval, newval;
1153 	int error;
1154 
1155 	if (oldp && *oldlenp < sizeof(int))
1156 		return (ENOMEM);
1157 	if (newp && newlen != sizeof(int))
1158 		return (EINVAL);
1159 	*oldlenp = sizeof(int);
1160 
1161 	if (newp) {
1162 		if ((error = copyin(newp, &newval, sizeof(int))))
1163 			return (error);
1164 		do {
1165 			oldval = atomic_load_int(&securelevel);
1166 			if ((oldval > 0 || newval < -1) && newval < oldval &&
1167 			    p->p_p->ps_pid != 1)
1168 				return (EPERM);
1169 		} while (atomic_cas_uint(&securelevel, oldval, newval) !=
1170 		    oldval);
1171 
1172 		if (oldp) {
1173 			/* new value has been set although user gets error */
1174 			if ((error = copyout(&oldval, oldp, sizeof(int))))
1175 				return (error);
1176 		}
1177 	} else if (oldp) {
1178 		oldval = atomic_load_int(&securelevel);
1179 
1180 		if ((error = copyout(&oldval, oldp, sizeof(int))))
1181 			return (error);
1182 	}
1183 
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Selects between sysctl_rdint and sysctl_int according to securelevel.
1189  */
1190 int
sysctl_securelevel_int(void * oldp,size_t * oldlenp,void * newp,size_t newlen,int * valp)1191 sysctl_securelevel_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1192     int *valp)
1193 {
1194 	if ((int)atomic_load_int(&securelevel) > 0)
1195 		return (sysctl_rdint(oldp, oldlenp, newp, *valp));
1196 	return (sysctl_int(oldp, oldlenp, newp, newlen, valp));
1197 }
1198 
1199 /*
1200  * Read-only or bounded integer values.
1201  */
1202 int
sysctl_int_bounded(void * oldp,size_t * oldlenp,void * newp,size_t newlen,int * valp,int minimum,int maximum)1203 sysctl_int_bounded(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1204     int *valp, int minimum, int maximum)
1205 {
1206 	int oldval, newval;
1207 	int error;
1208 
1209 	/* read only */
1210 	if (newp != NULL && minimum > maximum)
1211 		return (EPERM);
1212 
1213 	if (oldp != NULL && *oldlenp < sizeof(int))
1214 		return (ENOMEM);
1215 	if (newp != NULL && newlen != sizeof(int))
1216 		return (EINVAL);
1217 	*oldlenp = sizeof(int);
1218 
1219 	/* copyin() may sleep, call it first */
1220 	if (newp != NULL) {
1221 		if ((error = copyin(newp, &newval, sizeof(int))))
1222 			return (error);
1223 		/* outside limits */
1224 		if (newval < minimum || maximum < newval)
1225 			return (EINVAL);
1226 	}
1227 	if (oldp != NULL) {
1228 		if (newp != NULL)
1229 			oldval = atomic_swap_uint(valp, newval);
1230 		else
1231 			oldval = atomic_load_int(valp);
1232 		if ((error = copyout(&oldval, oldp, sizeof(int)))) {
1233 			/* new value has been set although user gets error */
1234 			return (error);
1235 		}
1236 	} else if (newp != NULL)
1237 		atomic_store_int(valp, newval);
1238 
1239 	return (0);
1240 }
1241 
1242 /*
1243  * Array of read-only or bounded integer values.
1244  */
1245 int
sysctl_bounded_arr(const struct sysctl_bounded_args * valpp,u_int valplen,int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)1246 sysctl_bounded_arr(const struct sysctl_bounded_args *valpp, u_int valplen,
1247     int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1248     size_t newlen)
1249 {
1250 	u_int i;
1251 	if (namelen != 1)
1252 		return (ENOTDIR);
1253 	for (i = 0; i < valplen; ++i) {
1254 		if (valpp[i].mib == name[0]) {
1255 			return (sysctl_int_bounded(oldp, oldlenp, newp, newlen,
1256 			    valpp[i].var, valpp[i].minimum, valpp[i].maximum));
1257 		}
1258 	}
1259 	return (EOPNOTSUPP);
1260 }
1261 
1262 /*
1263  * Validate parameters and get old / set new parameters
1264  * for an integer-valued sysctl function.
1265  */
1266 int
sysctl_quad(void * oldp,size_t * oldlenp,void * newp,size_t newlen,int64_t * valp)1267 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1268     int64_t *valp)
1269 {
1270 	int error = 0;
1271 
1272 	if (oldp && *oldlenp < sizeof(int64_t))
1273 		return (ENOMEM);
1274 	if (newp && newlen != sizeof(int64_t))
1275 		return (EINVAL);
1276 	*oldlenp = sizeof(int64_t);
1277 	if (oldp)
1278 		error = copyout(valp, oldp, sizeof(int64_t));
1279 	if (error == 0 && newp)
1280 		error = copyin(newp, valp, sizeof(int64_t));
1281 	return (error);
1282 }
1283 
1284 /*
1285  * As above, but read-only.
1286  */
1287 int
sysctl_rdquad(void * oldp,size_t * oldlenp,void * newp,int64_t val)1288 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, int64_t val)
1289 {
1290 	int error = 0;
1291 
1292 	if (oldp && *oldlenp < sizeof(int64_t))
1293 		return (ENOMEM);
1294 	if (newp)
1295 		return (EPERM);
1296 	*oldlenp = sizeof(int64_t);
1297 	if (oldp)
1298 		error = copyout((caddr_t)&val, oldp, sizeof(int64_t));
1299 	return (error);
1300 }
1301 
1302 /*
1303  * Validate parameters and get old / set new parameters
1304  * for a string-valued sysctl function.
1305  */
1306 int
sysctl_string(void * oldp,size_t * oldlenp,void * newp,size_t newlen,char * str,size_t maxlen)1307 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1308     size_t maxlen)
1309 {
1310 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 0);
1311 }
1312 
1313 int
sysctl_tstring(void * oldp,size_t * oldlenp,void * newp,size_t newlen,char * str,size_t maxlen)1314 sysctl_tstring(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1315     char *str, size_t maxlen)
1316 {
1317 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 1);
1318 }
1319 
1320 int
sysctl__string(void * oldp,size_t * oldlenp,void * newp,size_t newlen,char * str,size_t maxlen,int trunc)1321 sysctl__string(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1322     char *str, size_t maxlen, int trunc)
1323 {
1324 	size_t len;
1325 	int error = 0;
1326 
1327 	len = strlen(str) + 1;
1328 	if (oldp && *oldlenp < len) {
1329 		if (trunc == 0 || *oldlenp == 0)
1330 			return (ENOMEM);
1331 	}
1332 	if (newp && newlen >= maxlen)
1333 		return (EINVAL);
1334 	if (oldp) {
1335 		if (trunc && *oldlenp < len) {
1336 			len = *oldlenp;
1337 			error = copyout(str, oldp, len - 1);
1338 			if (error == 0)
1339 				error = copyout("", (char *)oldp + len - 1, 1);
1340 		} else {
1341 			error = copyout(str, oldp, len);
1342 		}
1343 	}
1344 	*oldlenp = len;
1345 	if (error == 0 && newp) {
1346 		error = copyin(newp, str, newlen);
1347 		str[newlen] = 0;
1348 	}
1349 	return (error);
1350 }
1351 
1352 /*
1353  * As above, but read-only.
1354  */
1355 int
sysctl_rdstring(void * oldp,size_t * oldlenp,void * newp,const char * str)1356 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1357 {
1358 	size_t len;
1359 	int error = 0;
1360 
1361 	len = strlen(str) + 1;
1362 	if (oldp && *oldlenp < len)
1363 		return (ENOMEM);
1364 	if (newp)
1365 		return (EPERM);
1366 	*oldlenp = len;
1367 	if (oldp)
1368 		error = copyout(str, oldp, len);
1369 	return (error);
1370 }
1371 
1372 /*
1373  * Validate parameters and get old / set new parameters
1374  * for a structure oriented sysctl function.
1375  */
1376 int
sysctl_struct(void * oldp,size_t * oldlenp,void * newp,size_t newlen,void * sp,size_t len)1377 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1378     size_t len)
1379 {
1380 	int error = 0;
1381 
1382 	if (oldp && *oldlenp < len)
1383 		return (ENOMEM);
1384 	if (newp && newlen > len)
1385 		return (EINVAL);
1386 	if (oldp) {
1387 		*oldlenp = len;
1388 		error = copyout(sp, oldp, len);
1389 	}
1390 	if (error == 0 && newp)
1391 		error = copyin(newp, sp, len);
1392 	return (error);
1393 }
1394 
1395 /*
1396  * Validate parameters and get old parameters
1397  * for a structure oriented sysctl function.
1398  */
1399 int
sysctl_rdstruct(void * oldp,size_t * oldlenp,void * newp,const void * sp,size_t len)1400 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1401     size_t len)
1402 {
1403 	int error = 0;
1404 
1405 	if (oldp && *oldlenp < len)
1406 		return (ENOMEM);
1407 	if (newp)
1408 		return (EPERM);
1409 	*oldlenp = len;
1410 	if (oldp)
1411 		error = copyout(sp, oldp, len);
1412 	return (error);
1413 }
1414 
1415 #ifndef SMALL_KERNEL
1416 void
fill_file(struct kinfo_file * kf,struct file * fp,struct filedesc * fdp,int fd,struct vnode * vp,struct process * pr,struct proc * p,struct socket * so,int show_pointers)1417 fill_file(struct kinfo_file *kf, struct file *fp, struct filedesc *fdp,
1418 	  int fd, struct vnode *vp, struct process *pr, struct proc *p,
1419 	  struct socket *so, int show_pointers)
1420 {
1421 	struct vattr va;
1422 
1423 	memset(kf, 0, sizeof(*kf));
1424 
1425 	kf->fd_fd = fd;		/* might not really be an fd */
1426 
1427 	if (fp != NULL) {
1428 		if (show_pointers)
1429 			kf->f_fileaddr = PTRTOINT64(fp);
1430 		kf->f_flag = fp->f_flag;
1431 		kf->f_iflags = fp->f_iflags;
1432 		kf->f_type = fp->f_type;
1433 		kf->f_count = fp->f_count;
1434 		if (show_pointers)
1435 			kf->f_ucred = PTRTOINT64(fp->f_cred);
1436 		kf->f_uid = fp->f_cred->cr_uid;
1437 		kf->f_gid = fp->f_cred->cr_gid;
1438 		if (show_pointers)
1439 			kf->f_ops = PTRTOINT64(fp->f_ops);
1440 		if (show_pointers)
1441 			kf->f_data = PTRTOINT64(fp->f_data);
1442 		kf->f_usecount = 0;
1443 
1444 		if (suser(p) == 0 || p->p_ucred->cr_uid == fp->f_cred->cr_uid) {
1445 			mtx_enter(&fp->f_mtx);
1446 			kf->f_offset = fp->f_offset;
1447 			kf->f_rxfer = fp->f_rxfer;
1448 			kf->f_rwfer = fp->f_wxfer;
1449 			kf->f_seek = fp->f_seek;
1450 			kf->f_rbytes = fp->f_rbytes;
1451 			kf->f_wbytes = fp->f_wbytes;
1452 			mtx_leave(&fp->f_mtx);
1453 		} else
1454 			kf->f_offset = -1;
1455 	} else if (vp != NULL) {
1456 		/* fake it */
1457 		kf->f_type = DTYPE_VNODE;
1458 		kf->f_flag = FREAD;
1459 		if (fd == KERN_FILE_TRACE)
1460 			kf->f_flag |= FWRITE;
1461 	} else if (so != NULL) {
1462 		/* fake it */
1463 		kf->f_type = DTYPE_SOCKET;
1464 	}
1465 
1466 	/* information about the object associated with this file */
1467 	switch (kf->f_type) {
1468 	case DTYPE_VNODE:
1469 		if (fp != NULL)
1470 			vp = (struct vnode *)fp->f_data;
1471 
1472 		if (show_pointers)
1473 			kf->v_un = PTRTOINT64(vp->v_un.vu_socket);
1474 		kf->v_type = vp->v_type;
1475 		kf->v_tag = vp->v_tag;
1476 		kf->v_flag = vp->v_flag;
1477 		if (show_pointers)
1478 			kf->v_data = PTRTOINT64(vp->v_data);
1479 		if (show_pointers)
1480 			kf->v_mount = PTRTOINT64(vp->v_mount);
1481 		if (vp->v_mount)
1482 			strlcpy(kf->f_mntonname,
1483 			    vp->v_mount->mnt_stat.f_mntonname,
1484 			    sizeof(kf->f_mntonname));
1485 
1486 		if (VOP_GETATTR(vp, &va, p->p_ucred, p) == 0) {
1487 			kf->va_fileid = va.va_fileid;
1488 			kf->va_mode = MAKEIMODE(va.va_type, va.va_mode);
1489 			kf->va_size = va.va_size;
1490 			kf->va_rdev = va.va_rdev;
1491 			kf->va_fsid = va.va_fsid & 0xffffffff;
1492 			kf->va_nlink = va.va_nlink;
1493 		}
1494 		break;
1495 
1496 	case DTYPE_SOCKET: {
1497 		int locked = 0;
1498 
1499 		if (so == NULL) {
1500 			so = (struct socket *)fp->f_data;
1501 			/* if so is passed as parameter it is already locked */
1502 			solock(so);
1503 			locked = 1;
1504 		}
1505 
1506 		kf->so_type = so->so_type;
1507 		kf->so_state = so->so_state | so->so_snd.sb_state |
1508 		    so->so_rcv.sb_state;
1509 		if (show_pointers)
1510 			kf->so_pcb = PTRTOINT64(so->so_pcb);
1511 		else
1512 			kf->so_pcb = -1;
1513 		kf->so_protocol = so->so_proto->pr_protocol;
1514 		kf->so_family = so->so_proto->pr_domain->dom_family;
1515 		kf->so_rcv_cc = so->so_rcv.sb_cc;
1516 		kf->so_snd_cc = so->so_snd.sb_cc;
1517 		if (isspliced(so)) {
1518 			if (show_pointers)
1519 				kf->so_splice =
1520 				    PTRTOINT64(so->so_sp->ssp_socket);
1521 			kf->so_splicelen = so->so_sp->ssp_len;
1522 		} else if (issplicedback(so))
1523 			kf->so_splicelen = -1;
1524 		if (so->so_pcb == NULL) {
1525 			if (locked)
1526 				sounlock(so);
1527 			break;
1528 		}
1529 		switch (kf->so_family) {
1530 		case AF_INET: {
1531 			struct inpcb *inpcb = so->so_pcb;
1532 
1533 			soassertlocked(so);
1534 			if (show_pointers)
1535 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1536 			kf->inp_lport = inpcb->inp_lport;
1537 			kf->inp_laddru[0] = inpcb->inp_laddr.s_addr;
1538 			kf->inp_fport = inpcb->inp_fport;
1539 			kf->inp_faddru[0] = inpcb->inp_faddr.s_addr;
1540 			kf->inp_rtableid = inpcb->inp_rtableid;
1541 			if (so->so_type == SOCK_RAW)
1542 				kf->inp_proto = inpcb->inp_ip.ip_p;
1543 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1544 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1545 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1546 				kf->t_snd_wnd = tcpcb->snd_wnd;
1547 				kf->t_snd_cwnd = tcpcb->snd_cwnd;
1548 				kf->t_state = tcpcb->t_state;
1549 			}
1550 			break;
1551 		    }
1552 		case AF_INET6: {
1553 			struct inpcb *inpcb = so->so_pcb;
1554 
1555 			soassertlocked(so);
1556 			if (show_pointers)
1557 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1558 			kf->inp_lport = inpcb->inp_lport;
1559 			kf->inp_laddru[0] = inpcb->inp_laddr6.s6_addr32[0];
1560 			kf->inp_laddru[1] = inpcb->inp_laddr6.s6_addr32[1];
1561 			kf->inp_laddru[2] = inpcb->inp_laddr6.s6_addr32[2];
1562 			kf->inp_laddru[3] = inpcb->inp_laddr6.s6_addr32[3];
1563 			kf->inp_fport = inpcb->inp_fport;
1564 			kf->inp_faddru[0] = inpcb->inp_faddr6.s6_addr32[0];
1565 			kf->inp_faddru[1] = inpcb->inp_faddr6.s6_addr32[1];
1566 			kf->inp_faddru[2] = inpcb->inp_faddr6.s6_addr32[2];
1567 			kf->inp_faddru[3] = inpcb->inp_faddr6.s6_addr32[3];
1568 			kf->inp_rtableid = inpcb->inp_rtableid;
1569 			if (so->so_type == SOCK_RAW)
1570 				kf->inp_proto = inpcb->inp_ipv6.ip6_nxt;
1571 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1572 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1573 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1574 				kf->t_snd_wnd = tcpcb->snd_wnd;
1575 				kf->t_state = tcpcb->t_state;
1576 			}
1577 			break;
1578 		    }
1579 		case AF_UNIX: {
1580 			struct unpcb *unpcb = so->so_pcb;
1581 
1582 			kf->f_msgcount = unpcb->unp_msgcount;
1583 			if (show_pointers) {
1584 				kf->unp_conn	= PTRTOINT64(unpcb->unp_conn);
1585 				kf->unp_refs	= PTRTOINT64(
1586 				    SLIST_FIRST(&unpcb->unp_refs));
1587 				kf->unp_nextref	= PTRTOINT64(
1588 				    SLIST_NEXT(unpcb, unp_nextref));
1589 				kf->v_un	= PTRTOINT64(unpcb->unp_vnode);
1590 				kf->unp_addr	= PTRTOINT64(unpcb->unp_addr);
1591 			}
1592 			if (unpcb->unp_addr != NULL) {
1593 				struct sockaddr_un *un = mtod(unpcb->unp_addr,
1594 				    struct sockaddr_un *);
1595 				memcpy(kf->unp_path, un->sun_path, un->sun_len
1596 				    - offsetof(struct sockaddr_un,sun_path));
1597 			}
1598 			break;
1599 		    }
1600 		}
1601 		if (locked)
1602 			sounlock(so);
1603 		break;
1604 	    }
1605 
1606 	case DTYPE_PIPE: {
1607 		struct pipe *pipe = (struct pipe *)fp->f_data;
1608 
1609 		if (show_pointers)
1610 			kf->pipe_peer = PTRTOINT64(pipe->pipe_peer);
1611 		kf->pipe_state = pipe->pipe_state;
1612 		break;
1613 	    }
1614 
1615 	case DTYPE_KQUEUE: {
1616 		struct kqueue *kqi = (struct kqueue *)fp->f_data;
1617 
1618 		kf->kq_count = kqi->kq_count;
1619 		kf->kq_state = kqi->kq_state;
1620 		break;
1621 	    }
1622 	}
1623 
1624 	/* per-process information for KERN_FILE_BY[PU]ID */
1625 	if (pr != NULL) {
1626 		kf->p_pid = pr->ps_pid;
1627 		kf->p_uid = pr->ps_ucred->cr_uid;
1628 		kf->p_gid = pr->ps_ucred->cr_gid;
1629 		kf->p_tid = -1;
1630 		strlcpy(kf->p_comm, pr->ps_comm, sizeof(kf->p_comm));
1631 	}
1632 	if (fdp != NULL) {
1633 		fdplock(fdp);
1634 		kf->fd_ofileflags = fdp->fd_ofileflags[fd];
1635 		fdpunlock(fdp);
1636 	}
1637 }
1638 
1639 /*
1640  * Get file structures.
1641  */
1642 int
sysctl_file(int * name,u_int namelen,char * where,size_t * sizep,struct proc * p)1643 sysctl_file(int *name, u_int namelen, char *where, size_t *sizep,
1644     struct proc *p)
1645 {
1646 	struct kinfo_file *kf;
1647 	struct filedesc *fdp;
1648 	struct file *fp;
1649 	struct process *pr;
1650 	size_t buflen, elem_size, elem_count, outsize;
1651 	char *dp = where;
1652 	int arg, i, error = 0, needed = 0, matched;
1653 	u_int op;
1654 	int show_pointers;
1655 
1656 	if (namelen > 4)
1657 		return (ENOTDIR);
1658 	if (namelen < 4 || name[2] > sizeof(*kf))
1659 		return (EINVAL);
1660 
1661 	buflen = where != NULL ? *sizep : 0;
1662 	op = name[0];
1663 	arg = name[1];
1664 	elem_size = name[2];
1665 	elem_count = name[3];
1666 	outsize = MIN(sizeof(*kf), elem_size);
1667 
1668 	if (elem_size < 1)
1669 		return (EINVAL);
1670 
1671 	show_pointers = suser(curproc) == 0;
1672 
1673 	kf = malloc(sizeof(*kf), M_TEMP, M_WAITOK);
1674 
1675 #define FILLIT(fp, fdp, i, vp, pr) do {					\
1676 	if (buflen >= elem_size && elem_count > 0) {			\
1677 		fill_file(kf, fp, fdp, i, vp, pr, p, NULL,		\
1678 		    show_pointers);					\
1679 		error = copyout(kf, dp, outsize);			\
1680 		if (error)						\
1681 			break;						\
1682 		dp += elem_size;					\
1683 		buflen -= elem_size;					\
1684 		elem_count--;						\
1685 	}								\
1686 	needed += elem_size;						\
1687 } while (0)
1688 
1689 #define FILLINPTABLE(table)						\
1690 do {									\
1691 	struct inpcb_iterator iter = { .inp_table = NULL };		\
1692 	struct inpcb *inp = NULL;					\
1693 	struct socket *so;						\
1694 									\
1695 	mtx_enter(&(table)->inpt_mtx);					\
1696 	while ((inp = in_pcb_iterator(table, inp, &iter)) != NULL) {	\
1697 		if (buflen >= elem_size && elem_count > 0) {		\
1698 			mtx_enter(&inp->inp_sofree_mtx);		\
1699 			so = soref(inp->inp_socket);			\
1700 			mtx_leave(&inp->inp_sofree_mtx);		\
1701 			if (so == NULL)					\
1702 				continue;				\
1703 			mtx_leave(&(table)->inpt_mtx);			\
1704 			solock_shared(so);				\
1705 			fill_file(kf, NULL, NULL, 0, NULL, NULL, p,	\
1706 			    so, show_pointers);				\
1707 			sounlock_shared(so);				\
1708 			sorele(so);					\
1709 			error = copyout(kf, dp, outsize);		\
1710 			mtx_enter(&(table)->inpt_mtx);			\
1711 			if (error) {					\
1712 				in_pcb_iterator_abort((table), inp,	\
1713 				    &iter);				\
1714 				break;					\
1715 			}						\
1716 			dp += elem_size;				\
1717 			buflen -= elem_size;				\
1718 			elem_count--;					\
1719 		}							\
1720 		needed += elem_size;					\
1721 	}								\
1722 	mtx_leave(&(table)->inpt_mtx);					\
1723 } while (0)
1724 
1725 	switch (op) {
1726 	case KERN_FILE_BYFILE:
1727 		/* use the inp-tables to pick up closed connections, too */
1728 		if (arg == DTYPE_SOCKET) {
1729 			FILLINPTABLE(&tcbtable);
1730 #ifdef INET6
1731 			FILLINPTABLE(&tcb6table);
1732 #endif
1733 			FILLINPTABLE(&udbtable);
1734 #ifdef INET6
1735 			FILLINPTABLE(&udb6table);
1736 #endif
1737 			FILLINPTABLE(&rawcbtable);
1738 #ifdef INET6
1739 			FILLINPTABLE(&rawin6pcbtable);
1740 #endif
1741 		}
1742 		fp = NULL;
1743 		while ((fp = fd_iterfile(fp, p)) != NULL) {
1744 			if ((arg == 0 || fp->f_type == arg)) {
1745 				int af, skip = 0;
1746 				if (arg == DTYPE_SOCKET && fp->f_type == arg) {
1747 					af = ((struct socket *)fp->f_data)->
1748 					    so_proto->pr_domain->dom_family;
1749 					if (af == AF_INET || af == AF_INET6)
1750 						skip = 1;
1751 				}
1752 				if (!skip)
1753 					FILLIT(fp, NULL, 0, NULL, NULL);
1754 			}
1755 		}
1756 		break;
1757 	case KERN_FILE_BYPID:
1758 		/* A arg of -1 indicates all processes */
1759 		if (arg < -1) {
1760 			error = EINVAL;
1761 			break;
1762 		}
1763 		matched = 0;
1764 		LIST_FOREACH(pr, &allprocess, ps_list) {
1765 			/*
1766 			 * skip system, exiting, embryonic and undead
1767 			 * processes
1768 			 */
1769 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1770 				continue;
1771 			if (arg >= 0 && pr->ps_pid != (pid_t)arg) {
1772 				/* not the pid we are looking for */
1773 				continue;
1774 			}
1775 
1776 			refcnt_take(&pr->ps_refcnt);
1777 
1778 			matched = 1;
1779 			fdp = pr->ps_fd;
1780 			if (pr->ps_textvp)
1781 				FILLIT(NULL, NULL, KERN_FILE_TEXT, pr->ps_textvp, pr);
1782 			if (fdp->fd_cdir)
1783 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1784 			if (fdp->fd_rdir)
1785 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1786 			if (pr->ps_tracevp)
1787 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1788 			for (i = 0; i < fdp->fd_nfiles; i++) {
1789 				if ((fp = fd_getfile(fdp, i)) == NULL)
1790 					continue;
1791 				FILLIT(fp, fdp, i, NULL, pr);
1792 				FRELE(fp, p);
1793 			}
1794 
1795 			refcnt_rele_wake(&pr->ps_refcnt);
1796 
1797 			/* pid is unique, stop searching */
1798 			if (arg >= 0)
1799 				break;
1800 		}
1801 		if (!matched)
1802 			error = ESRCH;
1803 		break;
1804 	case KERN_FILE_BYUID:
1805 		LIST_FOREACH(pr, &allprocess, ps_list) {
1806 			/*
1807 			 * skip system, exiting, embryonic and undead
1808 			 * processes
1809 			 */
1810 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1811 				continue;
1812 			if (arg >= 0 && pr->ps_ucred->cr_uid != (uid_t)arg) {
1813 				/* not the uid we are looking for */
1814 				continue;
1815 			}
1816 
1817 			refcnt_take(&pr->ps_refcnt);
1818 
1819 			fdp = pr->ps_fd;
1820 			if (fdp->fd_cdir)
1821 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1822 			if (fdp->fd_rdir)
1823 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1824 			if (pr->ps_tracevp)
1825 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1826 			for (i = 0; i < fdp->fd_nfiles; i++) {
1827 				if ((fp = fd_getfile(fdp, i)) == NULL)
1828 					continue;
1829 				FILLIT(fp, fdp, i, NULL, pr);
1830 				FRELE(fp, p);
1831 			}
1832 
1833 			refcnt_rele_wake(&pr->ps_refcnt);
1834 		}
1835 		break;
1836 	default:
1837 		error = EINVAL;
1838 		break;
1839 	}
1840 	free(kf, M_TEMP, sizeof(*kf));
1841 
1842 	if (!error) {
1843 		if (where == NULL)
1844 			needed += KERN_FILESLOP * elem_size;
1845 		else if (*sizep < needed)
1846 			error = ENOMEM;
1847 		*sizep = needed;
1848 	}
1849 
1850 	return (error);
1851 }
1852 
1853 /*
1854  * try over estimating by 5 procs
1855  */
1856 #define KERN_PROCSLOP	5
1857 
1858 int
sysctl_doproc(int * name,u_int namelen,char * where,size_t * sizep)1859 sysctl_doproc(int *name, u_int namelen, char *where, size_t *sizep)
1860 {
1861 	struct kinfo_proc *kproc = NULL;
1862 	struct proc *p;
1863 	struct process *pr;
1864 	char *dp;
1865 	int arg, buflen, doingzomb, elem_size, elem_count;
1866 	int error, needed, op;
1867 	int dothreads = 0;
1868 	int show_pointers;
1869 
1870 	dp = where;
1871 	buflen = where != NULL ? *sizep : 0;
1872 	needed = error = 0;
1873 
1874 	if (namelen != 4 || name[2] <= 0 || name[3] < 0 ||
1875 	    name[2] > sizeof(*kproc))
1876 		return (EINVAL);
1877 	op = name[0];
1878 	arg = name[1];
1879 	elem_size = name[2];
1880 	elem_count = name[3];
1881 
1882 	dothreads = op & KERN_PROC_SHOW_THREADS;
1883 	op &= ~KERN_PROC_SHOW_THREADS;
1884 
1885 	show_pointers = suser(curproc) == 0;
1886 
1887 	if (where != NULL)
1888 		kproc = malloc(sizeof(*kproc), M_TEMP, M_WAITOK);
1889 
1890 	pr = LIST_FIRST(&allprocess);
1891 	doingzomb = 0;
1892 again:
1893 	for (; pr != NULL; pr = LIST_NEXT(pr, ps_list)) {
1894 		/* XXX skip processes in the middle of being zapped */
1895 		if (pr->ps_pgrp == NULL)
1896 			continue;
1897 
1898 		/*
1899 		 * Skip embryonic processes.
1900 		 */
1901 		if (pr->ps_flags & PS_EMBRYO)
1902 			continue;
1903 
1904 		/*
1905 		 * TODO - make more efficient (see notes below).
1906 		 */
1907 		switch (op) {
1908 
1909 		case KERN_PROC_PID:
1910 			/* could do this with just a lookup */
1911 			if (pr->ps_pid != (pid_t)arg)
1912 				continue;
1913 			break;
1914 
1915 		case KERN_PROC_PGRP:
1916 			/* could do this by traversing pgrp */
1917 			if (pr->ps_pgrp->pg_id != (pid_t)arg)
1918 				continue;
1919 			break;
1920 
1921 		case KERN_PROC_SESSION:
1922 			if (pr->ps_session->s_leader == NULL ||
1923 			    pr->ps_session->s_leader->ps_pid != (pid_t)arg)
1924 				continue;
1925 			break;
1926 
1927 		case KERN_PROC_TTY:
1928 			if ((pr->ps_flags & PS_CONTROLT) == 0 ||
1929 			    pr->ps_session->s_ttyp == NULL ||
1930 			    pr->ps_session->s_ttyp->t_dev != (dev_t)arg)
1931 				continue;
1932 			break;
1933 
1934 		case KERN_PROC_UID:
1935 			if (pr->ps_ucred->cr_uid != (uid_t)arg)
1936 				continue;
1937 			break;
1938 
1939 		case KERN_PROC_RUID:
1940 			if (pr->ps_ucred->cr_ruid != (uid_t)arg)
1941 				continue;
1942 			break;
1943 
1944 		case KERN_PROC_ALL:
1945 			if (pr->ps_flags & PS_SYSTEM)
1946 				continue;
1947 			break;
1948 
1949 		case KERN_PROC_KTHREAD:
1950 			/* no filtering */
1951 			break;
1952 
1953 		default:
1954 			error = EINVAL;
1955 			goto err;
1956 		}
1957 
1958 		if (buflen >= elem_size && elem_count > 0) {
1959 			fill_kproc(pr, kproc, NULL, show_pointers);
1960 			error = copyout(kproc, dp, elem_size);
1961 			if (error)
1962 				goto err;
1963 			dp += elem_size;
1964 			buflen -= elem_size;
1965 			elem_count--;
1966 		}
1967 		needed += elem_size;
1968 
1969 		/* Skip per-thread entries if not required by op */
1970 		if (!dothreads)
1971 			continue;
1972 
1973 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1974 			if (buflen >= elem_size && elem_count > 0) {
1975 				fill_kproc(pr, kproc, p, show_pointers);
1976 				error = copyout(kproc, dp, elem_size);
1977 				if (error)
1978 					goto err;
1979 				dp += elem_size;
1980 				buflen -= elem_size;
1981 				elem_count--;
1982 			}
1983 			needed += elem_size;
1984 		}
1985 	}
1986 	if (doingzomb == 0) {
1987 		pr = LIST_FIRST(&zombprocess);
1988 		doingzomb++;
1989 		goto again;
1990 	}
1991 	if (where != NULL) {
1992 		*sizep = dp - where;
1993 		if (needed > *sizep) {
1994 			error = ENOMEM;
1995 			goto err;
1996 		}
1997 	} else {
1998 		needed += KERN_PROCSLOP * elem_size;
1999 		*sizep = needed;
2000 	}
2001 err:
2002 	if (kproc)
2003 		free(kproc, M_TEMP, sizeof(*kproc));
2004 	return (error);
2005 }
2006 
2007 /*
2008  * Fill in a kproc structure for the specified process.
2009  */
2010 void
fill_kproc(struct process * pr,struct kinfo_proc * ki,struct proc * p,int show_pointers)2011 fill_kproc(struct process *pr, struct kinfo_proc *ki, struct proc *p,
2012     int show_pointers)
2013 {
2014 	struct session *s = pr->ps_session;
2015 	struct tty *tp;
2016 	struct vmspace *vm = pr->ps_vmspace;
2017 	struct timespec booted, st, ut, utc;
2018 	struct tusage tu;
2019 	int isthread;
2020 
2021 	isthread = p != NULL;
2022 	if (!isthread) {
2023 		p = pr->ps_mainproc;		/* XXX */
2024 		tuagg_get_process(&tu, pr);
2025 	} else
2026 		tuagg_get_proc(&tu, p);
2027 
2028 	FILL_KPROC(ki, strlcpy, p, pr, pr->ps_ucred, pr->ps_pgrp,
2029 	    p, pr, s, vm, pr->ps_limit, pr->ps_sigacts, &tu, isthread,
2030 	    show_pointers);
2031 
2032 	/* stuff that's too painful to generalize into the macros */
2033 	if (s->s_leader)
2034 		ki->p_sid = s->s_leader->ps_pid;
2035 
2036 	if ((pr->ps_flags & PS_CONTROLT) && (tp = s->s_ttyp)) {
2037 		ki->p_tdev = tp->t_dev;
2038 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : -1;
2039 		if (show_pointers)
2040 			ki->p_tsess = PTRTOINT64(tp->t_session);
2041 	} else {
2042 		ki->p_tdev = NODEV;
2043 		ki->p_tpgid = -1;
2044 	}
2045 
2046 	/* fixups that can only be done in the kernel */
2047 	if ((pr->ps_flags & PS_ZOMBIE) == 0) {
2048 		if ((pr->ps_flags & PS_EMBRYO) == 0 && vm != NULL)
2049 			ki->p_vm_rssize = vm_resident_count(vm);
2050 		calctsru(&tu, &ut, &st, NULL);
2051 		ki->p_uutime_sec = ut.tv_sec;
2052 		ki->p_uutime_usec = ut.tv_nsec/1000;
2053 		ki->p_ustime_sec = st.tv_sec;
2054 		ki->p_ustime_usec = st.tv_nsec/1000;
2055 
2056 		/* Convert starting uptime to a starting UTC time. */
2057 		nanoboottime(&booted);
2058 		timespecadd(&booted, &pr->ps_start, &utc);
2059 		ki->p_ustart_sec = utc.tv_sec;
2060 		ki->p_ustart_usec = utc.tv_nsec / 1000;
2061 
2062 #ifdef MULTIPROCESSOR
2063 		if (p->p_cpu != NULL)
2064 			ki->p_cpuid = CPU_INFO_UNIT(p->p_cpu);
2065 #endif
2066 	}
2067 
2068 	/* get %cpu and schedule state: just one thread or sum of all? */
2069 	if (isthread) {
2070 		ki->p_pctcpu = p->p_pctcpu;
2071 		ki->p_stat   = p->p_stat;
2072 	} else {
2073 		ki->p_pctcpu = 0;
2074 		ki->p_stat = (pr->ps_flags & PS_ZOMBIE) ? SDEAD : SIDL;
2075 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
2076 			ki->p_pctcpu += p->p_pctcpu;
2077 			/* find best state: ONPROC > RUN > STOP > SLEEP > .. */
2078 			if (p->p_stat == SONPROC || ki->p_stat == SONPROC)
2079 				ki->p_stat = SONPROC;
2080 			else if (p->p_stat == SRUN || ki->p_stat == SRUN)
2081 				ki->p_stat = SRUN;
2082 			else if (p->p_stat == SSTOP || ki->p_stat == SSTOP)
2083 				ki->p_stat = SSTOP;
2084 			else if (p->p_stat == SSLEEP)
2085 				ki->p_stat = SSLEEP;
2086 		}
2087 	}
2088 }
2089 
2090 int
sysctl_proc_args(int * name,u_int namelen,void * oldp,size_t * oldlenp,struct proc * cp)2091 sysctl_proc_args(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2092     struct proc *cp)
2093 {
2094 	struct process *vpr;
2095 	pid_t pid;
2096 	struct ps_strings pss;
2097 	struct iovec iov;
2098 	struct uio uio;
2099 	int error, cnt, op;
2100 	size_t limit;
2101 	char **rargv, **vargv;		/* reader vs. victim */
2102 	char *rarg, *varg, *buf;
2103 	struct vmspace *vm;
2104 	vaddr_t ps_strings;
2105 
2106 	if (namelen > 2)
2107 		return (ENOTDIR);
2108 	if (namelen < 2)
2109 		return (EINVAL);
2110 
2111 	pid = name[0];
2112 	op = name[1];
2113 
2114 	switch (op) {
2115 	case KERN_PROC_ARGV:
2116 	case KERN_PROC_NARGV:
2117 	case KERN_PROC_ENV:
2118 	case KERN_PROC_NENV:
2119 		break;
2120 	default:
2121 		return (EOPNOTSUPP);
2122 	}
2123 
2124 	if ((vpr = prfind(pid)) == NULL)
2125 		return (ESRCH);
2126 
2127 	if (oldp == NULL) {
2128 		if (op == KERN_PROC_NARGV || op == KERN_PROC_NENV)
2129 			*oldlenp = sizeof(int);
2130 		else
2131 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
2132 		return (0);
2133 	}
2134 
2135 	/* Either system process or exiting/zombie */
2136 	if (vpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2137 		return (EINVAL);
2138 
2139 	/* Execing - danger. */
2140 	if ((vpr->ps_flags & PS_INEXEC))
2141 		return (EBUSY);
2142 
2143 	/* Only owner or root can get env */
2144 	if ((op == KERN_PROC_NENV || op == KERN_PROC_ENV) &&
2145 	    (vpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2146 	    (error = suser(cp)) != 0))
2147 		return (error);
2148 
2149 	ps_strings = vpr->ps_strings;
2150 	vm = vpr->ps_vmspace;
2151 	uvmspace_addref(vm);
2152 	vpr = NULL;
2153 
2154 	buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2155 
2156 	iov.iov_base = &pss;
2157 	iov.iov_len = sizeof(pss);
2158 	uio.uio_iov = &iov;
2159 	uio.uio_iovcnt = 1;
2160 	uio.uio_offset = (off_t)ps_strings;
2161 	uio.uio_resid = sizeof(pss);
2162 	uio.uio_segflg = UIO_SYSSPACE;
2163 	uio.uio_rw = UIO_READ;
2164 	uio.uio_procp = cp;
2165 
2166 	if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
2167 		goto out;
2168 
2169 	if (op == KERN_PROC_NARGV) {
2170 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nargvstr);
2171 		goto out;
2172 	}
2173 	if (op == KERN_PROC_NENV) {
2174 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nenvstr);
2175 		goto out;
2176 	}
2177 
2178 	if (op == KERN_PROC_ARGV) {
2179 		cnt = pss.ps_nargvstr;
2180 		vargv = pss.ps_argvstr;
2181 	} else {
2182 		cnt = pss.ps_nenvstr;
2183 		vargv = pss.ps_envstr;
2184 	}
2185 
2186 	/* -1 to have space for a terminating NUL */
2187 	limit = *oldlenp - 1;
2188 	*oldlenp = 0;
2189 
2190 	rargv = oldp;
2191 
2192 	/*
2193 	 * *oldlenp - number of bytes copied out into readers buffer.
2194 	 * limit - maximal number of bytes allowed into readers buffer.
2195 	 * rarg - pointer into readers buffer where next arg will be stored.
2196 	 * rargv - pointer into readers buffer where the next rarg pointer
2197 	 *  will be stored.
2198 	 * vargv - pointer into victim address space where the next argument
2199 	 *  will be read.
2200 	 */
2201 
2202 	/* space for cnt pointers and a NULL */
2203 	rarg = (char *)(rargv + cnt + 1);
2204 	*oldlenp += (cnt + 1) * sizeof(char **);
2205 
2206 	while (cnt > 0 && *oldlenp < limit) {
2207 		size_t len, vstrlen;
2208 
2209 		/* Write to readers argv */
2210 		if ((error = copyout(&rarg, rargv, sizeof(rarg))) != 0)
2211 			goto out;
2212 
2213 		/* read the victim argv */
2214 		iov.iov_base = &varg;
2215 		iov.iov_len = sizeof(varg);
2216 		uio.uio_iov = &iov;
2217 		uio.uio_iovcnt = 1;
2218 		uio.uio_offset = (off_t)(vaddr_t)vargv;
2219 		uio.uio_resid = sizeof(varg);
2220 		uio.uio_segflg = UIO_SYSSPACE;
2221 		uio.uio_rw = UIO_READ;
2222 		uio.uio_procp = cp;
2223 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
2224 			goto out;
2225 
2226 		if (varg == NULL)
2227 			break;
2228 
2229 		/*
2230 		 * read the victim arg. We must jump through hoops to avoid
2231 		 * crossing a page boundary too much and returning an error.
2232 		 */
2233 more:
2234 		len = PAGE_SIZE - (((vaddr_t)varg) & PAGE_MASK);
2235 		/* leave space for the terminating NUL */
2236 		iov.iov_base = buf;
2237 		iov.iov_len = len;
2238 		uio.uio_iov = &iov;
2239 		uio.uio_iovcnt = 1;
2240 		uio.uio_offset = (off_t)(vaddr_t)varg;
2241 		uio.uio_resid = len;
2242 		uio.uio_segflg = UIO_SYSSPACE;
2243 		uio.uio_rw = UIO_READ;
2244 		uio.uio_procp = cp;
2245 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
2246 			goto out;
2247 
2248 		for (vstrlen = 0; vstrlen < len; vstrlen++) {
2249 			if (buf[vstrlen] == '\0')
2250 				break;
2251 		}
2252 
2253 		/* Don't overflow readers buffer. */
2254 		if (*oldlenp + vstrlen + 1 >= limit) {
2255 			error = ENOMEM;
2256 			goto out;
2257 		}
2258 
2259 		if ((error = copyout(buf, rarg, vstrlen)) != 0)
2260 			goto out;
2261 
2262 		*oldlenp += vstrlen;
2263 		rarg += vstrlen;
2264 
2265 		/* The string didn't end in this page? */
2266 		if (vstrlen == len) {
2267 			varg += vstrlen;
2268 			goto more;
2269 		}
2270 
2271 		/* End of string. Terminate it with a NUL */
2272 		buf[0] = '\0';
2273 		if ((error = copyout(buf, rarg, 1)) != 0)
2274 			goto out;
2275 		*oldlenp += 1;
2276 		rarg += 1;
2277 
2278 		vargv++;
2279 		rargv++;
2280 		cnt--;
2281 	}
2282 
2283 	if (*oldlenp >= limit) {
2284 		error = ENOMEM;
2285 		goto out;
2286 	}
2287 
2288 	/* Write the terminating null */
2289 	rarg = NULL;
2290 	error = copyout(&rarg, rargv, sizeof(rarg));
2291 
2292 out:
2293 	uvmspace_free(vm);
2294 	free(buf, M_TEMP, PAGE_SIZE);
2295 	return (error);
2296 }
2297 
2298 int
sysctl_proc_cwd(int * name,u_int namelen,void * oldp,size_t * oldlenp,struct proc * cp)2299 sysctl_proc_cwd(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2300     struct proc *cp)
2301 {
2302 	struct process *findpr;
2303 	struct vnode *vp;
2304 	pid_t pid;
2305 	int error;
2306 	size_t lenused, len;
2307 	char *path, *bp, *bend;
2308 
2309 	if (namelen > 1)
2310 		return (ENOTDIR);
2311 	if (namelen < 1)
2312 		return (EINVAL);
2313 
2314 	pid = name[0];
2315 	if ((findpr = prfind(pid)) == NULL)
2316 		return (ESRCH);
2317 
2318 	if (oldp == NULL) {
2319 		*oldlenp = MAXPATHLEN * 4;
2320 		return (0);
2321 	}
2322 
2323 	/* Either system process or exiting/zombie */
2324 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2325 		return (EINVAL);
2326 
2327 	/* Only owner or root can get cwd */
2328 	if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2329 	    (error = suser(cp)) != 0)
2330 		return (error);
2331 
2332 	len = *oldlenp;
2333 	if (len > MAXPATHLEN * 4)
2334 		len = MAXPATHLEN * 4;
2335 	else if (len < 2)
2336 		return (ERANGE);
2337 	*oldlenp = 0;
2338 
2339 	/* snag a reference to the vnode before we can sleep */
2340 	vp = findpr->ps_fd->fd_cdir;
2341 	vref(vp);
2342 
2343 	path = malloc(len, M_TEMP, M_WAITOK);
2344 
2345 	bp = &path[len];
2346 	bend = bp;
2347 	*(--bp) = '\0';
2348 
2349 	/* Same as sys__getcwd */
2350 	error = vfs_getcwd_common(vp, NULL,
2351 	    &bp, path, len / 2, GETCWD_CHECK_ACCESS, cp);
2352 	if (error == 0) {
2353 		*oldlenp = lenused = bend - bp;
2354 		error = copyout(bp, oldp, lenused);
2355 	}
2356 
2357 	vrele(vp);
2358 	free(path, M_TEMP, len);
2359 
2360 	return (error);
2361 }
2362 
2363 int
sysctl_proc_nobroadcastkill(int * name,u_int namelen,void * newp,size_t newlen,void * oldp,size_t * oldlenp,struct proc * cp)2364 sysctl_proc_nobroadcastkill(int *name, u_int namelen, void *newp, size_t newlen,
2365     void *oldp, size_t *oldlenp, struct proc *cp)
2366 {
2367 	struct process *findpr;
2368 	pid_t pid;
2369 	int error, flag;
2370 
2371 	if (namelen > 1)
2372 		return (ENOTDIR);
2373 	if (namelen < 1)
2374 		return (EINVAL);
2375 
2376 	pid = name[0];
2377 	if ((findpr = prfind(pid)) == NULL)
2378 		return (ESRCH);
2379 
2380 	/* Either system process or exiting/zombie */
2381 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2382 		return (EINVAL);
2383 
2384 	/* Only root can change PS_NOBROADCASTKILL */
2385 	if (newp != NULL && (error = suser(cp)) != 0)
2386 		return (error);
2387 
2388 	/* get the PS_NOBROADCASTKILL flag */
2389 	flag = findpr->ps_flags & PS_NOBROADCASTKILL ? 1 : 0;
2390 
2391 	error = sysctl_int(oldp, oldlenp, newp, newlen, &flag);
2392 	if (error == 0 && newp) {
2393 		if (flag)
2394 			atomic_setbits_int(&findpr->ps_flags,
2395 			    PS_NOBROADCASTKILL);
2396 		else
2397 			atomic_clearbits_int(&findpr->ps_flags,
2398 			    PS_NOBROADCASTKILL);
2399 	}
2400 
2401 	return (error);
2402 }
2403 
2404 /* Arbitrary but reasonable limit for one iteration. */
2405 #define	VMMAP_MAXLEN	MAXPHYS
2406 
2407 int
sysctl_proc_vmmap(int * name,u_int namelen,void * oldp,size_t * oldlenp,struct proc * cp)2408 sysctl_proc_vmmap(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2409     struct proc *cp)
2410 {
2411 	struct process *findpr;
2412 	pid_t pid;
2413 	int error;
2414 	size_t oldlen, len;
2415 	struct kinfo_vmentry *kve, *ukve;
2416 	u_long *ustart, start;
2417 
2418 	if (namelen > 1)
2419 		return (ENOTDIR);
2420 	if (namelen < 1)
2421 		return (EINVAL);
2422 
2423 	/* Provide max buffer length as hint. */
2424 	if (oldp == NULL) {
2425 		if (oldlenp == NULL)
2426 			return (EINVAL);
2427 		else {
2428 			*oldlenp = VMMAP_MAXLEN;
2429 			return (0);
2430 		}
2431 	}
2432 
2433 	pid = name[0];
2434 	if (pid == cp->p_p->ps_pid) {
2435 		/* Self process mapping. */
2436 		findpr = cp->p_p;
2437 	} else if (pid > 0) {
2438 		if ((findpr = prfind(pid)) == NULL)
2439 			return (ESRCH);
2440 
2441 		/* Either system process or exiting/zombie */
2442 		if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2443 			return (EINVAL);
2444 
2445 #if 1
2446 		/* XXX Allow only root for now */
2447 		if ((error = suser(cp)) != 0)
2448 			return (error);
2449 #else
2450 		/* Only owner or root can get vmmap */
2451 		if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2452 		    (error = suser(cp)) != 0)
2453 			return (error);
2454 #endif
2455 	} else {
2456 		/* Only root can get kernel_map */
2457 		if ((error = suser(cp)) != 0)
2458 			return (error);
2459 		findpr = NULL;
2460 	}
2461 
2462 	/* Check the given size. */
2463 	oldlen = *oldlenp;
2464 	if (oldlen == 0 || oldlen % sizeof(*kve) != 0)
2465 		return (EINVAL);
2466 
2467 	/* Deny huge allocation. */
2468 	if (oldlen > VMMAP_MAXLEN)
2469 		return (EINVAL);
2470 
2471 	/*
2472 	 * Iterate from the given address passed as the first element's
2473 	 * kve_start via oldp.
2474 	 */
2475 	ukve = (struct kinfo_vmentry *)oldp;
2476 	ustart = &ukve->kve_start;
2477 	error = copyin(ustart, &start, sizeof(start));
2478 	if (error != 0)
2479 		return (error);
2480 
2481 	/* Allocate wired memory to not block. */
2482 	kve = malloc(oldlen, M_TEMP, M_WAITOK);
2483 
2484 	/* Set the base address and read entries. */
2485 	kve[0].kve_start = start;
2486 	len = oldlen;
2487 	error = fill_vmmap(findpr, kve, &len);
2488 	if (error != 0 && error != ENOMEM)
2489 		goto done;
2490 	if (len == 0)
2491 		goto done;
2492 
2493 	KASSERT(len <= oldlen);
2494 	KASSERT((len % sizeof(struct kinfo_vmentry)) == 0);
2495 
2496 	error = copyout(kve, oldp, len);
2497 
2498 done:
2499 	*oldlenp = len;
2500 
2501 	free(kve, M_TEMP, oldlen);
2502 
2503 	return (error);
2504 }
2505 #endif
2506 
2507 /*
2508  * Initialize disknames/diskstats for export by sysctl. If update is set,
2509  * then we simply update the disk statistics information.
2510  */
2511 int
sysctl_diskinit(int update,struct proc * p)2512 sysctl_diskinit(int update, struct proc *p)
2513 {
2514 	struct diskstats *sdk;
2515 	struct disk *dk;
2516 	const char *duid;
2517 	int error, changed = 0;
2518 
2519 	KERNEL_ASSERT_LOCKED();
2520 
2521 	if ((error = rw_enter(&sysctl_disklock, RW_WRITE|RW_INTR)) != 0)
2522 		return error;
2523 
2524 	/* Run in a loop, disks may change while malloc sleeps. */
2525 	while (disk_change) {
2526 		int tlen, count;
2527 
2528 		disk_change = 0;
2529 
2530 		tlen = 0;
2531 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2532 			if (dk->dk_name)
2533 				tlen += strlen(dk->dk_name);
2534 			tlen += 18;	/* label uid + separators */
2535 		}
2536 		tlen++;
2537 		/* disk_count may change when malloc sleeps */
2538 		count = disk_count;
2539 
2540 		/*
2541 		 * The sysctl_disklock ensures that no other process can
2542 		 * allocate disknames and diskstats while our malloc sleeps.
2543 		 */
2544 		free(disknames, M_SYSCTL, disknameslen);
2545 		free(diskstats, M_SYSCTL, diskstatslen);
2546 		diskstats = NULL;
2547 		disknames = NULL;
2548 		diskstats = mallocarray(count, sizeof(struct diskstats),
2549 		    M_SYSCTL, M_WAITOK|M_ZERO);
2550 		diskstatslen = count * sizeof(struct diskstats);
2551 		disknames = malloc(tlen, M_SYSCTL, M_WAITOK|M_ZERO);
2552 		disknameslen = tlen;
2553 		disknames[0] = '\0';
2554 		changed = 1;
2555 	}
2556 
2557 	if (changed) {
2558 		int l;
2559 
2560 		l = 0;
2561 		sdk = diskstats;
2562 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2563 			duid = NULL;
2564 			if (dk->dk_label && !duid_iszero(dk->dk_label->d_uid))
2565 				duid = duid_format(dk->dk_label->d_uid);
2566 			snprintf(disknames + l, disknameslen - l, "%s:%s,",
2567 			    dk->dk_name ? dk->dk_name : "",
2568 			    duid ? duid : "");
2569 			l += strlen(disknames + l);
2570 			strlcpy(sdk->ds_name, dk->dk_name,
2571 			    sizeof(sdk->ds_name));
2572 			mtx_enter(&dk->dk_mtx);
2573 			sdk->ds_busy = dk->dk_busy;
2574 			sdk->ds_rxfer = dk->dk_rxfer;
2575 			sdk->ds_wxfer = dk->dk_wxfer;
2576 			sdk->ds_seek = dk->dk_seek;
2577 			sdk->ds_rbytes = dk->dk_rbytes;
2578 			sdk->ds_wbytes = dk->dk_wbytes;
2579 			sdk->ds_attachtime = dk->dk_attachtime;
2580 			sdk->ds_timestamp = dk->dk_timestamp;
2581 			sdk->ds_time = dk->dk_time;
2582 			mtx_leave(&dk->dk_mtx);
2583 			sdk++;
2584 		}
2585 
2586 		/* Eliminate trailing comma */
2587 		if (l != 0)
2588 			disknames[l - 1] = '\0';
2589 	} else if (update) {
2590 		/* Just update, number of drives hasn't changed */
2591 		sdk = diskstats;
2592 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2593 			strlcpy(sdk->ds_name, dk->dk_name,
2594 			    sizeof(sdk->ds_name));
2595 			mtx_enter(&dk->dk_mtx);
2596 			sdk->ds_busy = dk->dk_busy;
2597 			sdk->ds_rxfer = dk->dk_rxfer;
2598 			sdk->ds_wxfer = dk->dk_wxfer;
2599 			sdk->ds_seek = dk->dk_seek;
2600 			sdk->ds_rbytes = dk->dk_rbytes;
2601 			sdk->ds_wbytes = dk->dk_wbytes;
2602 			sdk->ds_attachtime = dk->dk_attachtime;
2603 			sdk->ds_timestamp = dk->dk_timestamp;
2604 			sdk->ds_time = dk->dk_time;
2605 			mtx_leave(&dk->dk_mtx);
2606 			sdk++;
2607 		}
2608 	}
2609 	rw_exit_write(&sysctl_disklock);
2610 	return 0;
2611 }
2612 
2613 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
2614 int
sysctl_sysvipc(int * name,u_int namelen,void * where,size_t * sizep)2615 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
2616 {
2617 #ifdef SYSVSEM
2618 	struct sem_sysctl_info *semsi;
2619 #endif
2620 #ifdef SYSVSHM
2621 	struct shm_sysctl_info *shmsi;
2622 #endif
2623 	size_t infosize, dssize, tsize, buflen, bufsiz;
2624 	int i, nds, error, ret;
2625 	void *buf;
2626 
2627 	if (namelen != 1)
2628 		return (EINVAL);
2629 
2630 	buflen = *sizep;
2631 
2632 	switch (*name) {
2633 	case KERN_SYSVIPC_MSG_INFO:
2634 #ifdef SYSVMSG
2635 		return (sysctl_sysvmsg(name, namelen, where, sizep));
2636 #else
2637 		return (EOPNOTSUPP);
2638 #endif
2639 	case KERN_SYSVIPC_SEM_INFO:
2640 #ifdef SYSVSEM
2641 		infosize = sizeof(semsi->seminfo);
2642 		nds = seminfo.semmni;
2643 		dssize = sizeof(semsi->semids[0]);
2644 		break;
2645 #else
2646 		return (EOPNOTSUPP);
2647 #endif
2648 	case KERN_SYSVIPC_SHM_INFO:
2649 #ifdef SYSVSHM
2650 		infosize = sizeof(shmsi->shminfo);
2651 		nds = shminfo.shmmni;
2652 		dssize = sizeof(shmsi->shmids[0]);
2653 		break;
2654 #else
2655 		return (EOPNOTSUPP);
2656 #endif
2657 	default:
2658 		return (EINVAL);
2659 	}
2660 	tsize = infosize + (nds * dssize);
2661 
2662 	/* Return just the total size required. */
2663 	if (where == NULL) {
2664 		*sizep = tsize;
2665 		return (0);
2666 	}
2667 
2668 	/* Not enough room for even the info struct. */
2669 	if (buflen < infosize) {
2670 		*sizep = 0;
2671 		return (ENOMEM);
2672 	}
2673 	bufsiz = min(tsize, buflen);
2674 	buf = malloc(bufsiz, M_TEMP, M_WAITOK|M_ZERO);
2675 
2676 	switch (*name) {
2677 #ifdef SYSVSEM
2678 	case KERN_SYSVIPC_SEM_INFO:
2679 		semsi = (struct sem_sysctl_info *)buf;
2680 		semsi->seminfo = seminfo;
2681 		break;
2682 #endif
2683 #ifdef SYSVSHM
2684 	case KERN_SYSVIPC_SHM_INFO:
2685 		shmsi = (struct shm_sysctl_info *)buf;
2686 		shmsi->shminfo = shminfo;
2687 		break;
2688 #endif
2689 	}
2690 	buflen -= infosize;
2691 
2692 	ret = 0;
2693 	if (buflen > 0) {
2694 		/* Fill in the IPC data structures.  */
2695 		for (i = 0; i < nds; i++) {
2696 			if (buflen < dssize) {
2697 				ret = ENOMEM;
2698 				break;
2699 			}
2700 			switch (*name) {
2701 #ifdef SYSVSEM
2702 			case KERN_SYSVIPC_SEM_INFO:
2703 				if (sema[i] != NULL)
2704 					memcpy(&semsi->semids[i], sema[i],
2705 					    dssize);
2706 				else
2707 					memset(&semsi->semids[i], 0, dssize);
2708 				break;
2709 #endif
2710 #ifdef SYSVSHM
2711 			case KERN_SYSVIPC_SHM_INFO:
2712 				if (shmsegs[i] != NULL)
2713 					memcpy(&shmsi->shmids[i], shmsegs[i],
2714 					    dssize);
2715 				else
2716 					memset(&shmsi->shmids[i], 0, dssize);
2717 				break;
2718 #endif
2719 			}
2720 			buflen -= dssize;
2721 		}
2722 	}
2723 	*sizep -= buflen;
2724 	error = copyout(buf, where, *sizep);
2725 	free(buf, M_TEMP, bufsiz);
2726 	/* If copyout succeeded, use return code set earlier. */
2727 	return (error ? error : ret);
2728 }
2729 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
2730 
2731 #ifndef	SMALL_KERNEL
2732 
2733 int
sysctl_intrcnt(int * name,u_int namelen,void * oldp,size_t * oldlenp)2734 sysctl_intrcnt(int *name, u_int namelen, void *oldp, size_t *oldlenp)
2735 {
2736 	return (evcount_sysctl(name, namelen, oldp, oldlenp, NULL, 0));
2737 }
2738 
2739 
2740 int
sysctl_sensors(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)2741 sysctl_sensors(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2742     void *newp, size_t newlen)
2743 {
2744 	struct ksensor *ks;
2745 	struct sensor *us;
2746 	struct ksensordev *ksd;
2747 	struct sensordev *usd;
2748 	int dev, numt, ret;
2749 	enum sensor_type type;
2750 
2751 	if (namelen != 1 && namelen != 3)
2752 		return (ENOTDIR);
2753 
2754 	dev = name[0];
2755 	if (namelen == 1) {
2756 		ret = sensordev_get(dev, &ksd);
2757 		if (ret)
2758 			return (ret);
2759 
2760 		/* Grab a copy, to clear the kernel pointers */
2761 		usd = malloc(sizeof(*usd), M_TEMP, M_WAITOK|M_ZERO);
2762 		usd->num = ksd->num;
2763 		strlcpy(usd->xname, ksd->xname, sizeof(usd->xname));
2764 		memcpy(usd->maxnumt, ksd->maxnumt, sizeof(usd->maxnumt));
2765 		usd->sensors_count = ksd->sensors_count;
2766 
2767 		ret = sysctl_rdstruct(oldp, oldlenp, newp, usd,
2768 		    sizeof(struct sensordev));
2769 
2770 		free(usd, M_TEMP, sizeof(*usd));
2771 		return (ret);
2772 	}
2773 
2774 	type = name[1];
2775 	numt = name[2];
2776 
2777 	ret = sensor_find(dev, type, numt, &ks);
2778 	if (ret)
2779 		return (ret);
2780 
2781 	/* Grab a copy, to clear the kernel pointers */
2782 	us = malloc(sizeof(*us), M_TEMP, M_WAITOK|M_ZERO);
2783 	memcpy(us->desc, ks->desc, sizeof(us->desc));
2784 	us->tv = ks->tv;
2785 	us->value = ks->value;
2786 	us->type = ks->type;
2787 	us->status = ks->status;
2788 	us->numt = ks->numt;
2789 	us->flags = ks->flags;
2790 
2791 	ret = sysctl_rdstruct(oldp, oldlenp, newp, us,
2792 	    sizeof(struct sensor));
2793 	free(us, M_TEMP, sizeof(*us));
2794 	return (ret);
2795 }
2796 #endif	/* SMALL_KERNEL */
2797 
2798 int
sysctl_cptime2(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)2799 sysctl_cptime2(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2800     void *newp, size_t newlen)
2801 {
2802 	CPU_INFO_ITERATOR cii;
2803 	struct cpu_info *ci;
2804 	int found = 0;
2805 
2806 	if (namelen != 1)
2807 		return (ENOTDIR);
2808 
2809 	CPU_INFO_FOREACH(cii, ci) {
2810 		if (name[0] == CPU_INFO_UNIT(ci)) {
2811 			found = 1;
2812 			break;
2813 		}
2814 	}
2815 	if (!found)
2816 		return (ENOENT);
2817 
2818 	return (sysctl_rdstruct(oldp, oldlenp, newp,
2819 	    &ci->ci_schedstate.spc_cp_time,
2820 	    sizeof(ci->ci_schedstate.spc_cp_time)));
2821 }
2822 
2823 #if NAUDIO > 0
2824 int
sysctl_audio(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)2825 sysctl_audio(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2826     void *newp, size_t newlen)
2827 {
2828 	if (namelen != 1)
2829 		return (ENOTDIR);
2830 
2831 	if (name[0] != KERN_AUDIO_RECORD)
2832 		return (ENOENT);
2833 
2834 	return (sysctl_int(oldp, oldlenp, newp, newlen, &audio_record_enable));
2835 }
2836 #endif
2837 
2838 #if NVIDEO > 0
2839 int
sysctl_video(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)2840 sysctl_video(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2841     void *newp, size_t newlen)
2842 {
2843 	if (namelen != 1)
2844 		return (ENOTDIR);
2845 
2846 	if (name[0] != KERN_VIDEO_RECORD)
2847 		return (ENOENT);
2848 
2849 	return (sysctl_int(oldp, oldlenp, newp, newlen, &video_record_enable));
2850 }
2851 #endif
2852 
2853 int
sysctl_cpustats(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)2854 sysctl_cpustats(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2855     void *newp, size_t newlen)
2856 {
2857 	CPU_INFO_ITERATOR cii;
2858 	struct cpustats cs;
2859 	struct cpu_info *ci;
2860 	int found = 0;
2861 
2862 	if (namelen != 1)
2863 		return (ENOTDIR);
2864 
2865 	CPU_INFO_FOREACH(cii, ci) {
2866 		if (name[0] == CPU_INFO_UNIT(ci)) {
2867 			found = 1;
2868 			break;
2869 		}
2870 	}
2871 	if (!found)
2872 		return (ENOENT);
2873 
2874 	memset(&cs, 0, sizeof cs);
2875 	memcpy(&cs.cs_time, &ci->ci_schedstate.spc_cp_time, sizeof(cs.cs_time));
2876 	cs.cs_flags = 0;
2877 	if (cpu_is_online(ci))
2878 		cs.cs_flags |= CPUSTATS_ONLINE;
2879 
2880 	return (sysctl_rdstruct(oldp, oldlenp, newp, &cs, sizeof(cs)));
2881 }
2882 
2883 int
sysctl_utc_offset(void * oldp,size_t * oldlenp,void * newp,size_t newlen)2884 sysctl_utc_offset(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2885 {
2886 	struct timespec adjusted, now;
2887 	int adjustment_seconds, error, new_offset_minutes, old_offset_minutes;
2888 
2889 	old_offset_minutes = utc_offset / 60;	/* seconds -> minutes */
2890 	new_offset_minutes = old_offset_minutes;
2891 	error = sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
2892 	     &new_offset_minutes);
2893 	if (error)
2894 		return error;
2895 	if (new_offset_minutes < -24 * 60 || new_offset_minutes > 24 * 60)
2896 		return EINVAL;
2897 	if (new_offset_minutes == old_offset_minutes)
2898 		return 0;
2899 
2900 	utc_offset = new_offset_minutes * 60;	/* minutes -> seconds */
2901 	adjustment_seconds = (new_offset_minutes - old_offset_minutes) * 60;
2902 
2903 	nanotime(&now);
2904 	adjusted = now;
2905 	adjusted.tv_sec -= adjustment_seconds;
2906 	tc_setrealtimeclock(&adjusted);
2907 	resettodr();
2908 
2909 	return 0;
2910 }
2911