xref: /reactos/dll/win32/cabinet/cabinet.h (revision afb6bca5)
1 /*
2  * cabinet.h
3  *
4  * Copyright 2002 Greg Turner
5  * Copyright 2005 Gerold Jens Wucherpfennig
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20  */
21 #ifndef __WINE_CABINET_H
22 #define __WINE_CABINET_H
23 
24 #include <stdarg.h>
25 
26 #include "windef.h"
27 #include "winbase.h"
28 #include "winnt.h"
29 #include "fdi.h"
30 #include "fci.h"
31 
32 /* from msvcrt/sys/stat.h */
33 #define _S_IWRITE 0x0080
34 #define _S_IREAD  0x0100
35 
36 /* from msvcrt/fcntl.h */
37 #define _O_RDONLY      0
38 #define _O_WRONLY      1
39 #define _O_RDWR        2
40 #define _O_ACCMODE     (_O_RDONLY|_O_WRONLY|_O_RDWR)
41 #define _O_APPEND      0x0008
42 #define _O_RANDOM      0x0010
43 #define _O_SEQUENTIAL  0x0020
44 #define _O_TEMPORARY   0x0040
45 #define _O_NOINHERIT   0x0080
46 #define _O_CREAT       0x0100
47 #define _O_TRUNC       0x0200
48 #define _O_EXCL        0x0400
49 #define _O_SHORT_LIVED 0x1000
50 #define _O_TEXT        0x4000
51 #define _O_BINARY      0x8000
52 
53 #define CAB_SPLITMAX (10)
54 
55 #define CAB_SEARCH_SIZE (32*1024)
56 
57 typedef unsigned char cab_UBYTE; /* 8 bits  */
58 typedef UINT16        cab_UWORD; /* 16 bits */
59 typedef UINT32        cab_ULONG; /* 32 bits */
60 typedef INT32         cab_LONG;  /* 32 bits */
61 
62 typedef UINT32        cab_off_t;
63 
64 /* number of bits in a ULONG */
65 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * 8) /* CHAR_BIT */
66 
67 /* structure offsets */
68 #define cfhead_Signature         (0x00)
69 #define cfhead_CabinetSize       (0x08)
70 #define cfhead_FileOffset        (0x10)
71 #define cfhead_MinorVersion      (0x18)
72 #define cfhead_MajorVersion      (0x19)
73 #define cfhead_NumFolders        (0x1A)
74 #define cfhead_NumFiles          (0x1C)
75 #define cfhead_Flags             (0x1E)
76 #define cfhead_SetID             (0x20)
77 #define cfhead_CabinetIndex      (0x22)
78 #define cfhead_SIZEOF            (0x24)
79 #define cfheadext_HeaderReserved (0x00)
80 #define cfheadext_FolderReserved (0x02)
81 #define cfheadext_DataReserved   (0x03)
82 #define cfheadext_SIZEOF         (0x04)
83 #define cffold_DataOffset        (0x00)
84 #define cffold_NumBlocks         (0x04)
85 #define cffold_CompType          (0x06)
86 #define cffold_SIZEOF            (0x08)
87 #define cffile_UncompressedSize  (0x00)
88 #define cffile_FolderOffset      (0x04)
89 #define cffile_FolderIndex       (0x08)
90 #define cffile_Date              (0x0A)
91 #define cffile_Time              (0x0C)
92 #define cffile_Attribs           (0x0E)
93 #define cffile_SIZEOF            (0x10)
94 #define cfdata_CheckSum          (0x00)
95 #define cfdata_CompressedSize    (0x04)
96 #define cfdata_UncompressedSize  (0x06)
97 #define cfdata_SIZEOF            (0x08)
98 
99 /* flags */
100 #define cffoldCOMPTYPE_MASK            (0x000f)
101 #define cffoldCOMPTYPE_NONE            (0x0000)
102 #define cffoldCOMPTYPE_MSZIP           (0x0001)
103 #define cffoldCOMPTYPE_QUANTUM         (0x0002)
104 #define cffoldCOMPTYPE_LZX             (0x0003)
105 #define cfheadPREV_CABINET             (0x0001)
106 #define cfheadNEXT_CABINET             (0x0002)
107 #define cfheadRESERVE_PRESENT          (0x0004)
108 #define cffileCONTINUED_FROM_PREV      (0xFFFD)
109 #define cffileCONTINUED_TO_NEXT        (0xFFFE)
110 #define cffileCONTINUED_PREV_AND_NEXT  (0xFFFF)
111 #define cffile_A_RDONLY                (0x01)
112 #define cffile_A_HIDDEN                (0x02)
113 #define cffile_A_SYSTEM                (0x04)
114 #define cffile_A_ARCH                  (0x20)
115 #define cffile_A_EXEC                  (0x40)
116 #define cffile_A_NAME_IS_UTF           (0x80)
117 
118 /****************************************************************************/
119 /* our archiver information / state */
120 
121 /* MSZIP stuff */
122 #define ZIPWSIZE 	0x8000  /* window size */
123 #define ZIPLBITS	9	/* bits in base literal/length lookup table */
124 #define ZIPDBITS	6	/* bits in base distance lookup table */
125 #define ZIPBMAX		16      /* maximum bit length of any code */
126 #define ZIPN_MAX	288     /* maximum number of codes in any set */
127 
128 struct Ziphuft {
129   cab_UBYTE e;                /* number of extra bits or operation */
130   cab_UBYTE b;                /* number of bits in this code or subcode */
131   union {
132     cab_UWORD n;              /* literal, length base, or distance base */
133     struct Ziphuft *t;        /* pointer to next level of table */
134   } v;
135 };
136 
137 struct ZIPstate {
138     cab_ULONG window_posn;      /* current offset within the window        */
139     cab_ULONG bb;               /* bit buffer */
140     cab_ULONG bk;               /* bits in bit buffer */
141     cab_ULONG ll[288+32];       /* literal/length and distance code lengths */
142     cab_ULONG c[ZIPBMAX+1];     /* bit length count table */
143     cab_LONG  lx[ZIPBMAX+1];    /* memory for l[-1..ZIPBMAX-1] */
144     struct Ziphuft *u[ZIPBMAX];	/* table stack */
145     cab_ULONG v[ZIPN_MAX];      /* values in order of bit length */
146     cab_ULONG x[ZIPBMAX+1];     /* bit offsets, then code stack */
147     cab_UBYTE *inpos;
148 };
149 
150 /* Quantum stuff */
151 
152 struct QTMmodelsym {
153   cab_UWORD sym, cumfreq;
154 };
155 
156 struct QTMmodel {
157   int shiftsleft, entries;
158   struct QTMmodelsym *syms;
159   cab_UWORD tabloc[256];
160 };
161 
162 struct QTMstate {
163     cab_UBYTE *window;         /* the actual decoding window              */
164     cab_ULONG window_size;     /* window size (1Kb through 2Mb)           */
165     cab_ULONG actual_size;     /* window size when it was first allocated */
166     cab_ULONG window_posn;     /* current offset within the window        */
167 
168     struct QTMmodel model7;
169     struct QTMmodelsym m7sym[7+1];
170 
171     struct QTMmodel model4, model5, model6pos, model6len;
172     struct QTMmodelsym m4sym[0x18 + 1];
173     struct QTMmodelsym m5sym[0x24 + 1];
174     struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
175 
176     struct QTMmodel model00, model40, model80, modelC0;
177     struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
178     struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
179 };
180 
181 /* LZX stuff */
182 
183 /* some constants defined by the LZX specification */
184 #define LZX_MIN_MATCH                (2)
185 #define LZX_MAX_MATCH                (257)
186 #define LZX_NUM_CHARS                (256)
187 #define LZX_BLOCKTYPE_INVALID        (0)   /* also blocktypes 4-7 invalid */
188 #define LZX_BLOCKTYPE_VERBATIM       (1)
189 #define LZX_BLOCKTYPE_ALIGNED        (2)
190 #define LZX_BLOCKTYPE_UNCOMPRESSED   (3)
191 #define LZX_PRETREE_NUM_ELEMENTS     (20)
192 #define LZX_ALIGNED_NUM_ELEMENTS     (8)   /* aligned offset tree #elements */
193 #define LZX_NUM_PRIMARY_LENGTHS      (7)   /* this one missing from spec! */
194 #define LZX_NUM_SECONDARY_LENGTHS    (249) /* length tree #elements */
195 
196 /* LZX huffman defines: tweak tablebits as desired */
197 #define LZX_PRETREE_MAXSYMBOLS  (LZX_PRETREE_NUM_ELEMENTS)
198 #define LZX_PRETREE_TABLEBITS   (6)
199 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
200 #define LZX_MAINTREE_TABLEBITS  (12)
201 #define LZX_LENGTH_MAXSYMBOLS   (LZX_NUM_SECONDARY_LENGTHS+1)
202 #define LZX_LENGTH_TABLEBITS    (12)
203 #define LZX_ALIGNED_MAXSYMBOLS  (LZX_ALIGNED_NUM_ELEMENTS)
204 #define LZX_ALIGNED_TABLEBITS   (7)
205 
206 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
207 
208 #define LZX_DECLARE_TABLE(tbl) \
209   cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
210   cab_UBYTE tbl##_len  [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
211 
212 struct LZXstate {
213     cab_UBYTE *window;         /* the actual decoding window              */
214     cab_ULONG window_size;     /* window size (32Kb through 2Mb)          */
215     cab_ULONG actual_size;     /* window size when it was first allocated */
216     cab_ULONG window_posn;     /* current offset within the window        */
217     cab_ULONG R0, R1, R2;      /* for the LRU offset system               */
218     cab_UWORD main_elements;   /* number of main tree elements            */
219     int   header_read;         /* have we started decoding at all yet?    */
220     cab_UWORD block_type;      /* type of this block                      */
221     cab_ULONG block_length;    /* uncompressed length of this block       */
222     cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
223     cab_ULONG frames_read;     /* the number of CFDATA blocks processed   */
224     cab_LONG  intel_filesize;  /* magic header value used for transform   */
225     cab_LONG  intel_curpos;    /* current offset in transform space       */
226     int   intel_started;       /* have we seen any translatable data yet? */
227 
228     LZX_DECLARE_TABLE(PRETREE);
229     LZX_DECLARE_TABLE(MAINTREE);
230     LZX_DECLARE_TABLE(LENGTH);
231     LZX_DECLARE_TABLE(ALIGNED);
232 };
233 
234 struct lzx_bits {
235   cab_ULONG bb;
236   int bl;
237   cab_UBYTE *ip;
238 };
239 
240 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
241  * blocks have zero growth. MSZIP guarantees that it won't grow above
242  * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
243  * more than 6144 bytes.
244  */
245 #define CAB_BLOCKMAX (32768)
246 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
247 
248 struct cab_file {
249   struct cab_file *next;               /* next file in sequence          */
250   struct cab_folder *folder;           /* folder that contains this file */
251   LPCSTR filename;                     /* output name of file            */
252   HANDLE fh;                           /* open file handle or NULL       */
253   cab_ULONG length;                    /* uncompressed length of file    */
254   cab_ULONG offset;                    /* uncompressed offset in folder  */
255   cab_UWORD index;                     /* magic index number of folder   */
256   cab_UWORD time, date, attribs;       /* MS-DOS time/date/attributes    */
257 };
258 
259 
260 struct cab_folder {
261   struct cab_folder *next;
262   struct cabinet *cab[CAB_SPLITMAX];   /* cabinet(s) this folder spans   */
263   cab_off_t offset[CAB_SPLITMAX];      /* offset to data blocks          */
264   cab_UWORD comp_type;                 /* compression format/window size */
265   cab_ULONG comp_size;                 /* compressed size of folder      */
266   cab_UBYTE num_splits;                /* number of split blocks + 1     */
267   cab_UWORD num_blocks;                /* total number of blocks         */
268   struct cab_file *contfile;           /* the first split file           */
269 };
270 
271 struct cabinet {
272   struct cabinet *next;                /* for making a list of cabinets  */
273   LPCSTR filename;                     /* input name of cabinet          */
274   HANDLE *fh;                          /* open file handle or NULL       */
275   cab_off_t filelen;                   /* length of cabinet file         */
276   cab_off_t blocks_off;                /* offset to data blocks in file  */
277   struct cabinet *prevcab, *nextcab;   /* multipart cabinet chains       */
278   char *prevname, *nextname;           /* and their filenames            */
279   char *previnfo, *nextinfo;           /* and their visible names        */
280   struct cab_folder *folders;          /* first folder in this cabinet   */
281   struct cab_file *files;              /* first file in this cabinet     */
282   cab_UBYTE block_resv;                /* reserved space in datablocks   */
283   cab_UBYTE flags;                     /* header flags                   */
284 };
285 
286 typedef struct cds_forward {
287   struct cab_folder *current;      /* current folder we're extracting from  */
288   cab_ULONG offset;                /* uncompressed offset within folder     */
289   cab_UBYTE *outpos;               /* (high level) start of data to use up  */
290   cab_UWORD outlen;                /* (high level) amount of data to use up */
291   cab_UWORD split;                 /* at which split in current folder?     */
292   int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn  */
293   cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows!       */
294   cab_UBYTE outbuf[CAB_BLOCKMAX];
295   cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
296   cab_ULONG q_position_base[42];
297   cab_ULONG lzx_position_base[51];
298   cab_UBYTE extra_bits[51];
299   union {
300     struct ZIPstate zip;
301     struct QTMstate qtm;
302     struct LZXstate lzx;
303   } methods;
304 } cab_decomp_state;
305 
306 /*
307  * the rest of these are somewhat kludgy macros which are shared between fdi.c
308  * and cabextract.c.
309  */
310 
311 /* Bitstream reading macros (Quantum / normal byte order)
312  *
313  * Q_INIT_BITSTREAM    should be used first to set up the system
314  * Q_READ_BITS(var,n)  takes N bits from the buffer and puts them in var.
315  *                     unlike LZX, this can loop several times to get the
316  *                     requisite number of bits.
317  * Q_FILL_BUFFER       adds more data to the bit buffer, if there is room
318  *                     for another 16 bits.
319  * Q_PEEK_BITS(n)      extracts (without removing) N bits from the bit
320  *                     buffer
321  * Q_REMOVE_BITS(n)    removes N bits from the bit buffer
322  *
323  * These bit access routines work by using the area beyond the MSB and the
324  * LSB as a free source of zeroes. This avoids having to mask any bits.
325  * So we have to know the bit width of the bitbuffer variable. This is
326  * defined as ULONG_BITS.
327  *
328  * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
329  * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
330  * need an assured number. Retrieving larger bitstrings can be done with
331  * multiple reads and fills of the bitbuffer. The code should work fine
332  * for machines where ULONG >= 32 bits.
333  *
334  * Also note that Quantum reads bytes in normal order; LZX is in
335  * little-endian order.
336  */
337 
338 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
339 
340 #define Q_FILL_BUFFER do {                                                  \
341   if (bitsleft <= (CAB_ULONG_BITS - 16)) {                                  \
342     bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft);   \
343     bitsleft += 16; inpos += 2;                                             \
344   }                                                                         \
345 } while (0)
346 
347 #define Q_PEEK_BITS(n)   (bitbuf >> (CAB_ULONG_BITS - (n)))
348 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
349 
350 #define Q_READ_BITS(v,n) do {                                           \
351   (v) = 0;                                                              \
352   for (bitsneed = (n); bitsneed; bitsneed -= bitrun) {                  \
353     Q_FILL_BUFFER;                                                      \
354     bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed;               \
355     (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun);                        \
356     Q_REMOVE_BITS(bitrun);                                              \
357   }                                                                     \
358 } while (0)
359 
360 #define Q_MENTRIES(model) (QTM(model).entries)
361 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
362 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
363 
364 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
365  * and puts it in var. it may need to read the bitstream to do this.
366  */
367 #define GET_SYMBOL(m, var) do {                                         \
368   range =  ((H - L) & 0xFFFF) + 1;                                      \
369   symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF;      \
370                                                                         \
371   for (i=1; i < Q_MENTRIES(m); i++) {                                   \
372     if (Q_MSYMFREQ(m,i) <= symf) break;                                 \
373   }                                                                     \
374   (var) = Q_MSYM(m,i-1);                                                \
375                                                                         \
376   range = (H - L) + 1;                                                  \
377   H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1;          \
378   L = L + ((Q_MSYMFREQ(m,i)   * range) / Q_MSYMFREQ(m,0));              \
379   while (1) {                                                           \
380     if ((L & 0x8000) != (H & 0x8000)) {                                 \
381       if ((L & 0x4000) && !(H & 0x4000)) {                              \
382         /* underflow case */                                            \
383         C ^= 0x4000; L &= 0x3FFF; H |= 0x4000;                          \
384       }                                                                 \
385       else break;                                                       \
386     }                                                                   \
387     L <<= 1; H = (H << 1) | 1;                                          \
388     Q_FILL_BUFFER;                                                      \
389     C  = (C << 1) | Q_PEEK_BITS(1);                                     \
390     Q_REMOVE_BITS(1);                                                   \
391   }                                                                     \
392                                                                         \
393   QTMupdatemodel(&(QTM(m)), i);                                         \
394 } while (0)
395 
396 /* Bitstream reading macros (LZX / intel little-endian byte order)
397  *
398  * INIT_BITSTREAM    should be used first to set up the system
399  * READ_BITS(var,n)  takes N bits from the buffer and puts them in var
400  *
401  * ENSURE_BITS(n)    ensures there are at least N bits in the bit buffer.
402  *                   it can guarantee up to 17 bits (i.e. it can read in
403  *                   16 new bits when there is down to 1 bit in the buffer,
404  *                   and it can read 32 bits when there are 0 bits in the
405  *                   buffer).
406  * PEEK_BITS(n)      extracts (without removing) N bits from the bit buffer
407  * REMOVE_BITS(n)    removes N bits from the bit buffer
408  *
409  * These bit access routines work by using the area beyond the MSB and the
410  * LSB as a free source of zeroes. This avoids having to mask any bits.
411  * So we have to know the bit width of the bitbuffer variable.
412  */
413 
414 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
415 
416 /* Quantum reads bytes in normal order; LZX is little-endian order */
417 #define ENSURE_BITS(n)                                                    \
418   while (bitsleft < (n)) {                                                \
419     bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
420     bitsleft += 16; inpos+=2;                                             \
421   }
422 
423 #define PEEK_BITS(n)   (bitbuf >> (CAB_ULONG_BITS - (n)))
424 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
425 
426 #define READ_BITS(v,n) do {                                             \
427   if (n) {                                                              \
428     ENSURE_BITS(n);                                                     \
429     (v) = PEEK_BITS(n);                                                 \
430     REMOVE_BITS(n);                                                     \
431   }                                                                     \
432   else {                                                                \
433     (v) = 0;                                                            \
434   }                                                                     \
435 } while (0)
436 
437 /* Huffman macros */
438 
439 #define TABLEBITS(tbl)   (LZX_##tbl##_TABLEBITS)
440 #define MAXSYMBOLS(tbl)  (LZX_##tbl##_MAXSYMBOLS)
441 #define SYMTABLE(tbl)    (LZX(tbl##_table))
442 #define LENTABLE(tbl)    (LZX(tbl##_len))
443 
444 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
445  * In reality, it just calls make_decode_table() with the appropriate
446  * values - they're all fixed by some #defines anyway, so there's no point
447  * writing each call out in full by hand.
448  */
449 #define BUILD_TABLE(tbl)                                                \
450   if (make_decode_table(                                                \
451     MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl)       \
452   )) { return DECR_ILLEGALDATA; }
453 
454 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
455  * bitstream using the stated table and puts it in var.
456  */
457 #define READ_HUFFSYM(tbl,var) do {                                      \
458   ENSURE_BITS(16);                                                      \
459   hufftbl = SYMTABLE(tbl);                                              \
460   if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) {    \
461     j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl));                         \
462     do {                                                                \
463       j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0;                      \
464       if (!j) { return DECR_ILLEGALDATA; }                              \
465     } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl));                      \
466   }                                                                     \
467   j = LENTABLE(tbl)[(var) = i];                                         \
468   REMOVE_BITS(j);                                                       \
469 } while (0)
470 
471 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
472  * first to last in the given table. The code lengths are stored in their
473  * own special LZX way.
474  */
475 #define READ_LENGTHS(tbl,first,last,fn) do { \
476   lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
477   if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
478     return DECR_ILLEGALDATA; \
479   } \
480   bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
481 } while (0)
482 
483 /* Tables for deflate from PKZIP's appnote.txt. */
484 
485 #define THOSE_ZIP_CONSTS                                                           \
486 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */    \
487 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};               \
488 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
489 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51,             \
490  59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};                              \
491 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */   \
492 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,             \
493   4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */                                     \
494 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */   \
495 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,             \
496 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};          \
497 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */           \
498 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,            \
499 10, 11, 11, 12, 12, 13, 13};                                                       \
500 /* And'ing with Zipmask[n] masks the lower n bits */                               \
501 static const cab_UWORD Zipmask[17] = {                                             \
502  0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,           \
503  0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff                    \
504 }
505 
506 /* SESSION Operation */
507 #define EXTRACT_FILLFILELIST  0x00000001
508 #define EXTRACT_EXTRACTFILES  0x00000002
509 
510 struct FILELIST{
511     LPSTR FileName;
512     struct FILELIST *next;
513     BOOL DoExtract;
514 };
515 
516 typedef struct {
517     INT FileSize;
518     ERF Error;
519     struct FILELIST *FileList;
520     INT FileCount;
521     INT Operation;
522     CHAR Destination[MAX_PATH];
523     CHAR CurrentFile[MAX_PATH];
524     CHAR Reserved[MAX_PATH];
525     struct FILELIST *FilterList;
526 } SESSION;
527 
528 #endif /* __WINE_CABINET_H */
529