xref: /openbsd/sys/kern/kern_tc.c (revision 127fa8d5)
1 /*	$OpenBSD: kern_tc.c,v 1.83 2024/02/23 23:01:15 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/queue.h>
36 #include <sys/malloc.h>
37 
38 u_int dummy_get_timecount(struct timecounter *);
39 
40 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
41 int sysctl_tc_choice(void *, size_t *, void *, size_t);
42 
43 /*
44  * Implement a dummy timecounter which we can use until we get a real one
45  * in the air.  This allows the console and other early stuff to use
46  * time services.
47  */
48 
49 u_int
dummy_get_timecount(struct timecounter * tc)50 dummy_get_timecount(struct timecounter *tc)
51 {
52 	static u_int now;
53 
54 	return atomic_inc_int_nv(&now);
55 }
56 
57 static struct timecounter dummy_timecounter = {
58 	.tc_get_timecount = dummy_get_timecount,
59 	.tc_counter_mask = ~0u,
60 	.tc_frequency = 1000000,
61 	.tc_name = "dummy",
62 	.tc_quality = -1000000,
63 	.tc_priv = NULL,
64 	.tc_user = 0,
65 };
66 
67 /*
68  * Locks used to protect struct members, global variables in this file:
69  *	I	immutable after initialization
70  *	T	tc_lock
71  *	W	windup_mtx
72  */
73 
74 struct timehands {
75 	/* These fields must be initialized by the driver. */
76 	struct timecounter	*th_counter;		/* [W] */
77 	int64_t			th_adjtimedelta;	/* [T,W] */
78 	struct bintime		th_next_ntp_update;	/* [T,W] */
79 	int64_t			th_adjustment;		/* [W] */
80 	u_int64_t		th_scale;		/* [W] */
81 	u_int	 		th_offset_count;	/* [W] */
82 	struct bintime		th_boottime;		/* [T,W] */
83 	struct bintime		th_offset;		/* [W] */
84 	struct bintime		th_naptime;		/* [W] */
85 	struct timeval		th_microtime;		/* [W] */
86 	struct timespec		th_nanotime;		/* [W] */
87 	/* Fields not to be copied in tc_windup start with th_generation. */
88 	volatile u_int		th_generation;		/* [W] */
89 	struct timehands	*th_next;		/* [I] */
90 };
91 
92 static struct timehands th0;
93 static struct timehands th1 = {
94 	.th_next = &th0
95 };
96 static struct timehands th0 = {
97 	.th_counter = &dummy_timecounter,
98 	.th_scale = UINT64_MAX / 1000000,
99 	.th_offset = { .sec = 0, .frac = 0 },
100 	.th_generation = 1,
101 	.th_next = &th1
102 };
103 
104 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
105 
106 /*
107  * tc_windup() must be called before leaving this mutex.
108  */
109 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
110 
111 static struct timehands *volatile timehands = &th0;		/* [W] */
112 struct timecounter *timecounter = &dummy_timecounter;		/* [T] */
113 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list);
114 
115 /*
116  * These are updated from tc_windup().  They are useful when
117  * examining kernel core dumps.
118  */
119 volatile time_t naptime = 0;
120 volatile time_t time_second = 0;
121 volatile time_t time_uptime = 0;
122 
123 static int timestepwarnings;
124 
125 void ntp_update_second(struct timehands *);
126 void tc_windup(struct bintime *, struct bintime *, int64_t *);
127 
128 /*
129  * Return the difference between the timehands' counter value now and what
130  * was when we copied it to the timehands' offset_count.
131  */
132 static __inline u_int
tc_delta(struct timehands * th)133 tc_delta(struct timehands *th)
134 {
135 	struct timecounter *tc;
136 
137 	tc = th->th_counter;
138 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
139 	    tc->tc_counter_mask);
140 }
141 
142 /*
143  * Functions for reading the time.  We have to loop until we are sure that
144  * the timehands that we operated on was not updated under our feet.  See
145  * the comment in <sys/time.h> for a description of these functions.
146  */
147 
148 void
binboottime(struct bintime * bt)149 binboottime(struct bintime *bt)
150 {
151 	struct timehands *th;
152 	u_int gen;
153 
154 	do {
155 		th = timehands;
156 		gen = th->th_generation;
157 		membar_consumer();
158 		*bt = th->th_boottime;
159 		membar_consumer();
160 	} while (gen == 0 || gen != th->th_generation);
161 }
162 
163 void
microboottime(struct timeval * tvp)164 microboottime(struct timeval *tvp)
165 {
166 	struct bintime bt;
167 
168 	binboottime(&bt);
169 	BINTIME_TO_TIMEVAL(&bt, tvp);
170 }
171 
172 void
nanoboottime(struct timespec * tsp)173 nanoboottime(struct timespec *tsp)
174 {
175 	struct bintime bt;
176 
177 	binboottime(&bt);
178 	BINTIME_TO_TIMESPEC(&bt, tsp);
179 }
180 
181 void
binuptime(struct bintime * bt)182 binuptime(struct bintime *bt)
183 {
184 	struct timehands *th;
185 	u_int gen;
186 
187 	do {
188 		th = timehands;
189 		gen = th->th_generation;
190 		membar_consumer();
191 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
192 		bintimeadd(bt, &th->th_offset, bt);
193 		membar_consumer();
194 	} while (gen == 0 || gen != th->th_generation);
195 }
196 
197 void
getbinuptime(struct bintime * bt)198 getbinuptime(struct bintime *bt)
199 {
200 	struct timehands *th;
201 	u_int gen;
202 
203 	do {
204 		th = timehands;
205 		gen = th->th_generation;
206 		membar_consumer();
207 		*bt = th->th_offset;
208 		membar_consumer();
209 	} while (gen == 0 || gen != th->th_generation);
210 }
211 
212 void
nanouptime(struct timespec * tsp)213 nanouptime(struct timespec *tsp)
214 {
215 	struct bintime bt;
216 
217 	binuptime(&bt);
218 	BINTIME_TO_TIMESPEC(&bt, tsp);
219 }
220 
221 void
microuptime(struct timeval * tvp)222 microuptime(struct timeval *tvp)
223 {
224 	struct bintime bt;
225 
226 	binuptime(&bt);
227 	BINTIME_TO_TIMEVAL(&bt, tvp);
228 }
229 
230 time_t
getuptime(void)231 getuptime(void)
232 {
233 #if defined(__LP64__)
234 	return time_uptime;	/* atomic */
235 #else
236 	time_t now;
237 	struct timehands *th;
238 	u_int gen;
239 
240 	do {
241 		th = timehands;
242 		gen = th->th_generation;
243 		membar_consumer();
244 		now = th->th_offset.sec;
245 		membar_consumer();
246 	} while (gen == 0 || gen != th->th_generation);
247 
248 	return now;
249 #endif
250 }
251 
252 uint64_t
nsecuptime(void)253 nsecuptime(void)
254 {
255 	struct bintime bt;
256 
257 	binuptime(&bt);
258 	return BINTIME_TO_NSEC(&bt);
259 }
260 
261 uint64_t
getnsecuptime(void)262 getnsecuptime(void)
263 {
264 	struct bintime bt;
265 
266 	getbinuptime(&bt);
267 	return BINTIME_TO_NSEC(&bt);
268 }
269 
270 void
binruntime(struct bintime * bt)271 binruntime(struct bintime *bt)
272 {
273 	struct timehands *th;
274 	u_int gen;
275 
276 	do {
277 		th = timehands;
278 		gen = th->th_generation;
279 		membar_consumer();
280 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
281 		bintimeadd(bt, &th->th_offset, bt);
282 		bintimesub(bt, &th->th_naptime, bt);
283 		membar_consumer();
284 	} while (gen == 0 || gen != th->th_generation);
285 }
286 
287 void
nanoruntime(struct timespec * ts)288 nanoruntime(struct timespec *ts)
289 {
290 	struct bintime bt;
291 
292 	binruntime(&bt);
293 	BINTIME_TO_TIMESPEC(&bt, ts);
294 }
295 
296 void
getbinruntime(struct bintime * bt)297 getbinruntime(struct bintime *bt)
298 {
299 	struct timehands *th;
300 	u_int gen;
301 
302 	do {
303 		th = timehands;
304 		gen = th->th_generation;
305 		membar_consumer();
306 		bintimesub(&th->th_offset, &th->th_naptime, bt);
307 		membar_consumer();
308 	} while (gen == 0 || gen != th->th_generation);
309 }
310 
311 uint64_t
getnsecruntime(void)312 getnsecruntime(void)
313 {
314 	struct bintime bt;
315 
316 	getbinruntime(&bt);
317 	return BINTIME_TO_NSEC(&bt);
318 }
319 
320 void
bintime(struct bintime * bt)321 bintime(struct bintime *bt)
322 {
323 	struct timehands *th;
324 	u_int gen;
325 
326 	do {
327 		th = timehands;
328 		gen = th->th_generation;
329 		membar_consumer();
330 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
331 		bintimeadd(bt, &th->th_offset, bt);
332 		bintimeadd(bt, &th->th_boottime, bt);
333 		membar_consumer();
334 	} while (gen == 0 || gen != th->th_generation);
335 }
336 
337 void
nanotime(struct timespec * tsp)338 nanotime(struct timespec *tsp)
339 {
340 	struct bintime bt;
341 
342 	bintime(&bt);
343 	BINTIME_TO_TIMESPEC(&bt, tsp);
344 }
345 
346 void
microtime(struct timeval * tvp)347 microtime(struct timeval *tvp)
348 {
349 	struct bintime bt;
350 
351 	bintime(&bt);
352 	BINTIME_TO_TIMEVAL(&bt, tvp);
353 }
354 
355 time_t
gettime(void)356 gettime(void)
357 {
358 #if defined(__LP64__)
359 	return time_second;	/* atomic */
360 #else
361 	time_t now;
362 	struct timehands *th;
363 	u_int gen;
364 
365 	do {
366 		th = timehands;
367 		gen = th->th_generation;
368 		membar_consumer();
369 		now = th->th_microtime.tv_sec;
370 		membar_consumer();
371 	} while (gen == 0 || gen != th->th_generation);
372 
373 	return now;
374 #endif
375 }
376 
377 void
getnanouptime(struct timespec * tsp)378 getnanouptime(struct timespec *tsp)
379 {
380 	struct timehands *th;
381 	u_int gen;
382 
383 	do {
384 		th = timehands;
385 		gen = th->th_generation;
386 		membar_consumer();
387 		BINTIME_TO_TIMESPEC(&th->th_offset, tsp);
388 		membar_consumer();
389 	} while (gen == 0 || gen != th->th_generation);
390 }
391 
392 void
getmicrouptime(struct timeval * tvp)393 getmicrouptime(struct timeval *tvp)
394 {
395 	struct timehands *th;
396 	u_int gen;
397 
398 	do {
399 		th = timehands;
400 		gen = th->th_generation;
401 		membar_consumer();
402 		BINTIME_TO_TIMEVAL(&th->th_offset, tvp);
403 		membar_consumer();
404 	} while (gen == 0 || gen != th->th_generation);
405 }
406 
407 void
getnanotime(struct timespec * tsp)408 getnanotime(struct timespec *tsp)
409 {
410 	struct timehands *th;
411 	u_int gen;
412 
413 	do {
414 		th = timehands;
415 		gen = th->th_generation;
416 		membar_consumer();
417 		*tsp = th->th_nanotime;
418 		membar_consumer();
419 	} while (gen == 0 || gen != th->th_generation);
420 }
421 
422 void
getmicrotime(struct timeval * tvp)423 getmicrotime(struct timeval *tvp)
424 {
425 	struct timehands *th;
426 	u_int gen;
427 
428 	do {
429 		th = timehands;
430 		gen = th->th_generation;
431 		membar_consumer();
432 		*tvp = th->th_microtime;
433 		membar_consumer();
434 	} while (gen == 0 || gen != th->th_generation);
435 }
436 
437 /*
438  * Initialize a new timecounter and possibly use it.
439  */
440 void
tc_init(struct timecounter * tc)441 tc_init(struct timecounter *tc)
442 {
443 	u_int64_t tmp;
444 	u_int u;
445 
446 	u = tc->tc_frequency / tc->tc_counter_mask;
447 	/* XXX: We need some margin here, 10% is a guess */
448 	u *= 11;
449 	u /= 10;
450 	if (tc->tc_quality >= 0) {
451 		if (u > hz) {
452 			tc->tc_quality = -2000;
453 			printf("Timecounter \"%s\" frequency %lu Hz",
454 			    tc->tc_name, (unsigned long)tc->tc_frequency);
455 			printf(" -- Insufficient hz, needs at least %u\n", u);
456 		}
457 	}
458 
459 	/* Determine the counter's precision. */
460 	for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1)
461 		continue;
462 	tc->tc_precision = tmp;
463 
464 	SLIST_INSERT_HEAD(&tc_list, tc, tc_next);
465 
466 	/*
467 	 * Never automatically use a timecounter with negative quality.
468 	 * Even though we run on the dummy counter, switching here may be
469 	 * worse since this timecounter may not be monotonic.
470 	 */
471 	if (tc->tc_quality < 0)
472 		return;
473 	if (tc->tc_quality < timecounter->tc_quality)
474 		return;
475 	if (tc->tc_quality == timecounter->tc_quality &&
476 	    tc->tc_frequency < timecounter->tc_frequency)
477 		return;
478 	(void)tc->tc_get_timecount(tc);
479 	enqueue_randomness(tc->tc_get_timecount(tc));
480 
481 	timecounter = tc;
482 }
483 
484 /*
485  * Change the given timecounter's quality.  If it is the active
486  * counter and it is no longer the best counter, activate the
487  * best counter.
488  */
489 void
tc_reset_quality(struct timecounter * tc,int quality)490 tc_reset_quality(struct timecounter *tc, int quality)
491 {
492 	struct timecounter *best = &dummy_timecounter, *tmp;
493 
494 	if (tc == &dummy_timecounter)
495 		panic("%s: cannot change dummy counter quality", __func__);
496 
497 	tc->tc_quality = quality;
498 	if (timecounter == tc) {
499 		SLIST_FOREACH(tmp, &tc_list, tc_next) {
500 			if (tmp->tc_quality < 0)
501 				continue;
502 			if (tmp->tc_quality < best->tc_quality)
503 				continue;
504 			if (tmp->tc_quality == best->tc_quality &&
505 			    tmp->tc_frequency < best->tc_frequency)
506 				continue;
507 			best = tmp;
508 		}
509 		if (best != tc) {
510 			enqueue_randomness(best->tc_get_timecount(best));
511 			timecounter = best;
512 			printf("timecounter: active counter changed: %s -> %s\n",
513 			    tc->tc_name, best->tc_name);
514 		}
515 	}
516 }
517 
518 /* Report the frequency of the current timecounter. */
519 u_int64_t
tc_getfrequency(void)520 tc_getfrequency(void)
521 {
522 	return (timehands->th_counter->tc_frequency);
523 }
524 
525 /* Report the precision of the current timecounter. */
526 u_int64_t
tc_getprecision(void)527 tc_getprecision(void)
528 {
529 	return (timehands->th_counter->tc_precision);
530 }
531 
532 /*
533  * Step our concept of UTC, aka the realtime clock.
534  * This is done by modifying our estimate of when we booted.
535  *
536  * Any ongoing adjustment is meaningless after a clock jump,
537  * so we zero adjtimedelta here as well.
538  */
539 void
tc_setrealtimeclock(const struct timespec * ts)540 tc_setrealtimeclock(const struct timespec *ts)
541 {
542 	struct bintime boottime, old_utc, uptime, utc;
543 	struct timespec tmp;
544 	int64_t zero = 0;
545 
546 	TIMESPEC_TO_BINTIME(ts, &utc);
547 
548 	rw_enter_write(&tc_lock);
549 	mtx_enter(&windup_mtx);
550 
551 	binuptime(&uptime);
552 	bintimesub(&utc, &uptime, &boottime);
553 	bintimeadd(&timehands->th_boottime, &uptime, &old_utc);
554 	/* XXX fiddle all the little crinkly bits around the fiords... */
555 	tc_windup(&boottime, NULL, &zero);
556 
557 	mtx_leave(&windup_mtx);
558 	rw_exit_write(&tc_lock);
559 
560 	enqueue_randomness(ts->tv_sec);
561 
562 	if (timestepwarnings) {
563 		BINTIME_TO_TIMESPEC(&old_utc, &tmp);
564 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
565 		    (long long)tmp.tv_sec, tmp.tv_nsec,
566 		    (long long)ts->tv_sec, ts->tv_nsec);
567 	}
568 }
569 
570 /*
571  * Step the monotonic and realtime clocks, triggering any timeouts that
572  * should have occurred across the interval.
573  */
574 void
tc_setclock(const struct timespec * ts)575 tc_setclock(const struct timespec *ts)
576 {
577 	struct bintime new_naptime, old_naptime, uptime, utc;
578 	static int first = 1;
579 #ifndef SMALL_KERNEL
580 	struct bintime elapsed;
581 	long long adj_ticks;
582 #endif
583 
584 	/*
585 	 * When we're called for the first time, during boot when
586 	 * the root partition is mounted, we need to set boottime.
587 	 */
588 	if (first) {
589 		tc_setrealtimeclock(ts);
590 		first = 0;
591 		return;
592 	}
593 
594 	enqueue_randomness(ts->tv_sec);
595 
596 	TIMESPEC_TO_BINTIME(ts, &utc);
597 
598 	mtx_enter(&windup_mtx);
599 
600 	bintimesub(&utc, &timehands->th_boottime, &uptime);
601 	old_naptime = timehands->th_naptime;
602 	/* XXX fiddle all the little crinkly bits around the fiords... */
603 	tc_windup(NULL, &uptime, NULL);
604 	new_naptime = timehands->th_naptime;
605 
606 	mtx_leave(&windup_mtx);
607 
608 #ifndef SMALL_KERNEL
609 	/* convert the bintime to ticks */
610 	bintimesub(&new_naptime, &old_naptime, &elapsed);
611 	adj_ticks = BINTIME_TO_NSEC(&elapsed) / tick_nsec;
612 	if (adj_ticks > 0) {
613 		if (adj_ticks > INT_MAX)
614 			adj_ticks = INT_MAX;
615 		timeout_adjust_ticks(adj_ticks);
616 	}
617 #endif
618 }
619 
620 void
tc_update_timekeep(void)621 tc_update_timekeep(void)
622 {
623 	static struct timecounter *last_tc = NULL;
624 	struct timehands *th;
625 
626 	MUTEX_ASSERT_LOCKED(&windup_mtx);
627 
628 	if (timekeep == NULL)
629 		return;
630 
631 	th = timehands;
632 	timekeep->tk_generation = 0;
633 	membar_producer();
634 	timekeep->tk_scale = th->th_scale;
635 	timekeep->tk_offset_count = th->th_offset_count;
636 	timekeep->tk_offset = th->th_offset;
637 	timekeep->tk_naptime = th->th_naptime;
638 	timekeep->tk_boottime = th->th_boottime;
639 	if (last_tc != th->th_counter) {
640 		timekeep->tk_counter_mask = th->th_counter->tc_counter_mask;
641 		timekeep->tk_user = th->th_counter->tc_user;
642 		last_tc = th->th_counter;
643 	}
644 	membar_producer();
645 	timekeep->tk_generation = th->th_generation;
646 
647 	return;
648 }
649 
650 /*
651  * Initialize the next struct timehands in the ring and make
652  * it the active timehands.  Along the way we might switch to a different
653  * timecounter and/or do seconds processing in NTP.  Slightly magic.
654  */
655 void
tc_windup(struct bintime * new_boottime,struct bintime * new_offset,int64_t * new_adjtimedelta)656 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
657     int64_t *new_adjtimedelta)
658 {
659 	struct bintime bt;
660 	struct timecounter *active_tc;
661 	struct timehands *th, *tho;
662 	u_int64_t scale;
663 	u_int delta, ncount, ogen;
664 
665 	if (new_boottime != NULL || new_adjtimedelta != NULL)
666 		rw_assert_wrlock(&tc_lock);
667 	MUTEX_ASSERT_LOCKED(&windup_mtx);
668 
669 	active_tc = timecounter;
670 
671 	/*
672 	 * Make the next timehands a copy of the current one, but do not
673 	 * overwrite the generation or next pointer.  While we update
674 	 * the contents, the generation must be zero.
675 	 */
676 	tho = timehands;
677 	ogen = tho->th_generation;
678 	th = tho->th_next;
679 	th->th_generation = 0;
680 	membar_producer();
681 	memcpy(th, tho, offsetof(struct timehands, th_generation));
682 
683 	/*
684 	 * Capture a timecounter delta on the current timecounter and if
685 	 * changing timecounters, a counter value from the new timecounter.
686 	 * Update the offset fields accordingly.
687 	 */
688 	delta = tc_delta(th);
689 	if (th->th_counter != active_tc)
690 		ncount = active_tc->tc_get_timecount(active_tc);
691 	else
692 		ncount = 0;
693 	th->th_offset_count += delta;
694 	th->th_offset_count &= th->th_counter->tc_counter_mask;
695 	TIMECOUNT_TO_BINTIME(delta, th->th_scale, &bt);
696 	bintimeadd(&th->th_offset, &bt, &th->th_offset);
697 
698 	/*
699 	 * Ignore new offsets that predate the current offset.
700 	 * If changing the offset, first increase the naptime
701 	 * accordingly.
702 	 */
703 	if (new_offset != NULL && bintimecmp(&th->th_offset, new_offset, <)) {
704 		bintimesub(new_offset, &th->th_offset, &bt);
705 		bintimeadd(&th->th_naptime, &bt, &th->th_naptime);
706 		naptime = th->th_naptime.sec;
707 		th->th_offset = *new_offset;
708 	}
709 
710 	/*
711 	 * If changing the boot time or clock adjustment, do so before
712 	 * NTP processing.
713 	 */
714 	if (new_boottime != NULL)
715 		th->th_boottime = *new_boottime;
716 	if (new_adjtimedelta != NULL) {
717 		th->th_adjtimedelta = *new_adjtimedelta;
718 		/* Reset the NTP update period. */
719 		bintimesub(&th->th_offset, &th->th_naptime,
720 		    &th->th_next_ntp_update);
721 	}
722 
723 	/*
724 	 * Deal with NTP second processing.  The while-loop normally
725 	 * iterates at most once, but in extreme situations it might
726 	 * keep NTP sane if tc_windup() is not run for several seconds.
727 	 */
728 	bintimesub(&th->th_offset, &th->th_naptime, &bt);
729 	while (bintimecmp(&th->th_next_ntp_update, &bt, <=)) {
730 		ntp_update_second(th);
731 		th->th_next_ntp_update.sec++;
732 	}
733 
734 	/* Update the UTC timestamps used by the get*() functions. */
735 	bintimeadd(&th->th_boottime, &th->th_offset, &bt);
736 	BINTIME_TO_TIMEVAL(&bt, &th->th_microtime);
737 	BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime);
738 
739 	/* Now is a good time to change timecounters. */
740 	if (th->th_counter != active_tc) {
741 		th->th_counter = active_tc;
742 		th->th_offset_count = ncount;
743 	}
744 
745 	/*-
746 	 * Recalculate the scaling factor.  We want the number of 1/2^64
747 	 * fractions of a second per period of the hardware counter, taking
748 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
749 	 * processing provides us with.
750 	 *
751 	 * The th_adjustment is nanoseconds per second with 32 bit binary
752 	 * fraction and we want 64 bit binary fraction of second:
753 	 *
754 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
755 	 *
756 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
757 	 * we can only multiply by about 850 without overflowing, but that
758 	 * leaves suitably precise fractions for multiply before divide.
759 	 *
760 	 * Divide before multiply with a fraction of 2199/512 results in a
761 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
762 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
763  	 *
764 	 * We happily sacrifice the lowest of the 64 bits of our result
765 	 * to the goddess of code clarity.
766 	 *
767 	 */
768 	scale = (u_int64_t)1 << 63;
769 	scale += \
770 	    ((th->th_adjustment + th->th_counter->tc_freq_adj) / 1024) * 2199;
771 	scale /= th->th_counter->tc_frequency;
772 	th->th_scale = scale * 2;
773 
774 	/*
775 	 * Now that the struct timehands is again consistent, set the new
776 	 * generation number, making sure to not make it zero.
777 	 */
778 	if (++ogen == 0)
779 		ogen = 1;
780 	membar_producer();
781 	th->th_generation = ogen;
782 
783 	/* Go live with the new struct timehands. */
784 	time_second = th->th_microtime.tv_sec;
785 	time_uptime = th->th_offset.sec;
786 	membar_producer();
787 	timehands = th;
788 
789 	tc_update_timekeep();
790 }
791 
792 /* Report or change the active timecounter hardware. */
793 int
sysctl_tc_hardware(void * oldp,size_t * oldlenp,void * newp,size_t newlen)794 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
795 {
796 	char newname[32];
797 	struct timecounter *newtc, *tc;
798 	int error;
799 
800 	tc = timecounter;
801 	strlcpy(newname, tc->tc_name, sizeof(newname));
802 
803 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
804 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
805 		return (error);
806 	SLIST_FOREACH(newtc, &tc_list, tc_next) {
807 		if (strcmp(newname, newtc->tc_name) != 0)
808 			continue;
809 
810 		/* Warm up new timecounter. */
811 		(void)newtc->tc_get_timecount(newtc);
812 		(void)newtc->tc_get_timecount(newtc);
813 
814 		rw_enter_write(&tc_lock);
815 		timecounter = newtc;
816 		rw_exit_write(&tc_lock);
817 
818 		return (0);
819 	}
820 	return (EINVAL);
821 }
822 
823 /* Report or change the active timecounter hardware. */
824 int
sysctl_tc_choice(void * oldp,size_t * oldlenp,void * newp,size_t newlen)825 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
826 {
827 	char buf[32], *spc, *choices;
828 	struct timecounter *tc;
829 	int error, maxlen;
830 
831 	if (SLIST_EMPTY(&tc_list))
832 		return (sysctl_rdstring(oldp, oldlenp, newp, ""));
833 
834 	spc = "";
835 	maxlen = 0;
836 	SLIST_FOREACH(tc, &tc_list, tc_next)
837 		maxlen += sizeof(buf);
838 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
839 	*choices = '\0';
840 	SLIST_FOREACH(tc, &tc_list, tc_next) {
841 		snprintf(buf, sizeof(buf), "%s%s(%d)",
842 		    spc, tc->tc_name, tc->tc_quality);
843 		spc = " ";
844 		strlcat(choices, buf, maxlen);
845 	}
846 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
847 	free(choices, M_TEMP, maxlen);
848 	return (error);
849 }
850 
851 /*
852  * Timecounters need to be updated every so often to prevent the hardware
853  * counter from overflowing.  Updating also recalculates the cached values
854  * used by the get*() family of functions, so their precision depends on
855  * the update frequency.
856  */
857 static int tc_tick;
858 
859 void
tc_ticktock(void)860 tc_ticktock(void)
861 {
862 	static int count;
863 
864 	if (++count < tc_tick)
865 		return;
866 	if (!mtx_enter_try(&windup_mtx))
867 		return;
868 	count = 0;
869 	tc_windup(NULL, NULL, NULL);
870 	mtx_leave(&windup_mtx);
871 }
872 
873 void
inittimecounter(void)874 inittimecounter(void)
875 {
876 #ifdef DEBUG
877 	u_int p;
878 #endif
879 
880 	/*
881 	 * Set the initial timeout to
882 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
883 	 * People should probably not use the sysctl to set the timeout
884 	 * to smaller than its initial value, since that value is the
885 	 * smallest reasonable one.  If they want better timestamps they
886 	 * should use the non-"get"* functions.
887 	 */
888 	if (hz > 1000)
889 		tc_tick = (hz + 500) / 1000;
890 	else
891 		tc_tick = 1;
892 #ifdef DEBUG
893 	p = (tc_tick * 1000000) / hz;
894 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
895 #endif
896 
897 	/* warm up new timecounter (again) and get rolling. */
898 	(void)timecounter->tc_get_timecount(timecounter);
899 	(void)timecounter->tc_get_timecount(timecounter);
900 }
901 
902 const struct sysctl_bounded_args tc_vars[] = {
903 	{ KERN_TIMECOUNTER_TICK, &tc_tick, SYSCTL_INT_READONLY },
904 	{ KERN_TIMECOUNTER_TIMESTEPWARNINGS, &timestepwarnings, 0, 1 },
905 };
906 
907 /*
908  * Return timecounter-related information.
909  */
910 int
sysctl_tc(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen)911 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
912     void *newp, size_t newlen)
913 {
914 	if (namelen != 1)
915 		return (ENOTDIR);
916 
917 	switch (name[0]) {
918 	case KERN_TIMECOUNTER_HARDWARE:
919 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
920 	case KERN_TIMECOUNTER_CHOICE:
921 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
922 	default:
923 		return (sysctl_bounded_arr(tc_vars, nitems(tc_vars), name,
924 		    namelen, oldp, oldlenp, newp, newlen));
925 	}
926 	/* NOTREACHED */
927 }
928 
929 /*
930  * Skew the timehands according to any adjtime(2) adjustment.
931  */
932 void
ntp_update_second(struct timehands * th)933 ntp_update_second(struct timehands *th)
934 {
935 	int64_t adj;
936 
937 	MUTEX_ASSERT_LOCKED(&windup_mtx);
938 
939 	if (th->th_adjtimedelta > 0)
940 		adj = MIN(5000, th->th_adjtimedelta);
941 	else
942 		adj = MAX(-5000, th->th_adjtimedelta);
943 	th->th_adjtimedelta -= adj;
944 	th->th_adjustment = (adj * 1000) << 32;
945 }
946 
947 void
tc_adjfreq(int64_t * old,int64_t * new)948 tc_adjfreq(int64_t *old, int64_t *new)
949 {
950 	if (old != NULL) {
951 		rw_assert_anylock(&tc_lock);
952 		*old = timecounter->tc_freq_adj;
953 	}
954 	if (new != NULL) {
955 		rw_assert_wrlock(&tc_lock);
956 		mtx_enter(&windup_mtx);
957 		timecounter->tc_freq_adj = *new;
958 		tc_windup(NULL, NULL, NULL);
959 		mtx_leave(&windup_mtx);
960 	}
961 }
962 
963 void
tc_adjtime(int64_t * old,int64_t * new)964 tc_adjtime(int64_t *old, int64_t *new)
965 {
966 	struct timehands *th;
967 	u_int gen;
968 
969 	if (old != NULL) {
970 		do {
971 			th = timehands;
972 			gen = th->th_generation;
973 			membar_consumer();
974 			*old = th->th_adjtimedelta;
975 			membar_consumer();
976 		} while (gen == 0 || gen != th->th_generation);
977 	}
978 	if (new != NULL) {
979 		rw_assert_wrlock(&tc_lock);
980 		mtx_enter(&windup_mtx);
981 		tc_windup(NULL, NULL, new);
982 		mtx_leave(&windup_mtx);
983 	}
984 }
985