xref: /linux/net/ipv4/tcp_input.c (revision 94062790)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <asm/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 				    unsigned int len)
208 {
209 	struct net_device *dev;
210 
211 	rcu_read_lock();
212 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 	if (!dev || len >= READ_ONCE(dev->mtu))
214 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 			dev ? dev->name : "Unknown driver");
216 	rcu_read_unlock();
217 }
218 
219 /* Adapt the MSS value used to make delayed ack decision to the
220  * real world.
221  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224 	struct inet_connection_sock *icsk = inet_csk(sk);
225 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 	unsigned int len;
227 
228 	icsk->icsk_ack.last_seg_size = 0;
229 
230 	/* skb->len may jitter because of SACKs, even if peer
231 	 * sends good full-sized frames.
232 	 */
233 	len = skb_shinfo(skb)->gso_size ? : skb->len;
234 	if (len >= icsk->icsk_ack.rcv_mss) {
235 		/* Note: divides are still a bit expensive.
236 		 * For the moment, only adjust scaling_ratio
237 		 * when we update icsk_ack.rcv_mss.
238 		 */
239 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 
242 			do_div(val, skb->truesize);
243 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
244 		}
245 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
246 					       tcp_sk(sk)->advmss);
247 		/* Account for possibly-removed options */
248 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
249 				tcp_gro_dev_warn, sk, skb, len);
250 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
251 		 * set then it is likely the end of an application write. So
252 		 * more data may not be arriving soon, and yet the data sender
253 		 * may be waiting for an ACK if cwnd-bound or using TX zero
254 		 * copy. So we set ICSK_ACK_PUSHED here so that
255 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
256 		 * reads all of the data and is not ping-pong. If len > MSS
257 		 * then this logic does not matter (and does not hurt) because
258 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
259 		 * reads data and there is more than an MSS of unACKed data.
260 		 */
261 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
262 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
263 	} else {
264 		/* Otherwise, we make more careful check taking into account,
265 		 * that SACKs block is variable.
266 		 *
267 		 * "len" is invariant segment length, including TCP header.
268 		 */
269 		len += skb->data - skb_transport_header(skb);
270 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
271 		    /* If PSH is not set, packet should be
272 		     * full sized, provided peer TCP is not badly broken.
273 		     * This observation (if it is correct 8)) allows
274 		     * to handle super-low mtu links fairly.
275 		     */
276 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
277 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
278 			/* Subtract also invariant (if peer is RFC compliant),
279 			 * tcp header plus fixed timestamp option length.
280 			 * Resulting "len" is MSS free of SACK jitter.
281 			 */
282 			len -= tcp_sk(sk)->tcp_header_len;
283 			icsk->icsk_ack.last_seg_size = len;
284 			if (len == lss) {
285 				icsk->icsk_ack.rcv_mss = len;
286 				return;
287 			}
288 		}
289 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
290 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
291 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
292 	}
293 }
294 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)295 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
296 {
297 	struct inet_connection_sock *icsk = inet_csk(sk);
298 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
299 
300 	if (quickacks == 0)
301 		quickacks = 2;
302 	quickacks = min(quickacks, max_quickacks);
303 	if (quickacks > icsk->icsk_ack.quick)
304 		icsk->icsk_ack.quick = quickacks;
305 }
306 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)307 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
308 {
309 	struct inet_connection_sock *icsk = inet_csk(sk);
310 
311 	tcp_incr_quickack(sk, max_quickacks);
312 	inet_csk_exit_pingpong_mode(sk);
313 	icsk->icsk_ack.ato = TCP_ATO_MIN;
314 }
315 
316 /* Send ACKs quickly, if "quick" count is not exhausted
317  * and the session is not interactive.
318  */
319 
tcp_in_quickack_mode(struct sock * sk)320 static bool tcp_in_quickack_mode(struct sock *sk)
321 {
322 	const struct inet_connection_sock *icsk = inet_csk(sk);
323 	const struct dst_entry *dst = __sk_dst_get(sk);
324 
325 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
326 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
327 }
328 
tcp_ecn_queue_cwr(struct tcp_sock * tp)329 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
330 {
331 	if (tp->ecn_flags & TCP_ECN_OK)
332 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
333 }
334 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)335 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
336 {
337 	if (tcp_hdr(skb)->cwr) {
338 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
339 
340 		/* If the sender is telling us it has entered CWR, then its
341 		 * cwnd may be very low (even just 1 packet), so we should ACK
342 		 * immediately.
343 		 */
344 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
345 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
346 	}
347 }
348 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)349 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
350 {
351 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
352 }
353 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)354 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 
358 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
359 	case INET_ECN_NOT_ECT:
360 		/* Funny extension: if ECT is not set on a segment,
361 		 * and we already seen ECT on a previous segment,
362 		 * it is probably a retransmit.
363 		 */
364 		if (tp->ecn_flags & TCP_ECN_SEEN)
365 			tcp_enter_quickack_mode(sk, 2);
366 		break;
367 	case INET_ECN_CE:
368 		if (tcp_ca_needs_ecn(sk))
369 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
370 
371 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
372 			/* Better not delay acks, sender can have a very low cwnd */
373 			tcp_enter_quickack_mode(sk, 2);
374 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
375 		}
376 		tp->ecn_flags |= TCP_ECN_SEEN;
377 		break;
378 	default:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 		tp->ecn_flags |= TCP_ECN_SEEN;
382 		break;
383 	}
384 }
385 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)386 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
387 {
388 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
389 		__tcp_ecn_check_ce(sk, skb);
390 }
391 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)392 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
393 {
394 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
395 		tp->ecn_flags &= ~TCP_ECN_OK;
396 }
397 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)398 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
399 {
400 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
401 		tp->ecn_flags &= ~TCP_ECN_OK;
402 }
403 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)404 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
407 		return true;
408 	return false;
409 }
410 
411 /* Buffer size and advertised window tuning.
412  *
413  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
414  */
415 
tcp_sndbuf_expand(struct sock * sk)416 static void tcp_sndbuf_expand(struct sock *sk)
417 {
418 	const struct tcp_sock *tp = tcp_sk(sk);
419 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
420 	int sndmem, per_mss;
421 	u32 nr_segs;
422 
423 	/* Worst case is non GSO/TSO : each frame consumes one skb
424 	 * and skb->head is kmalloced using power of two area of memory
425 	 */
426 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
427 		  MAX_TCP_HEADER +
428 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
429 
430 	per_mss = roundup_pow_of_two(per_mss) +
431 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
432 
433 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
434 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
435 
436 	/* Fast Recovery (RFC 5681 3.2) :
437 	 * Cubic needs 1.7 factor, rounded to 2 to include
438 	 * extra cushion (application might react slowly to EPOLLOUT)
439 	 */
440 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
441 	sndmem *= nr_segs * per_mss;
442 
443 	if (sk->sk_sndbuf < sndmem)
444 		WRITE_ONCE(sk->sk_sndbuf,
445 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
446 }
447 
448 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
449  *
450  * All tcp_full_space() is split to two parts: "network" buffer, allocated
451  * forward and advertised in receiver window (tp->rcv_wnd) and
452  * "application buffer", required to isolate scheduling/application
453  * latencies from network.
454  * window_clamp is maximal advertised window. It can be less than
455  * tcp_full_space(), in this case tcp_full_space() - window_clamp
456  * is reserved for "application" buffer. The less window_clamp is
457  * the smoother our behaviour from viewpoint of network, but the lower
458  * throughput and the higher sensitivity of the connection to losses. 8)
459  *
460  * rcv_ssthresh is more strict window_clamp used at "slow start"
461  * phase to predict further behaviour of this connection.
462  * It is used for two goals:
463  * - to enforce header prediction at sender, even when application
464  *   requires some significant "application buffer". It is check #1.
465  * - to prevent pruning of receive queue because of misprediction
466  *   of receiver window. Check #2.
467  *
468  * The scheme does not work when sender sends good segments opening
469  * window and then starts to feed us spaghetti. But it should work
470  * in common situations. Otherwise, we have to rely on queue collapsing.
471  */
472 
473 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)474 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
475 			     unsigned int skbtruesize)
476 {
477 	const struct tcp_sock *tp = tcp_sk(sk);
478 	/* Optimize this! */
479 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
480 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
481 
482 	while (tp->rcv_ssthresh <= window) {
483 		if (truesize <= skb->len)
484 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
485 
486 		truesize >>= 1;
487 		window >>= 1;
488 	}
489 	return 0;
490 }
491 
492 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
493  * can play nice with us, as sk_buff and skb->head might be either
494  * freed or shared with up to MAX_SKB_FRAGS segments.
495  * Only give a boost to drivers using page frag(s) to hold the frame(s),
496  * and if no payload was pulled in skb->head before reaching us.
497  */
truesize_adjust(bool adjust,const struct sk_buff * skb)498 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
499 {
500 	u32 truesize = skb->truesize;
501 
502 	if (adjust && !skb_headlen(skb)) {
503 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
504 		/* paranoid check, some drivers might be buggy */
505 		if (unlikely((int)truesize < (int)skb->len))
506 			truesize = skb->truesize;
507 	}
508 	return truesize;
509 }
510 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)511 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
512 			    bool adjust)
513 {
514 	struct tcp_sock *tp = tcp_sk(sk);
515 	int room;
516 
517 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
518 
519 	if (room <= 0)
520 		return;
521 
522 	/* Check #1 */
523 	if (!tcp_under_memory_pressure(sk)) {
524 		unsigned int truesize = truesize_adjust(adjust, skb);
525 		int incr;
526 
527 		/* Check #2. Increase window, if skb with such overhead
528 		 * will fit to rcvbuf in future.
529 		 */
530 		if (tcp_win_from_space(sk, truesize) <= skb->len)
531 			incr = 2 * tp->advmss;
532 		else
533 			incr = __tcp_grow_window(sk, skb, truesize);
534 
535 		if (incr) {
536 			incr = max_t(int, incr, 2 * skb->len);
537 			tp->rcv_ssthresh += min(room, incr);
538 			inet_csk(sk)->icsk_ack.quick |= 1;
539 		}
540 	} else {
541 		/* Under pressure:
542 		 * Adjust rcv_ssthresh according to reserved mem
543 		 */
544 		tcp_adjust_rcv_ssthresh(sk);
545 	}
546 }
547 
548 /* 3. Try to fixup all. It is made immediately after connection enters
549  *    established state.
550  */
tcp_init_buffer_space(struct sock * sk)551 static void tcp_init_buffer_space(struct sock *sk)
552 {
553 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int maxwin;
556 
557 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
558 		tcp_sndbuf_expand(sk);
559 
560 	tcp_mstamp_refresh(tp);
561 	tp->rcvq_space.time = tp->tcp_mstamp;
562 	tp->rcvq_space.seq = tp->copied_seq;
563 
564 	maxwin = tcp_full_space(sk);
565 
566 	if (tp->window_clamp >= maxwin) {
567 		WRITE_ONCE(tp->window_clamp, maxwin);
568 
569 		if (tcp_app_win && maxwin > 4 * tp->advmss)
570 			WRITE_ONCE(tp->window_clamp,
571 				   max(maxwin - (maxwin >> tcp_app_win),
572 				       4 * tp->advmss));
573 	}
574 
575 	/* Force reservation of one segment. */
576 	if (tcp_app_win &&
577 	    tp->window_clamp > 2 * tp->advmss &&
578 	    tp->window_clamp + tp->advmss > maxwin)
579 		WRITE_ONCE(tp->window_clamp,
580 			   max(2 * tp->advmss, maxwin - tp->advmss));
581 
582 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
583 	tp->snd_cwnd_stamp = tcp_jiffies32;
584 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
585 				    (u32)TCP_INIT_CWND * tp->advmss);
586 }
587 
588 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)589 static void tcp_clamp_window(struct sock *sk)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	struct inet_connection_sock *icsk = inet_csk(sk);
593 	struct net *net = sock_net(sk);
594 	int rmem2;
595 
596 	icsk->icsk_ack.quick = 0;
597 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
598 
599 	if (sk->sk_rcvbuf < rmem2 &&
600 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
601 	    !tcp_under_memory_pressure(sk) &&
602 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
603 		WRITE_ONCE(sk->sk_rcvbuf,
604 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
605 	}
606 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
607 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
608 }
609 
610 /* Initialize RCV_MSS value.
611  * RCV_MSS is an our guess about MSS used by the peer.
612  * We haven't any direct information about the MSS.
613  * It's better to underestimate the RCV_MSS rather than overestimate.
614  * Overestimations make us ACKing less frequently than needed.
615  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
616  */
tcp_initialize_rcv_mss(struct sock * sk)617 void tcp_initialize_rcv_mss(struct sock *sk)
618 {
619 	const struct tcp_sock *tp = tcp_sk(sk);
620 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
621 
622 	hint = min(hint, tp->rcv_wnd / 2);
623 	hint = min(hint, TCP_MSS_DEFAULT);
624 	hint = max(hint, TCP_MIN_MSS);
625 
626 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
627 }
628 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
629 
630 /* Receiver "autotuning" code.
631  *
632  * The algorithm for RTT estimation w/o timestamps is based on
633  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
634  * <https://public.lanl.gov/radiant/pubs.html#DRS>
635  *
636  * More detail on this code can be found at
637  * <http://staff.psc.edu/jheffner/>,
638  * though this reference is out of date.  A new paper
639  * is pending.
640  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)641 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
642 {
643 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
644 	long m = sample;
645 
646 	if (new_sample != 0) {
647 		/* If we sample in larger samples in the non-timestamp
648 		 * case, we could grossly overestimate the RTT especially
649 		 * with chatty applications or bulk transfer apps which
650 		 * are stalled on filesystem I/O.
651 		 *
652 		 * Also, since we are only going for a minimum in the
653 		 * non-timestamp case, we do not smooth things out
654 		 * else with timestamps disabled convergence takes too
655 		 * long.
656 		 */
657 		if (!win_dep) {
658 			m -= (new_sample >> 3);
659 			new_sample += m;
660 		} else {
661 			m <<= 3;
662 			if (m < new_sample)
663 				new_sample = m;
664 		}
665 	} else {
666 		/* No previous measure. */
667 		new_sample = m << 3;
668 	}
669 
670 	tp->rcv_rtt_est.rtt_us = new_sample;
671 }
672 
tcp_rcv_rtt_measure(struct tcp_sock * tp)673 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
674 {
675 	u32 delta_us;
676 
677 	if (tp->rcv_rtt_est.time == 0)
678 		goto new_measure;
679 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
680 		return;
681 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
682 	if (!delta_us)
683 		delta_us = 1;
684 	tcp_rcv_rtt_update(tp, delta_us, 1);
685 
686 new_measure:
687 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
688 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
689 }
690 
tcp_rtt_tsopt_us(const struct tcp_sock * tp)691 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
692 {
693 	u32 delta, delta_us;
694 
695 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
696 	if (tp->tcp_usec_ts)
697 		return delta;
698 
699 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
700 		if (!delta)
701 			delta = 1;
702 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
703 		return delta_us;
704 	}
705 	return -1;
706 }
707 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
709 					  const struct sk_buff *skb)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 
713 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
714 		return;
715 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
716 
717 	if (TCP_SKB_CB(skb)->end_seq -
718 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
719 		s32 delta = tcp_rtt_tsopt_us(tp);
720 
721 		if (delta >= 0)
722 			tcp_rcv_rtt_update(tp, delta, 0);
723 	}
724 }
725 
726 /*
727  * This function should be called every time data is copied to user space.
728  * It calculates the appropriate TCP receive buffer space.
729  */
tcp_rcv_space_adjust(struct sock * sk)730 void tcp_rcv_space_adjust(struct sock *sk)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 	u32 copied;
734 	int time;
735 
736 	trace_tcp_rcv_space_adjust(sk);
737 
738 	tcp_mstamp_refresh(tp);
739 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
740 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
741 		return;
742 
743 	/* Number of bytes copied to user in last RTT */
744 	copied = tp->copied_seq - tp->rcvq_space.seq;
745 	if (copied <= tp->rcvq_space.space)
746 		goto new_measure;
747 
748 	/* A bit of theory :
749 	 * copied = bytes received in previous RTT, our base window
750 	 * To cope with packet losses, we need a 2x factor
751 	 * To cope with slow start, and sender growing its cwin by 100 %
752 	 * every RTT, we need a 4x factor, because the ACK we are sending
753 	 * now is for the next RTT, not the current one :
754 	 * <prev RTT . ><current RTT .. ><next RTT .... >
755 	 */
756 
757 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
758 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
759 		u64 rcvwin, grow;
760 		int rcvbuf;
761 
762 		/* minimal window to cope with packet losses, assuming
763 		 * steady state. Add some cushion because of small variations.
764 		 */
765 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
766 
767 		/* Accommodate for sender rate increase (eg. slow start) */
768 		grow = rcvwin * (copied - tp->rcvq_space.space);
769 		do_div(grow, tp->rcvq_space.space);
770 		rcvwin += (grow << 1);
771 
772 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
773 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
774 		if (rcvbuf > sk->sk_rcvbuf) {
775 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
776 
777 			/* Make the window clamp follow along.  */
778 			WRITE_ONCE(tp->window_clamp,
779 				   tcp_win_from_space(sk, rcvbuf));
780 		}
781 	}
782 	tp->rcvq_space.space = copied;
783 
784 new_measure:
785 	tp->rcvq_space.seq = tp->copied_seq;
786 	tp->rcvq_space.time = tp->tcp_mstamp;
787 }
788 
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)789 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
790 {
791 #if IS_ENABLED(CONFIG_IPV6)
792 	struct inet_connection_sock *icsk = inet_csk(sk);
793 
794 	if (skb->protocol == htons(ETH_P_IPV6))
795 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
796 #endif
797 }
798 
799 /* There is something which you must keep in mind when you analyze the
800  * behavior of the tp->ato delayed ack timeout interval.  When a
801  * connection starts up, we want to ack as quickly as possible.  The
802  * problem is that "good" TCP's do slow start at the beginning of data
803  * transmission.  The means that until we send the first few ACK's the
804  * sender will sit on his end and only queue most of his data, because
805  * he can only send snd_cwnd unacked packets at any given time.  For
806  * each ACK we send, he increments snd_cwnd and transmits more of his
807  * queue.  -DaveM
808  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)809 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
810 {
811 	struct tcp_sock *tp = tcp_sk(sk);
812 	struct inet_connection_sock *icsk = inet_csk(sk);
813 	u32 now;
814 
815 	inet_csk_schedule_ack(sk);
816 
817 	tcp_measure_rcv_mss(sk, skb);
818 
819 	tcp_rcv_rtt_measure(tp);
820 
821 	now = tcp_jiffies32;
822 
823 	if (!icsk->icsk_ack.ato) {
824 		/* The _first_ data packet received, initialize
825 		 * delayed ACK engine.
826 		 */
827 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
828 		icsk->icsk_ack.ato = TCP_ATO_MIN;
829 	} else {
830 		int m = now - icsk->icsk_ack.lrcvtime;
831 
832 		if (m <= TCP_ATO_MIN / 2) {
833 			/* The fastest case is the first. */
834 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
835 		} else if (m < icsk->icsk_ack.ato) {
836 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
837 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
838 				icsk->icsk_ack.ato = icsk->icsk_rto;
839 		} else if (m > icsk->icsk_rto) {
840 			/* Too long gap. Apparently sender failed to
841 			 * restart window, so that we send ACKs quickly.
842 			 */
843 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
844 		}
845 	}
846 	icsk->icsk_ack.lrcvtime = now;
847 	tcp_save_lrcv_flowlabel(sk, skb);
848 
849 	tcp_ecn_check_ce(sk, skb);
850 
851 	if (skb->len >= 128)
852 		tcp_grow_window(sk, skb, true);
853 }
854 
855 /* Called to compute a smoothed rtt estimate. The data fed to this
856  * routine either comes from timestamps, or from segments that were
857  * known _not_ to have been retransmitted [see Karn/Partridge
858  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
859  * piece by Van Jacobson.
860  * NOTE: the next three routines used to be one big routine.
861  * To save cycles in the RFC 1323 implementation it was better to break
862  * it up into three procedures. -- erics
863  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)864 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
865 {
866 	struct tcp_sock *tp = tcp_sk(sk);
867 	long m = mrtt_us; /* RTT */
868 	u32 srtt = tp->srtt_us;
869 
870 	/*	The following amusing code comes from Jacobson's
871 	 *	article in SIGCOMM '88.  Note that rtt and mdev
872 	 *	are scaled versions of rtt and mean deviation.
873 	 *	This is designed to be as fast as possible
874 	 *	m stands for "measurement".
875 	 *
876 	 *	On a 1990 paper the rto value is changed to:
877 	 *	RTO = rtt + 4 * mdev
878 	 *
879 	 * Funny. This algorithm seems to be very broken.
880 	 * These formulae increase RTO, when it should be decreased, increase
881 	 * too slowly, when it should be increased quickly, decrease too quickly
882 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
883 	 * does not matter how to _calculate_ it. Seems, it was trap
884 	 * that VJ failed to avoid. 8)
885 	 */
886 	if (srtt != 0) {
887 		m -= (srtt >> 3);	/* m is now error in rtt est */
888 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
889 		if (m < 0) {
890 			m = -m;		/* m is now abs(error) */
891 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
892 			/* This is similar to one of Eifel findings.
893 			 * Eifel blocks mdev updates when rtt decreases.
894 			 * This solution is a bit different: we use finer gain
895 			 * for mdev in this case (alpha*beta).
896 			 * Like Eifel it also prevents growth of rto,
897 			 * but also it limits too fast rto decreases,
898 			 * happening in pure Eifel.
899 			 */
900 			if (m > 0)
901 				m >>= 3;
902 		} else {
903 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
904 		}
905 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
906 		if (tp->mdev_us > tp->mdev_max_us) {
907 			tp->mdev_max_us = tp->mdev_us;
908 			if (tp->mdev_max_us > tp->rttvar_us)
909 				tp->rttvar_us = tp->mdev_max_us;
910 		}
911 		if (after(tp->snd_una, tp->rtt_seq)) {
912 			if (tp->mdev_max_us < tp->rttvar_us)
913 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
914 			tp->rtt_seq = tp->snd_nxt;
915 			tp->mdev_max_us = tcp_rto_min_us(sk);
916 
917 			tcp_bpf_rtt(sk, mrtt_us, srtt);
918 		}
919 	} else {
920 		/* no previous measure. */
921 		srtt = m << 3;		/* take the measured time to be rtt */
922 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
923 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
924 		tp->mdev_max_us = tp->rttvar_us;
925 		tp->rtt_seq = tp->snd_nxt;
926 
927 		tcp_bpf_rtt(sk, mrtt_us, srtt);
928 	}
929 	tp->srtt_us = max(1U, srtt);
930 }
931 
tcp_update_pacing_rate(struct sock * sk)932 static void tcp_update_pacing_rate(struct sock *sk)
933 {
934 	const struct tcp_sock *tp = tcp_sk(sk);
935 	u64 rate;
936 
937 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
938 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
939 
940 	/* current rate is (cwnd * mss) / srtt
941 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
942 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
943 	 *
944 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
945 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
946 	 *	 end of slow start and should slow down.
947 	 */
948 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
949 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
950 	else
951 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
952 
953 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
954 
955 	if (likely(tp->srtt_us))
956 		do_div(rate, tp->srtt_us);
957 
958 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
959 	 * without any lock. We want to make sure compiler wont store
960 	 * intermediate values in this location.
961 	 */
962 	WRITE_ONCE(sk->sk_pacing_rate,
963 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
964 }
965 
966 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
967  * routine referred to above.
968  */
tcp_set_rto(struct sock * sk)969 static void tcp_set_rto(struct sock *sk)
970 {
971 	const struct tcp_sock *tp = tcp_sk(sk);
972 	/* Old crap is replaced with new one. 8)
973 	 *
974 	 * More seriously:
975 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
976 	 *    It cannot be less due to utterly erratic ACK generation made
977 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
978 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
979 	 *    is invisible. Actually, Linux-2.4 also generates erratic
980 	 *    ACKs in some circumstances.
981 	 */
982 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
983 
984 	/* 2. Fixups made earlier cannot be right.
985 	 *    If we do not estimate RTO correctly without them,
986 	 *    all the algo is pure shit and should be replaced
987 	 *    with correct one. It is exactly, which we pretend to do.
988 	 */
989 
990 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
991 	 * guarantees that rto is higher.
992 	 */
993 	tcp_bound_rto(sk);
994 }
995 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)996 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
997 {
998 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
999 
1000 	if (!cwnd)
1001 		cwnd = TCP_INIT_CWND;
1002 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1003 }
1004 
1005 struct tcp_sacktag_state {
1006 	/* Timestamps for earliest and latest never-retransmitted segment
1007 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1008 	 * but congestion control should still get an accurate delay signal.
1009 	 */
1010 	u64	first_sackt;
1011 	u64	last_sackt;
1012 	u32	reord;
1013 	u32	sack_delivered;
1014 	int	flag;
1015 	unsigned int mss_now;
1016 	struct rate_sample *rate;
1017 };
1018 
1019 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1020  * and spurious retransmission information if this DSACK is unlikely caused by
1021  * sender's action:
1022  * - DSACKed sequence range is larger than maximum receiver's window.
1023  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1024  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1025 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1026 			  u32 end_seq, struct tcp_sacktag_state *state)
1027 {
1028 	u32 seq_len, dup_segs = 1;
1029 
1030 	if (!before(start_seq, end_seq))
1031 		return 0;
1032 
1033 	seq_len = end_seq - start_seq;
1034 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1035 	if (seq_len > tp->max_window)
1036 		return 0;
1037 	if (seq_len > tp->mss_cache)
1038 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1039 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1040 		state->flag |= FLAG_DSACK_TLP;
1041 
1042 	tp->dsack_dups += dup_segs;
1043 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1044 	if (tp->dsack_dups > tp->total_retrans)
1045 		return 0;
1046 
1047 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1048 	/* We increase the RACK ordering window in rounds where we receive
1049 	 * DSACKs that may have been due to reordering causing RACK to trigger
1050 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1051 	 * without having seen reordering, or that match TLP probes (TLP
1052 	 * is timer-driven, not triggered by RACK).
1053 	 */
1054 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1055 		tp->rack.dsack_seen = 1;
1056 
1057 	state->flag |= FLAG_DSACKING_ACK;
1058 	/* A spurious retransmission is delivered */
1059 	state->sack_delivered += dup_segs;
1060 
1061 	return dup_segs;
1062 }
1063 
1064 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1065  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1066  * distance is approximated in full-mss packet distance ("reordering").
1067  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1068 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1069 				      const int ts)
1070 {
1071 	struct tcp_sock *tp = tcp_sk(sk);
1072 	const u32 mss = tp->mss_cache;
1073 	u32 fack, metric;
1074 
1075 	fack = tcp_highest_sack_seq(tp);
1076 	if (!before(low_seq, fack))
1077 		return;
1078 
1079 	metric = fack - low_seq;
1080 	if ((metric > tp->reordering * mss) && mss) {
1081 #if FASTRETRANS_DEBUG > 1
1082 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1083 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1084 			 tp->reordering,
1085 			 0,
1086 			 tp->sacked_out,
1087 			 tp->undo_marker ? tp->undo_retrans : 0);
1088 #endif
1089 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1090 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1091 	}
1092 
1093 	/* This exciting event is worth to be remembered. 8) */
1094 	tp->reord_seen++;
1095 	NET_INC_STATS(sock_net(sk),
1096 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1097 }
1098 
1099  /* This must be called before lost_out or retrans_out are updated
1100   * on a new loss, because we want to know if all skbs previously
1101   * known to be lost have already been retransmitted, indicating
1102   * that this newly lost skb is our next skb to retransmit.
1103   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1104 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1105 {
1106 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1107 	    (tp->retransmit_skb_hint &&
1108 	     before(TCP_SKB_CB(skb)->seq,
1109 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1110 		tp->retransmit_skb_hint = skb;
1111 }
1112 
1113 /* Sum the number of packets on the wire we have marked as lost, and
1114  * notify the congestion control module that the given skb was marked lost.
1115  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1116 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1117 {
1118 	tp->lost += tcp_skb_pcount(skb);
1119 }
1120 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1121 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1122 {
1123 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1124 	struct tcp_sock *tp = tcp_sk(sk);
1125 
1126 	if (sacked & TCPCB_SACKED_ACKED)
1127 		return;
1128 
1129 	tcp_verify_retransmit_hint(tp, skb);
1130 	if (sacked & TCPCB_LOST) {
1131 		if (sacked & TCPCB_SACKED_RETRANS) {
1132 			/* Account for retransmits that are lost again */
1133 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1134 			tp->retrans_out -= tcp_skb_pcount(skb);
1135 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1136 				      tcp_skb_pcount(skb));
1137 			tcp_notify_skb_loss_event(tp, skb);
1138 		}
1139 	} else {
1140 		tp->lost_out += tcp_skb_pcount(skb);
1141 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1142 		tcp_notify_skb_loss_event(tp, skb);
1143 	}
1144 }
1145 
1146 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1147 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1148 				bool ece_ack)
1149 {
1150 	tp->delivered += delivered;
1151 	if (ece_ack)
1152 		tp->delivered_ce += delivered;
1153 }
1154 
1155 /* This procedure tags the retransmission queue when SACKs arrive.
1156  *
1157  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1158  * Packets in queue with these bits set are counted in variables
1159  * sacked_out, retrans_out and lost_out, correspondingly.
1160  *
1161  * Valid combinations are:
1162  * Tag  InFlight	Description
1163  * 0	1		- orig segment is in flight.
1164  * S	0		- nothing flies, orig reached receiver.
1165  * L	0		- nothing flies, orig lost by net.
1166  * R	2		- both orig and retransmit are in flight.
1167  * L|R	1		- orig is lost, retransmit is in flight.
1168  * S|R  1		- orig reached receiver, retrans is still in flight.
1169  * (L|S|R is logically valid, it could occur when L|R is sacked,
1170  *  but it is equivalent to plain S and code short-circuits it to S.
1171  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1172  *
1173  * These 6 states form finite state machine, controlled by the following events:
1174  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1175  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1176  * 3. Loss detection event of two flavors:
1177  *	A. Scoreboard estimator decided the packet is lost.
1178  *	   A'. Reno "three dupacks" marks head of queue lost.
1179  *	B. SACK arrives sacking SND.NXT at the moment, when the
1180  *	   segment was retransmitted.
1181  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1182  *
1183  * It is pleasant to note, that state diagram turns out to be commutative,
1184  * so that we are allowed not to be bothered by order of our actions,
1185  * when multiple events arrive simultaneously. (see the function below).
1186  *
1187  * Reordering detection.
1188  * --------------------
1189  * Reordering metric is maximal distance, which a packet can be displaced
1190  * in packet stream. With SACKs we can estimate it:
1191  *
1192  * 1. SACK fills old hole and the corresponding segment was not
1193  *    ever retransmitted -> reordering. Alas, we cannot use it
1194  *    when segment was retransmitted.
1195  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1196  *    for retransmitted and already SACKed segment -> reordering..
1197  * Both of these heuristics are not used in Loss state, when we cannot
1198  * account for retransmits accurately.
1199  *
1200  * SACK block validation.
1201  * ----------------------
1202  *
1203  * SACK block range validation checks that the received SACK block fits to
1204  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1205  * Note that SND.UNA is not included to the range though being valid because
1206  * it means that the receiver is rather inconsistent with itself reporting
1207  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1208  * perfectly valid, however, in light of RFC2018 which explicitly states
1209  * that "SACK block MUST reflect the newest segment.  Even if the newest
1210  * segment is going to be discarded ...", not that it looks very clever
1211  * in case of head skb. Due to potentional receiver driven attacks, we
1212  * choose to avoid immediate execution of a walk in write queue due to
1213  * reneging and defer head skb's loss recovery to standard loss recovery
1214  * procedure that will eventually trigger (nothing forbids us doing this).
1215  *
1216  * Implements also blockage to start_seq wrap-around. Problem lies in the
1217  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1218  * there's no guarantee that it will be before snd_nxt (n). The problem
1219  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1220  * wrap (s_w):
1221  *
1222  *         <- outs wnd ->                          <- wrapzone ->
1223  *         u     e      n                         u_w   e_w  s n_w
1224  *         |     |      |                          |     |   |  |
1225  * |<------------+------+----- TCP seqno space --------------+---------->|
1226  * ...-- <2^31 ->|                                           |<--------...
1227  * ...---- >2^31 ------>|                                    |<--------...
1228  *
1229  * Current code wouldn't be vulnerable but it's better still to discard such
1230  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1231  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1232  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1233  * equal to the ideal case (infinite seqno space without wrap caused issues).
1234  *
1235  * With D-SACK the lower bound is extended to cover sequence space below
1236  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1237  * again, D-SACK block must not to go across snd_una (for the same reason as
1238  * for the normal SACK blocks, explained above). But there all simplicity
1239  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1240  * fully below undo_marker they do not affect behavior in anyway and can
1241  * therefore be safely ignored. In rare cases (which are more or less
1242  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1243  * fragmentation and packet reordering past skb's retransmission. To consider
1244  * them correctly, the acceptable range must be extended even more though
1245  * the exact amount is rather hard to quantify. However, tp->max_window can
1246  * be used as an exaggerated estimate.
1247  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1248 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1249 				   u32 start_seq, u32 end_seq)
1250 {
1251 	/* Too far in future, or reversed (interpretation is ambiguous) */
1252 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1253 		return false;
1254 
1255 	/* Nasty start_seq wrap-around check (see comments above) */
1256 	if (!before(start_seq, tp->snd_nxt))
1257 		return false;
1258 
1259 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1260 	 * start_seq == snd_una is non-sensical (see comments above)
1261 	 */
1262 	if (after(start_seq, tp->snd_una))
1263 		return true;
1264 
1265 	if (!is_dsack || !tp->undo_marker)
1266 		return false;
1267 
1268 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1269 	if (after(end_seq, tp->snd_una))
1270 		return false;
1271 
1272 	if (!before(start_seq, tp->undo_marker))
1273 		return true;
1274 
1275 	/* Too old */
1276 	if (!after(end_seq, tp->undo_marker))
1277 		return false;
1278 
1279 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1280 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1281 	 */
1282 	return !before(start_seq, end_seq - tp->max_window);
1283 }
1284 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1285 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1286 			    struct tcp_sack_block_wire *sp, int num_sacks,
1287 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1288 {
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1291 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1292 	u32 dup_segs;
1293 
1294 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1296 	} else if (num_sacks > 1) {
1297 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1298 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1299 
1300 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1301 			return false;
1302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1303 	} else {
1304 		return false;
1305 	}
1306 
1307 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1308 	if (!dup_segs) {	/* Skip dubious DSACK */
1309 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1310 		return false;
1311 	}
1312 
1313 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1314 
1315 	/* D-SACK for already forgotten data... Do dumb counting. */
1316 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1317 	    !after(end_seq_0, prior_snd_una) &&
1318 	    after(end_seq_0, tp->undo_marker))
1319 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1320 
1321 	return true;
1322 }
1323 
1324 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1325  * the incoming SACK may not exactly match but we can find smaller MSS
1326  * aligned portion of it that matches. Therefore we might need to fragment
1327  * which may fail and creates some hassle (caller must handle error case
1328  * returns).
1329  *
1330  * FIXME: this could be merged to shift decision code
1331  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1332 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1333 				  u32 start_seq, u32 end_seq)
1334 {
1335 	int err;
1336 	bool in_sack;
1337 	unsigned int pkt_len;
1338 	unsigned int mss;
1339 
1340 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1341 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1342 
1343 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1344 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1345 		mss = tcp_skb_mss(skb);
1346 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1347 
1348 		if (!in_sack) {
1349 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1350 			if (pkt_len < mss)
1351 				pkt_len = mss;
1352 		} else {
1353 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1354 			if (pkt_len < mss)
1355 				return -EINVAL;
1356 		}
1357 
1358 		/* Round if necessary so that SACKs cover only full MSSes
1359 		 * and/or the remaining small portion (if present)
1360 		 */
1361 		if (pkt_len > mss) {
1362 			unsigned int new_len = (pkt_len / mss) * mss;
1363 			if (!in_sack && new_len < pkt_len)
1364 				new_len += mss;
1365 			pkt_len = new_len;
1366 		}
1367 
1368 		if (pkt_len >= skb->len && !in_sack)
1369 			return 0;
1370 
1371 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1372 				   pkt_len, mss, GFP_ATOMIC);
1373 		if (err < 0)
1374 			return err;
1375 	}
1376 
1377 	return in_sack;
1378 }
1379 
1380 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1381 static u8 tcp_sacktag_one(struct sock *sk,
1382 			  struct tcp_sacktag_state *state, u8 sacked,
1383 			  u32 start_seq, u32 end_seq,
1384 			  int dup_sack, int pcount,
1385 			  u64 xmit_time)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 
1389 	/* Account D-SACK for retransmitted packet. */
1390 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1391 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1392 		    after(end_seq, tp->undo_marker))
1393 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1394 		if ((sacked & TCPCB_SACKED_ACKED) &&
1395 		    before(start_seq, state->reord))
1396 				state->reord = start_seq;
1397 	}
1398 
1399 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1400 	if (!after(end_seq, tp->snd_una))
1401 		return sacked;
1402 
1403 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1404 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1405 
1406 		if (sacked & TCPCB_SACKED_RETRANS) {
1407 			/* If the segment is not tagged as lost,
1408 			 * we do not clear RETRANS, believing
1409 			 * that retransmission is still in flight.
1410 			 */
1411 			if (sacked & TCPCB_LOST) {
1412 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1413 				tp->lost_out -= pcount;
1414 				tp->retrans_out -= pcount;
1415 			}
1416 		} else {
1417 			if (!(sacked & TCPCB_RETRANS)) {
1418 				/* New sack for not retransmitted frame,
1419 				 * which was in hole. It is reordering.
1420 				 */
1421 				if (before(start_seq,
1422 					   tcp_highest_sack_seq(tp)) &&
1423 				    before(start_seq, state->reord))
1424 					state->reord = start_seq;
1425 
1426 				if (!after(end_seq, tp->high_seq))
1427 					state->flag |= FLAG_ORIG_SACK_ACKED;
1428 				if (state->first_sackt == 0)
1429 					state->first_sackt = xmit_time;
1430 				state->last_sackt = xmit_time;
1431 			}
1432 
1433 			if (sacked & TCPCB_LOST) {
1434 				sacked &= ~TCPCB_LOST;
1435 				tp->lost_out -= pcount;
1436 			}
1437 		}
1438 
1439 		sacked |= TCPCB_SACKED_ACKED;
1440 		state->flag |= FLAG_DATA_SACKED;
1441 		tp->sacked_out += pcount;
1442 		/* Out-of-order packets delivered */
1443 		state->sack_delivered += pcount;
1444 
1445 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1446 		if (tp->lost_skb_hint &&
1447 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1448 			tp->lost_cnt_hint += pcount;
1449 	}
1450 
1451 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1452 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1453 	 * are accounted above as well.
1454 	 */
1455 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1456 		sacked &= ~TCPCB_SACKED_RETRANS;
1457 		tp->retrans_out -= pcount;
1458 	}
1459 
1460 	return sacked;
1461 }
1462 
1463 /* Shift newly-SACKed bytes from this skb to the immediately previous
1464  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1465  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1466 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1467 			    struct sk_buff *skb,
1468 			    struct tcp_sacktag_state *state,
1469 			    unsigned int pcount, int shifted, int mss,
1470 			    bool dup_sack)
1471 {
1472 	struct tcp_sock *tp = tcp_sk(sk);
1473 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1474 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1475 
1476 	BUG_ON(!pcount);
1477 
1478 	/* Adjust counters and hints for the newly sacked sequence
1479 	 * range but discard the return value since prev is already
1480 	 * marked. We must tag the range first because the seq
1481 	 * advancement below implicitly advances
1482 	 * tcp_highest_sack_seq() when skb is highest_sack.
1483 	 */
1484 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1485 			start_seq, end_seq, dup_sack, pcount,
1486 			tcp_skb_timestamp_us(skb));
1487 	tcp_rate_skb_delivered(sk, skb, state->rate);
1488 
1489 	if (skb == tp->lost_skb_hint)
1490 		tp->lost_cnt_hint += pcount;
1491 
1492 	TCP_SKB_CB(prev)->end_seq += shifted;
1493 	TCP_SKB_CB(skb)->seq += shifted;
1494 
1495 	tcp_skb_pcount_add(prev, pcount);
1496 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1497 	tcp_skb_pcount_add(skb, -pcount);
1498 
1499 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1500 	 * in theory this shouldn't be necessary but as long as DSACK
1501 	 * code can come after this skb later on it's better to keep
1502 	 * setting gso_size to something.
1503 	 */
1504 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1505 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1506 
1507 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1508 	if (tcp_skb_pcount(skb) <= 1)
1509 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510 
1511 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1512 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1513 
1514 	if (skb->len > 0) {
1515 		BUG_ON(!tcp_skb_pcount(skb));
1516 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1517 		return false;
1518 	}
1519 
1520 	/* Whole SKB was eaten :-) */
1521 
1522 	if (skb == tp->retransmit_skb_hint)
1523 		tp->retransmit_skb_hint = prev;
1524 	if (skb == tp->lost_skb_hint) {
1525 		tp->lost_skb_hint = prev;
1526 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1527 	}
1528 
1529 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1530 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1531 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1532 		TCP_SKB_CB(prev)->end_seq++;
1533 
1534 	if (skb == tcp_highest_sack(sk))
1535 		tcp_advance_highest_sack(sk, skb);
1536 
1537 	tcp_skb_collapse_tstamp(prev, skb);
1538 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1539 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1540 
1541 	tcp_rtx_queue_unlink_and_free(skb, sk);
1542 
1543 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1544 
1545 	return true;
1546 }
1547 
1548 /* I wish gso_size would have a bit more sane initialization than
1549  * something-or-zero which complicates things
1550  */
tcp_skb_seglen(const struct sk_buff * skb)1551 static int tcp_skb_seglen(const struct sk_buff *skb)
1552 {
1553 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1554 }
1555 
1556 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1557 static int skb_can_shift(const struct sk_buff *skb)
1558 {
1559 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1560 }
1561 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1562 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1563 		  int pcount, int shiftlen)
1564 {
1565 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1566 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1567 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1568 	 * even if current MSS is bigger.
1569 	 */
1570 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1571 		return 0;
1572 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1573 		return 0;
1574 	return skb_shift(to, from, shiftlen);
1575 }
1576 
1577 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1578  * skb.
1579  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1580 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1581 					  struct tcp_sacktag_state *state,
1582 					  u32 start_seq, u32 end_seq,
1583 					  bool dup_sack)
1584 {
1585 	struct tcp_sock *tp = tcp_sk(sk);
1586 	struct sk_buff *prev;
1587 	int mss;
1588 	int pcount = 0;
1589 	int len;
1590 	int in_sack;
1591 
1592 	/* Normally R but no L won't result in plain S */
1593 	if (!dup_sack &&
1594 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1595 		goto fallback;
1596 	if (!skb_can_shift(skb))
1597 		goto fallback;
1598 	/* This frame is about to be dropped (was ACKed). */
1599 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1600 		goto fallback;
1601 
1602 	/* Can only happen with delayed DSACK + discard craziness */
1603 	prev = skb_rb_prev(skb);
1604 	if (!prev)
1605 		goto fallback;
1606 
1607 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1608 		goto fallback;
1609 
1610 	if (!tcp_skb_can_collapse(prev, skb))
1611 		goto fallback;
1612 
1613 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1614 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1615 
1616 	if (in_sack) {
1617 		len = skb->len;
1618 		pcount = tcp_skb_pcount(skb);
1619 		mss = tcp_skb_seglen(skb);
1620 
1621 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1622 		 * drop this restriction as unnecessary
1623 		 */
1624 		if (mss != tcp_skb_seglen(prev))
1625 			goto fallback;
1626 	} else {
1627 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1628 			goto noop;
1629 		/* CHECKME: This is non-MSS split case only?, this will
1630 		 * cause skipped skbs due to advancing loop btw, original
1631 		 * has that feature too
1632 		 */
1633 		if (tcp_skb_pcount(skb) <= 1)
1634 			goto noop;
1635 
1636 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1637 		if (!in_sack) {
1638 			/* TODO: head merge to next could be attempted here
1639 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1640 			 * though it might not be worth of the additional hassle
1641 			 *
1642 			 * ...we can probably just fallback to what was done
1643 			 * previously. We could try merging non-SACKed ones
1644 			 * as well but it probably isn't going to buy off
1645 			 * because later SACKs might again split them, and
1646 			 * it would make skb timestamp tracking considerably
1647 			 * harder problem.
1648 			 */
1649 			goto fallback;
1650 		}
1651 
1652 		len = end_seq - TCP_SKB_CB(skb)->seq;
1653 		BUG_ON(len < 0);
1654 		BUG_ON(len > skb->len);
1655 
1656 		/* MSS boundaries should be honoured or else pcount will
1657 		 * severely break even though it makes things bit trickier.
1658 		 * Optimize common case to avoid most of the divides
1659 		 */
1660 		mss = tcp_skb_mss(skb);
1661 
1662 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1663 		 * drop this restriction as unnecessary
1664 		 */
1665 		if (mss != tcp_skb_seglen(prev))
1666 			goto fallback;
1667 
1668 		if (len == mss) {
1669 			pcount = 1;
1670 		} else if (len < mss) {
1671 			goto noop;
1672 		} else {
1673 			pcount = len / mss;
1674 			len = pcount * mss;
1675 		}
1676 	}
1677 
1678 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1679 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1680 		goto fallback;
1681 
1682 	if (!tcp_skb_shift(prev, skb, pcount, len))
1683 		goto fallback;
1684 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1685 		goto out;
1686 
1687 	/* Hole filled allows collapsing with the next as well, this is very
1688 	 * useful when hole on every nth skb pattern happens
1689 	 */
1690 	skb = skb_rb_next(prev);
1691 	if (!skb)
1692 		goto out;
1693 
1694 	if (!skb_can_shift(skb) ||
1695 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1696 	    (mss != tcp_skb_seglen(skb)))
1697 		goto out;
1698 
1699 	if (!tcp_skb_can_collapse(prev, skb))
1700 		goto out;
1701 	len = skb->len;
1702 	pcount = tcp_skb_pcount(skb);
1703 	if (tcp_skb_shift(prev, skb, pcount, len))
1704 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1705 				len, mss, 0);
1706 
1707 out:
1708 	return prev;
1709 
1710 noop:
1711 	return skb;
1712 
1713 fallback:
1714 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1715 	return NULL;
1716 }
1717 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1718 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1719 					struct tcp_sack_block *next_dup,
1720 					struct tcp_sacktag_state *state,
1721 					u32 start_seq, u32 end_seq,
1722 					bool dup_sack_in)
1723 {
1724 	struct tcp_sock *tp = tcp_sk(sk);
1725 	struct sk_buff *tmp;
1726 
1727 	skb_rbtree_walk_from(skb) {
1728 		int in_sack = 0;
1729 		bool dup_sack = dup_sack_in;
1730 
1731 		/* queue is in-order => we can short-circuit the walk early */
1732 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1733 			break;
1734 
1735 		if (next_dup  &&
1736 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1737 			in_sack = tcp_match_skb_to_sack(sk, skb,
1738 							next_dup->start_seq,
1739 							next_dup->end_seq);
1740 			if (in_sack > 0)
1741 				dup_sack = true;
1742 		}
1743 
1744 		/* skb reference here is a bit tricky to get right, since
1745 		 * shifting can eat and free both this skb and the next,
1746 		 * so not even _safe variant of the loop is enough.
1747 		 */
1748 		if (in_sack <= 0) {
1749 			tmp = tcp_shift_skb_data(sk, skb, state,
1750 						 start_seq, end_seq, dup_sack);
1751 			if (tmp) {
1752 				if (tmp != skb) {
1753 					skb = tmp;
1754 					continue;
1755 				}
1756 
1757 				in_sack = 0;
1758 			} else {
1759 				in_sack = tcp_match_skb_to_sack(sk, skb,
1760 								start_seq,
1761 								end_seq);
1762 			}
1763 		}
1764 
1765 		if (unlikely(in_sack < 0))
1766 			break;
1767 
1768 		if (in_sack) {
1769 			TCP_SKB_CB(skb)->sacked =
1770 				tcp_sacktag_one(sk,
1771 						state,
1772 						TCP_SKB_CB(skb)->sacked,
1773 						TCP_SKB_CB(skb)->seq,
1774 						TCP_SKB_CB(skb)->end_seq,
1775 						dup_sack,
1776 						tcp_skb_pcount(skb),
1777 						tcp_skb_timestamp_us(skb));
1778 			tcp_rate_skb_delivered(sk, skb, state->rate);
1779 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1780 				list_del_init(&skb->tcp_tsorted_anchor);
1781 
1782 			if (!before(TCP_SKB_CB(skb)->seq,
1783 				    tcp_highest_sack_seq(tp)))
1784 				tcp_advance_highest_sack(sk, skb);
1785 		}
1786 	}
1787 	return skb;
1788 }
1789 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1790 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1791 {
1792 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1793 	struct sk_buff *skb;
1794 
1795 	while (*p) {
1796 		parent = *p;
1797 		skb = rb_to_skb(parent);
1798 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1799 			p = &parent->rb_left;
1800 			continue;
1801 		}
1802 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1803 			p = &parent->rb_right;
1804 			continue;
1805 		}
1806 		return skb;
1807 	}
1808 	return NULL;
1809 }
1810 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1811 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1812 					u32 skip_to_seq)
1813 {
1814 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1815 		return skb;
1816 
1817 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1818 }
1819 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1820 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1821 						struct sock *sk,
1822 						struct tcp_sack_block *next_dup,
1823 						struct tcp_sacktag_state *state,
1824 						u32 skip_to_seq)
1825 {
1826 	if (!next_dup)
1827 		return skb;
1828 
1829 	if (before(next_dup->start_seq, skip_to_seq)) {
1830 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1831 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1832 				       next_dup->start_seq, next_dup->end_seq,
1833 				       1);
1834 	}
1835 
1836 	return skb;
1837 }
1838 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1839 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1840 {
1841 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1842 }
1843 
1844 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1845 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1846 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1847 {
1848 	struct tcp_sock *tp = tcp_sk(sk);
1849 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1850 				    TCP_SKB_CB(ack_skb)->sacked);
1851 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1852 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1853 	struct tcp_sack_block *cache;
1854 	struct sk_buff *skb;
1855 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1856 	int used_sacks;
1857 	bool found_dup_sack = false;
1858 	int i, j;
1859 	int first_sack_index;
1860 
1861 	state->flag = 0;
1862 	state->reord = tp->snd_nxt;
1863 
1864 	if (!tp->sacked_out)
1865 		tcp_highest_sack_reset(sk);
1866 
1867 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1868 					 num_sacks, prior_snd_una, state);
1869 
1870 	/* Eliminate too old ACKs, but take into
1871 	 * account more or less fresh ones, they can
1872 	 * contain valid SACK info.
1873 	 */
1874 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1875 		return 0;
1876 
1877 	if (!tp->packets_out)
1878 		goto out;
1879 
1880 	used_sacks = 0;
1881 	first_sack_index = 0;
1882 	for (i = 0; i < num_sacks; i++) {
1883 		bool dup_sack = !i && found_dup_sack;
1884 
1885 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1886 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1887 
1888 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1889 					    sp[used_sacks].start_seq,
1890 					    sp[used_sacks].end_seq)) {
1891 			int mib_idx;
1892 
1893 			if (dup_sack) {
1894 				if (!tp->undo_marker)
1895 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1896 				else
1897 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1898 			} else {
1899 				/* Don't count olds caused by ACK reordering */
1900 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1901 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1902 					continue;
1903 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1904 			}
1905 
1906 			NET_INC_STATS(sock_net(sk), mib_idx);
1907 			if (i == 0)
1908 				first_sack_index = -1;
1909 			continue;
1910 		}
1911 
1912 		/* Ignore very old stuff early */
1913 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1914 			if (i == 0)
1915 				first_sack_index = -1;
1916 			continue;
1917 		}
1918 
1919 		used_sacks++;
1920 	}
1921 
1922 	/* order SACK blocks to allow in order walk of the retrans queue */
1923 	for (i = used_sacks - 1; i > 0; i--) {
1924 		for (j = 0; j < i; j++) {
1925 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1926 				swap(sp[j], sp[j + 1]);
1927 
1928 				/* Track where the first SACK block goes to */
1929 				if (j == first_sack_index)
1930 					first_sack_index = j + 1;
1931 			}
1932 		}
1933 	}
1934 
1935 	state->mss_now = tcp_current_mss(sk);
1936 	skb = NULL;
1937 	i = 0;
1938 
1939 	if (!tp->sacked_out) {
1940 		/* It's already past, so skip checking against it */
1941 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1942 	} else {
1943 		cache = tp->recv_sack_cache;
1944 		/* Skip empty blocks in at head of the cache */
1945 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1946 		       !cache->end_seq)
1947 			cache++;
1948 	}
1949 
1950 	while (i < used_sacks) {
1951 		u32 start_seq = sp[i].start_seq;
1952 		u32 end_seq = sp[i].end_seq;
1953 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1954 		struct tcp_sack_block *next_dup = NULL;
1955 
1956 		if (found_dup_sack && ((i + 1) == first_sack_index))
1957 			next_dup = &sp[i + 1];
1958 
1959 		/* Skip too early cached blocks */
1960 		while (tcp_sack_cache_ok(tp, cache) &&
1961 		       !before(start_seq, cache->end_seq))
1962 			cache++;
1963 
1964 		/* Can skip some work by looking recv_sack_cache? */
1965 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1966 		    after(end_seq, cache->start_seq)) {
1967 
1968 			/* Head todo? */
1969 			if (before(start_seq, cache->start_seq)) {
1970 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1971 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1972 						       state,
1973 						       start_seq,
1974 						       cache->start_seq,
1975 						       dup_sack);
1976 			}
1977 
1978 			/* Rest of the block already fully processed? */
1979 			if (!after(end_seq, cache->end_seq))
1980 				goto advance_sp;
1981 
1982 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1983 						       state,
1984 						       cache->end_seq);
1985 
1986 			/* ...tail remains todo... */
1987 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1988 				/* ...but better entrypoint exists! */
1989 				skb = tcp_highest_sack(sk);
1990 				if (!skb)
1991 					break;
1992 				cache++;
1993 				goto walk;
1994 			}
1995 
1996 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1997 			/* Check overlap against next cached too (past this one already) */
1998 			cache++;
1999 			continue;
2000 		}
2001 
2002 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2003 			skb = tcp_highest_sack(sk);
2004 			if (!skb)
2005 				break;
2006 		}
2007 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2008 
2009 walk:
2010 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2011 				       start_seq, end_seq, dup_sack);
2012 
2013 advance_sp:
2014 		i++;
2015 	}
2016 
2017 	/* Clear the head of the cache sack blocks so we can skip it next time */
2018 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2019 		tp->recv_sack_cache[i].start_seq = 0;
2020 		tp->recv_sack_cache[i].end_seq = 0;
2021 	}
2022 	for (j = 0; j < used_sacks; j++)
2023 		tp->recv_sack_cache[i++] = sp[j];
2024 
2025 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2026 		tcp_check_sack_reordering(sk, state->reord, 0);
2027 
2028 	tcp_verify_left_out(tp);
2029 out:
2030 
2031 #if FASTRETRANS_DEBUG > 0
2032 	WARN_ON((int)tp->sacked_out < 0);
2033 	WARN_ON((int)tp->lost_out < 0);
2034 	WARN_ON((int)tp->retrans_out < 0);
2035 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2036 #endif
2037 	return state->flag;
2038 }
2039 
2040 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2041  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2042  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2043 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2044 {
2045 	u32 holes;
2046 
2047 	holes = max(tp->lost_out, 1U);
2048 	holes = min(holes, tp->packets_out);
2049 
2050 	if ((tp->sacked_out + holes) > tp->packets_out) {
2051 		tp->sacked_out = tp->packets_out - holes;
2052 		return true;
2053 	}
2054 	return false;
2055 }
2056 
2057 /* If we receive more dupacks than we expected counting segments
2058  * in assumption of absent reordering, interpret this as reordering.
2059  * The only another reason could be bug in receiver TCP.
2060  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2061 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2062 {
2063 	struct tcp_sock *tp = tcp_sk(sk);
2064 
2065 	if (!tcp_limit_reno_sacked(tp))
2066 		return;
2067 
2068 	tp->reordering = min_t(u32, tp->packets_out + addend,
2069 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2070 	tp->reord_seen++;
2071 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2072 }
2073 
2074 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2075 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2076 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2077 {
2078 	if (num_dupack) {
2079 		struct tcp_sock *tp = tcp_sk(sk);
2080 		u32 prior_sacked = tp->sacked_out;
2081 		s32 delivered;
2082 
2083 		tp->sacked_out += num_dupack;
2084 		tcp_check_reno_reordering(sk, 0);
2085 		delivered = tp->sacked_out - prior_sacked;
2086 		if (delivered > 0)
2087 			tcp_count_delivered(tp, delivered, ece_ack);
2088 		tcp_verify_left_out(tp);
2089 	}
2090 }
2091 
2092 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2093 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2094 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2095 {
2096 	struct tcp_sock *tp = tcp_sk(sk);
2097 
2098 	if (acked > 0) {
2099 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2100 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2101 				    ece_ack);
2102 		if (acked - 1 >= tp->sacked_out)
2103 			tp->sacked_out = 0;
2104 		else
2105 			tp->sacked_out -= acked - 1;
2106 	}
2107 	tcp_check_reno_reordering(sk, acked);
2108 	tcp_verify_left_out(tp);
2109 }
2110 
tcp_reset_reno_sack(struct tcp_sock * tp)2111 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2112 {
2113 	tp->sacked_out = 0;
2114 }
2115 
tcp_clear_retrans(struct tcp_sock * tp)2116 void tcp_clear_retrans(struct tcp_sock *tp)
2117 {
2118 	tp->retrans_out = 0;
2119 	tp->lost_out = 0;
2120 	tp->undo_marker = 0;
2121 	tp->undo_retrans = -1;
2122 	tp->sacked_out = 0;
2123 	tp->rto_stamp = 0;
2124 	tp->total_rto = 0;
2125 	tp->total_rto_recoveries = 0;
2126 	tp->total_rto_time = 0;
2127 }
2128 
tcp_init_undo(struct tcp_sock * tp)2129 static inline void tcp_init_undo(struct tcp_sock *tp)
2130 {
2131 	tp->undo_marker = tp->snd_una;
2132 	/* Retransmission still in flight may cause DSACKs later. */
2133 	tp->undo_retrans = tp->retrans_out ? : -1;
2134 }
2135 
tcp_is_rack(const struct sock * sk)2136 static bool tcp_is_rack(const struct sock *sk)
2137 {
2138 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2139 		TCP_RACK_LOSS_DETECTION;
2140 }
2141 
2142 /* If we detect SACK reneging, forget all SACK information
2143  * and reset tags completely, otherwise preserve SACKs. If receiver
2144  * dropped its ofo queue, we will know this due to reneging detection.
2145  */
tcp_timeout_mark_lost(struct sock * sk)2146 static void tcp_timeout_mark_lost(struct sock *sk)
2147 {
2148 	struct tcp_sock *tp = tcp_sk(sk);
2149 	struct sk_buff *skb, *head;
2150 	bool is_reneg;			/* is receiver reneging on SACKs? */
2151 
2152 	head = tcp_rtx_queue_head(sk);
2153 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2154 	if (is_reneg) {
2155 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2156 		tp->sacked_out = 0;
2157 		/* Mark SACK reneging until we recover from this loss event. */
2158 		tp->is_sack_reneg = 1;
2159 	} else if (tcp_is_reno(tp)) {
2160 		tcp_reset_reno_sack(tp);
2161 	}
2162 
2163 	skb = head;
2164 	skb_rbtree_walk_from(skb) {
2165 		if (is_reneg)
2166 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2167 		else if (tcp_is_rack(sk) && skb != head &&
2168 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2169 			continue; /* Don't mark recently sent ones lost yet */
2170 		tcp_mark_skb_lost(sk, skb);
2171 	}
2172 	tcp_verify_left_out(tp);
2173 	tcp_clear_all_retrans_hints(tp);
2174 }
2175 
2176 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2177 void tcp_enter_loss(struct sock *sk)
2178 {
2179 	const struct inet_connection_sock *icsk = inet_csk(sk);
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct net *net = sock_net(sk);
2182 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2183 	u8 reordering;
2184 
2185 	tcp_timeout_mark_lost(sk);
2186 
2187 	/* Reduce ssthresh if it has not yet been made inside this window. */
2188 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2189 	    !after(tp->high_seq, tp->snd_una) ||
2190 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2191 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2192 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2193 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2194 		tcp_ca_event(sk, CA_EVENT_LOSS);
2195 		tcp_init_undo(tp);
2196 	}
2197 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2198 	tp->snd_cwnd_cnt   = 0;
2199 	tp->snd_cwnd_stamp = tcp_jiffies32;
2200 
2201 	/* Timeout in disordered state after receiving substantial DUPACKs
2202 	 * suggests that the degree of reordering is over-estimated.
2203 	 */
2204 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2205 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2206 	    tp->sacked_out >= reordering)
2207 		tp->reordering = min_t(unsigned int, tp->reordering,
2208 				       reordering);
2209 
2210 	tcp_set_ca_state(sk, TCP_CA_Loss);
2211 	tp->high_seq = tp->snd_nxt;
2212 	tcp_ecn_queue_cwr(tp);
2213 
2214 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2215 	 * loss recovery is underway except recurring timeout(s) on
2216 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2217 	 */
2218 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2219 		   (new_recovery || icsk->icsk_retransmits) &&
2220 		   !inet_csk(sk)->icsk_mtup.probe_size;
2221 }
2222 
2223 /* If ACK arrived pointing to a remembered SACK, it means that our
2224  * remembered SACKs do not reflect real state of receiver i.e.
2225  * receiver _host_ is heavily congested (or buggy).
2226  *
2227  * To avoid big spurious retransmission bursts due to transient SACK
2228  * scoreboard oddities that look like reneging, we give the receiver a
2229  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2230  * restore sanity to the SACK scoreboard. If the apparent reneging
2231  * persists until this RTO then we'll clear the SACK scoreboard.
2232  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2233 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2234 {
2235 	if (*ack_flag & FLAG_SACK_RENEGING &&
2236 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2237 		struct tcp_sock *tp = tcp_sk(sk);
2238 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2239 					  msecs_to_jiffies(10));
2240 
2241 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2242 					  delay, TCP_RTO_MAX);
2243 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2244 		return true;
2245 	}
2246 	return false;
2247 }
2248 
2249 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2250  * counter when SACK is enabled (without SACK, sacked_out is used for
2251  * that purpose).
2252  *
2253  * With reordering, holes may still be in flight, so RFC3517 recovery
2254  * uses pure sacked_out (total number of SACKed segments) even though
2255  * it violates the RFC that uses duplicate ACKs, often these are equal
2256  * but when e.g. out-of-window ACKs or packet duplication occurs,
2257  * they differ. Since neither occurs due to loss, TCP should really
2258  * ignore them.
2259  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2260 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2261 {
2262 	return tp->sacked_out + 1;
2263 }
2264 
2265 /* Linux NewReno/SACK/ECN state machine.
2266  * --------------------------------------
2267  *
2268  * "Open"	Normal state, no dubious events, fast path.
2269  * "Disorder"   In all the respects it is "Open",
2270  *		but requires a bit more attention. It is entered when
2271  *		we see some SACKs or dupacks. It is split of "Open"
2272  *		mainly to move some processing from fast path to slow one.
2273  * "CWR"	CWND was reduced due to some Congestion Notification event.
2274  *		It can be ECN, ICMP source quench, local device congestion.
2275  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2276  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2277  *
2278  * tcp_fastretrans_alert() is entered:
2279  * - each incoming ACK, if state is not "Open"
2280  * - when arrived ACK is unusual, namely:
2281  *	* SACK
2282  *	* Duplicate ACK.
2283  *	* ECN ECE.
2284  *
2285  * Counting packets in flight is pretty simple.
2286  *
2287  *	in_flight = packets_out - left_out + retrans_out
2288  *
2289  *	packets_out is SND.NXT-SND.UNA counted in packets.
2290  *
2291  *	retrans_out is number of retransmitted segments.
2292  *
2293  *	left_out is number of segments left network, but not ACKed yet.
2294  *
2295  *		left_out = sacked_out + lost_out
2296  *
2297  *     sacked_out: Packets, which arrived to receiver out of order
2298  *		   and hence not ACKed. With SACKs this number is simply
2299  *		   amount of SACKed data. Even without SACKs
2300  *		   it is easy to give pretty reliable estimate of this number,
2301  *		   counting duplicate ACKs.
2302  *
2303  *       lost_out: Packets lost by network. TCP has no explicit
2304  *		   "loss notification" feedback from network (for now).
2305  *		   It means that this number can be only _guessed_.
2306  *		   Actually, it is the heuristics to predict lossage that
2307  *		   distinguishes different algorithms.
2308  *
2309  *	F.e. after RTO, when all the queue is considered as lost,
2310  *	lost_out = packets_out and in_flight = retrans_out.
2311  *
2312  *		Essentially, we have now a few algorithms detecting
2313  *		lost packets.
2314  *
2315  *		If the receiver supports SACK:
2316  *
2317  *		RFC6675/3517: It is the conventional algorithm. A packet is
2318  *		considered lost if the number of higher sequence packets
2319  *		SACKed is greater than or equal the DUPACK thoreshold
2320  *		(reordering). This is implemented in tcp_mark_head_lost and
2321  *		tcp_update_scoreboard.
2322  *
2323  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2324  *		(2017-) that checks timing instead of counting DUPACKs.
2325  *		Essentially a packet is considered lost if it's not S/ACKed
2326  *		after RTT + reordering_window, where both metrics are
2327  *		dynamically measured and adjusted. This is implemented in
2328  *		tcp_rack_mark_lost.
2329  *
2330  *		If the receiver does not support SACK:
2331  *
2332  *		NewReno (RFC6582): in Recovery we assume that one segment
2333  *		is lost (classic Reno). While we are in Recovery and
2334  *		a partial ACK arrives, we assume that one more packet
2335  *		is lost (NewReno). This heuristics are the same in NewReno
2336  *		and SACK.
2337  *
2338  * Really tricky (and requiring careful tuning) part of algorithm
2339  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2340  * The first determines the moment _when_ we should reduce CWND and,
2341  * hence, slow down forward transmission. In fact, it determines the moment
2342  * when we decide that hole is caused by loss, rather than by a reorder.
2343  *
2344  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2345  * holes, caused by lost packets.
2346  *
2347  * And the most logically complicated part of algorithm is undo
2348  * heuristics. We detect false retransmits due to both too early
2349  * fast retransmit (reordering) and underestimated RTO, analyzing
2350  * timestamps and D-SACKs. When we detect that some segments were
2351  * retransmitted by mistake and CWND reduction was wrong, we undo
2352  * window reduction and abort recovery phase. This logic is hidden
2353  * inside several functions named tcp_try_undo_<something>.
2354  */
2355 
2356 /* This function decides, when we should leave Disordered state
2357  * and enter Recovery phase, reducing congestion window.
2358  *
2359  * Main question: may we further continue forward transmission
2360  * with the same cwnd?
2361  */
tcp_time_to_recover(struct sock * sk,int flag)2362 static bool tcp_time_to_recover(struct sock *sk, int flag)
2363 {
2364 	struct tcp_sock *tp = tcp_sk(sk);
2365 
2366 	/* Trick#1: The loss is proven. */
2367 	if (tp->lost_out)
2368 		return true;
2369 
2370 	/* Not-A-Trick#2 : Classic rule... */
2371 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2372 		return true;
2373 
2374 	return false;
2375 }
2376 
2377 /* Detect loss in event "A" above by marking head of queue up as lost.
2378  * For RFC3517 SACK, a segment is considered lost if it
2379  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2380  * the maximum SACKed segments to pass before reaching this limit.
2381  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2382 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 	struct sk_buff *skb;
2386 	int cnt;
2387 	/* Use SACK to deduce losses of new sequences sent during recovery */
2388 	const u32 loss_high = tp->snd_nxt;
2389 
2390 	WARN_ON(packets > tp->packets_out);
2391 	skb = tp->lost_skb_hint;
2392 	if (skb) {
2393 		/* Head already handled? */
2394 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2395 			return;
2396 		cnt = tp->lost_cnt_hint;
2397 	} else {
2398 		skb = tcp_rtx_queue_head(sk);
2399 		cnt = 0;
2400 	}
2401 
2402 	skb_rbtree_walk_from(skb) {
2403 		/* TODO: do this better */
2404 		/* this is not the most efficient way to do this... */
2405 		tp->lost_skb_hint = skb;
2406 		tp->lost_cnt_hint = cnt;
2407 
2408 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2409 			break;
2410 
2411 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2412 			cnt += tcp_skb_pcount(skb);
2413 
2414 		if (cnt > packets)
2415 			break;
2416 
2417 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2418 			tcp_mark_skb_lost(sk, skb);
2419 
2420 		if (mark_head)
2421 			break;
2422 	}
2423 	tcp_verify_left_out(tp);
2424 }
2425 
2426 /* Account newly detected lost packet(s) */
2427 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2428 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2429 {
2430 	struct tcp_sock *tp = tcp_sk(sk);
2431 
2432 	if (tcp_is_sack(tp)) {
2433 		int sacked_upto = tp->sacked_out - tp->reordering;
2434 		if (sacked_upto >= 0)
2435 			tcp_mark_head_lost(sk, sacked_upto, 0);
2436 		else if (fast_rexmit)
2437 			tcp_mark_head_lost(sk, 1, 1);
2438 	}
2439 }
2440 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2441 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2442 {
2443 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2444 	       before(tp->rx_opt.rcv_tsecr, when);
2445 }
2446 
2447 /* skb is spurious retransmitted if the returned timestamp echo
2448  * reply is prior to the skb transmission time
2449  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2450 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2451 				     const struct sk_buff *skb)
2452 {
2453 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2454 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2455 }
2456 
2457 /* Nothing was retransmitted or returned timestamp is less
2458  * than timestamp of the first retransmission.
2459  */
tcp_packet_delayed(const struct tcp_sock * tp)2460 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2461 {
2462 	return tp->retrans_stamp &&
2463 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2464 }
2465 
2466 /* Undo procedures. */
2467 
2468 /* We can clear retrans_stamp when there are no retransmissions in the
2469  * window. It would seem that it is trivially available for us in
2470  * tp->retrans_out, however, that kind of assumptions doesn't consider
2471  * what will happen if errors occur when sending retransmission for the
2472  * second time. ...It could the that such segment has only
2473  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2474  * the head skb is enough except for some reneging corner cases that
2475  * are not worth the effort.
2476  *
2477  * Main reason for all this complexity is the fact that connection dying
2478  * time now depends on the validity of the retrans_stamp, in particular,
2479  * that successive retransmissions of a segment must not advance
2480  * retrans_stamp under any conditions.
2481  */
tcp_any_retrans_done(const struct sock * sk)2482 static bool tcp_any_retrans_done(const struct sock *sk)
2483 {
2484 	const struct tcp_sock *tp = tcp_sk(sk);
2485 	struct sk_buff *skb;
2486 
2487 	if (tp->retrans_out)
2488 		return true;
2489 
2490 	skb = tcp_rtx_queue_head(sk);
2491 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2492 		return true;
2493 
2494 	return false;
2495 }
2496 
DBGUNDO(struct sock * sk,const char * msg)2497 static void DBGUNDO(struct sock *sk, const char *msg)
2498 {
2499 #if FASTRETRANS_DEBUG > 1
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 	struct inet_sock *inet = inet_sk(sk);
2502 
2503 	if (sk->sk_family == AF_INET) {
2504 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2505 			 msg,
2506 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2507 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2508 			 tp->snd_ssthresh, tp->prior_ssthresh,
2509 			 tp->packets_out);
2510 	}
2511 #if IS_ENABLED(CONFIG_IPV6)
2512 	else if (sk->sk_family == AF_INET6) {
2513 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2514 			 msg,
2515 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2516 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2517 			 tp->snd_ssthresh, tp->prior_ssthresh,
2518 			 tp->packets_out);
2519 	}
2520 #endif
2521 #endif
2522 }
2523 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2524 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	if (unmark_loss) {
2529 		struct sk_buff *skb;
2530 
2531 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2532 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2533 		}
2534 		tp->lost_out = 0;
2535 		tcp_clear_all_retrans_hints(tp);
2536 	}
2537 
2538 	if (tp->prior_ssthresh) {
2539 		const struct inet_connection_sock *icsk = inet_csk(sk);
2540 
2541 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2542 
2543 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2544 			tp->snd_ssthresh = tp->prior_ssthresh;
2545 			tcp_ecn_withdraw_cwr(tp);
2546 		}
2547 	}
2548 	tp->snd_cwnd_stamp = tcp_jiffies32;
2549 	tp->undo_marker = 0;
2550 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2551 }
2552 
tcp_may_undo(const struct tcp_sock * tp)2553 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2554 {
2555 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2556 }
2557 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2558 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2559 {
2560 	struct tcp_sock *tp = tcp_sk(sk);
2561 
2562 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2563 		/* Hold old state until something *above* high_seq
2564 		 * is ACKed. For Reno it is MUST to prevent false
2565 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2566 		if (!tcp_any_retrans_done(sk))
2567 			tp->retrans_stamp = 0;
2568 		return true;
2569 	}
2570 	return false;
2571 }
2572 
2573 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2574 static bool tcp_try_undo_recovery(struct sock *sk)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 
2578 	if (tcp_may_undo(tp)) {
2579 		int mib_idx;
2580 
2581 		/* Happy end! We did not retransmit anything
2582 		 * or our original transmission succeeded.
2583 		 */
2584 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2585 		tcp_undo_cwnd_reduction(sk, false);
2586 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2587 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2588 		else
2589 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2590 
2591 		NET_INC_STATS(sock_net(sk), mib_idx);
2592 	} else if (tp->rack.reo_wnd_persist) {
2593 		tp->rack.reo_wnd_persist--;
2594 	}
2595 	if (tcp_is_non_sack_preventing_reopen(sk))
2596 		return true;
2597 	tcp_set_ca_state(sk, TCP_CA_Open);
2598 	tp->is_sack_reneg = 0;
2599 	return false;
2600 }
2601 
2602 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2603 static bool tcp_try_undo_dsack(struct sock *sk)
2604 {
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 
2607 	if (tp->undo_marker && !tp->undo_retrans) {
2608 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2609 					       tp->rack.reo_wnd_persist + 1);
2610 		DBGUNDO(sk, "D-SACK");
2611 		tcp_undo_cwnd_reduction(sk, false);
2612 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2613 		return true;
2614 	}
2615 	return false;
2616 }
2617 
2618 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2619 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 
2623 	if (frto_undo || tcp_may_undo(tp)) {
2624 		tcp_undo_cwnd_reduction(sk, true);
2625 
2626 		DBGUNDO(sk, "partial loss");
2627 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2628 		if (frto_undo)
2629 			NET_INC_STATS(sock_net(sk),
2630 					LINUX_MIB_TCPSPURIOUSRTOS);
2631 		inet_csk(sk)->icsk_retransmits = 0;
2632 		if (tcp_is_non_sack_preventing_reopen(sk))
2633 			return true;
2634 		if (frto_undo || tcp_is_sack(tp)) {
2635 			tcp_set_ca_state(sk, TCP_CA_Open);
2636 			tp->is_sack_reneg = 0;
2637 		}
2638 		return true;
2639 	}
2640 	return false;
2641 }
2642 
2643 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2644  * It computes the number of packets to send (sndcnt) based on packets newly
2645  * delivered:
2646  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2647  *	cwnd reductions across a full RTT.
2648  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2649  *      But when SND_UNA is acked without further losses,
2650  *      slow starts cwnd up to ssthresh to speed up the recovery.
2651  */
tcp_init_cwnd_reduction(struct sock * sk)2652 static void tcp_init_cwnd_reduction(struct sock *sk)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 
2656 	tp->high_seq = tp->snd_nxt;
2657 	tp->tlp_high_seq = 0;
2658 	tp->snd_cwnd_cnt = 0;
2659 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2660 	tp->prr_delivered = 0;
2661 	tp->prr_out = 0;
2662 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2663 	tcp_ecn_queue_cwr(tp);
2664 }
2665 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2666 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 	int sndcnt = 0;
2670 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2671 
2672 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2673 		return;
2674 
2675 	tp->prr_delivered += newly_acked_sacked;
2676 	if (delta < 0) {
2677 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2678 			       tp->prior_cwnd - 1;
2679 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2680 	} else {
2681 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2682 			       newly_acked_sacked);
2683 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2684 			sndcnt++;
2685 		sndcnt = min(delta, sndcnt);
2686 	}
2687 	/* Force a fast retransmit upon entering fast recovery */
2688 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2689 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2690 }
2691 
tcp_end_cwnd_reduction(struct sock * sk)2692 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2693 {
2694 	struct tcp_sock *tp = tcp_sk(sk);
2695 
2696 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2697 		return;
2698 
2699 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2700 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2701 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2702 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2703 		tp->snd_cwnd_stamp = tcp_jiffies32;
2704 	}
2705 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2706 }
2707 
2708 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2709 void tcp_enter_cwr(struct sock *sk)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 
2713 	tp->prior_ssthresh = 0;
2714 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2715 		tp->undo_marker = 0;
2716 		tcp_init_cwnd_reduction(sk);
2717 		tcp_set_ca_state(sk, TCP_CA_CWR);
2718 	}
2719 }
2720 EXPORT_SYMBOL(tcp_enter_cwr);
2721 
tcp_try_keep_open(struct sock * sk)2722 static void tcp_try_keep_open(struct sock *sk)
2723 {
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 	int state = TCP_CA_Open;
2726 
2727 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2728 		state = TCP_CA_Disorder;
2729 
2730 	if (inet_csk(sk)->icsk_ca_state != state) {
2731 		tcp_set_ca_state(sk, state);
2732 		tp->high_seq = tp->snd_nxt;
2733 	}
2734 }
2735 
tcp_try_to_open(struct sock * sk,int flag)2736 static void tcp_try_to_open(struct sock *sk, int flag)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 
2740 	tcp_verify_left_out(tp);
2741 
2742 	if (!tcp_any_retrans_done(sk))
2743 		tp->retrans_stamp = 0;
2744 
2745 	if (flag & FLAG_ECE)
2746 		tcp_enter_cwr(sk);
2747 
2748 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2749 		tcp_try_keep_open(sk);
2750 	}
2751 }
2752 
tcp_mtup_probe_failed(struct sock * sk)2753 static void tcp_mtup_probe_failed(struct sock *sk)
2754 {
2755 	struct inet_connection_sock *icsk = inet_csk(sk);
2756 
2757 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2758 	icsk->icsk_mtup.probe_size = 0;
2759 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2760 }
2761 
tcp_mtup_probe_success(struct sock * sk)2762 static void tcp_mtup_probe_success(struct sock *sk)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 	struct inet_connection_sock *icsk = inet_csk(sk);
2766 	u64 val;
2767 
2768 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2769 
2770 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2771 	do_div(val, icsk->icsk_mtup.probe_size);
2772 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2773 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2774 
2775 	tp->snd_cwnd_cnt = 0;
2776 	tp->snd_cwnd_stamp = tcp_jiffies32;
2777 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2778 
2779 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2780 	icsk->icsk_mtup.probe_size = 0;
2781 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2782 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2783 }
2784 
2785 /* Do a simple retransmit without using the backoff mechanisms in
2786  * tcp_timer. This is used for path mtu discovery.
2787  * The socket is already locked here.
2788  */
tcp_simple_retransmit(struct sock * sk)2789 void tcp_simple_retransmit(struct sock *sk)
2790 {
2791 	const struct inet_connection_sock *icsk = inet_csk(sk);
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	struct sk_buff *skb;
2794 	int mss;
2795 
2796 	/* A fastopen SYN request is stored as two separate packets within
2797 	 * the retransmit queue, this is done by tcp_send_syn_data().
2798 	 * As a result simply checking the MSS of the frames in the queue
2799 	 * will not work for the SYN packet.
2800 	 *
2801 	 * Us being here is an indication of a path MTU issue so we can
2802 	 * assume that the fastopen SYN was lost and just mark all the
2803 	 * frames in the retransmit queue as lost. We will use an MSS of
2804 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2805 	 */
2806 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2807 		mss = -1;
2808 	else
2809 		mss = tcp_current_mss(sk);
2810 
2811 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2812 		if (tcp_skb_seglen(skb) > mss)
2813 			tcp_mark_skb_lost(sk, skb);
2814 	}
2815 
2816 	tcp_clear_retrans_hints_partial(tp);
2817 
2818 	if (!tp->lost_out)
2819 		return;
2820 
2821 	if (tcp_is_reno(tp))
2822 		tcp_limit_reno_sacked(tp);
2823 
2824 	tcp_verify_left_out(tp);
2825 
2826 	/* Don't muck with the congestion window here.
2827 	 * Reason is that we do not increase amount of _data_
2828 	 * in network, but units changed and effective
2829 	 * cwnd/ssthresh really reduced now.
2830 	 */
2831 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2832 		tp->high_seq = tp->snd_nxt;
2833 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2834 		tp->prior_ssthresh = 0;
2835 		tp->undo_marker = 0;
2836 		tcp_set_ca_state(sk, TCP_CA_Loss);
2837 	}
2838 	tcp_xmit_retransmit_queue(sk);
2839 }
2840 EXPORT_SYMBOL(tcp_simple_retransmit);
2841 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2842 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 	int mib_idx;
2846 
2847 	if (tcp_is_reno(tp))
2848 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2849 	else
2850 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2851 
2852 	NET_INC_STATS(sock_net(sk), mib_idx);
2853 
2854 	tp->prior_ssthresh = 0;
2855 	tcp_init_undo(tp);
2856 
2857 	if (!tcp_in_cwnd_reduction(sk)) {
2858 		if (!ece_ack)
2859 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2860 		tcp_init_cwnd_reduction(sk);
2861 	}
2862 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2863 }
2864 
tcp_update_rto_time(struct tcp_sock * tp)2865 static void tcp_update_rto_time(struct tcp_sock *tp)
2866 {
2867 	if (tp->rto_stamp) {
2868 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2869 		tp->rto_stamp = 0;
2870 	}
2871 }
2872 
2873 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2874  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2875  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2876 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2877 			     int *rexmit)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 	bool recovered = !before(tp->snd_una, tp->high_seq);
2881 
2882 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2883 	    tcp_try_undo_loss(sk, false))
2884 		return;
2885 
2886 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2887 		/* Step 3.b. A timeout is spurious if not all data are
2888 		 * lost, i.e., never-retransmitted data are (s)acked.
2889 		 */
2890 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2891 		    tcp_try_undo_loss(sk, true))
2892 			return;
2893 
2894 		if (after(tp->snd_nxt, tp->high_seq)) {
2895 			if (flag & FLAG_DATA_SACKED || num_dupack)
2896 				tp->frto = 0; /* Step 3.a. loss was real */
2897 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2898 			tp->high_seq = tp->snd_nxt;
2899 			/* Step 2.b. Try send new data (but deferred until cwnd
2900 			 * is updated in tcp_ack()). Otherwise fall back to
2901 			 * the conventional recovery.
2902 			 */
2903 			if (!tcp_write_queue_empty(sk) &&
2904 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2905 				*rexmit = REXMIT_NEW;
2906 				return;
2907 			}
2908 			tp->frto = 0;
2909 		}
2910 	}
2911 
2912 	if (recovered) {
2913 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2914 		tcp_try_undo_recovery(sk);
2915 		return;
2916 	}
2917 	if (tcp_is_reno(tp)) {
2918 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2919 		 * delivered. Lower inflight to clock out (re)transmissions.
2920 		 */
2921 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2922 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2923 		else if (flag & FLAG_SND_UNA_ADVANCED)
2924 			tcp_reset_reno_sack(tp);
2925 	}
2926 	*rexmit = REXMIT_LOST;
2927 }
2928 
tcp_force_fast_retransmit(struct sock * sk)2929 static bool tcp_force_fast_retransmit(struct sock *sk)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 
2933 	return after(tcp_highest_sack_seq(tp),
2934 		     tp->snd_una + tp->reordering * tp->mss_cache);
2935 }
2936 
2937 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2938 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2939 				 bool *do_lost)
2940 {
2941 	struct tcp_sock *tp = tcp_sk(sk);
2942 
2943 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2944 		/* Plain luck! Hole if filled with delayed
2945 		 * packet, rather than with a retransmit. Check reordering.
2946 		 */
2947 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2948 
2949 		/* We are getting evidence that the reordering degree is higher
2950 		 * than we realized. If there are no retransmits out then we
2951 		 * can undo. Otherwise we clock out new packets but do not
2952 		 * mark more packets lost or retransmit more.
2953 		 */
2954 		if (tp->retrans_out)
2955 			return true;
2956 
2957 		if (!tcp_any_retrans_done(sk))
2958 			tp->retrans_stamp = 0;
2959 
2960 		DBGUNDO(sk, "partial recovery");
2961 		tcp_undo_cwnd_reduction(sk, true);
2962 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2963 		tcp_try_keep_open(sk);
2964 	} else {
2965 		/* Partial ACK arrived. Force fast retransmit. */
2966 		*do_lost = tcp_force_fast_retransmit(sk);
2967 	}
2968 	return false;
2969 }
2970 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2971 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2972 {
2973 	struct tcp_sock *tp = tcp_sk(sk);
2974 
2975 	if (tcp_rtx_queue_empty(sk))
2976 		return;
2977 
2978 	if (unlikely(tcp_is_reno(tp))) {
2979 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2980 	} else if (tcp_is_rack(sk)) {
2981 		u32 prior_retrans = tp->retrans_out;
2982 
2983 		if (tcp_rack_mark_lost(sk))
2984 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2985 		if (prior_retrans > tp->retrans_out)
2986 			*ack_flag |= FLAG_LOST_RETRANS;
2987 	}
2988 }
2989 
2990 /* Process an event, which can update packets-in-flight not trivially.
2991  * Main goal of this function is to calculate new estimate for left_out,
2992  * taking into account both packets sitting in receiver's buffer and
2993  * packets lost by network.
2994  *
2995  * Besides that it updates the congestion state when packet loss or ECN
2996  * is detected. But it does not reduce the cwnd, it is done by the
2997  * congestion control later.
2998  *
2999  * It does _not_ decide what to send, it is made in function
3000  * tcp_xmit_retransmit_queue().
3001  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3002 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3003 				  int num_dupack, int *ack_flag, int *rexmit)
3004 {
3005 	struct inet_connection_sock *icsk = inet_csk(sk);
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 	int fast_rexmit = 0, flag = *ack_flag;
3008 	bool ece_ack = flag & FLAG_ECE;
3009 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3010 				      tcp_force_fast_retransmit(sk));
3011 
3012 	if (!tp->packets_out && tp->sacked_out)
3013 		tp->sacked_out = 0;
3014 
3015 	/* Now state machine starts.
3016 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3017 	if (ece_ack)
3018 		tp->prior_ssthresh = 0;
3019 
3020 	/* B. In all the states check for reneging SACKs. */
3021 	if (tcp_check_sack_reneging(sk, ack_flag))
3022 		return;
3023 
3024 	/* C. Check consistency of the current state. */
3025 	tcp_verify_left_out(tp);
3026 
3027 	/* D. Check state exit conditions. State can be terminated
3028 	 *    when high_seq is ACKed. */
3029 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3030 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3031 		tp->retrans_stamp = 0;
3032 	} else if (!before(tp->snd_una, tp->high_seq)) {
3033 		switch (icsk->icsk_ca_state) {
3034 		case TCP_CA_CWR:
3035 			/* CWR is to be held something *above* high_seq
3036 			 * is ACKed for CWR bit to reach receiver. */
3037 			if (tp->snd_una != tp->high_seq) {
3038 				tcp_end_cwnd_reduction(sk);
3039 				tcp_set_ca_state(sk, TCP_CA_Open);
3040 			}
3041 			break;
3042 
3043 		case TCP_CA_Recovery:
3044 			if (tcp_is_reno(tp))
3045 				tcp_reset_reno_sack(tp);
3046 			if (tcp_try_undo_recovery(sk))
3047 				return;
3048 			tcp_end_cwnd_reduction(sk);
3049 			break;
3050 		}
3051 	}
3052 
3053 	/* E. Process state. */
3054 	switch (icsk->icsk_ca_state) {
3055 	case TCP_CA_Recovery:
3056 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3057 			if (tcp_is_reno(tp))
3058 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3059 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3060 			return;
3061 
3062 		if (tcp_try_undo_dsack(sk))
3063 			tcp_try_keep_open(sk);
3064 
3065 		tcp_identify_packet_loss(sk, ack_flag);
3066 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3067 			if (!tcp_time_to_recover(sk, flag))
3068 				return;
3069 			/* Undo reverts the recovery state. If loss is evident,
3070 			 * starts a new recovery (e.g. reordering then loss);
3071 			 */
3072 			tcp_enter_recovery(sk, ece_ack);
3073 		}
3074 		break;
3075 	case TCP_CA_Loss:
3076 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3077 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3078 			tcp_update_rto_time(tp);
3079 		tcp_identify_packet_loss(sk, ack_flag);
3080 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3081 		      (*ack_flag & FLAG_LOST_RETRANS)))
3082 			return;
3083 		/* Change state if cwnd is undone or retransmits are lost */
3084 		fallthrough;
3085 	default:
3086 		if (tcp_is_reno(tp)) {
3087 			if (flag & FLAG_SND_UNA_ADVANCED)
3088 				tcp_reset_reno_sack(tp);
3089 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3090 		}
3091 
3092 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3093 			tcp_try_undo_dsack(sk);
3094 
3095 		tcp_identify_packet_loss(sk, ack_flag);
3096 		if (!tcp_time_to_recover(sk, flag)) {
3097 			tcp_try_to_open(sk, flag);
3098 			return;
3099 		}
3100 
3101 		/* MTU probe failure: don't reduce cwnd */
3102 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3103 		    icsk->icsk_mtup.probe_size &&
3104 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3105 			tcp_mtup_probe_failed(sk);
3106 			/* Restores the reduction we did in tcp_mtup_probe() */
3107 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3108 			tcp_simple_retransmit(sk);
3109 			return;
3110 		}
3111 
3112 		/* Otherwise enter Recovery state */
3113 		tcp_enter_recovery(sk, ece_ack);
3114 		fast_rexmit = 1;
3115 	}
3116 
3117 	if (!tcp_is_rack(sk) && do_lost)
3118 		tcp_update_scoreboard(sk, fast_rexmit);
3119 	*rexmit = REXMIT_LOST;
3120 }
3121 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3122 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3123 {
3124 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3125 	struct tcp_sock *tp = tcp_sk(sk);
3126 
3127 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3128 		/* If the remote keeps returning delayed ACKs, eventually
3129 		 * the min filter would pick it up and overestimate the
3130 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3131 		 */
3132 		return;
3133 	}
3134 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3135 			   rtt_us ? : jiffies_to_usecs(1));
3136 }
3137 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3138 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3139 			       long seq_rtt_us, long sack_rtt_us,
3140 			       long ca_rtt_us, struct rate_sample *rs)
3141 {
3142 	const struct tcp_sock *tp = tcp_sk(sk);
3143 
3144 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3145 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3146 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3147 	 * is acked (RFC6298).
3148 	 */
3149 	if (seq_rtt_us < 0)
3150 		seq_rtt_us = sack_rtt_us;
3151 
3152 	/* RTTM Rule: A TSecr value received in a segment is used to
3153 	 * update the averaged RTT measurement only if the segment
3154 	 * acknowledges some new data, i.e., only if it advances the
3155 	 * left edge of the send window.
3156 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3157 	 */
3158 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3159 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3160 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3161 
3162 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3163 	if (seq_rtt_us < 0)
3164 		return false;
3165 
3166 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3167 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3168 	 * values will be skipped with the seq_rtt_us < 0 check above.
3169 	 */
3170 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3171 	tcp_rtt_estimator(sk, seq_rtt_us);
3172 	tcp_set_rto(sk);
3173 
3174 	/* RFC6298: only reset backoff on valid RTT measurement. */
3175 	inet_csk(sk)->icsk_backoff = 0;
3176 	return true;
3177 }
3178 
3179 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3180 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3181 {
3182 	struct rate_sample rs;
3183 	long rtt_us = -1L;
3184 
3185 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3186 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3187 
3188 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3189 }
3190 
3191 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3192 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3193 {
3194 	const struct inet_connection_sock *icsk = inet_csk(sk);
3195 
3196 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3197 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3198 }
3199 
3200 /* Restart timer after forward progress on connection.
3201  * RFC2988 recommends to restart timer to now+rto.
3202  */
tcp_rearm_rto(struct sock * sk)3203 void tcp_rearm_rto(struct sock *sk)
3204 {
3205 	const struct inet_connection_sock *icsk = inet_csk(sk);
3206 	struct tcp_sock *tp = tcp_sk(sk);
3207 
3208 	/* If the retrans timer is currently being used by Fast Open
3209 	 * for SYN-ACK retrans purpose, stay put.
3210 	 */
3211 	if (rcu_access_pointer(tp->fastopen_rsk))
3212 		return;
3213 
3214 	if (!tp->packets_out) {
3215 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3216 	} else {
3217 		u32 rto = inet_csk(sk)->icsk_rto;
3218 		/* Offset the time elapsed after installing regular RTO */
3219 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3220 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3221 			s64 delta_us = tcp_rto_delta_us(sk);
3222 			/* delta_us may not be positive if the socket is locked
3223 			 * when the retrans timer fires and is rescheduled.
3224 			 */
3225 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3226 		}
3227 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3228 				     TCP_RTO_MAX);
3229 	}
3230 }
3231 
3232 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3233 static void tcp_set_xmit_timer(struct sock *sk)
3234 {
3235 	if (!tcp_schedule_loss_probe(sk, true))
3236 		tcp_rearm_rto(sk);
3237 }
3238 
3239 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3240 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3241 {
3242 	struct tcp_sock *tp = tcp_sk(sk);
3243 	u32 packets_acked;
3244 
3245 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3246 
3247 	packets_acked = tcp_skb_pcount(skb);
3248 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3249 		return 0;
3250 	packets_acked -= tcp_skb_pcount(skb);
3251 
3252 	if (packets_acked) {
3253 		BUG_ON(tcp_skb_pcount(skb) == 0);
3254 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3255 	}
3256 
3257 	return packets_acked;
3258 }
3259 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3260 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3261 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3262 {
3263 	const struct skb_shared_info *shinfo;
3264 
3265 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3266 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3267 		return;
3268 
3269 	shinfo = skb_shinfo(skb);
3270 	if (!before(shinfo->tskey, prior_snd_una) &&
3271 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3272 		tcp_skb_tsorted_save(skb) {
3273 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3274 		} tcp_skb_tsorted_restore(skb);
3275 	}
3276 }
3277 
3278 /* Remove acknowledged frames from the retransmission queue. If our packet
3279  * is before the ack sequence we can discard it as it's confirmed to have
3280  * arrived at the other end.
3281  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3282 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3283 			       u32 prior_fack, u32 prior_snd_una,
3284 			       struct tcp_sacktag_state *sack, bool ece_ack)
3285 {
3286 	const struct inet_connection_sock *icsk = inet_csk(sk);
3287 	u64 first_ackt, last_ackt;
3288 	struct tcp_sock *tp = tcp_sk(sk);
3289 	u32 prior_sacked = tp->sacked_out;
3290 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3291 	struct sk_buff *skb, *next;
3292 	bool fully_acked = true;
3293 	long sack_rtt_us = -1L;
3294 	long seq_rtt_us = -1L;
3295 	long ca_rtt_us = -1L;
3296 	u32 pkts_acked = 0;
3297 	bool rtt_update;
3298 	int flag = 0;
3299 
3300 	first_ackt = 0;
3301 
3302 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3303 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3304 		const u32 start_seq = scb->seq;
3305 		u8 sacked = scb->sacked;
3306 		u32 acked_pcount;
3307 
3308 		/* Determine how many packets and what bytes were acked, tso and else */
3309 		if (after(scb->end_seq, tp->snd_una)) {
3310 			if (tcp_skb_pcount(skb) == 1 ||
3311 			    !after(tp->snd_una, scb->seq))
3312 				break;
3313 
3314 			acked_pcount = tcp_tso_acked(sk, skb);
3315 			if (!acked_pcount)
3316 				break;
3317 			fully_acked = false;
3318 		} else {
3319 			acked_pcount = tcp_skb_pcount(skb);
3320 		}
3321 
3322 		if (unlikely(sacked & TCPCB_RETRANS)) {
3323 			if (sacked & TCPCB_SACKED_RETRANS)
3324 				tp->retrans_out -= acked_pcount;
3325 			flag |= FLAG_RETRANS_DATA_ACKED;
3326 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3327 			last_ackt = tcp_skb_timestamp_us(skb);
3328 			WARN_ON_ONCE(last_ackt == 0);
3329 			if (!first_ackt)
3330 				first_ackt = last_ackt;
3331 
3332 			if (before(start_seq, reord))
3333 				reord = start_seq;
3334 			if (!after(scb->end_seq, tp->high_seq))
3335 				flag |= FLAG_ORIG_SACK_ACKED;
3336 		}
3337 
3338 		if (sacked & TCPCB_SACKED_ACKED) {
3339 			tp->sacked_out -= acked_pcount;
3340 		} else if (tcp_is_sack(tp)) {
3341 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3342 			if (!tcp_skb_spurious_retrans(tp, skb))
3343 				tcp_rack_advance(tp, sacked, scb->end_seq,
3344 						 tcp_skb_timestamp_us(skb));
3345 		}
3346 		if (sacked & TCPCB_LOST)
3347 			tp->lost_out -= acked_pcount;
3348 
3349 		tp->packets_out -= acked_pcount;
3350 		pkts_acked += acked_pcount;
3351 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3352 
3353 		/* Initial outgoing SYN's get put onto the write_queue
3354 		 * just like anything else we transmit.  It is not
3355 		 * true data, and if we misinform our callers that
3356 		 * this ACK acks real data, we will erroneously exit
3357 		 * connection startup slow start one packet too
3358 		 * quickly.  This is severely frowned upon behavior.
3359 		 */
3360 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3361 			flag |= FLAG_DATA_ACKED;
3362 		} else {
3363 			flag |= FLAG_SYN_ACKED;
3364 			tp->retrans_stamp = 0;
3365 		}
3366 
3367 		if (!fully_acked)
3368 			break;
3369 
3370 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3371 
3372 		next = skb_rb_next(skb);
3373 		if (unlikely(skb == tp->retransmit_skb_hint))
3374 			tp->retransmit_skb_hint = NULL;
3375 		if (unlikely(skb == tp->lost_skb_hint))
3376 			tp->lost_skb_hint = NULL;
3377 		tcp_highest_sack_replace(sk, skb, next);
3378 		tcp_rtx_queue_unlink_and_free(skb, sk);
3379 	}
3380 
3381 	if (!skb)
3382 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3383 
3384 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3385 		tp->snd_up = tp->snd_una;
3386 
3387 	if (skb) {
3388 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3389 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3390 			flag |= FLAG_SACK_RENEGING;
3391 	}
3392 
3393 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3394 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3395 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3396 
3397 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3398 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3399 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3400 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3401 			/* Conservatively mark a delayed ACK. It's typically
3402 			 * from a lone runt packet over the round trip to
3403 			 * a receiver w/o out-of-order or CE events.
3404 			 */
3405 			flag |= FLAG_ACK_MAYBE_DELAYED;
3406 		}
3407 	}
3408 	if (sack->first_sackt) {
3409 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3410 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3411 	}
3412 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3413 					ca_rtt_us, sack->rate);
3414 
3415 	if (flag & FLAG_ACKED) {
3416 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3417 		if (unlikely(icsk->icsk_mtup.probe_size &&
3418 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3419 			tcp_mtup_probe_success(sk);
3420 		}
3421 
3422 		if (tcp_is_reno(tp)) {
3423 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3424 
3425 			/* If any of the cumulatively ACKed segments was
3426 			 * retransmitted, non-SACK case cannot confirm that
3427 			 * progress was due to original transmission due to
3428 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3429 			 * the packets may have been never retransmitted.
3430 			 */
3431 			if (flag & FLAG_RETRANS_DATA_ACKED)
3432 				flag &= ~FLAG_ORIG_SACK_ACKED;
3433 		} else {
3434 			int delta;
3435 
3436 			/* Non-retransmitted hole got filled? That's reordering */
3437 			if (before(reord, prior_fack))
3438 				tcp_check_sack_reordering(sk, reord, 0);
3439 
3440 			delta = prior_sacked - tp->sacked_out;
3441 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3442 		}
3443 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3444 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3445 						    tcp_skb_timestamp_us(skb))) {
3446 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3447 		 * after when the head was last (re)transmitted. Otherwise the
3448 		 * timeout may continue to extend in loss recovery.
3449 		 */
3450 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3451 	}
3452 
3453 	if (icsk->icsk_ca_ops->pkts_acked) {
3454 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3455 					     .rtt_us = sack->rate->rtt_us };
3456 
3457 		sample.in_flight = tp->mss_cache *
3458 			(tp->delivered - sack->rate->prior_delivered);
3459 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3460 	}
3461 
3462 #if FASTRETRANS_DEBUG > 0
3463 	WARN_ON((int)tp->sacked_out < 0);
3464 	WARN_ON((int)tp->lost_out < 0);
3465 	WARN_ON((int)tp->retrans_out < 0);
3466 	if (!tp->packets_out && tcp_is_sack(tp)) {
3467 		icsk = inet_csk(sk);
3468 		if (tp->lost_out) {
3469 			pr_debug("Leak l=%u %d\n",
3470 				 tp->lost_out, icsk->icsk_ca_state);
3471 			tp->lost_out = 0;
3472 		}
3473 		if (tp->sacked_out) {
3474 			pr_debug("Leak s=%u %d\n",
3475 				 tp->sacked_out, icsk->icsk_ca_state);
3476 			tp->sacked_out = 0;
3477 		}
3478 		if (tp->retrans_out) {
3479 			pr_debug("Leak r=%u %d\n",
3480 				 tp->retrans_out, icsk->icsk_ca_state);
3481 			tp->retrans_out = 0;
3482 		}
3483 	}
3484 #endif
3485 	return flag;
3486 }
3487 
tcp_ack_probe(struct sock * sk)3488 static void tcp_ack_probe(struct sock *sk)
3489 {
3490 	struct inet_connection_sock *icsk = inet_csk(sk);
3491 	struct sk_buff *head = tcp_send_head(sk);
3492 	const struct tcp_sock *tp = tcp_sk(sk);
3493 
3494 	/* Was it a usable window open? */
3495 	if (!head)
3496 		return;
3497 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3498 		icsk->icsk_backoff = 0;
3499 		icsk->icsk_probes_tstamp = 0;
3500 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3501 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3502 		 * This function is not for random using!
3503 		 */
3504 	} else {
3505 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3506 
3507 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3508 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3509 	}
3510 }
3511 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3512 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3513 {
3514 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3515 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3516 }
3517 
3518 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3519 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3520 {
3521 	/* If reordering is high then always grow cwnd whenever data is
3522 	 * delivered regardless of its ordering. Otherwise stay conservative
3523 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3524 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3525 	 * cwnd in tcp_fastretrans_alert() based on more states.
3526 	 */
3527 	if (tcp_sk(sk)->reordering >
3528 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3529 		return flag & FLAG_FORWARD_PROGRESS;
3530 
3531 	return flag & FLAG_DATA_ACKED;
3532 }
3533 
3534 /* The "ultimate" congestion control function that aims to replace the rigid
3535  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3536  * It's called toward the end of processing an ACK with precise rate
3537  * information. All transmission or retransmission are delayed afterwards.
3538  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3539 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3540 			     int flag, const struct rate_sample *rs)
3541 {
3542 	const struct inet_connection_sock *icsk = inet_csk(sk);
3543 
3544 	if (icsk->icsk_ca_ops->cong_control) {
3545 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3546 		return;
3547 	}
3548 
3549 	if (tcp_in_cwnd_reduction(sk)) {
3550 		/* Reduce cwnd if state mandates */
3551 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3552 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3553 		/* Advance cwnd if state allows */
3554 		tcp_cong_avoid(sk, ack, acked_sacked);
3555 	}
3556 	tcp_update_pacing_rate(sk);
3557 }
3558 
3559 /* Check that window update is acceptable.
3560  * The function assumes that snd_una<=ack<=snd_next.
3561  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3562 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3563 					const u32 ack, const u32 ack_seq,
3564 					const u32 nwin)
3565 {
3566 	return	after(ack, tp->snd_una) ||
3567 		after(ack_seq, tp->snd_wl1) ||
3568 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3569 }
3570 
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3571 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3572 {
3573 #ifdef CONFIG_TCP_AO
3574 	struct tcp_ao_info *ao;
3575 
3576 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3577 		return;
3578 
3579 	ao = rcu_dereference_protected(tp->ao_info,
3580 				       lockdep_sock_is_held((struct sock *)tp));
3581 	if (ao && ack < tp->snd_una)
3582 		ao->snd_sne++;
3583 #endif
3584 }
3585 
3586 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3587 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3588 {
3589 	u32 delta = ack - tp->snd_una;
3590 
3591 	sock_owned_by_me((struct sock *)tp);
3592 	tp->bytes_acked += delta;
3593 	tcp_snd_sne_update(tp, ack);
3594 	tp->snd_una = ack;
3595 }
3596 
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3597 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3598 {
3599 #ifdef CONFIG_TCP_AO
3600 	struct tcp_ao_info *ao;
3601 
3602 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3603 		return;
3604 
3605 	ao = rcu_dereference_protected(tp->ao_info,
3606 				       lockdep_sock_is_held((struct sock *)tp));
3607 	if (ao && seq < tp->rcv_nxt)
3608 		ao->rcv_sne++;
3609 #endif
3610 }
3611 
3612 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3613 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3614 {
3615 	u32 delta = seq - tp->rcv_nxt;
3616 
3617 	sock_owned_by_me((struct sock *)tp);
3618 	tp->bytes_received += delta;
3619 	tcp_rcv_sne_update(tp, seq);
3620 	WRITE_ONCE(tp->rcv_nxt, seq);
3621 }
3622 
3623 /* Update our send window.
3624  *
3625  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3626  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3627  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3628 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3629 				 u32 ack_seq)
3630 {
3631 	struct tcp_sock *tp = tcp_sk(sk);
3632 	int flag = 0;
3633 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3634 
3635 	if (likely(!tcp_hdr(skb)->syn))
3636 		nwin <<= tp->rx_opt.snd_wscale;
3637 
3638 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3639 		flag |= FLAG_WIN_UPDATE;
3640 		tcp_update_wl(tp, ack_seq);
3641 
3642 		if (tp->snd_wnd != nwin) {
3643 			tp->snd_wnd = nwin;
3644 
3645 			/* Note, it is the only place, where
3646 			 * fast path is recovered for sending TCP.
3647 			 */
3648 			tp->pred_flags = 0;
3649 			tcp_fast_path_check(sk);
3650 
3651 			if (!tcp_write_queue_empty(sk))
3652 				tcp_slow_start_after_idle_check(sk);
3653 
3654 			if (nwin > tp->max_window) {
3655 				tp->max_window = nwin;
3656 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3657 			}
3658 		}
3659 	}
3660 
3661 	tcp_snd_una_update(tp, ack);
3662 
3663 	return flag;
3664 }
3665 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3666 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3667 				   u32 *last_oow_ack_time)
3668 {
3669 	/* Paired with the WRITE_ONCE() in this function. */
3670 	u32 val = READ_ONCE(*last_oow_ack_time);
3671 
3672 	if (val) {
3673 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3674 
3675 		if (0 <= elapsed &&
3676 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3677 			NET_INC_STATS(net, mib_idx);
3678 			return true;	/* rate-limited: don't send yet! */
3679 		}
3680 	}
3681 
3682 	/* Paired with the prior READ_ONCE() and with itself,
3683 	 * as we might be lockless.
3684 	 */
3685 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3686 
3687 	return false;	/* not rate-limited: go ahead, send dupack now! */
3688 }
3689 
3690 /* Return true if we're currently rate-limiting out-of-window ACKs and
3691  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3692  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3693  * attacks that send repeated SYNs or ACKs for the same connection. To
3694  * do this, we do not send a duplicate SYNACK or ACK if the remote
3695  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3696  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3697 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3698 			  int mib_idx, u32 *last_oow_ack_time)
3699 {
3700 	/* Data packets without SYNs are not likely part of an ACK loop. */
3701 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3702 	    !tcp_hdr(skb)->syn)
3703 		return false;
3704 
3705 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3706 }
3707 
3708 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3709 static void tcp_send_challenge_ack(struct sock *sk)
3710 {
3711 	struct tcp_sock *tp = tcp_sk(sk);
3712 	struct net *net = sock_net(sk);
3713 	u32 count, now, ack_limit;
3714 
3715 	/* First check our per-socket dupack rate limit. */
3716 	if (__tcp_oow_rate_limited(net,
3717 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3718 				   &tp->last_oow_ack_time))
3719 		return;
3720 
3721 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3722 	if (ack_limit == INT_MAX)
3723 		goto send_ack;
3724 
3725 	/* Then check host-wide RFC 5961 rate limit. */
3726 	now = jiffies / HZ;
3727 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3728 		u32 half = (ack_limit + 1) >> 1;
3729 
3730 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3731 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3732 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3733 	}
3734 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3735 	if (count > 0) {
3736 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3737 send_ack:
3738 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3739 		tcp_send_ack(sk);
3740 	}
3741 }
3742 
tcp_store_ts_recent(struct tcp_sock * tp)3743 static void tcp_store_ts_recent(struct tcp_sock *tp)
3744 {
3745 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3746 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3747 }
3748 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3749 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3750 {
3751 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3752 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3753 		 * extra check below makes sure this can only happen
3754 		 * for pure ACK frames.  -DaveM
3755 		 *
3756 		 * Not only, also it occurs for expired timestamps.
3757 		 */
3758 
3759 		if (tcp_paws_check(&tp->rx_opt, 0))
3760 			tcp_store_ts_recent(tp);
3761 	}
3762 }
3763 
3764 /* This routine deals with acks during a TLP episode and ends an episode by
3765  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3766  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3767 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3768 {
3769 	struct tcp_sock *tp = tcp_sk(sk);
3770 
3771 	if (before(ack, tp->tlp_high_seq))
3772 		return;
3773 
3774 	if (!tp->tlp_retrans) {
3775 		/* TLP of new data has been acknowledged */
3776 		tp->tlp_high_seq = 0;
3777 	} else if (flag & FLAG_DSACK_TLP) {
3778 		/* This DSACK means original and TLP probe arrived; no loss */
3779 		tp->tlp_high_seq = 0;
3780 	} else if (after(ack, tp->tlp_high_seq)) {
3781 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3782 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3783 		 */
3784 		tcp_init_cwnd_reduction(sk);
3785 		tcp_set_ca_state(sk, TCP_CA_CWR);
3786 		tcp_end_cwnd_reduction(sk);
3787 		tcp_try_keep_open(sk);
3788 		NET_INC_STATS(sock_net(sk),
3789 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3790 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3791 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3792 		/* Pure dupack: original and TLP probe arrived; no loss */
3793 		tp->tlp_high_seq = 0;
3794 	}
3795 }
3796 
tcp_in_ack_event(struct sock * sk,u32 flags)3797 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3798 {
3799 	const struct inet_connection_sock *icsk = inet_csk(sk);
3800 
3801 	if (icsk->icsk_ca_ops->in_ack_event)
3802 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3803 }
3804 
3805 /* Congestion control has updated the cwnd already. So if we're in
3806  * loss recovery then now we do any new sends (for FRTO) or
3807  * retransmits (for CA_Loss or CA_recovery) that make sense.
3808  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3809 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3810 {
3811 	struct tcp_sock *tp = tcp_sk(sk);
3812 
3813 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3814 		return;
3815 
3816 	if (unlikely(rexmit == REXMIT_NEW)) {
3817 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3818 					  TCP_NAGLE_OFF);
3819 		if (after(tp->snd_nxt, tp->high_seq))
3820 			return;
3821 		tp->frto = 0;
3822 	}
3823 	tcp_xmit_retransmit_queue(sk);
3824 }
3825 
3826 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3827 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3828 {
3829 	const struct net *net = sock_net(sk);
3830 	struct tcp_sock *tp = tcp_sk(sk);
3831 	u32 delivered;
3832 
3833 	delivered = tp->delivered - prior_delivered;
3834 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3835 	if (flag & FLAG_ECE)
3836 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3837 
3838 	return delivered;
3839 }
3840 
3841 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3842 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3843 {
3844 	struct inet_connection_sock *icsk = inet_csk(sk);
3845 	struct tcp_sock *tp = tcp_sk(sk);
3846 	struct tcp_sacktag_state sack_state;
3847 	struct rate_sample rs = { .prior_delivered = 0 };
3848 	u32 prior_snd_una = tp->snd_una;
3849 	bool is_sack_reneg = tp->is_sack_reneg;
3850 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3851 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3852 	int num_dupack = 0;
3853 	int prior_packets = tp->packets_out;
3854 	u32 delivered = tp->delivered;
3855 	u32 lost = tp->lost;
3856 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3857 	u32 prior_fack;
3858 
3859 	sack_state.first_sackt = 0;
3860 	sack_state.rate = &rs;
3861 	sack_state.sack_delivered = 0;
3862 
3863 	/* We very likely will need to access rtx queue. */
3864 	prefetch(sk->tcp_rtx_queue.rb_node);
3865 
3866 	/* If the ack is older than previous acks
3867 	 * then we can probably ignore it.
3868 	 */
3869 	if (before(ack, prior_snd_una)) {
3870 		u32 max_window;
3871 
3872 		/* do not accept ACK for bytes we never sent. */
3873 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3874 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3875 		if (before(ack, prior_snd_una - max_window)) {
3876 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3877 				tcp_send_challenge_ack(sk);
3878 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3879 		}
3880 		goto old_ack;
3881 	}
3882 
3883 	/* If the ack includes data we haven't sent yet, discard
3884 	 * this segment (RFC793 Section 3.9).
3885 	 */
3886 	if (after(ack, tp->snd_nxt))
3887 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3888 
3889 	if (after(ack, prior_snd_una)) {
3890 		flag |= FLAG_SND_UNA_ADVANCED;
3891 		icsk->icsk_retransmits = 0;
3892 
3893 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3894 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3895 			if (icsk->icsk_clean_acked)
3896 				icsk->icsk_clean_acked(sk, ack);
3897 #endif
3898 	}
3899 
3900 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3901 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3902 
3903 	/* ts_recent update must be made after we are sure that the packet
3904 	 * is in window.
3905 	 */
3906 	if (flag & FLAG_UPDATE_TS_RECENT)
3907 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3908 
3909 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3910 	    FLAG_SND_UNA_ADVANCED) {
3911 		/* Window is constant, pure forward advance.
3912 		 * No more checks are required.
3913 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3914 		 */
3915 		tcp_update_wl(tp, ack_seq);
3916 		tcp_snd_una_update(tp, ack);
3917 		flag |= FLAG_WIN_UPDATE;
3918 
3919 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3920 
3921 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3922 	} else {
3923 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3924 
3925 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3926 			flag |= FLAG_DATA;
3927 		else
3928 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3929 
3930 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3931 
3932 		if (TCP_SKB_CB(skb)->sacked)
3933 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3934 							&sack_state);
3935 
3936 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3937 			flag |= FLAG_ECE;
3938 			ack_ev_flags |= CA_ACK_ECE;
3939 		}
3940 
3941 		if (sack_state.sack_delivered)
3942 			tcp_count_delivered(tp, sack_state.sack_delivered,
3943 					    flag & FLAG_ECE);
3944 
3945 		if (flag & FLAG_WIN_UPDATE)
3946 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3947 
3948 		tcp_in_ack_event(sk, ack_ev_flags);
3949 	}
3950 
3951 	/* This is a deviation from RFC3168 since it states that:
3952 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3953 	 * the congestion window, it SHOULD set the CWR bit only on the first
3954 	 * new data packet that it transmits."
3955 	 * We accept CWR on pure ACKs to be more robust
3956 	 * with widely-deployed TCP implementations that do this.
3957 	 */
3958 	tcp_ecn_accept_cwr(sk, skb);
3959 
3960 	/* We passed data and got it acked, remove any soft error
3961 	 * log. Something worked...
3962 	 */
3963 	WRITE_ONCE(sk->sk_err_soft, 0);
3964 	icsk->icsk_probes_out = 0;
3965 	tp->rcv_tstamp = tcp_jiffies32;
3966 	if (!prior_packets)
3967 		goto no_queue;
3968 
3969 	/* See if we can take anything off of the retransmit queue. */
3970 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3971 				    &sack_state, flag & FLAG_ECE);
3972 
3973 	tcp_rack_update_reo_wnd(sk, &rs);
3974 
3975 	if (tp->tlp_high_seq)
3976 		tcp_process_tlp_ack(sk, ack, flag);
3977 
3978 	if (tcp_ack_is_dubious(sk, flag)) {
3979 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3980 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3981 			num_dupack = 1;
3982 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3983 			if (!(flag & FLAG_DATA))
3984 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3985 		}
3986 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3987 				      &rexmit);
3988 	}
3989 
3990 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3991 	if (flag & FLAG_SET_XMIT_TIMER)
3992 		tcp_set_xmit_timer(sk);
3993 
3994 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3995 		sk_dst_confirm(sk);
3996 
3997 	delivered = tcp_newly_delivered(sk, delivered, flag);
3998 	lost = tp->lost - lost;			/* freshly marked lost */
3999 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4000 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4001 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4002 	tcp_xmit_recovery(sk, rexmit);
4003 	return 1;
4004 
4005 no_queue:
4006 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4007 	if (flag & FLAG_DSACKING_ACK) {
4008 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4009 				      &rexmit);
4010 		tcp_newly_delivered(sk, delivered, flag);
4011 	}
4012 	/* If this ack opens up a zero window, clear backoff.  It was
4013 	 * being used to time the probes, and is probably far higher than
4014 	 * it needs to be for normal retransmission.
4015 	 */
4016 	tcp_ack_probe(sk);
4017 
4018 	if (tp->tlp_high_seq)
4019 		tcp_process_tlp_ack(sk, ack, flag);
4020 	return 1;
4021 
4022 old_ack:
4023 	/* If data was SACKed, tag it and see if we should send more data.
4024 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4025 	 */
4026 	if (TCP_SKB_CB(skb)->sacked) {
4027 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4028 						&sack_state);
4029 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4030 				      &rexmit);
4031 		tcp_newly_delivered(sk, delivered, flag);
4032 		tcp_xmit_recovery(sk, rexmit);
4033 	}
4034 
4035 	return 0;
4036 }
4037 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4038 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4039 				      bool syn, struct tcp_fastopen_cookie *foc,
4040 				      bool exp_opt)
4041 {
4042 	/* Valid only in SYN or SYN-ACK with an even length.  */
4043 	if (!foc || !syn || len < 0 || (len & 1))
4044 		return;
4045 
4046 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4047 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4048 		memcpy(foc->val, cookie, len);
4049 	else if (len != 0)
4050 		len = -1;
4051 	foc->len = len;
4052 	foc->exp = exp_opt;
4053 }
4054 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4055 static bool smc_parse_options(const struct tcphdr *th,
4056 			      struct tcp_options_received *opt_rx,
4057 			      const unsigned char *ptr,
4058 			      int opsize)
4059 {
4060 #if IS_ENABLED(CONFIG_SMC)
4061 	if (static_branch_unlikely(&tcp_have_smc)) {
4062 		if (th->syn && !(opsize & 1) &&
4063 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4064 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4065 			opt_rx->smc_ok = 1;
4066 			return true;
4067 		}
4068 	}
4069 #endif
4070 	return false;
4071 }
4072 
4073 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4074  * value on success.
4075  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4076 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4077 {
4078 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4079 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4080 	u16 mss = 0;
4081 
4082 	while (length > 0) {
4083 		int opcode = *ptr++;
4084 		int opsize;
4085 
4086 		switch (opcode) {
4087 		case TCPOPT_EOL:
4088 			return mss;
4089 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4090 			length--;
4091 			continue;
4092 		default:
4093 			if (length < 2)
4094 				return mss;
4095 			opsize = *ptr++;
4096 			if (opsize < 2) /* "silly options" */
4097 				return mss;
4098 			if (opsize > length)
4099 				return mss;	/* fail on partial options */
4100 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4101 				u16 in_mss = get_unaligned_be16(ptr);
4102 
4103 				if (in_mss) {
4104 					if (user_mss && user_mss < in_mss)
4105 						in_mss = user_mss;
4106 					mss = in_mss;
4107 				}
4108 			}
4109 			ptr += opsize - 2;
4110 			length -= opsize;
4111 		}
4112 	}
4113 	return mss;
4114 }
4115 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4116 
4117 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4118  * But, this can also be called on packets in the established flow when
4119  * the fast version below fails.
4120  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4121 void tcp_parse_options(const struct net *net,
4122 		       const struct sk_buff *skb,
4123 		       struct tcp_options_received *opt_rx, int estab,
4124 		       struct tcp_fastopen_cookie *foc)
4125 {
4126 	const unsigned char *ptr;
4127 	const struct tcphdr *th = tcp_hdr(skb);
4128 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4129 
4130 	ptr = (const unsigned char *)(th + 1);
4131 	opt_rx->saw_tstamp = 0;
4132 	opt_rx->saw_unknown = 0;
4133 
4134 	while (length > 0) {
4135 		int opcode = *ptr++;
4136 		int opsize;
4137 
4138 		switch (opcode) {
4139 		case TCPOPT_EOL:
4140 			return;
4141 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4142 			length--;
4143 			continue;
4144 		default:
4145 			if (length < 2)
4146 				return;
4147 			opsize = *ptr++;
4148 			if (opsize < 2) /* "silly options" */
4149 				return;
4150 			if (opsize > length)
4151 				return;	/* don't parse partial options */
4152 			switch (opcode) {
4153 			case TCPOPT_MSS:
4154 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4155 					u16 in_mss = get_unaligned_be16(ptr);
4156 					if (in_mss) {
4157 						if (opt_rx->user_mss &&
4158 						    opt_rx->user_mss < in_mss)
4159 							in_mss = opt_rx->user_mss;
4160 						opt_rx->mss_clamp = in_mss;
4161 					}
4162 				}
4163 				break;
4164 			case TCPOPT_WINDOW:
4165 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4166 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4167 					__u8 snd_wscale = *(__u8 *)ptr;
4168 					opt_rx->wscale_ok = 1;
4169 					if (snd_wscale > TCP_MAX_WSCALE) {
4170 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4171 								     __func__,
4172 								     snd_wscale,
4173 								     TCP_MAX_WSCALE);
4174 						snd_wscale = TCP_MAX_WSCALE;
4175 					}
4176 					opt_rx->snd_wscale = snd_wscale;
4177 				}
4178 				break;
4179 			case TCPOPT_TIMESTAMP:
4180 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4181 				    ((estab && opt_rx->tstamp_ok) ||
4182 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4183 					opt_rx->saw_tstamp = 1;
4184 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4185 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4186 				}
4187 				break;
4188 			case TCPOPT_SACK_PERM:
4189 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4190 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4191 					opt_rx->sack_ok = TCP_SACK_SEEN;
4192 					tcp_sack_reset(opt_rx);
4193 				}
4194 				break;
4195 
4196 			case TCPOPT_SACK:
4197 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4198 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4199 				   opt_rx->sack_ok) {
4200 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4201 				}
4202 				break;
4203 #ifdef CONFIG_TCP_MD5SIG
4204 			case TCPOPT_MD5SIG:
4205 				/* The MD5 Hash has already been
4206 				 * checked (see tcp_v{4,6}_rcv()).
4207 				 */
4208 				break;
4209 #endif
4210 			case TCPOPT_FASTOPEN:
4211 				tcp_parse_fastopen_option(
4212 					opsize - TCPOLEN_FASTOPEN_BASE,
4213 					ptr, th->syn, foc, false);
4214 				break;
4215 
4216 			case TCPOPT_EXP:
4217 				/* Fast Open option shares code 254 using a
4218 				 * 16 bits magic number.
4219 				 */
4220 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4221 				    get_unaligned_be16(ptr) ==
4222 				    TCPOPT_FASTOPEN_MAGIC) {
4223 					tcp_parse_fastopen_option(opsize -
4224 						TCPOLEN_EXP_FASTOPEN_BASE,
4225 						ptr + 2, th->syn, foc, true);
4226 					break;
4227 				}
4228 
4229 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4230 					break;
4231 
4232 				opt_rx->saw_unknown = 1;
4233 				break;
4234 
4235 			default:
4236 				opt_rx->saw_unknown = 1;
4237 			}
4238 			ptr += opsize-2;
4239 			length -= opsize;
4240 		}
4241 	}
4242 }
4243 EXPORT_SYMBOL(tcp_parse_options);
4244 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4245 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4246 {
4247 	const __be32 *ptr = (const __be32 *)(th + 1);
4248 
4249 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4250 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4251 		tp->rx_opt.saw_tstamp = 1;
4252 		++ptr;
4253 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4254 		++ptr;
4255 		if (*ptr)
4256 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4257 		else
4258 			tp->rx_opt.rcv_tsecr = 0;
4259 		return true;
4260 	}
4261 	return false;
4262 }
4263 
4264 /* Fast parse options. This hopes to only see timestamps.
4265  * If it is wrong it falls back on tcp_parse_options().
4266  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4267 static bool tcp_fast_parse_options(const struct net *net,
4268 				   const struct sk_buff *skb,
4269 				   const struct tcphdr *th, struct tcp_sock *tp)
4270 {
4271 	/* In the spirit of fast parsing, compare doff directly to constant
4272 	 * values.  Because equality is used, short doff can be ignored here.
4273 	 */
4274 	if (th->doff == (sizeof(*th) / 4)) {
4275 		tp->rx_opt.saw_tstamp = 0;
4276 		return false;
4277 	} else if (tp->rx_opt.tstamp_ok &&
4278 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4279 		if (tcp_parse_aligned_timestamp(tp, th))
4280 			return true;
4281 	}
4282 
4283 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4284 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4285 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4286 
4287 	return true;
4288 }
4289 
4290 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4291 /*
4292  * Parse Signature options
4293  */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4294 int tcp_do_parse_auth_options(const struct tcphdr *th,
4295 			      const u8 **md5_hash, const u8 **ao_hash)
4296 {
4297 	int length = (th->doff << 2) - sizeof(*th);
4298 	const u8 *ptr = (const u8 *)(th + 1);
4299 	unsigned int minlen = TCPOLEN_MD5SIG;
4300 
4301 	if (IS_ENABLED(CONFIG_TCP_AO))
4302 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4303 
4304 	*md5_hash = NULL;
4305 	*ao_hash = NULL;
4306 
4307 	/* If not enough data remaining, we can short cut */
4308 	while (length >= minlen) {
4309 		int opcode = *ptr++;
4310 		int opsize;
4311 
4312 		switch (opcode) {
4313 		case TCPOPT_EOL:
4314 			return 0;
4315 		case TCPOPT_NOP:
4316 			length--;
4317 			continue;
4318 		default:
4319 			opsize = *ptr++;
4320 			if (opsize < 2 || opsize > length)
4321 				return -EINVAL;
4322 			if (opcode == TCPOPT_MD5SIG) {
4323 				if (opsize != TCPOLEN_MD5SIG)
4324 					return -EINVAL;
4325 				if (unlikely(*md5_hash || *ao_hash))
4326 					return -EEXIST;
4327 				*md5_hash = ptr;
4328 			} else if (opcode == TCPOPT_AO) {
4329 				if (opsize <= sizeof(struct tcp_ao_hdr))
4330 					return -EINVAL;
4331 				if (unlikely(*md5_hash || *ao_hash))
4332 					return -EEXIST;
4333 				*ao_hash = ptr;
4334 			}
4335 		}
4336 		ptr += opsize - 2;
4337 		length -= opsize;
4338 	}
4339 	return 0;
4340 }
4341 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4342 #endif
4343 
4344 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4345  *
4346  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4347  * it can pass through stack. So, the following predicate verifies that
4348  * this segment is not used for anything but congestion avoidance or
4349  * fast retransmit. Moreover, we even are able to eliminate most of such
4350  * second order effects, if we apply some small "replay" window (~RTO)
4351  * to timestamp space.
4352  *
4353  * All these measures still do not guarantee that we reject wrapped ACKs
4354  * on networks with high bandwidth, when sequence space is recycled fastly,
4355  * but it guarantees that such events will be very rare and do not affect
4356  * connection seriously. This doesn't look nice, but alas, PAWS is really
4357  * buggy extension.
4358  *
4359  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4360  * states that events when retransmit arrives after original data are rare.
4361  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4362  * the biggest problem on large power networks even with minor reordering.
4363  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4364  * up to bandwidth of 18Gigabit/sec. 8) ]
4365  */
4366 
4367 /* Estimates max number of increments of remote peer TSval in
4368  * a replay window (based on our current RTO estimation).
4369  */
tcp_tsval_replay(const struct sock * sk)4370 static u32 tcp_tsval_replay(const struct sock *sk)
4371 {
4372 	/* If we use usec TS resolution,
4373 	 * then expect the remote peer to use the same resolution.
4374 	 */
4375 	if (tcp_sk(sk)->tcp_usec_ts)
4376 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4377 
4378 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4379 	 * We know that some OS (including old linux) can use 1200 Hz.
4380 	 */
4381 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4382 }
4383 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4384 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4385 {
4386 	const struct tcp_sock *tp = tcp_sk(sk);
4387 	const struct tcphdr *th = tcp_hdr(skb);
4388 	u32 seq = TCP_SKB_CB(skb)->seq;
4389 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4390 
4391 	return	/* 1. Pure ACK with correct sequence number. */
4392 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4393 
4394 		/* 2. ... and duplicate ACK. */
4395 		ack == tp->snd_una &&
4396 
4397 		/* 3. ... and does not update window. */
4398 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4399 
4400 		/* 4. ... and sits in replay window. */
4401 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4402 		tcp_tsval_replay(sk);
4403 }
4404 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4405 static inline bool tcp_paws_discard(const struct sock *sk,
4406 				   const struct sk_buff *skb)
4407 {
4408 	const struct tcp_sock *tp = tcp_sk(sk);
4409 
4410 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4411 	       !tcp_disordered_ack(sk, skb);
4412 }
4413 
4414 /* Check segment sequence number for validity.
4415  *
4416  * Segment controls are considered valid, if the segment
4417  * fits to the window after truncation to the window. Acceptability
4418  * of data (and SYN, FIN, of course) is checked separately.
4419  * See tcp_data_queue(), for example.
4420  *
4421  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4422  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4423  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4424  * (borrowed from freebsd)
4425  */
4426 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4427 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4428 					 u32 seq, u32 end_seq)
4429 {
4430 	if (before(end_seq, tp->rcv_wup))
4431 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4432 
4433 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4435 
4436 	return SKB_NOT_DROPPED_YET;
4437 }
4438 
4439 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4440 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4441 {
4442 	trace_tcp_receive_reset(sk);
4443 
4444 	/* mptcp can't tell us to ignore reset pkts,
4445 	 * so just ignore the return value of mptcp_incoming_options().
4446 	 */
4447 	if (sk_is_mptcp(sk))
4448 		mptcp_incoming_options(sk, skb);
4449 
4450 	/* We want the right error as BSD sees it (and indeed as we do). */
4451 	switch (sk->sk_state) {
4452 	case TCP_SYN_SENT:
4453 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4454 		break;
4455 	case TCP_CLOSE_WAIT:
4456 		WRITE_ONCE(sk->sk_err, EPIPE);
4457 		break;
4458 	case TCP_CLOSE:
4459 		return;
4460 	default:
4461 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4462 	}
4463 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4464 	smp_wmb();
4465 
4466 	tcp_write_queue_purge(sk);
4467 	tcp_done(sk);
4468 
4469 	if (!sock_flag(sk, SOCK_DEAD))
4470 		sk_error_report(sk);
4471 }
4472 
4473 /*
4474  * 	Process the FIN bit. This now behaves as it is supposed to work
4475  *	and the FIN takes effect when it is validly part of sequence
4476  *	space. Not before when we get holes.
4477  *
4478  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4479  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4480  *	TIME-WAIT)
4481  *
4482  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4483  *	close and we go into CLOSING (and later onto TIME-WAIT)
4484  *
4485  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4486  */
tcp_fin(struct sock * sk)4487 void tcp_fin(struct sock *sk)
4488 {
4489 	struct tcp_sock *tp = tcp_sk(sk);
4490 
4491 	inet_csk_schedule_ack(sk);
4492 
4493 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4494 	sock_set_flag(sk, SOCK_DONE);
4495 
4496 	switch (sk->sk_state) {
4497 	case TCP_SYN_RECV:
4498 	case TCP_ESTABLISHED:
4499 		/* Move to CLOSE_WAIT */
4500 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4501 		inet_csk_enter_pingpong_mode(sk);
4502 		break;
4503 
4504 	case TCP_CLOSE_WAIT:
4505 	case TCP_CLOSING:
4506 		/* Received a retransmission of the FIN, do
4507 		 * nothing.
4508 		 */
4509 		break;
4510 	case TCP_LAST_ACK:
4511 		/* RFC793: Remain in the LAST-ACK state. */
4512 		break;
4513 
4514 	case TCP_FIN_WAIT1:
4515 		/* This case occurs when a simultaneous close
4516 		 * happens, we must ack the received FIN and
4517 		 * enter the CLOSING state.
4518 		 */
4519 		tcp_send_ack(sk);
4520 		tcp_set_state(sk, TCP_CLOSING);
4521 		break;
4522 	case TCP_FIN_WAIT2:
4523 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4524 		tcp_send_ack(sk);
4525 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4526 		break;
4527 	default:
4528 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4529 		 * cases we should never reach this piece of code.
4530 		 */
4531 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4532 		       __func__, sk->sk_state);
4533 		break;
4534 	}
4535 
4536 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4537 	 * Probably, we should reset in this case. For now drop them.
4538 	 */
4539 	skb_rbtree_purge(&tp->out_of_order_queue);
4540 	if (tcp_is_sack(tp))
4541 		tcp_sack_reset(&tp->rx_opt);
4542 
4543 	if (!sock_flag(sk, SOCK_DEAD)) {
4544 		sk->sk_state_change(sk);
4545 
4546 		/* Do not send POLL_HUP for half duplex close. */
4547 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4548 		    sk->sk_state == TCP_CLOSE)
4549 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4550 		else
4551 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4552 	}
4553 }
4554 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4555 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4556 				  u32 end_seq)
4557 {
4558 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4559 		if (before(seq, sp->start_seq))
4560 			sp->start_seq = seq;
4561 		if (after(end_seq, sp->end_seq))
4562 			sp->end_seq = end_seq;
4563 		return true;
4564 	}
4565 	return false;
4566 }
4567 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4568 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4569 {
4570 	struct tcp_sock *tp = tcp_sk(sk);
4571 
4572 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4573 		int mib_idx;
4574 
4575 		if (before(seq, tp->rcv_nxt))
4576 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4577 		else
4578 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4579 
4580 		NET_INC_STATS(sock_net(sk), mib_idx);
4581 
4582 		tp->rx_opt.dsack = 1;
4583 		tp->duplicate_sack[0].start_seq = seq;
4584 		tp->duplicate_sack[0].end_seq = end_seq;
4585 	}
4586 }
4587 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4588 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4589 {
4590 	struct tcp_sock *tp = tcp_sk(sk);
4591 
4592 	if (!tp->rx_opt.dsack)
4593 		tcp_dsack_set(sk, seq, end_seq);
4594 	else
4595 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4596 }
4597 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4598 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4599 {
4600 	/* When the ACK path fails or drops most ACKs, the sender would
4601 	 * timeout and spuriously retransmit the same segment repeatedly.
4602 	 * If it seems our ACKs are not reaching the other side,
4603 	 * based on receiving a duplicate data segment with new flowlabel
4604 	 * (suggesting the sender suffered an RTO), and we are not already
4605 	 * repathing due to our own RTO, then rehash the socket to repath our
4606 	 * packets.
4607 	 */
4608 #if IS_ENABLED(CONFIG_IPV6)
4609 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4610 	    skb->protocol == htons(ETH_P_IPV6) &&
4611 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4612 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4613 	    sk_rethink_txhash(sk))
4614 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4615 
4616 	/* Save last flowlabel after a spurious retrans. */
4617 	tcp_save_lrcv_flowlabel(sk, skb);
4618 #endif
4619 }
4620 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4621 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4622 {
4623 	struct tcp_sock *tp = tcp_sk(sk);
4624 
4625 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4626 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4627 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4628 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4629 
4630 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4631 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4632 
4633 			tcp_rcv_spurious_retrans(sk, skb);
4634 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4635 				end_seq = tp->rcv_nxt;
4636 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4637 		}
4638 	}
4639 
4640 	tcp_send_ack(sk);
4641 }
4642 
4643 /* These routines update the SACK block as out-of-order packets arrive or
4644  * in-order packets close up the sequence space.
4645  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4646 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4647 {
4648 	int this_sack;
4649 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4650 	struct tcp_sack_block *swalk = sp + 1;
4651 
4652 	/* See if the recent change to the first SACK eats into
4653 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4654 	 */
4655 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4656 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4657 			int i;
4658 
4659 			/* Zap SWALK, by moving every further SACK up by one slot.
4660 			 * Decrease num_sacks.
4661 			 */
4662 			tp->rx_opt.num_sacks--;
4663 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4664 				sp[i] = sp[i + 1];
4665 			continue;
4666 		}
4667 		this_sack++;
4668 		swalk++;
4669 	}
4670 }
4671 
tcp_sack_compress_send_ack(struct sock * sk)4672 void tcp_sack_compress_send_ack(struct sock *sk)
4673 {
4674 	struct tcp_sock *tp = tcp_sk(sk);
4675 
4676 	if (!tp->compressed_ack)
4677 		return;
4678 
4679 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4680 		__sock_put(sk);
4681 
4682 	/* Since we have to send one ack finally,
4683 	 * substract one from tp->compressed_ack to keep
4684 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4685 	 */
4686 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4687 		      tp->compressed_ack - 1);
4688 
4689 	tp->compressed_ack = 0;
4690 	tcp_send_ack(sk);
4691 }
4692 
4693 /* Reasonable amount of sack blocks included in TCP SACK option
4694  * The max is 4, but this becomes 3 if TCP timestamps are there.
4695  * Given that SACK packets might be lost, be conservative and use 2.
4696  */
4697 #define TCP_SACK_BLOCKS_EXPECTED 2
4698 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4699 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4700 {
4701 	struct tcp_sock *tp = tcp_sk(sk);
4702 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4703 	int cur_sacks = tp->rx_opt.num_sacks;
4704 	int this_sack;
4705 
4706 	if (!cur_sacks)
4707 		goto new_sack;
4708 
4709 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4710 		if (tcp_sack_extend(sp, seq, end_seq)) {
4711 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4712 				tcp_sack_compress_send_ack(sk);
4713 			/* Rotate this_sack to the first one. */
4714 			for (; this_sack > 0; this_sack--, sp--)
4715 				swap(*sp, *(sp - 1));
4716 			if (cur_sacks > 1)
4717 				tcp_sack_maybe_coalesce(tp);
4718 			return;
4719 		}
4720 	}
4721 
4722 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4723 		tcp_sack_compress_send_ack(sk);
4724 
4725 	/* Could not find an adjacent existing SACK, build a new one,
4726 	 * put it at the front, and shift everyone else down.  We
4727 	 * always know there is at least one SACK present already here.
4728 	 *
4729 	 * If the sack array is full, forget about the last one.
4730 	 */
4731 	if (this_sack >= TCP_NUM_SACKS) {
4732 		this_sack--;
4733 		tp->rx_opt.num_sacks--;
4734 		sp--;
4735 	}
4736 	for (; this_sack > 0; this_sack--, sp--)
4737 		*sp = *(sp - 1);
4738 
4739 new_sack:
4740 	/* Build the new head SACK, and we're done. */
4741 	sp->start_seq = seq;
4742 	sp->end_seq = end_seq;
4743 	tp->rx_opt.num_sacks++;
4744 }
4745 
4746 /* RCV.NXT advances, some SACKs should be eaten. */
4747 
tcp_sack_remove(struct tcp_sock * tp)4748 static void tcp_sack_remove(struct tcp_sock *tp)
4749 {
4750 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4751 	int num_sacks = tp->rx_opt.num_sacks;
4752 	int this_sack;
4753 
4754 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4755 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4756 		tp->rx_opt.num_sacks = 0;
4757 		return;
4758 	}
4759 
4760 	for (this_sack = 0; this_sack < num_sacks;) {
4761 		/* Check if the start of the sack is covered by RCV.NXT. */
4762 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4763 			int i;
4764 
4765 			/* RCV.NXT must cover all the block! */
4766 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4767 
4768 			/* Zap this SACK, by moving forward any other SACKS. */
4769 			for (i = this_sack+1; i < num_sacks; i++)
4770 				tp->selective_acks[i-1] = tp->selective_acks[i];
4771 			num_sacks--;
4772 			continue;
4773 		}
4774 		this_sack++;
4775 		sp++;
4776 	}
4777 	tp->rx_opt.num_sacks = num_sacks;
4778 }
4779 
4780 /**
4781  * tcp_try_coalesce - try to merge skb to prior one
4782  * @sk: socket
4783  * @to: prior buffer
4784  * @from: buffer to add in queue
4785  * @fragstolen: pointer to boolean
4786  *
4787  * Before queueing skb @from after @to, try to merge them
4788  * to reduce overall memory use and queue lengths, if cost is small.
4789  * Packets in ofo or receive queues can stay a long time.
4790  * Better try to coalesce them right now to avoid future collapses.
4791  * Returns true if caller should free @from instead of queueing it
4792  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4793 static bool tcp_try_coalesce(struct sock *sk,
4794 			     struct sk_buff *to,
4795 			     struct sk_buff *from,
4796 			     bool *fragstolen)
4797 {
4798 	int delta;
4799 
4800 	*fragstolen = false;
4801 
4802 	/* Its possible this segment overlaps with prior segment in queue */
4803 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4804 		return false;
4805 
4806 	if (!mptcp_skb_can_collapse(to, from))
4807 		return false;
4808 
4809 	if (skb_cmp_decrypted(from, to))
4810 		return false;
4811 
4812 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4813 		return false;
4814 
4815 	atomic_add(delta, &sk->sk_rmem_alloc);
4816 	sk_mem_charge(sk, delta);
4817 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4818 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4819 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4820 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4821 
4822 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4823 		TCP_SKB_CB(to)->has_rxtstamp = true;
4824 		to->tstamp = from->tstamp;
4825 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4826 	}
4827 
4828 	return true;
4829 }
4830 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4831 static bool tcp_ooo_try_coalesce(struct sock *sk,
4832 			     struct sk_buff *to,
4833 			     struct sk_buff *from,
4834 			     bool *fragstolen)
4835 {
4836 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4837 
4838 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4839 	if (res) {
4840 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4841 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4842 
4843 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4844 	}
4845 	return res;
4846 }
4847 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4848 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4849 			    enum skb_drop_reason reason)
4850 {
4851 	sk_drops_add(sk, skb);
4852 	kfree_skb_reason(skb, reason);
4853 }
4854 
4855 /* This one checks to see if we can put data from the
4856  * out_of_order queue into the receive_queue.
4857  */
tcp_ofo_queue(struct sock * sk)4858 static void tcp_ofo_queue(struct sock *sk)
4859 {
4860 	struct tcp_sock *tp = tcp_sk(sk);
4861 	__u32 dsack_high = tp->rcv_nxt;
4862 	bool fin, fragstolen, eaten;
4863 	struct sk_buff *skb, *tail;
4864 	struct rb_node *p;
4865 
4866 	p = rb_first(&tp->out_of_order_queue);
4867 	while (p) {
4868 		skb = rb_to_skb(p);
4869 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4870 			break;
4871 
4872 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4873 			__u32 dsack = dsack_high;
4874 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4875 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4876 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4877 		}
4878 		p = rb_next(p);
4879 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4880 
4881 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4882 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4883 			continue;
4884 		}
4885 
4886 		tail = skb_peek_tail(&sk->sk_receive_queue);
4887 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4888 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4889 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4890 		if (!eaten)
4891 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4892 		else
4893 			kfree_skb_partial(skb, fragstolen);
4894 
4895 		if (unlikely(fin)) {
4896 			tcp_fin(sk);
4897 			/* tcp_fin() purges tp->out_of_order_queue,
4898 			 * so we must end this loop right now.
4899 			 */
4900 			break;
4901 		}
4902 	}
4903 }
4904 
4905 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4906 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4907 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4908 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4909 				 unsigned int size)
4910 {
4911 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4912 	    !sk_rmem_schedule(sk, skb, size)) {
4913 
4914 		if (tcp_prune_queue(sk, skb) < 0)
4915 			return -1;
4916 
4917 		while (!sk_rmem_schedule(sk, skb, size)) {
4918 			if (!tcp_prune_ofo_queue(sk, skb))
4919 				return -1;
4920 		}
4921 	}
4922 	return 0;
4923 }
4924 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4925 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4926 {
4927 	struct tcp_sock *tp = tcp_sk(sk);
4928 	struct rb_node **p, *parent;
4929 	struct sk_buff *skb1;
4930 	u32 seq, end_seq;
4931 	bool fragstolen;
4932 
4933 	tcp_save_lrcv_flowlabel(sk, skb);
4934 	tcp_ecn_check_ce(sk, skb);
4935 
4936 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4937 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4938 		sk->sk_data_ready(sk);
4939 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4940 		return;
4941 	}
4942 
4943 	/* Disable header prediction. */
4944 	tp->pred_flags = 0;
4945 	inet_csk_schedule_ack(sk);
4946 
4947 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4948 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4949 	seq = TCP_SKB_CB(skb)->seq;
4950 	end_seq = TCP_SKB_CB(skb)->end_seq;
4951 
4952 	p = &tp->out_of_order_queue.rb_node;
4953 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4954 		/* Initial out of order segment, build 1 SACK. */
4955 		if (tcp_is_sack(tp)) {
4956 			tp->rx_opt.num_sacks = 1;
4957 			tp->selective_acks[0].start_seq = seq;
4958 			tp->selective_acks[0].end_seq = end_seq;
4959 		}
4960 		rb_link_node(&skb->rbnode, NULL, p);
4961 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4962 		tp->ooo_last_skb = skb;
4963 		goto end;
4964 	}
4965 
4966 	/* In the typical case, we are adding an skb to the end of the list.
4967 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4968 	 */
4969 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4970 				 skb, &fragstolen)) {
4971 coalesce_done:
4972 		/* For non sack flows, do not grow window to force DUPACK
4973 		 * and trigger fast retransmit.
4974 		 */
4975 		if (tcp_is_sack(tp))
4976 			tcp_grow_window(sk, skb, true);
4977 		kfree_skb_partial(skb, fragstolen);
4978 		skb = NULL;
4979 		goto add_sack;
4980 	}
4981 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4982 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4983 		parent = &tp->ooo_last_skb->rbnode;
4984 		p = &parent->rb_right;
4985 		goto insert;
4986 	}
4987 
4988 	/* Find place to insert this segment. Handle overlaps on the way. */
4989 	parent = NULL;
4990 	while (*p) {
4991 		parent = *p;
4992 		skb1 = rb_to_skb(parent);
4993 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4994 			p = &parent->rb_left;
4995 			continue;
4996 		}
4997 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4998 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4999 				/* All the bits are present. Drop. */
5000 				NET_INC_STATS(sock_net(sk),
5001 					      LINUX_MIB_TCPOFOMERGE);
5002 				tcp_drop_reason(sk, skb,
5003 						SKB_DROP_REASON_TCP_OFOMERGE);
5004 				skb = NULL;
5005 				tcp_dsack_set(sk, seq, end_seq);
5006 				goto add_sack;
5007 			}
5008 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5009 				/* Partial overlap. */
5010 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5011 			} else {
5012 				/* skb's seq == skb1's seq and skb covers skb1.
5013 				 * Replace skb1 with skb.
5014 				 */
5015 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5016 						&tp->out_of_order_queue);
5017 				tcp_dsack_extend(sk,
5018 						 TCP_SKB_CB(skb1)->seq,
5019 						 TCP_SKB_CB(skb1)->end_seq);
5020 				NET_INC_STATS(sock_net(sk),
5021 					      LINUX_MIB_TCPOFOMERGE);
5022 				tcp_drop_reason(sk, skb1,
5023 						SKB_DROP_REASON_TCP_OFOMERGE);
5024 				goto merge_right;
5025 			}
5026 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5027 						skb, &fragstolen)) {
5028 			goto coalesce_done;
5029 		}
5030 		p = &parent->rb_right;
5031 	}
5032 insert:
5033 	/* Insert segment into RB tree. */
5034 	rb_link_node(&skb->rbnode, parent, p);
5035 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5036 
5037 merge_right:
5038 	/* Remove other segments covered by skb. */
5039 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5040 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5041 			break;
5042 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5043 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5044 					 end_seq);
5045 			break;
5046 		}
5047 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5048 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5049 				 TCP_SKB_CB(skb1)->end_seq);
5050 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5051 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5052 	}
5053 	/* If there is no skb after us, we are the last_skb ! */
5054 	if (!skb1)
5055 		tp->ooo_last_skb = skb;
5056 
5057 add_sack:
5058 	if (tcp_is_sack(tp))
5059 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5060 end:
5061 	if (skb) {
5062 		/* For non sack flows, do not grow window to force DUPACK
5063 		 * and trigger fast retransmit.
5064 		 */
5065 		if (tcp_is_sack(tp))
5066 			tcp_grow_window(sk, skb, false);
5067 		skb_condense(skb);
5068 		skb_set_owner_r(skb, sk);
5069 	}
5070 }
5071 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5072 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5073 				      bool *fragstolen)
5074 {
5075 	int eaten;
5076 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5077 
5078 	eaten = (tail &&
5079 		 tcp_try_coalesce(sk, tail,
5080 				  skb, fragstolen)) ? 1 : 0;
5081 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5082 	if (!eaten) {
5083 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5084 		skb_set_owner_r(skb, sk);
5085 	}
5086 	return eaten;
5087 }
5088 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5089 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5090 {
5091 	struct sk_buff *skb;
5092 	int err = -ENOMEM;
5093 	int data_len = 0;
5094 	bool fragstolen;
5095 
5096 	if (size == 0)
5097 		return 0;
5098 
5099 	if (size > PAGE_SIZE) {
5100 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5101 
5102 		data_len = npages << PAGE_SHIFT;
5103 		size = data_len + (size & ~PAGE_MASK);
5104 	}
5105 	skb = alloc_skb_with_frags(size - data_len, data_len,
5106 				   PAGE_ALLOC_COSTLY_ORDER,
5107 				   &err, sk->sk_allocation);
5108 	if (!skb)
5109 		goto err;
5110 
5111 	skb_put(skb, size - data_len);
5112 	skb->data_len = data_len;
5113 	skb->len = size;
5114 
5115 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5117 		goto err_free;
5118 	}
5119 
5120 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5121 	if (err)
5122 		goto err_free;
5123 
5124 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5125 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5126 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5127 
5128 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5129 		WARN_ON_ONCE(fragstolen); /* should not happen */
5130 		__kfree_skb(skb);
5131 	}
5132 	return size;
5133 
5134 err_free:
5135 	kfree_skb(skb);
5136 err:
5137 	return err;
5138 
5139 }
5140 
tcp_data_ready(struct sock * sk)5141 void tcp_data_ready(struct sock *sk)
5142 {
5143 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5144 		sk->sk_data_ready(sk);
5145 }
5146 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5147 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5148 {
5149 	struct tcp_sock *tp = tcp_sk(sk);
5150 	enum skb_drop_reason reason;
5151 	bool fragstolen;
5152 	int eaten;
5153 
5154 	/* If a subflow has been reset, the packet should not continue
5155 	 * to be processed, drop the packet.
5156 	 */
5157 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5158 		__kfree_skb(skb);
5159 		return;
5160 	}
5161 
5162 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5163 		__kfree_skb(skb);
5164 		return;
5165 	}
5166 	skb_dst_drop(skb);
5167 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5168 
5169 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5170 	tp->rx_opt.dsack = 0;
5171 
5172 	/*  Queue data for delivery to the user.
5173 	 *  Packets in sequence go to the receive queue.
5174 	 *  Out of sequence packets to the out_of_order_queue.
5175 	 */
5176 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5177 		if (tcp_receive_window(tp) == 0) {
5178 			/* Some stacks are known to send bare FIN packets
5179 			 * in a loop even if we send RWIN 0 in our ACK.
5180 			 * Accepting this FIN does not hurt memory pressure
5181 			 * because the FIN flag will simply be merged to the
5182 			 * receive queue tail skb in most cases.
5183 			 */
5184 			if (!skb->len &&
5185 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5186 				goto queue_and_out;
5187 
5188 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5189 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5190 			goto out_of_window;
5191 		}
5192 
5193 		/* Ok. In sequence. In window. */
5194 queue_and_out:
5195 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5196 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5197 			inet_csk(sk)->icsk_ack.pending |=
5198 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5199 			inet_csk_schedule_ack(sk);
5200 			sk->sk_data_ready(sk);
5201 
5202 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5203 				reason = SKB_DROP_REASON_PROTO_MEM;
5204 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5205 				goto drop;
5206 			}
5207 			sk_forced_mem_schedule(sk, skb->truesize);
5208 		}
5209 
5210 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5211 		if (skb->len)
5212 			tcp_event_data_recv(sk, skb);
5213 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5214 			tcp_fin(sk);
5215 
5216 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5217 			tcp_ofo_queue(sk);
5218 
5219 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5220 			 * gap in queue is filled.
5221 			 */
5222 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5223 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5224 		}
5225 
5226 		if (tp->rx_opt.num_sacks)
5227 			tcp_sack_remove(tp);
5228 
5229 		tcp_fast_path_check(sk);
5230 
5231 		if (eaten > 0)
5232 			kfree_skb_partial(skb, fragstolen);
5233 		if (!sock_flag(sk, SOCK_DEAD))
5234 			tcp_data_ready(sk);
5235 		return;
5236 	}
5237 
5238 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5239 		tcp_rcv_spurious_retrans(sk, skb);
5240 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5241 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5242 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5243 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5244 
5245 out_of_window:
5246 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5247 		inet_csk_schedule_ack(sk);
5248 drop:
5249 		tcp_drop_reason(sk, skb, reason);
5250 		return;
5251 	}
5252 
5253 	/* Out of window. F.e. zero window probe. */
5254 	if (!before(TCP_SKB_CB(skb)->seq,
5255 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5256 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5257 		goto out_of_window;
5258 	}
5259 
5260 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5261 		/* Partial packet, seq < rcv_next < end_seq */
5262 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5263 
5264 		/* If window is closed, drop tail of packet. But after
5265 		 * remembering D-SACK for its head made in previous line.
5266 		 */
5267 		if (!tcp_receive_window(tp)) {
5268 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5269 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5270 			goto out_of_window;
5271 		}
5272 		goto queue_and_out;
5273 	}
5274 
5275 	tcp_data_queue_ofo(sk, skb);
5276 }
5277 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5278 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5279 {
5280 	if (list)
5281 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5282 
5283 	return skb_rb_next(skb);
5284 }
5285 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5286 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5287 					struct sk_buff_head *list,
5288 					struct rb_root *root)
5289 {
5290 	struct sk_buff *next = tcp_skb_next(skb, list);
5291 
5292 	if (list)
5293 		__skb_unlink(skb, list);
5294 	else
5295 		rb_erase(&skb->rbnode, root);
5296 
5297 	__kfree_skb(skb);
5298 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5299 
5300 	return next;
5301 }
5302 
5303 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5304 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5305 {
5306 	struct rb_node **p = &root->rb_node;
5307 	struct rb_node *parent = NULL;
5308 	struct sk_buff *skb1;
5309 
5310 	while (*p) {
5311 		parent = *p;
5312 		skb1 = rb_to_skb(parent);
5313 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5314 			p = &parent->rb_left;
5315 		else
5316 			p = &parent->rb_right;
5317 	}
5318 	rb_link_node(&skb->rbnode, parent, p);
5319 	rb_insert_color(&skb->rbnode, root);
5320 }
5321 
5322 /* Collapse contiguous sequence of skbs head..tail with
5323  * sequence numbers start..end.
5324  *
5325  * If tail is NULL, this means until the end of the queue.
5326  *
5327  * Segments with FIN/SYN are not collapsed (only because this
5328  * simplifies code)
5329  */
5330 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5331 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5332 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5333 {
5334 	struct sk_buff *skb = head, *n;
5335 	struct sk_buff_head tmp;
5336 	bool end_of_skbs;
5337 
5338 	/* First, check that queue is collapsible and find
5339 	 * the point where collapsing can be useful.
5340 	 */
5341 restart:
5342 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5343 		n = tcp_skb_next(skb, list);
5344 
5345 		/* No new bits? It is possible on ofo queue. */
5346 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5347 			skb = tcp_collapse_one(sk, skb, list, root);
5348 			if (!skb)
5349 				break;
5350 			goto restart;
5351 		}
5352 
5353 		/* The first skb to collapse is:
5354 		 * - not SYN/FIN and
5355 		 * - bloated or contains data before "start" or
5356 		 *   overlaps to the next one and mptcp allow collapsing.
5357 		 */
5358 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5359 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5360 		     before(TCP_SKB_CB(skb)->seq, start))) {
5361 			end_of_skbs = false;
5362 			break;
5363 		}
5364 
5365 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5366 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5367 			end_of_skbs = false;
5368 			break;
5369 		}
5370 
5371 		/* Decided to skip this, advance start seq. */
5372 		start = TCP_SKB_CB(skb)->end_seq;
5373 	}
5374 	if (end_of_skbs ||
5375 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5376 		return;
5377 
5378 	__skb_queue_head_init(&tmp);
5379 
5380 	while (before(start, end)) {
5381 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5382 		struct sk_buff *nskb;
5383 
5384 		nskb = alloc_skb(copy, GFP_ATOMIC);
5385 		if (!nskb)
5386 			break;
5387 
5388 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5389 		skb_copy_decrypted(nskb, skb);
5390 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5391 		if (list)
5392 			__skb_queue_before(list, skb, nskb);
5393 		else
5394 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5395 		skb_set_owner_r(nskb, sk);
5396 		mptcp_skb_ext_move(nskb, skb);
5397 
5398 		/* Copy data, releasing collapsed skbs. */
5399 		while (copy > 0) {
5400 			int offset = start - TCP_SKB_CB(skb)->seq;
5401 			int size = TCP_SKB_CB(skb)->end_seq - start;
5402 
5403 			BUG_ON(offset < 0);
5404 			if (size > 0) {
5405 				size = min(copy, size);
5406 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5407 					BUG();
5408 				TCP_SKB_CB(nskb)->end_seq += size;
5409 				copy -= size;
5410 				start += size;
5411 			}
5412 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5413 				skb = tcp_collapse_one(sk, skb, list, root);
5414 				if (!skb ||
5415 				    skb == tail ||
5416 				    !mptcp_skb_can_collapse(nskb, skb) ||
5417 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5418 					goto end;
5419 				if (skb_cmp_decrypted(skb, nskb))
5420 					goto end;
5421 			}
5422 		}
5423 	}
5424 end:
5425 	skb_queue_walk_safe(&tmp, skb, n)
5426 		tcp_rbtree_insert(root, skb);
5427 }
5428 
5429 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5430  * and tcp_collapse() them until all the queue is collapsed.
5431  */
tcp_collapse_ofo_queue(struct sock * sk)5432 static void tcp_collapse_ofo_queue(struct sock *sk)
5433 {
5434 	struct tcp_sock *tp = tcp_sk(sk);
5435 	u32 range_truesize, sum_tiny = 0;
5436 	struct sk_buff *skb, *head;
5437 	u32 start, end;
5438 
5439 	skb = skb_rb_first(&tp->out_of_order_queue);
5440 new_range:
5441 	if (!skb) {
5442 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5443 		return;
5444 	}
5445 	start = TCP_SKB_CB(skb)->seq;
5446 	end = TCP_SKB_CB(skb)->end_seq;
5447 	range_truesize = skb->truesize;
5448 
5449 	for (head = skb;;) {
5450 		skb = skb_rb_next(skb);
5451 
5452 		/* Range is terminated when we see a gap or when
5453 		 * we are at the queue end.
5454 		 */
5455 		if (!skb ||
5456 		    after(TCP_SKB_CB(skb)->seq, end) ||
5457 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5458 			/* Do not attempt collapsing tiny skbs */
5459 			if (range_truesize != head->truesize ||
5460 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5461 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5462 					     head, skb, start, end);
5463 			} else {
5464 				sum_tiny += range_truesize;
5465 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5466 					return;
5467 			}
5468 			goto new_range;
5469 		}
5470 
5471 		range_truesize += skb->truesize;
5472 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5473 			start = TCP_SKB_CB(skb)->seq;
5474 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5475 			end = TCP_SKB_CB(skb)->end_seq;
5476 	}
5477 }
5478 
5479 /*
5480  * Clean the out-of-order queue to make room.
5481  * We drop high sequences packets to :
5482  * 1) Let a chance for holes to be filled.
5483  *    This means we do not drop packets from ooo queue if their sequence
5484  *    is before incoming packet sequence.
5485  * 2) not add too big latencies if thousands of packets sit there.
5486  *    (But if application shrinks SO_RCVBUF, we could still end up
5487  *     freeing whole queue here)
5488  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5489  *
5490  * Return true if queue has shrunk.
5491  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5492 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5493 {
5494 	struct tcp_sock *tp = tcp_sk(sk);
5495 	struct rb_node *node, *prev;
5496 	bool pruned = false;
5497 	int goal;
5498 
5499 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5500 		return false;
5501 
5502 	goal = sk->sk_rcvbuf >> 3;
5503 	node = &tp->ooo_last_skb->rbnode;
5504 
5505 	do {
5506 		struct sk_buff *skb = rb_to_skb(node);
5507 
5508 		/* If incoming skb would land last in ofo queue, stop pruning. */
5509 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5510 			break;
5511 		pruned = true;
5512 		prev = rb_prev(node);
5513 		rb_erase(node, &tp->out_of_order_queue);
5514 		goal -= skb->truesize;
5515 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5516 		tp->ooo_last_skb = rb_to_skb(prev);
5517 		if (!prev || goal <= 0) {
5518 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5519 			    !tcp_under_memory_pressure(sk))
5520 				break;
5521 			goal = sk->sk_rcvbuf >> 3;
5522 		}
5523 		node = prev;
5524 	} while (node);
5525 
5526 	if (pruned) {
5527 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5528 		/* Reset SACK state.  A conforming SACK implementation will
5529 		 * do the same at a timeout based retransmit.  When a connection
5530 		 * is in a sad state like this, we care only about integrity
5531 		 * of the connection not performance.
5532 		 */
5533 		if (tp->rx_opt.sack_ok)
5534 			tcp_sack_reset(&tp->rx_opt);
5535 	}
5536 	return pruned;
5537 }
5538 
5539 /* Reduce allocated memory if we can, trying to get
5540  * the socket within its memory limits again.
5541  *
5542  * Return less than zero if we should start dropping frames
5543  * until the socket owning process reads some of the data
5544  * to stabilize the situation.
5545  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5546 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5547 {
5548 	struct tcp_sock *tp = tcp_sk(sk);
5549 
5550 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5551 
5552 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5553 		tcp_clamp_window(sk);
5554 	else if (tcp_under_memory_pressure(sk))
5555 		tcp_adjust_rcv_ssthresh(sk);
5556 
5557 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5558 		return 0;
5559 
5560 	tcp_collapse_ofo_queue(sk);
5561 	if (!skb_queue_empty(&sk->sk_receive_queue))
5562 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5563 			     skb_peek(&sk->sk_receive_queue),
5564 			     NULL,
5565 			     tp->copied_seq, tp->rcv_nxt);
5566 
5567 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5568 		return 0;
5569 
5570 	/* Collapsing did not help, destructive actions follow.
5571 	 * This must not ever occur. */
5572 
5573 	tcp_prune_ofo_queue(sk, in_skb);
5574 
5575 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5576 		return 0;
5577 
5578 	/* If we are really being abused, tell the caller to silently
5579 	 * drop receive data on the floor.  It will get retransmitted
5580 	 * and hopefully then we'll have sufficient space.
5581 	 */
5582 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5583 
5584 	/* Massive buffer overcommit. */
5585 	tp->pred_flags = 0;
5586 	return -1;
5587 }
5588 
tcp_should_expand_sndbuf(struct sock * sk)5589 static bool tcp_should_expand_sndbuf(struct sock *sk)
5590 {
5591 	const struct tcp_sock *tp = tcp_sk(sk);
5592 
5593 	/* If the user specified a specific send buffer setting, do
5594 	 * not modify it.
5595 	 */
5596 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5597 		return false;
5598 
5599 	/* If we are under global TCP memory pressure, do not expand.  */
5600 	if (tcp_under_memory_pressure(sk)) {
5601 		int unused_mem = sk_unused_reserved_mem(sk);
5602 
5603 		/* Adjust sndbuf according to reserved mem. But make sure
5604 		 * it never goes below SOCK_MIN_SNDBUF.
5605 		 * See sk_stream_moderate_sndbuf() for more details.
5606 		 */
5607 		if (unused_mem > SOCK_MIN_SNDBUF)
5608 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5609 
5610 		return false;
5611 	}
5612 
5613 	/* If we are under soft global TCP memory pressure, do not expand.  */
5614 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5615 		return false;
5616 
5617 	/* If we filled the congestion window, do not expand.  */
5618 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5619 		return false;
5620 
5621 	return true;
5622 }
5623 
tcp_new_space(struct sock * sk)5624 static void tcp_new_space(struct sock *sk)
5625 {
5626 	struct tcp_sock *tp = tcp_sk(sk);
5627 
5628 	if (tcp_should_expand_sndbuf(sk)) {
5629 		tcp_sndbuf_expand(sk);
5630 		tp->snd_cwnd_stamp = tcp_jiffies32;
5631 	}
5632 
5633 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5634 }
5635 
5636 /* Caller made space either from:
5637  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5638  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5639  *
5640  * We might be able to generate EPOLLOUT to the application if:
5641  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5642  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5643  *    small enough that tcp_stream_memory_free() decides it
5644  *    is time to generate EPOLLOUT.
5645  */
tcp_check_space(struct sock * sk)5646 void tcp_check_space(struct sock *sk)
5647 {
5648 	/* pairs with tcp_poll() */
5649 	smp_mb();
5650 	if (sk->sk_socket &&
5651 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5652 		tcp_new_space(sk);
5653 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5654 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5655 	}
5656 }
5657 
tcp_data_snd_check(struct sock * sk)5658 static inline void tcp_data_snd_check(struct sock *sk)
5659 {
5660 	tcp_push_pending_frames(sk);
5661 	tcp_check_space(sk);
5662 }
5663 
5664 /*
5665  * Check if sending an ack is needed.
5666  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5667 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5668 {
5669 	struct tcp_sock *tp = tcp_sk(sk);
5670 	unsigned long rtt, delay;
5671 
5672 	    /* More than one full frame received... */
5673 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5674 	     /* ... and right edge of window advances far enough.
5675 	      * (tcp_recvmsg() will send ACK otherwise).
5676 	      * If application uses SO_RCVLOWAT, we want send ack now if
5677 	      * we have not received enough bytes to satisfy the condition.
5678 	      */
5679 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5680 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5681 	    /* We ACK each frame or... */
5682 	    tcp_in_quickack_mode(sk) ||
5683 	    /* Protocol state mandates a one-time immediate ACK */
5684 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5685 		/* If we are running from __release_sock() in user context,
5686 		 * Defer the ack until tcp_release_cb().
5687 		 */
5688 		if (sock_owned_by_user_nocheck(sk) &&
5689 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5690 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5691 			return;
5692 		}
5693 send_now:
5694 		tcp_send_ack(sk);
5695 		return;
5696 	}
5697 
5698 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5699 		tcp_send_delayed_ack(sk);
5700 		return;
5701 	}
5702 
5703 	if (!tcp_is_sack(tp) ||
5704 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5705 		goto send_now;
5706 
5707 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5708 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5709 		tp->dup_ack_counter = 0;
5710 	}
5711 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5712 		tp->dup_ack_counter++;
5713 		goto send_now;
5714 	}
5715 	tp->compressed_ack++;
5716 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5717 		return;
5718 
5719 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5720 
5721 	rtt = tp->rcv_rtt_est.rtt_us;
5722 	if (tp->srtt_us && tp->srtt_us < rtt)
5723 		rtt = tp->srtt_us;
5724 
5725 	delay = min_t(unsigned long,
5726 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5727 		      rtt * (NSEC_PER_USEC >> 3)/20);
5728 	sock_hold(sk);
5729 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5730 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5731 			       HRTIMER_MODE_REL_PINNED_SOFT);
5732 }
5733 
tcp_ack_snd_check(struct sock * sk)5734 static inline void tcp_ack_snd_check(struct sock *sk)
5735 {
5736 	if (!inet_csk_ack_scheduled(sk)) {
5737 		/* We sent a data segment already. */
5738 		return;
5739 	}
5740 	__tcp_ack_snd_check(sk, 1);
5741 }
5742 
5743 /*
5744  *	This routine is only called when we have urgent data
5745  *	signaled. Its the 'slow' part of tcp_urg. It could be
5746  *	moved inline now as tcp_urg is only called from one
5747  *	place. We handle URGent data wrong. We have to - as
5748  *	BSD still doesn't use the correction from RFC961.
5749  *	For 1003.1g we should support a new option TCP_STDURG to permit
5750  *	either form (or just set the sysctl tcp_stdurg).
5751  */
5752 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5753 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5754 {
5755 	struct tcp_sock *tp = tcp_sk(sk);
5756 	u32 ptr = ntohs(th->urg_ptr);
5757 
5758 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5759 		ptr--;
5760 	ptr += ntohl(th->seq);
5761 
5762 	/* Ignore urgent data that we've already seen and read. */
5763 	if (after(tp->copied_seq, ptr))
5764 		return;
5765 
5766 	/* Do not replay urg ptr.
5767 	 *
5768 	 * NOTE: interesting situation not covered by specs.
5769 	 * Misbehaving sender may send urg ptr, pointing to segment,
5770 	 * which we already have in ofo queue. We are not able to fetch
5771 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5772 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5773 	 * situations. But it is worth to think about possibility of some
5774 	 * DoSes using some hypothetical application level deadlock.
5775 	 */
5776 	if (before(ptr, tp->rcv_nxt))
5777 		return;
5778 
5779 	/* Do we already have a newer (or duplicate) urgent pointer? */
5780 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5781 		return;
5782 
5783 	/* Tell the world about our new urgent pointer. */
5784 	sk_send_sigurg(sk);
5785 
5786 	/* We may be adding urgent data when the last byte read was
5787 	 * urgent. To do this requires some care. We cannot just ignore
5788 	 * tp->copied_seq since we would read the last urgent byte again
5789 	 * as data, nor can we alter copied_seq until this data arrives
5790 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5791 	 *
5792 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5793 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5794 	 * and expect that both A and B disappear from stream. This is _wrong_.
5795 	 * Though this happens in BSD with high probability, this is occasional.
5796 	 * Any application relying on this is buggy. Note also, that fix "works"
5797 	 * only in this artificial test. Insert some normal data between A and B and we will
5798 	 * decline of BSD again. Verdict: it is better to remove to trap
5799 	 * buggy users.
5800 	 */
5801 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5802 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5803 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5804 		tp->copied_seq++;
5805 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5806 			__skb_unlink(skb, &sk->sk_receive_queue);
5807 			__kfree_skb(skb);
5808 		}
5809 	}
5810 
5811 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5812 	WRITE_ONCE(tp->urg_seq, ptr);
5813 
5814 	/* Disable header prediction. */
5815 	tp->pred_flags = 0;
5816 }
5817 
5818 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5819 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5820 {
5821 	struct tcp_sock *tp = tcp_sk(sk);
5822 
5823 	/* Check if we get a new urgent pointer - normally not. */
5824 	if (unlikely(th->urg))
5825 		tcp_check_urg(sk, th);
5826 
5827 	/* Do we wait for any urgent data? - normally not... */
5828 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5829 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5830 			  th->syn;
5831 
5832 		/* Is the urgent pointer pointing into this packet? */
5833 		if (ptr < skb->len) {
5834 			u8 tmp;
5835 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5836 				BUG();
5837 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5838 			if (!sock_flag(sk, SOCK_DEAD))
5839 				sk->sk_data_ready(sk);
5840 		}
5841 	}
5842 }
5843 
5844 /* Accept RST for rcv_nxt - 1 after a FIN.
5845  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5846  * FIN is sent followed by a RST packet. The RST is sent with the same
5847  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5848  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5849  * ACKs on the closed socket. In addition middleboxes can drop either the
5850  * challenge ACK or a subsequent RST.
5851  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5852 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5853 {
5854 	const struct tcp_sock *tp = tcp_sk(sk);
5855 
5856 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5857 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5858 					       TCPF_CLOSING));
5859 }
5860 
5861 /* Does PAWS and seqno based validation of an incoming segment, flags will
5862  * play significant role here.
5863  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5864 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5865 				  const struct tcphdr *th, int syn_inerr)
5866 {
5867 	struct tcp_sock *tp = tcp_sk(sk);
5868 	SKB_DR(reason);
5869 
5870 	/* RFC1323: H1. Apply PAWS check first. */
5871 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5872 	    tp->rx_opt.saw_tstamp &&
5873 	    tcp_paws_discard(sk, skb)) {
5874 		if (!th->rst) {
5875 			if (unlikely(th->syn))
5876 				goto syn_challenge;
5877 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5878 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5879 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5880 						  &tp->last_oow_ack_time))
5881 				tcp_send_dupack(sk, skb);
5882 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5883 			goto discard;
5884 		}
5885 		/* Reset is accepted even if it did not pass PAWS. */
5886 	}
5887 
5888 	/* Step 1: check sequence number */
5889 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5890 	if (reason) {
5891 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5892 		 * (RST) segments are validated by checking their SEQ-fields."
5893 		 * And page 69: "If an incoming segment is not acceptable,
5894 		 * an acknowledgment should be sent in reply (unless the RST
5895 		 * bit is set, if so drop the segment and return)".
5896 		 */
5897 		if (!th->rst) {
5898 			if (th->syn)
5899 				goto syn_challenge;
5900 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5901 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5902 						  &tp->last_oow_ack_time))
5903 				tcp_send_dupack(sk, skb);
5904 		} else if (tcp_reset_check(sk, skb)) {
5905 			goto reset;
5906 		}
5907 		goto discard;
5908 	}
5909 
5910 	/* Step 2: check RST bit */
5911 	if (th->rst) {
5912 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5913 		 * FIN and SACK too if available):
5914 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5915 		 * the right-most SACK block,
5916 		 * then
5917 		 *     RESET the connection
5918 		 * else
5919 		 *     Send a challenge ACK
5920 		 */
5921 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5922 		    tcp_reset_check(sk, skb))
5923 			goto reset;
5924 
5925 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5926 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5927 			int max_sack = sp[0].end_seq;
5928 			int this_sack;
5929 
5930 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5931 			     ++this_sack) {
5932 				max_sack = after(sp[this_sack].end_seq,
5933 						 max_sack) ?
5934 					sp[this_sack].end_seq : max_sack;
5935 			}
5936 
5937 			if (TCP_SKB_CB(skb)->seq == max_sack)
5938 				goto reset;
5939 		}
5940 
5941 		/* Disable TFO if RST is out-of-order
5942 		 * and no data has been received
5943 		 * for current active TFO socket
5944 		 */
5945 		if (tp->syn_fastopen && !tp->data_segs_in &&
5946 		    sk->sk_state == TCP_ESTABLISHED)
5947 			tcp_fastopen_active_disable(sk);
5948 		tcp_send_challenge_ack(sk);
5949 		SKB_DR_SET(reason, TCP_RESET);
5950 		goto discard;
5951 	}
5952 
5953 	/* step 3: check security and precedence [ignored] */
5954 
5955 	/* step 4: Check for a SYN
5956 	 * RFC 5961 4.2 : Send a challenge ack
5957 	 */
5958 	if (th->syn) {
5959 syn_challenge:
5960 		if (syn_inerr)
5961 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5962 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5963 		tcp_send_challenge_ack(sk);
5964 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5965 		goto discard;
5966 	}
5967 
5968 	bpf_skops_parse_hdr(sk, skb);
5969 
5970 	return true;
5971 
5972 discard:
5973 	tcp_drop_reason(sk, skb, reason);
5974 	return false;
5975 
5976 reset:
5977 	tcp_reset(sk, skb);
5978 	__kfree_skb(skb);
5979 	return false;
5980 }
5981 
5982 /*
5983  *	TCP receive function for the ESTABLISHED state.
5984  *
5985  *	It is split into a fast path and a slow path. The fast path is
5986  * 	disabled when:
5987  *	- A zero window was announced from us - zero window probing
5988  *        is only handled properly in the slow path.
5989  *	- Out of order segments arrived.
5990  *	- Urgent data is expected.
5991  *	- There is no buffer space left
5992  *	- Unexpected TCP flags/window values/header lengths are received
5993  *	  (detected by checking the TCP header against pred_flags)
5994  *	- Data is sent in both directions. Fast path only supports pure senders
5995  *	  or pure receivers (this means either the sequence number or the ack
5996  *	  value must stay constant)
5997  *	- Unexpected TCP option.
5998  *
5999  *	When these conditions are not satisfied it drops into a standard
6000  *	receive procedure patterned after RFC793 to handle all cases.
6001  *	The first three cases are guaranteed by proper pred_flags setting,
6002  *	the rest is checked inline. Fast processing is turned on in
6003  *	tcp_data_queue when everything is OK.
6004  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6005 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6006 {
6007 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6008 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6009 	struct tcp_sock *tp = tcp_sk(sk);
6010 	unsigned int len = skb->len;
6011 
6012 	/* TCP congestion window tracking */
6013 	trace_tcp_probe(sk, skb);
6014 
6015 	tcp_mstamp_refresh(tp);
6016 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6017 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6018 	/*
6019 	 *	Header prediction.
6020 	 *	The code loosely follows the one in the famous
6021 	 *	"30 instruction TCP receive" Van Jacobson mail.
6022 	 *
6023 	 *	Van's trick is to deposit buffers into socket queue
6024 	 *	on a device interrupt, to call tcp_recv function
6025 	 *	on the receive process context and checksum and copy
6026 	 *	the buffer to user space. smart...
6027 	 *
6028 	 *	Our current scheme is not silly either but we take the
6029 	 *	extra cost of the net_bh soft interrupt processing...
6030 	 *	We do checksum and copy also but from device to kernel.
6031 	 */
6032 
6033 	tp->rx_opt.saw_tstamp = 0;
6034 
6035 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6036 	 *	if header_prediction is to be made
6037 	 *	'S' will always be tp->tcp_header_len >> 2
6038 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6039 	 *  turn it off	(when there are holes in the receive
6040 	 *	 space for instance)
6041 	 *	PSH flag is ignored.
6042 	 */
6043 
6044 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6045 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6046 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6047 		int tcp_header_len = tp->tcp_header_len;
6048 
6049 		/* Timestamp header prediction: tcp_header_len
6050 		 * is automatically equal to th->doff*4 due to pred_flags
6051 		 * match.
6052 		 */
6053 
6054 		/* Check timestamp */
6055 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6056 			/* No? Slow path! */
6057 			if (!tcp_parse_aligned_timestamp(tp, th))
6058 				goto slow_path;
6059 
6060 			/* If PAWS failed, check it more carefully in slow path */
6061 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6062 				goto slow_path;
6063 
6064 			/* DO NOT update ts_recent here, if checksum fails
6065 			 * and timestamp was corrupted part, it will result
6066 			 * in a hung connection since we will drop all
6067 			 * future packets due to the PAWS test.
6068 			 */
6069 		}
6070 
6071 		if (len <= tcp_header_len) {
6072 			/* Bulk data transfer: sender */
6073 			if (len == tcp_header_len) {
6074 				/* Predicted packet is in window by definition.
6075 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6076 				 * Hence, check seq<=rcv_wup reduces to:
6077 				 */
6078 				if (tcp_header_len ==
6079 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6080 				    tp->rcv_nxt == tp->rcv_wup)
6081 					tcp_store_ts_recent(tp);
6082 
6083 				/* We know that such packets are checksummed
6084 				 * on entry.
6085 				 */
6086 				tcp_ack(sk, skb, 0);
6087 				__kfree_skb(skb);
6088 				tcp_data_snd_check(sk);
6089 				/* When receiving pure ack in fast path, update
6090 				 * last ts ecr directly instead of calling
6091 				 * tcp_rcv_rtt_measure_ts()
6092 				 */
6093 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6094 				return;
6095 			} else { /* Header too small */
6096 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6097 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6098 				goto discard;
6099 			}
6100 		} else {
6101 			int eaten = 0;
6102 			bool fragstolen = false;
6103 
6104 			if (tcp_checksum_complete(skb))
6105 				goto csum_error;
6106 
6107 			if ((int)skb->truesize > sk->sk_forward_alloc)
6108 				goto step5;
6109 
6110 			/* Predicted packet is in window by definition.
6111 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6112 			 * Hence, check seq<=rcv_wup reduces to:
6113 			 */
6114 			if (tcp_header_len ==
6115 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6116 			    tp->rcv_nxt == tp->rcv_wup)
6117 				tcp_store_ts_recent(tp);
6118 
6119 			tcp_rcv_rtt_measure_ts(sk, skb);
6120 
6121 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6122 
6123 			/* Bulk data transfer: receiver */
6124 			skb_dst_drop(skb);
6125 			__skb_pull(skb, tcp_header_len);
6126 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6127 
6128 			tcp_event_data_recv(sk, skb);
6129 
6130 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6131 				/* Well, only one small jumplet in fast path... */
6132 				tcp_ack(sk, skb, FLAG_DATA);
6133 				tcp_data_snd_check(sk);
6134 				if (!inet_csk_ack_scheduled(sk))
6135 					goto no_ack;
6136 			} else {
6137 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6138 			}
6139 
6140 			__tcp_ack_snd_check(sk, 0);
6141 no_ack:
6142 			if (eaten)
6143 				kfree_skb_partial(skb, fragstolen);
6144 			tcp_data_ready(sk);
6145 			return;
6146 		}
6147 	}
6148 
6149 slow_path:
6150 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6151 		goto csum_error;
6152 
6153 	if (!th->ack && !th->rst && !th->syn) {
6154 		reason = SKB_DROP_REASON_TCP_FLAGS;
6155 		goto discard;
6156 	}
6157 
6158 	/*
6159 	 *	Standard slow path.
6160 	 */
6161 
6162 	if (!tcp_validate_incoming(sk, skb, th, 1))
6163 		return;
6164 
6165 step5:
6166 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6167 	if ((int)reason < 0) {
6168 		reason = -reason;
6169 		goto discard;
6170 	}
6171 	tcp_rcv_rtt_measure_ts(sk, skb);
6172 
6173 	/* Process urgent data. */
6174 	tcp_urg(sk, skb, th);
6175 
6176 	/* step 7: process the segment text */
6177 	tcp_data_queue(sk, skb);
6178 
6179 	tcp_data_snd_check(sk);
6180 	tcp_ack_snd_check(sk);
6181 	return;
6182 
6183 csum_error:
6184 	reason = SKB_DROP_REASON_TCP_CSUM;
6185 	trace_tcp_bad_csum(skb);
6186 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6187 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6188 
6189 discard:
6190 	tcp_drop_reason(sk, skb, reason);
6191 }
6192 EXPORT_SYMBOL(tcp_rcv_established);
6193 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6194 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6195 {
6196 	struct inet_connection_sock *icsk = inet_csk(sk);
6197 	struct tcp_sock *tp = tcp_sk(sk);
6198 
6199 	tcp_mtup_init(sk);
6200 	icsk->icsk_af_ops->rebuild_header(sk);
6201 	tcp_init_metrics(sk);
6202 
6203 	/* Initialize the congestion window to start the transfer.
6204 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6205 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6206 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6207 	 * retransmission has occurred.
6208 	 */
6209 	if (tp->total_retrans > 1 && tp->undo_marker)
6210 		tcp_snd_cwnd_set(tp, 1);
6211 	else
6212 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6213 	tp->snd_cwnd_stamp = tcp_jiffies32;
6214 
6215 	bpf_skops_established(sk, bpf_op, skb);
6216 	/* Initialize congestion control unless BPF initialized it already: */
6217 	if (!icsk->icsk_ca_initialized)
6218 		tcp_init_congestion_control(sk);
6219 	tcp_init_buffer_space(sk);
6220 }
6221 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6222 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6223 {
6224 	struct tcp_sock *tp = tcp_sk(sk);
6225 	struct inet_connection_sock *icsk = inet_csk(sk);
6226 
6227 	tcp_ao_finish_connect(sk, skb);
6228 	tcp_set_state(sk, TCP_ESTABLISHED);
6229 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6230 
6231 	if (skb) {
6232 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6233 		security_inet_conn_established(sk, skb);
6234 		sk_mark_napi_id(sk, skb);
6235 	}
6236 
6237 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6238 
6239 	/* Prevent spurious tcp_cwnd_restart() on first data
6240 	 * packet.
6241 	 */
6242 	tp->lsndtime = tcp_jiffies32;
6243 
6244 	if (sock_flag(sk, SOCK_KEEPOPEN))
6245 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6246 
6247 	if (!tp->rx_opt.snd_wscale)
6248 		__tcp_fast_path_on(tp, tp->snd_wnd);
6249 	else
6250 		tp->pred_flags = 0;
6251 }
6252 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6253 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6254 				    struct tcp_fastopen_cookie *cookie)
6255 {
6256 	struct tcp_sock *tp = tcp_sk(sk);
6257 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6258 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6259 	bool syn_drop = false;
6260 
6261 	if (mss == tp->rx_opt.user_mss) {
6262 		struct tcp_options_received opt;
6263 
6264 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6265 		tcp_clear_options(&opt);
6266 		opt.user_mss = opt.mss_clamp = 0;
6267 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6268 		mss = opt.mss_clamp;
6269 	}
6270 
6271 	if (!tp->syn_fastopen) {
6272 		/* Ignore an unsolicited cookie */
6273 		cookie->len = -1;
6274 	} else if (tp->total_retrans) {
6275 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6276 		 * acknowledges data. Presumably the remote received only
6277 		 * the retransmitted (regular) SYNs: either the original
6278 		 * SYN-data or the corresponding SYN-ACK was dropped.
6279 		 */
6280 		syn_drop = (cookie->len < 0 && data);
6281 	} else if (cookie->len < 0 && !tp->syn_data) {
6282 		/* We requested a cookie but didn't get it. If we did not use
6283 		 * the (old) exp opt format then try so next time (try_exp=1).
6284 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6285 		 */
6286 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6287 	}
6288 
6289 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6290 
6291 	if (data) { /* Retransmit unacked data in SYN */
6292 		if (tp->total_retrans)
6293 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6294 		else
6295 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6296 		skb_rbtree_walk_from(data)
6297 			 tcp_mark_skb_lost(sk, data);
6298 		tcp_xmit_retransmit_queue(sk);
6299 		NET_INC_STATS(sock_net(sk),
6300 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6301 		return true;
6302 	}
6303 	tp->syn_data_acked = tp->syn_data;
6304 	if (tp->syn_data_acked) {
6305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6306 		/* SYN-data is counted as two separate packets in tcp_ack() */
6307 		if (tp->delivered > 1)
6308 			--tp->delivered;
6309 	}
6310 
6311 	tcp_fastopen_add_skb(sk, synack);
6312 
6313 	return false;
6314 }
6315 
smc_check_reset_syn(struct tcp_sock * tp)6316 static void smc_check_reset_syn(struct tcp_sock *tp)
6317 {
6318 #if IS_ENABLED(CONFIG_SMC)
6319 	if (static_branch_unlikely(&tcp_have_smc)) {
6320 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6321 			tp->syn_smc = 0;
6322 	}
6323 #endif
6324 }
6325 
tcp_try_undo_spurious_syn(struct sock * sk)6326 static void tcp_try_undo_spurious_syn(struct sock *sk)
6327 {
6328 	struct tcp_sock *tp = tcp_sk(sk);
6329 	u32 syn_stamp;
6330 
6331 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6332 	 * spurious if the ACK's timestamp option echo value matches the
6333 	 * original SYN timestamp.
6334 	 */
6335 	syn_stamp = tp->retrans_stamp;
6336 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6337 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6338 		tp->undo_marker = 0;
6339 }
6340 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6341 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6342 					 const struct tcphdr *th)
6343 {
6344 	struct inet_connection_sock *icsk = inet_csk(sk);
6345 	struct tcp_sock *tp = tcp_sk(sk);
6346 	struct tcp_fastopen_cookie foc = { .len = -1 };
6347 	int saved_clamp = tp->rx_opt.mss_clamp;
6348 	bool fastopen_fail;
6349 	SKB_DR(reason);
6350 
6351 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6352 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6353 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6354 
6355 	if (th->ack) {
6356 		/* rfc793:
6357 		 * "If the state is SYN-SENT then
6358 		 *    first check the ACK bit
6359 		 *      If the ACK bit is set
6360 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6361 		 *        a reset (unless the RST bit is set, if so drop
6362 		 *        the segment and return)"
6363 		 */
6364 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6365 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6366 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6367 			if (icsk->icsk_retransmits == 0)
6368 				inet_csk_reset_xmit_timer(sk,
6369 						ICSK_TIME_RETRANS,
6370 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6371 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6372 			goto reset_and_undo;
6373 		}
6374 
6375 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6376 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6377 			     tcp_time_stamp_ts(tp))) {
6378 			NET_INC_STATS(sock_net(sk),
6379 					LINUX_MIB_PAWSACTIVEREJECTED);
6380 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6381 			goto reset_and_undo;
6382 		}
6383 
6384 		/* Now ACK is acceptable.
6385 		 *
6386 		 * "If the RST bit is set
6387 		 *    If the ACK was acceptable then signal the user "error:
6388 		 *    connection reset", drop the segment, enter CLOSED state,
6389 		 *    delete TCB, and return."
6390 		 */
6391 
6392 		if (th->rst) {
6393 			tcp_reset(sk, skb);
6394 consume:
6395 			__kfree_skb(skb);
6396 			return 0;
6397 		}
6398 
6399 		/* rfc793:
6400 		 *   "fifth, if neither of the SYN or RST bits is set then
6401 		 *    drop the segment and return."
6402 		 *
6403 		 *    See note below!
6404 		 *                                        --ANK(990513)
6405 		 */
6406 		if (!th->syn) {
6407 			SKB_DR_SET(reason, TCP_FLAGS);
6408 			goto discard_and_undo;
6409 		}
6410 		/* rfc793:
6411 		 *   "If the SYN bit is on ...
6412 		 *    are acceptable then ...
6413 		 *    (our SYN has been ACKed), change the connection
6414 		 *    state to ESTABLISHED..."
6415 		 */
6416 
6417 		tcp_ecn_rcv_synack(tp, th);
6418 
6419 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6420 		tcp_try_undo_spurious_syn(sk);
6421 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6422 
6423 		/* Ok.. it's good. Set up sequence numbers and
6424 		 * move to established.
6425 		 */
6426 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6427 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6428 
6429 		/* RFC1323: The window in SYN & SYN/ACK segments is
6430 		 * never scaled.
6431 		 */
6432 		tp->snd_wnd = ntohs(th->window);
6433 
6434 		if (!tp->rx_opt.wscale_ok) {
6435 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6436 			WRITE_ONCE(tp->window_clamp,
6437 				   min(tp->window_clamp, 65535U));
6438 		}
6439 
6440 		if (tp->rx_opt.saw_tstamp) {
6441 			tp->rx_opt.tstamp_ok	   = 1;
6442 			tp->tcp_header_len =
6443 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6444 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6445 			tcp_store_ts_recent(tp);
6446 		} else {
6447 			tp->tcp_header_len = sizeof(struct tcphdr);
6448 		}
6449 
6450 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6451 		tcp_initialize_rcv_mss(sk);
6452 
6453 		/* Remember, tcp_poll() does not lock socket!
6454 		 * Change state from SYN-SENT only after copied_seq
6455 		 * is initialized. */
6456 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6457 
6458 		smc_check_reset_syn(tp);
6459 
6460 		smp_mb();
6461 
6462 		tcp_finish_connect(sk, skb);
6463 
6464 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6465 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6466 
6467 		if (!sock_flag(sk, SOCK_DEAD)) {
6468 			sk->sk_state_change(sk);
6469 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6470 		}
6471 		if (fastopen_fail)
6472 			return -1;
6473 		if (sk->sk_write_pending ||
6474 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6475 		    inet_csk_in_pingpong_mode(sk)) {
6476 			/* Save one ACK. Data will be ready after
6477 			 * several ticks, if write_pending is set.
6478 			 *
6479 			 * It may be deleted, but with this feature tcpdumps
6480 			 * look so _wonderfully_ clever, that I was not able
6481 			 * to stand against the temptation 8)     --ANK
6482 			 */
6483 			inet_csk_schedule_ack(sk);
6484 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6485 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6486 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6487 			goto consume;
6488 		}
6489 		tcp_send_ack(sk);
6490 		return -1;
6491 	}
6492 
6493 	/* No ACK in the segment */
6494 
6495 	if (th->rst) {
6496 		/* rfc793:
6497 		 * "If the RST bit is set
6498 		 *
6499 		 *      Otherwise (no ACK) drop the segment and return."
6500 		 */
6501 		SKB_DR_SET(reason, TCP_RESET);
6502 		goto discard_and_undo;
6503 	}
6504 
6505 	/* PAWS check. */
6506 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6507 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6508 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6509 		goto discard_and_undo;
6510 	}
6511 	if (th->syn) {
6512 		/* We see SYN without ACK. It is attempt of
6513 		 * simultaneous connect with crossed SYNs.
6514 		 * Particularly, it can be connect to self.
6515 		 */
6516 #ifdef CONFIG_TCP_AO
6517 		struct tcp_ao_info *ao;
6518 
6519 		ao = rcu_dereference_protected(tp->ao_info,
6520 					       lockdep_sock_is_held(sk));
6521 		if (ao) {
6522 			WRITE_ONCE(ao->risn, th->seq);
6523 			ao->rcv_sne = 0;
6524 		}
6525 #endif
6526 		tcp_set_state(sk, TCP_SYN_RECV);
6527 
6528 		if (tp->rx_opt.saw_tstamp) {
6529 			tp->rx_opt.tstamp_ok = 1;
6530 			tcp_store_ts_recent(tp);
6531 			tp->tcp_header_len =
6532 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6533 		} else {
6534 			tp->tcp_header_len = sizeof(struct tcphdr);
6535 		}
6536 
6537 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6538 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6539 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6540 
6541 		/* RFC1323: The window in SYN & SYN/ACK segments is
6542 		 * never scaled.
6543 		 */
6544 		tp->snd_wnd    = ntohs(th->window);
6545 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6546 		tp->max_window = tp->snd_wnd;
6547 
6548 		tcp_ecn_rcv_syn(tp, th);
6549 
6550 		tcp_mtup_init(sk);
6551 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6552 		tcp_initialize_rcv_mss(sk);
6553 
6554 		tcp_send_synack(sk);
6555 #if 0
6556 		/* Note, we could accept data and URG from this segment.
6557 		 * There are no obstacles to make this (except that we must
6558 		 * either change tcp_recvmsg() to prevent it from returning data
6559 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6560 		 *
6561 		 * However, if we ignore data in ACKless segments sometimes,
6562 		 * we have no reasons to accept it sometimes.
6563 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6564 		 * is not flawless. So, discard packet for sanity.
6565 		 * Uncomment this return to process the data.
6566 		 */
6567 		return -1;
6568 #else
6569 		goto consume;
6570 #endif
6571 	}
6572 	/* "fifth, if neither of the SYN or RST bits is set then
6573 	 * drop the segment and return."
6574 	 */
6575 
6576 discard_and_undo:
6577 	tcp_clear_options(&tp->rx_opt);
6578 	tp->rx_opt.mss_clamp = saved_clamp;
6579 	tcp_drop_reason(sk, skb, reason);
6580 	return 0;
6581 
6582 reset_and_undo:
6583 	tcp_clear_options(&tp->rx_opt);
6584 	tp->rx_opt.mss_clamp = saved_clamp;
6585 	/* we can reuse/return @reason to its caller to handle the exception */
6586 	return reason;
6587 }
6588 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6589 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6590 {
6591 	struct tcp_sock *tp = tcp_sk(sk);
6592 	struct request_sock *req;
6593 
6594 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6595 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6596 	 */
6597 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6598 		tcp_try_undo_recovery(sk);
6599 
6600 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6601 	tcp_update_rto_time(tp);
6602 	tp->retrans_stamp = 0;
6603 	inet_csk(sk)->icsk_retransmits = 0;
6604 
6605 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6606 	 * we no longer need req so release it.
6607 	 */
6608 	req = rcu_dereference_protected(tp->fastopen_rsk,
6609 					lockdep_sock_is_held(sk));
6610 	reqsk_fastopen_remove(sk, req, false);
6611 
6612 	/* Re-arm the timer because data may have been sent out.
6613 	 * This is similar to the regular data transmission case
6614 	 * when new data has just been ack'ed.
6615 	 *
6616 	 * (TFO) - we could try to be more aggressive and
6617 	 * retransmitting any data sooner based on when they
6618 	 * are sent out.
6619 	 */
6620 	tcp_rearm_rto(sk);
6621 }
6622 
6623 /*
6624  *	This function implements the receiving procedure of RFC 793 for
6625  *	all states except ESTABLISHED and TIME_WAIT.
6626  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6627  *	address independent.
6628  */
6629 
6630 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6631 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6632 {
6633 	struct tcp_sock *tp = tcp_sk(sk);
6634 	struct inet_connection_sock *icsk = inet_csk(sk);
6635 	const struct tcphdr *th = tcp_hdr(skb);
6636 	struct request_sock *req;
6637 	int queued = 0;
6638 	SKB_DR(reason);
6639 
6640 	switch (sk->sk_state) {
6641 	case TCP_CLOSE:
6642 		SKB_DR_SET(reason, TCP_CLOSE);
6643 		goto discard;
6644 
6645 	case TCP_LISTEN:
6646 		if (th->ack)
6647 			return SKB_DROP_REASON_TCP_FLAGS;
6648 
6649 		if (th->rst) {
6650 			SKB_DR_SET(reason, TCP_RESET);
6651 			goto discard;
6652 		}
6653 		if (th->syn) {
6654 			if (th->fin) {
6655 				SKB_DR_SET(reason, TCP_FLAGS);
6656 				goto discard;
6657 			}
6658 			/* It is possible that we process SYN packets from backlog,
6659 			 * so we need to make sure to disable BH and RCU right there.
6660 			 */
6661 			rcu_read_lock();
6662 			local_bh_disable();
6663 			icsk->icsk_af_ops->conn_request(sk, skb);
6664 			local_bh_enable();
6665 			rcu_read_unlock();
6666 
6667 			consume_skb(skb);
6668 			return 0;
6669 		}
6670 		SKB_DR_SET(reason, TCP_FLAGS);
6671 		goto discard;
6672 
6673 	case TCP_SYN_SENT:
6674 		tp->rx_opt.saw_tstamp = 0;
6675 		tcp_mstamp_refresh(tp);
6676 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6677 		if (queued >= 0)
6678 			return queued;
6679 
6680 		/* Do step6 onward by hand. */
6681 		tcp_urg(sk, skb, th);
6682 		__kfree_skb(skb);
6683 		tcp_data_snd_check(sk);
6684 		return 0;
6685 	}
6686 
6687 	tcp_mstamp_refresh(tp);
6688 	tp->rx_opt.saw_tstamp = 0;
6689 	req = rcu_dereference_protected(tp->fastopen_rsk,
6690 					lockdep_sock_is_held(sk));
6691 	if (req) {
6692 		bool req_stolen;
6693 
6694 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6695 		    sk->sk_state != TCP_FIN_WAIT1);
6696 
6697 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6698 			SKB_DR_SET(reason, TCP_FASTOPEN);
6699 			goto discard;
6700 		}
6701 	}
6702 
6703 	if (!th->ack && !th->rst && !th->syn) {
6704 		SKB_DR_SET(reason, TCP_FLAGS);
6705 		goto discard;
6706 	}
6707 	if (!tcp_validate_incoming(sk, skb, th, 0))
6708 		return 0;
6709 
6710 	/* step 5: check the ACK field */
6711 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6712 				  FLAG_UPDATE_TS_RECENT |
6713 				  FLAG_NO_CHALLENGE_ACK);
6714 
6715 	if ((int)reason <= 0) {
6716 		if (sk->sk_state == TCP_SYN_RECV) {
6717 			/* send one RST */
6718 			if (!reason)
6719 				return SKB_DROP_REASON_TCP_OLD_ACK;
6720 			return -reason;
6721 		}
6722 		/* accept old ack during closing */
6723 		if ((int)reason < 0) {
6724 			tcp_send_challenge_ack(sk);
6725 			reason = -reason;
6726 			goto discard;
6727 		}
6728 	}
6729 	SKB_DR_SET(reason, NOT_SPECIFIED);
6730 	switch (sk->sk_state) {
6731 	case TCP_SYN_RECV:
6732 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6733 		if (!tp->srtt_us)
6734 			tcp_synack_rtt_meas(sk, req);
6735 
6736 		if (req) {
6737 			tcp_rcv_synrecv_state_fastopen(sk);
6738 		} else {
6739 			tcp_try_undo_spurious_syn(sk);
6740 			tp->retrans_stamp = 0;
6741 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6742 					  skb);
6743 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6744 		}
6745 		tcp_ao_established(sk);
6746 		smp_mb();
6747 		tcp_set_state(sk, TCP_ESTABLISHED);
6748 		sk->sk_state_change(sk);
6749 
6750 		/* Note, that this wakeup is only for marginal crossed SYN case.
6751 		 * Passively open sockets are not waked up, because
6752 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6753 		 */
6754 		if (sk->sk_socket)
6755 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6756 
6757 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6758 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6759 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6760 
6761 		if (tp->rx_opt.tstamp_ok)
6762 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6763 
6764 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6765 			tcp_update_pacing_rate(sk);
6766 
6767 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6768 		tp->lsndtime = tcp_jiffies32;
6769 
6770 		tcp_initialize_rcv_mss(sk);
6771 		tcp_fast_path_on(tp);
6772 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6773 			tcp_shutdown(sk, SEND_SHUTDOWN);
6774 		break;
6775 
6776 	case TCP_FIN_WAIT1: {
6777 		int tmo;
6778 
6779 		if (req)
6780 			tcp_rcv_synrecv_state_fastopen(sk);
6781 
6782 		if (tp->snd_una != tp->write_seq)
6783 			break;
6784 
6785 		tcp_set_state(sk, TCP_FIN_WAIT2);
6786 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6787 
6788 		sk_dst_confirm(sk);
6789 
6790 		if (!sock_flag(sk, SOCK_DEAD)) {
6791 			/* Wake up lingering close() */
6792 			sk->sk_state_change(sk);
6793 			break;
6794 		}
6795 
6796 		if (READ_ONCE(tp->linger2) < 0) {
6797 			tcp_done(sk);
6798 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6799 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6800 		}
6801 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6802 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6803 			/* Receive out of order FIN after close() */
6804 			if (tp->syn_fastopen && th->fin)
6805 				tcp_fastopen_active_disable(sk);
6806 			tcp_done(sk);
6807 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6808 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6809 		}
6810 
6811 		tmo = tcp_fin_time(sk);
6812 		if (tmo > TCP_TIMEWAIT_LEN) {
6813 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6814 		} else if (th->fin || sock_owned_by_user(sk)) {
6815 			/* Bad case. We could lose such FIN otherwise.
6816 			 * It is not a big problem, but it looks confusing
6817 			 * and not so rare event. We still can lose it now,
6818 			 * if it spins in bh_lock_sock(), but it is really
6819 			 * marginal case.
6820 			 */
6821 			inet_csk_reset_keepalive_timer(sk, tmo);
6822 		} else {
6823 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6824 			goto consume;
6825 		}
6826 		break;
6827 	}
6828 
6829 	case TCP_CLOSING:
6830 		if (tp->snd_una == tp->write_seq) {
6831 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6832 			goto consume;
6833 		}
6834 		break;
6835 
6836 	case TCP_LAST_ACK:
6837 		if (tp->snd_una == tp->write_seq) {
6838 			tcp_update_metrics(sk);
6839 			tcp_done(sk);
6840 			goto consume;
6841 		}
6842 		break;
6843 	}
6844 
6845 	/* step 6: check the URG bit */
6846 	tcp_urg(sk, skb, th);
6847 
6848 	/* step 7: process the segment text */
6849 	switch (sk->sk_state) {
6850 	case TCP_CLOSE_WAIT:
6851 	case TCP_CLOSING:
6852 	case TCP_LAST_ACK:
6853 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6854 			/* If a subflow has been reset, the packet should not
6855 			 * continue to be processed, drop the packet.
6856 			 */
6857 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6858 				goto discard;
6859 			break;
6860 		}
6861 		fallthrough;
6862 	case TCP_FIN_WAIT1:
6863 	case TCP_FIN_WAIT2:
6864 		/* RFC 793 says to queue data in these states,
6865 		 * RFC 1122 says we MUST send a reset.
6866 		 * BSD 4.4 also does reset.
6867 		 */
6868 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6869 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6870 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6871 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6872 				tcp_reset(sk, skb);
6873 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6874 			}
6875 		}
6876 		fallthrough;
6877 	case TCP_ESTABLISHED:
6878 		tcp_data_queue(sk, skb);
6879 		queued = 1;
6880 		break;
6881 	}
6882 
6883 	/* tcp_data could move socket to TIME-WAIT */
6884 	if (sk->sk_state != TCP_CLOSE) {
6885 		tcp_data_snd_check(sk);
6886 		tcp_ack_snd_check(sk);
6887 	}
6888 
6889 	if (!queued) {
6890 discard:
6891 		tcp_drop_reason(sk, skb, reason);
6892 	}
6893 	return 0;
6894 
6895 consume:
6896 	__kfree_skb(skb);
6897 	return 0;
6898 }
6899 EXPORT_SYMBOL(tcp_rcv_state_process);
6900 
pr_drop_req(struct request_sock * req,__u16 port,int family)6901 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6902 {
6903 	struct inet_request_sock *ireq = inet_rsk(req);
6904 
6905 	if (family == AF_INET)
6906 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6907 				    &ireq->ir_rmt_addr, port);
6908 #if IS_ENABLED(CONFIG_IPV6)
6909 	else if (family == AF_INET6)
6910 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6911 				    &ireq->ir_v6_rmt_addr, port);
6912 #endif
6913 }
6914 
6915 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6916  *
6917  * If we receive a SYN packet with these bits set, it means a
6918  * network is playing bad games with TOS bits. In order to
6919  * avoid possible false congestion notifications, we disable
6920  * TCP ECN negotiation.
6921  *
6922  * Exception: tcp_ca wants ECN. This is required for DCTCP
6923  * congestion control: Linux DCTCP asserts ECT on all packets,
6924  * including SYN, which is most optimal solution; however,
6925  * others, such as FreeBSD do not.
6926  *
6927  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6928  * set, indicating the use of a future TCP extension (such as AccECN). See
6929  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6930  * extensions.
6931  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6932 static void tcp_ecn_create_request(struct request_sock *req,
6933 				   const struct sk_buff *skb,
6934 				   const struct sock *listen_sk,
6935 				   const struct dst_entry *dst)
6936 {
6937 	const struct tcphdr *th = tcp_hdr(skb);
6938 	const struct net *net = sock_net(listen_sk);
6939 	bool th_ecn = th->ece && th->cwr;
6940 	bool ect, ecn_ok;
6941 	u32 ecn_ok_dst;
6942 
6943 	if (!th_ecn)
6944 		return;
6945 
6946 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6947 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6948 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6949 
6950 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6951 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6952 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6953 		inet_rsk(req)->ecn_ok = 1;
6954 }
6955 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6956 static void tcp_openreq_init(struct request_sock *req,
6957 			     const struct tcp_options_received *rx_opt,
6958 			     struct sk_buff *skb, const struct sock *sk)
6959 {
6960 	struct inet_request_sock *ireq = inet_rsk(req);
6961 
6962 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6963 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6964 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6965 	tcp_rsk(req)->snt_synack = 0;
6966 	tcp_rsk(req)->last_oow_ack_time = 0;
6967 	req->mss = rx_opt->mss_clamp;
6968 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6969 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6970 	ireq->sack_ok = rx_opt->sack_ok;
6971 	ireq->snd_wscale = rx_opt->snd_wscale;
6972 	ireq->wscale_ok = rx_opt->wscale_ok;
6973 	ireq->acked = 0;
6974 	ireq->ecn_ok = 0;
6975 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6976 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6977 	ireq->ir_mark = inet_request_mark(sk, skb);
6978 #if IS_ENABLED(CONFIG_SMC)
6979 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6980 			tcp_sk(sk)->smc_hs_congested(sk));
6981 #endif
6982 }
6983 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6984 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6985 				      struct sock *sk_listener,
6986 				      bool attach_listener)
6987 {
6988 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6989 					       attach_listener);
6990 
6991 	if (req) {
6992 		struct inet_request_sock *ireq = inet_rsk(req);
6993 
6994 		ireq->ireq_opt = NULL;
6995 #if IS_ENABLED(CONFIG_IPV6)
6996 		ireq->pktopts = NULL;
6997 #endif
6998 		atomic64_set(&ireq->ir_cookie, 0);
6999 		ireq->ireq_state = TCP_NEW_SYN_RECV;
7000 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
7001 		ireq->ireq_family = sk_listener->sk_family;
7002 		req->timeout = TCP_TIMEOUT_INIT;
7003 	}
7004 
7005 	return req;
7006 }
7007 EXPORT_SYMBOL(inet_reqsk_alloc);
7008 
7009 /*
7010  * Return true if a syncookie should be sent
7011  */
tcp_syn_flood_action(struct sock * sk,const char * proto)7012 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7013 {
7014 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7015 	const char *msg = "Dropping request";
7016 	struct net *net = sock_net(sk);
7017 	bool want_cookie = false;
7018 	u8 syncookies;
7019 
7020 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7021 
7022 #ifdef CONFIG_SYN_COOKIES
7023 	if (syncookies) {
7024 		msg = "Sending cookies";
7025 		want_cookie = true;
7026 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7027 	} else
7028 #endif
7029 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7030 
7031 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7032 	    xchg(&queue->synflood_warned, 1) == 0) {
7033 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7034 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7035 					proto, inet6_rcv_saddr(sk),
7036 					sk->sk_num, msg);
7037 		} else {
7038 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7039 					proto, &sk->sk_rcv_saddr,
7040 					sk->sk_num, msg);
7041 		}
7042 	}
7043 
7044 	return want_cookie;
7045 }
7046 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7047 static void tcp_reqsk_record_syn(const struct sock *sk,
7048 				 struct request_sock *req,
7049 				 const struct sk_buff *skb)
7050 {
7051 	if (tcp_sk(sk)->save_syn) {
7052 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7053 		struct saved_syn *saved_syn;
7054 		u32 mac_hdrlen;
7055 		void *base;
7056 
7057 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7058 			base = skb_mac_header(skb);
7059 			mac_hdrlen = skb_mac_header_len(skb);
7060 			len += mac_hdrlen;
7061 		} else {
7062 			base = skb_network_header(skb);
7063 			mac_hdrlen = 0;
7064 		}
7065 
7066 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7067 				    GFP_ATOMIC);
7068 		if (saved_syn) {
7069 			saved_syn->mac_hdrlen = mac_hdrlen;
7070 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7071 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7072 			memcpy(saved_syn->data, base, len);
7073 			req->saved_syn = saved_syn;
7074 		}
7075 	}
7076 }
7077 
7078 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7079  * used for SYN cookie generation.
7080  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7081 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7082 			  const struct tcp_request_sock_ops *af_ops,
7083 			  struct sock *sk, struct tcphdr *th)
7084 {
7085 	struct tcp_sock *tp = tcp_sk(sk);
7086 	u16 mss;
7087 
7088 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7089 	    !inet_csk_reqsk_queue_is_full(sk))
7090 		return 0;
7091 
7092 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7093 		return 0;
7094 
7095 	if (sk_acceptq_is_full(sk)) {
7096 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7097 		return 0;
7098 	}
7099 
7100 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7101 	if (!mss)
7102 		mss = af_ops->mss_clamp;
7103 
7104 	return mss;
7105 }
7106 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7107 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7108 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7109 		     const struct tcp_request_sock_ops *af_ops,
7110 		     struct sock *sk, struct sk_buff *skb)
7111 {
7112 	struct tcp_fastopen_cookie foc = { .len = -1 };
7113 	struct tcp_options_received tmp_opt;
7114 	struct tcp_sock *tp = tcp_sk(sk);
7115 	struct net *net = sock_net(sk);
7116 	struct sock *fastopen_sk = NULL;
7117 	struct request_sock *req;
7118 	bool want_cookie = false;
7119 	struct dst_entry *dst;
7120 	struct flowi fl;
7121 	u8 syncookies;
7122 	u32 isn;
7123 
7124 #ifdef CONFIG_TCP_AO
7125 	const struct tcp_ao_hdr *aoh;
7126 #endif
7127 
7128 	isn = __this_cpu_read(tcp_tw_isn);
7129 	if (isn) {
7130 		/* TW buckets are converted to open requests without
7131 		 * limitations, they conserve resources and peer is
7132 		 * evidently real one.
7133 		 */
7134 		__this_cpu_write(tcp_tw_isn, 0);
7135 	} else {
7136 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7137 
7138 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7139 			want_cookie = tcp_syn_flood_action(sk,
7140 							   rsk_ops->slab_name);
7141 			if (!want_cookie)
7142 				goto drop;
7143 		}
7144 	}
7145 
7146 	if (sk_acceptq_is_full(sk)) {
7147 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7148 		goto drop;
7149 	}
7150 
7151 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7152 	if (!req)
7153 		goto drop;
7154 
7155 	req->syncookie = want_cookie;
7156 	tcp_rsk(req)->af_specific = af_ops;
7157 	tcp_rsk(req)->ts_off = 0;
7158 	tcp_rsk(req)->req_usec_ts = false;
7159 #if IS_ENABLED(CONFIG_MPTCP)
7160 	tcp_rsk(req)->is_mptcp = 0;
7161 #endif
7162 
7163 	tcp_clear_options(&tmp_opt);
7164 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7165 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7166 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7167 			  want_cookie ? NULL : &foc);
7168 
7169 	if (want_cookie && !tmp_opt.saw_tstamp)
7170 		tcp_clear_options(&tmp_opt);
7171 
7172 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7173 		tmp_opt.smc_ok = 0;
7174 
7175 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7176 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7177 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7178 
7179 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7180 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7181 
7182 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7183 	if (!dst)
7184 		goto drop_and_free;
7185 
7186 	if (tmp_opt.tstamp_ok) {
7187 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7188 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7189 	}
7190 	if (!want_cookie && !isn) {
7191 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7192 
7193 		/* Kill the following clause, if you dislike this way. */
7194 		if (!syncookies &&
7195 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7196 		     (max_syn_backlog >> 2)) &&
7197 		    !tcp_peer_is_proven(req, dst)) {
7198 			/* Without syncookies last quarter of
7199 			 * backlog is filled with destinations,
7200 			 * proven to be alive.
7201 			 * It means that we continue to communicate
7202 			 * to destinations, already remembered
7203 			 * to the moment of synflood.
7204 			 */
7205 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7206 				    rsk_ops->family);
7207 			goto drop_and_release;
7208 		}
7209 
7210 		isn = af_ops->init_seq(skb);
7211 	}
7212 
7213 	tcp_ecn_create_request(req, skb, sk, dst);
7214 
7215 	if (want_cookie) {
7216 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7217 		if (!tmp_opt.tstamp_ok)
7218 			inet_rsk(req)->ecn_ok = 0;
7219 	}
7220 
7221 #ifdef CONFIG_TCP_AO
7222 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7223 		goto drop_and_release; /* Invalid TCP options */
7224 	if (aoh) {
7225 		tcp_rsk(req)->used_tcp_ao = true;
7226 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7227 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7228 
7229 	} else {
7230 		tcp_rsk(req)->used_tcp_ao = false;
7231 	}
7232 #endif
7233 	tcp_rsk(req)->snt_isn = isn;
7234 	tcp_rsk(req)->txhash = net_tx_rndhash();
7235 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7236 	tcp_openreq_init_rwin(req, sk, dst);
7237 	sk_rx_queue_set(req_to_sk(req), skb);
7238 	if (!want_cookie) {
7239 		tcp_reqsk_record_syn(sk, req, skb);
7240 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7241 	}
7242 	if (fastopen_sk) {
7243 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7244 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7245 		/* Add the child socket directly into the accept queue */
7246 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7247 			reqsk_fastopen_remove(fastopen_sk, req, false);
7248 			bh_unlock_sock(fastopen_sk);
7249 			sock_put(fastopen_sk);
7250 			goto drop_and_free;
7251 		}
7252 		sk->sk_data_ready(sk);
7253 		bh_unlock_sock(fastopen_sk);
7254 		sock_put(fastopen_sk);
7255 	} else {
7256 		tcp_rsk(req)->tfo_listener = false;
7257 		if (!want_cookie) {
7258 			req->timeout = tcp_timeout_init((struct sock *)req);
7259 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7260 		}
7261 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7262 				    !want_cookie ? TCP_SYNACK_NORMAL :
7263 						   TCP_SYNACK_COOKIE,
7264 				    skb);
7265 		if (want_cookie) {
7266 			reqsk_free(req);
7267 			return 0;
7268 		}
7269 	}
7270 	reqsk_put(req);
7271 	return 0;
7272 
7273 drop_and_release:
7274 	dst_release(dst);
7275 drop_and_free:
7276 	__reqsk_free(req);
7277 drop:
7278 	tcp_listendrop(sk);
7279 	return 0;
7280 }
7281 EXPORT_SYMBOL(tcp_conn_request);
7282