xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision ed183f8c)
1 /*-
2  * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/devicestat.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/lock.h>
44 #include <sys/module.h>
45 #include <sys/nata.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 /* local implementation, to trigger a warning */
61 static inline void
biofinish(struct bio * bp,struct bio * x __unused,int error)62 biofinish(struct bio *bp, struct bio *x __unused, int error)
63 {
64 	struct buf *bbp = bp->bio_buf;
65 
66 	bbp->b_flags |= B_ERROR;
67 	bbp->b_error = error;
68 	biodone(bp);
69 }
70 
71 /* device structure */
72 static	d_strategy_t	ata_raid_strategy;
73 static	d_dump_t	ata_raid_dump;
74 static struct dev_ops ar_ops = {
75 	{ "ar", 0, D_DISK },
76 	.d_open =	nullopen,
77 	.d_close =	nullclose,
78 	.d_read =	physread,
79 	.d_write =	physwrite,
80 	.d_strategy =	ata_raid_strategy,
81 	.d_dump =	ata_raid_dump,
82 };
83 
84 /* prototypes */
85 static void ata_raid_done(struct ata_request *request);
86 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
87 static int ata_raid_status(struct ata_ioc_raid_status *status);
88 static int ata_raid_create(struct ata_ioc_raid_config *config);
89 static int ata_raid_delete(int array);
90 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
91 static int ata_raid_rebuild(int array);
92 static int ata_raid_read_metadata(device_t subdisk);
93 static int ata_raid_write_metadata(struct ar_softc *rdp);
94 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
95 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
98 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
99 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
101 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
102 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
104 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
105 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
106 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
107 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
108 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
109 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
110 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
111 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
112 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
113 static int ata_raid_via_write_meta(struct ar_softc *rdp);
114 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
115 static int ata_raid_send_request(struct ata_request *request);
116 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
117 static char * ata_raid_format(struct ar_softc *rdp);
118 static char * ata_raid_type(struct ar_softc *rdp);
119 static char * ata_raid_flags(struct ar_softc *rdp);
120 
121 /* debugging only */
122 static void ata_raid_print_meta(struct ar_softc *meta);
123 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
124 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
125 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
126 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
127 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
128 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
129 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
130 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
131 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
132 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
133 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
134 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
135 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
136 
137 /* internal vars */
138 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
139 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
140 static devclass_t ata_raid_sub_devclass;
141 static int testing = 0;
142 
143 static void
ata_raid_attach(struct ar_softc * rdp,int writeback)144 ata_raid_attach(struct ar_softc *rdp, int writeback)
145 {
146     struct disk_info info;
147     cdev_t cdev;
148     char buffer[32];
149     int disk;
150 
151     lockinit(&rdp->lock, "ataraidattach", 0, 0);
152     ata_raid_config_changed(rdp, writeback);
153 
154     /* sanitize arrays total_size % (width * interleave) == 0 */
155     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
156 	rdp->type == AR_T_RAID5) {
157 	rdp->total_sectors = rounddown(rdp->total_sectors,
158 	    rdp->interleave * rdp->width);
159 	ksprintf(buffer, " (stripe %d KB)",
160 		(rdp->interleave * DEV_BSIZE) / 1024);
161     }
162     else
163 	buffer[0] = '\0';
164 
165     devstat_add_entry(&rdp->devstat, "ar", rdp->lun,
166 	DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS,
167 	DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
168 	DEVSTAT_PRIORITY_ARRAY);
169 
170     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
171     cdev->si_drv1 = rdp;
172     cdev->si_iosize_max = 128 * DEV_BSIZE;
173     rdp->cdev = cdev;
174 
175     bzero(&info, sizeof(info));
176     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
177     info.d_media_blocks = rdp->total_sectors;
178 
179     info.d_secpertrack = rdp->sectors;		/* optional */
180     info.d_nheads = rdp->heads;
181     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
182     info.d_secpercyl = rdp->sectors * rdp->heads;
183 
184     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
185 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
186 	   ata_raid_format(rdp), ata_raid_type(rdp),
187 	   buffer, ata_raid_flags(rdp));
188 
189     if (testing || bootverbose)
190 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
191 	       rdp->lun, rdp->total_sectors,
192 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
193 
194     for (disk = 0; disk < rdp->total_disks; disk++) {
195 	kprintf("ar%d: disk%d ", rdp->lun, disk);
196 	if (rdp->disks[disk].dev) {
197 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
198 		/* status of this disk in the array */
199 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
200 		    kprintf("READY ");
201 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
202 		    kprintf("SPARE ");
203 		else
204 		    kprintf("FREE  ");
205 
206 		/* what type of disk is this in the array */
207 		switch (rdp->type) {
208 		case AR_T_RAID1:
209 		case AR_T_RAID01:
210 		    if (disk < rdp->width)
211 			kprintf("(master) ");
212 		    else
213 			kprintf("(mirror) ");
214 		}
215 
216 		/* which physical disk is used */
217 		kprintf("using %s at ata%d-%s\n",
218 		       device_get_nameunit(rdp->disks[disk].dev),
219 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
220 		       (((struct ata_device *)
221 			 device_get_softc(rdp->disks[disk].dev))->unit ==
222 			 ATA_MASTER) ? "master" : "slave");
223 	    }
224 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
225 		kprintf("DOWN\n");
226 	    else
227 		kprintf("INVALID no RAID config on this subdisk\n");
228 	}
229 	else
230 	    kprintf("DOWN no device found for this subdisk\n");
231     }
232 
233     disk_setdiskinfo(&rdp->disk, &info);
234 }
235 
236 /*
237  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
238  * to the dev_ops way, because it's just chained from the generic ata ioctl.
239  */
240 static int
ata_raid_ioctl(u_long cmd,caddr_t data)241 ata_raid_ioctl(u_long cmd, caddr_t data)
242 {
243     struct ata_ioc_raid_status *status = (struct ata_ioc_raid_status *)data;
244     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
245     int *lun = (int *)data;
246     int error = EOPNOTSUPP;
247 
248     switch (cmd) {
249     case IOCATARAIDSTATUS:
250 	error = ata_raid_status(status);
251 	break;
252 
253     case IOCATARAIDCREATE:
254 	error = ata_raid_create(config);
255 	break;
256 
257     case IOCATARAIDDELETE:
258 	error = ata_raid_delete(*lun);
259 	break;
260 
261     case IOCATARAIDADDSPARE:
262 	error = ata_raid_addspare(config);
263 	break;
264 
265     case IOCATARAIDREBUILD:
266 	error = ata_raid_rebuild(*lun);
267 	break;
268     }
269     return error;
270 }
271 
272 static int
ata_raid_flush(struct ar_softc * rdp,struct bio * bp)273 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
274 {
275     struct ata_request *request;
276     device_t dev;
277     int disk;
278 
279     bp->bio_driver_info = NULL;
280 
281     for (disk = 0; disk < rdp->total_disks; disk++) {
282 	if ((dev = rdp->disks[disk].dev) != NULL)
283 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
284     }
285     for (disk = 0; disk < rdp->total_disks; disk++) {
286 	if ((dev = rdp->disks[disk].dev) == NULL)
287 	    continue;
288 	if (!(request = ata_raid_init_request(rdp, bp)))
289 	    return ENOMEM;
290 	request->dev = dev;
291 	request->u.ata.command = ATA_FLUSHCACHE;
292 	request->u.ata.lba = 0;
293 	request->u.ata.count = 0;
294 	request->u.ata.feature = 0;
295 	request->timeout = 1;	/* ATA_DEFAULT_TIMEOUT */
296 	request->retries = 0;
297 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
298 	ata_queue_request(request);
299     }
300     return 0;
301 }
302 
303 /*
304  * XXX TGEN there are a lot of offset -> block number conversions going on
305  * here, which is suboptimal.
306  */
307 static int
ata_raid_strategy(struct dev_strategy_args * ap)308 ata_raid_strategy(struct dev_strategy_args *ap)
309 {
310     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
311     struct bio *bp = ap->a_bio;
312     struct buf *bbp = bp->bio_buf;
313     struct ata_request *request;
314     caddr_t data;
315     u_int64_t blkno, lba, blk = 0;
316     int count, chunk, drv, par = 0, change = 0;
317 
318     if (bbp->b_cmd == BUF_CMD_FLUSH) {
319 	int error;
320 
321 	error = ata_raid_flush(rdp, bp);
322 	if (error != 0)
323 		biofinish(bp, NULL, error);
324 	return(0);
325     }
326 
327     if (!(rdp->status & AR_S_READY) ||
328 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
329 	biofinish(bp, NULL, EIO);
330 	return(0);
331     }
332 
333     bbp->b_resid = bbp->b_bcount;
334     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
335 	 /* bio_offset is byte granularity, convert */
336 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
337 	 data = bbp->b_data;
338 	 count > 0;
339 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
340 
341 	switch (rdp->type) {
342 	case AR_T_RAID1:
343 	    drv = 0;
344 	    lba = blkno;
345 	    chunk = count;
346 	    break;
347 
348 	case AR_T_JBOD:
349 	case AR_T_SPAN:
350 	    drv = 0;
351 	    lba = blkno;
352 	    while (lba >= rdp->disks[drv].sectors)
353 		lba -= rdp->disks[drv++].sectors;
354 	    chunk = min(rdp->disks[drv].sectors - lba, count);
355 	    break;
356 
357 	case AR_T_RAID0:
358 	case AR_T_RAID01:
359 	    chunk = blkno % rdp->interleave;
360 	    drv = (blkno / rdp->interleave) % rdp->width;
361 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
362 	    chunk = min(count, rdp->interleave - chunk);
363 	    break;
364 
365 	case AR_T_RAID5:
366 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
367 	    par = rdp->width - 1 -
368 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
369 	    if (drv >= par)
370 		drv++;
371 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
372 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
373 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
374 	    break;
375 
376 	default:
377 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
378 	    biofinish(bp, NULL, EIO);
379 	    return(0);
380 	}
381 
382 	/* offset on all but "first on HPTv2" */
383 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
384 	    lba += rdp->offset_sectors;
385 
386 	if (!(request = ata_raid_init_request(rdp, bp))) {
387 	    biofinish(bp, NULL, EIO);
388 	    return(0);
389 	}
390 	request->data = data;
391 	request->bytecount = chunk * DEV_BSIZE;
392 	request->u.ata.lba = lba;
393 	request->u.ata.count = request->bytecount / DEV_BSIZE;
394 
395 	devstat_start_transaction(&rdp->devstat);
396 	switch (rdp->type) {
397 	case AR_T_JBOD:
398 	case AR_T_SPAN:
399 	case AR_T_RAID0:
400 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
401 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
402 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
403 		ata_raid_config_changed(rdp, 1);
404 		ata_free_request(request);
405 		biofinish(bp, NULL, EIO);
406 		return(0);
407 	    }
408 	    request->this = drv;
409 	    request->dev = rdp->disks[request->this].dev;
410 	    ata_raid_send_request(request);
411 	    break;
412 
413 	case AR_T_RAID1:
414 	case AR_T_RAID01:
415 	    if ((rdp->disks[drv].flags &
416 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
417 		!rdp->disks[drv].dev) {
418 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
419 		change = 1;
420 	    }
421 	    if ((rdp->disks[drv + rdp->width].flags &
422 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
423 		!rdp->disks[drv + rdp->width].dev) {
424 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
425 		change = 1;
426 	    }
427 	    if (change)
428 		ata_raid_config_changed(rdp, 1);
429 	    if (!(rdp->status & AR_S_READY)) {
430 		ata_free_request(request);
431 		biofinish(bp, NULL, EIO);
432 		return(0);
433 	    }
434 
435 	    if (rdp->status & AR_S_REBUILDING)
436 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
437 		      (rdp->interleave * (drv % rdp->width)) +
438 		      lba % rdp->interleave;
439 
440 	    if (bbp->b_cmd == BUF_CMD_READ) {
441 		int src_online =
442 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
443 		int mir_online =
444 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
445 
446 		/* if mirror gone or close to last access on source */
447 		if (!mir_online ||
448 		    ((src_online) &&
449 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
450 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
451 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
452 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
453 		    rdp->toggle = 0;
454 		}
455 		/* if source gone or close to last access on mirror */
456 		else if (!src_online ||
457 			 ((mir_online) &&
458 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
459 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
460 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
461 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
462 		    drv += rdp->width;
463 		    rdp->toggle = 1;
464 		}
465 		/* not close to any previous access, toggle */
466 		else {
467 		    if (rdp->toggle)
468 			rdp->toggle = 0;
469 		    else {
470 			drv += rdp->width;
471 			rdp->toggle = 1;
472 		    }
473 		}
474 
475 		if ((rdp->status & AR_S_REBUILDING) &&
476 		    (blk <= rdp->rebuild_lba) &&
477 		    ((blk + chunk) > rdp->rebuild_lba)) {
478 		    struct ata_composite *composite;
479 		    struct ata_request *rebuild;
480 		    int this;
481 
482 		    /* figure out what part to rebuild */
483 		    if (drv < rdp->width)
484 			this = drv + rdp->width;
485 		    else
486 			this = drv - rdp->width;
487 
488 		    /* do we have a spare to rebuild on ? */
489 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
490 			if ((composite = ata_alloc_composite())) {
491 			    if ((rebuild = ata_alloc_request())) {
492 				rdp->rebuild_lba = blk + chunk;
493 				bcopy(request, rebuild,
494 				      sizeof(struct ata_request));
495 				rebuild->this = this;
496 				rebuild->dev = rdp->disks[this].dev;
497 				rebuild->flags &= ~ATA_R_READ;
498 				rebuild->flags |= ATA_R_WRITE;
499 				lockinit(&composite->lock, "ardfspare", 0, 0);
500 				composite->residual = request->bytecount;
501 				composite->rd_needed |= (1 << drv);
502 				composite->wr_depend |= (1 << drv);
503 				composite->wr_needed |= (1 << this);
504 				composite->request[drv] = request;
505 				composite->request[this] = rebuild;
506 				request->composite = composite;
507 				rebuild->composite = composite;
508 				ata_raid_send_request(rebuild);
509 			    }
510 			    else {
511 				ata_free_composite(composite);
512 				kprintf("DOH! ata_alloc_request failed!\n");
513 			    }
514 			}
515 			else {
516 			    kprintf("DOH! ata_alloc_composite failed!\n");
517 			}
518 		    }
519 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
520 			/*
521 			 * if we got here we are a chunk of a RAID01 that
522 			 * does not need a rebuild, but we need to increment
523 			 * the rebuild_lba address to get the rebuild to
524 			 * move to the next chunk correctly
525 			 */
526 			rdp->rebuild_lba = blk + chunk;
527 		    }
528 		    else
529 			kprintf("DOH! we didn't find the rebuild part\n");
530 		}
531 	    }
532 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
533 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
534 		    ((rdp->status & AR_S_REBUILDING) &&
535 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
536 		     ((blk < rdp->rebuild_lba) ||
537 		      ((blk <= rdp->rebuild_lba) &&
538 		       ((blk + chunk) > rdp->rebuild_lba))))) {
539 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
540 			((rdp->status & AR_S_REBUILDING) &&
541 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
542 			 ((blk < rdp->rebuild_lba) ||
543 			  ((blk <= rdp->rebuild_lba) &&
544 			   ((blk + chunk) > rdp->rebuild_lba))))) {
545 			struct ata_request *mirror;
546 			struct ata_composite *composite;
547 			int this = drv + rdp->width;
548 
549 			if ((composite = ata_alloc_composite())) {
550 			    if ((mirror = ata_alloc_request())) {
551 				if ((blk <= rdp->rebuild_lba) &&
552 				    ((blk + chunk) > rdp->rebuild_lba))
553 				    rdp->rebuild_lba = blk + chunk;
554 				bcopy(request, mirror,
555 				      sizeof(struct ata_request));
556 				mirror->this = this;
557 				mirror->dev = rdp->disks[this].dev;
558 				lockinit(&composite->lock, "ardfonline", 0, 0);
559 				composite->residual = request->bytecount;
560 				composite->wr_needed |= (1 << drv);
561 				composite->wr_needed |= (1 << this);
562 				composite->request[drv] = request;
563 				composite->request[this] = mirror;
564 				request->composite = composite;
565 				mirror->composite = composite;
566 				ata_raid_send_request(mirror);
567 				rdp->disks[this].last_lba =
568 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
569 				    chunk;
570 			    }
571 			    else {
572 				ata_free_composite(composite);
573 				kprintf("DOH! ata_alloc_request failed!\n");
574 			    }
575 			}
576 			else {
577 			    kprintf("DOH! ata_alloc_composite failed!\n");
578 			}
579 		    }
580 		    else
581 			drv += rdp->width;
582 		}
583 	    }
584 	    request->this = drv;
585 	    request->dev = rdp->disks[request->this].dev;
586 	    ata_raid_send_request(request);
587 	    rdp->disks[request->this].last_lba =
588 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
589 	    break;
590 
591 	case AR_T_RAID5:
592 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
593 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
594 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
595 		change = 1;
596 	    }
597 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
598 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
599 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
600 		change = 1;
601 	    }
602 	    if (change)
603 		ata_raid_config_changed(rdp, 1);
604 	    if (!(rdp->status & AR_S_READY)) {
605 		ata_free_request(request);
606 		biofinish(bp, NULL, EIO);
607 		return(0);
608 	    }
609 	    if (rdp->status & AR_S_DEGRADED) {
610 		/* do the XOR game if possible */
611 	    }
612 	    else {
613 		request->this = drv;
614 		request->dev = rdp->disks[request->this].dev;
615 		if (bbp->b_cmd == BUF_CMD_READ) {
616 		    ata_raid_send_request(request);
617 		}
618 		if (bbp->b_cmd == BUF_CMD_WRITE) {
619 		    ata_raid_send_request(request);
620 		    /*
621 		     * ensure that read-modify-write to each disk is atomic.
622 		     * couple of copies of request
623 		     * read old data data from drv
624 		     * write new data to drv
625 		     * read smth-smth data from pairs
626 		     * write old data xor smth-smth data xor data to pairs
627 		     */
628 		}
629 	    }
630 	    break;
631 
632 	default:
633 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
634 	}
635     }
636 
637     return(0);
638 }
639 
640 static void
ata_raid_done(struct ata_request * request)641 ata_raid_done(struct ata_request *request)
642 {
643     struct ar_softc *rdp = request->driver;
644     struct ata_composite *composite = NULL;
645     struct bio *bp = request->bio;
646     struct buf *bbp = bp->bio_buf;
647     int i, mirror, finished = 0;
648 
649     if (bbp->b_cmd == BUF_CMD_FLUSH) {
650 	if (bbp->b_error == 0)
651 		bbp->b_error = request->result;
652 	ata_free_request(request);
653 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
654 	if ((intptr_t)bp->bio_driver_info == 0) {
655 		if (bbp->b_error)
656 			bbp->b_flags |= B_ERROR;
657 		biodone(bp);
658 	}
659 	return;
660     }
661 
662     switch (rdp->type) {
663     case AR_T_JBOD:
664     case AR_T_SPAN:
665     case AR_T_RAID0:
666 	if (request->result) {
667 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
668 	    ata_raid_config_changed(rdp, 1);
669 	    bbp->b_error = request->result;
670 	    finished = 1;
671 	}
672 	else {
673 	    bbp->b_resid -= request->donecount;
674 	    if (!bbp->b_resid)
675 		finished = 1;
676 	}
677 	break;
678 
679     case AR_T_RAID1:
680     case AR_T_RAID01:
681 	if (request->this < rdp->width)
682 	    mirror = request->this + rdp->width;
683 	else
684 	    mirror = request->this - rdp->width;
685 	if (request->result) {
686 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
687 	    ata_raid_config_changed(rdp, 1);
688 	}
689 	if (rdp->status & AR_S_READY) {
690 	    u_int64_t blk = 0;
691 
692 	    if (rdp->status & AR_S_REBUILDING)
693 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
694 		      rdp->interleave + (rdp->interleave *
695 		      (request->this % rdp->width)) +
696 		      request->u.ata.lba % rdp->interleave;
697 
698 	    if (bbp->b_cmd == BUF_CMD_READ) {
699 
700 		/* is this a rebuild composite */
701 		if ((composite = request->composite)) {
702 		    lockmgr(&composite->lock, LK_EXCLUSIVE);
703 
704 		    /* handle the read part of a rebuild composite */
705 		    if (request->flags & ATA_R_READ) {
706 
707 			/* if read failed array is now broken */
708 			if (request->result) {
709 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
710 			    ata_raid_config_changed(rdp, 1);
711 			    bbp->b_error = request->result;
712 			    rdp->rebuild_lba = blk;
713 			    finished = 1;
714 			}
715 
716 			/* good data, update how far we've gotten */
717 			else {
718 			    bbp->b_resid -= request->donecount;
719 			    composite->residual -= request->donecount;
720 			    if (!composite->residual) {
721 				if (composite->wr_done & (1 << mirror))
722 				    finished = 1;
723 			    }
724 			}
725 		    }
726 
727 		    /* handle the write part of a rebuild composite */
728 		    else if (request->flags & ATA_R_WRITE) {
729 			if (composite->rd_done & (1 << mirror)) {
730 			    if (request->result) {
731 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
732 				rdp->rebuild_lba = blk;
733 			    }
734 			    if (!composite->residual)
735 				finished = 1;
736 			}
737 		    }
738 		    lockmgr(&composite->lock, LK_RELEASE);
739 		}
740 
741 		/* if read failed retry on the mirror */
742 		else if (request->result) {
743 		    request->dev = rdp->disks[mirror].dev;
744 		    request->flags &= ~ATA_R_TIMEOUT;
745 		    ata_raid_send_request(request);
746 		    return;
747 		}
748 
749 		/* we have good data */
750 		else {
751 		    bbp->b_resid -= request->donecount;
752 		    if (!bbp->b_resid)
753 			finished = 1;
754 		}
755 	    }
756 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
757 		/* do we have a mirror or rebuild to deal with ? */
758 		if ((composite = request->composite)) {
759 		    lockmgr(&composite->lock, LK_EXCLUSIVE);
760 		    if (composite->wr_done & (1 << mirror)) {
761 			if (request->result) {
762 			    if (composite->request[mirror]->result) {
763 				kprintf("DOH! all disks failed and got here\n");
764 				bbp->b_error = EIO;
765 			    }
766 			    if (rdp->status & AR_S_REBUILDING) {
767 				rdp->rebuild_lba = blk;
768 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
769 			    }
770 			    bbp->b_resid -=
771 				composite->request[mirror]->donecount;
772 			    composite->residual -=
773 				composite->request[mirror]->donecount;
774 			}
775 			else {
776 			    bbp->b_resid -= request->donecount;
777 			    composite->residual -= request->donecount;
778 			}
779 			if (!composite->residual)
780 			    finished = 1;
781 		    }
782 		    lockmgr(&composite->lock, LK_RELEASE);
783 		}
784 		/* no mirror we are done */
785 		else {
786 		    bbp->b_resid -= request->donecount;
787 		    if (!bbp->b_resid)
788 			finished = 1;
789 		}
790 	    }
791 	}
792 	else {
793 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
794 	    bbp->b_error = request->result;
795 	    biodone(bp);
796 	}
797 	break;
798 
799     case AR_T_RAID5:
800 	if (request->result) {
801 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
802 	    ata_raid_config_changed(rdp, 1);
803 	    if (rdp->status & AR_S_READY) {
804 		if (bbp->b_cmd == BUF_CMD_READ) {
805 		    /* do the XOR game to recover data */
806 		}
807 		if (bbp->b_cmd == BUF_CMD_WRITE) {
808 		    /* if the parity failed we're OK sortof */
809 		    /* otherwise wee need to do the XOR long dance */
810 		}
811 		finished = 1;
812 	    }
813 	    else {
814 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
815 		bbp->b_error = request->result;
816 		biodone(bp);
817 	    }
818 	}
819 	else {
820 	    /* did we have an XOR game going ?? */
821 	    bbp->b_resid -= request->donecount;
822 	    if (!bbp->b_resid)
823 		finished = 1;
824 	}
825 	break;
826 
827     default:
828 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
829     }
830 
831     if (finished) {
832 	if ((rdp->status & AR_S_REBUILDING) &&
833 	    rdp->rebuild_lba >= rdp->total_sectors) {
834 	    int disk;
835 
836 	    for (disk = 0; disk < rdp->total_disks; disk++) {
837 		if ((rdp->disks[disk].flags &
838 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
839 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
840 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
841 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
842 		}
843 	    }
844 	    rdp->status &= ~AR_S_REBUILDING;
845 	    ata_raid_config_changed(rdp, 1);
846 	}
847 	devstat_end_transaction_buf(&rdp->devstat, bbp);
848 	if (!bbp->b_resid)
849 	    biodone(bp);
850     }
851 
852     if (composite) {
853 	if (finished) {
854 	    /* we are done with this composite, free all resources */
855 	    for (i = 0; i < 32; i++) {
856 		if (composite->rd_needed & (1 << i) ||
857 		    composite->wr_needed & (1 << i)) {
858 		    ata_free_request(composite->request[i]);
859 		}
860 	    }
861 	    lockuninit(&composite->lock);
862 	    ata_free_composite(composite);
863 	}
864     }
865     else
866 	ata_free_request(request);
867 }
868 
869 static int
ata_raid_dump(struct dev_dump_args * ap)870 ata_raid_dump(struct dev_dump_args *ap)
871 {
872 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
873 	struct buf dbuf;
874 	int error = 0;
875 	int disk;
876 
877 	if (ap->a_length == 0) {
878 		/* flush subdisk buffers to media */
879 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
880 			if (rdp->disks[disk].dev) {
881 				error |= ata_controlcmd(rdp->disks[disk].dev,
882 						ATA_FLUSHCACHE, 0, 0, 0);
883 			}
884 		}
885 		return (error ? EIO : 0);
886 	}
887 
888 	bzero(&dbuf, sizeof(struct buf));
889 	initbufbio(&dbuf);
890 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
891 	/* bio_offset is byte granularity, convert block granularity a_blkno */
892 	dbuf.b_bio1.bio_offset = ap->a_offset;
893 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
894 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
895 	dbuf.b_bio1.bio_done = biodone_sync;
896 	dbuf.b_bcount = ap->a_length;
897 	dbuf.b_data = ap->a_virtual;
898 	dbuf.b_cmd = BUF_CMD_WRITE;
899 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
900 	/* wait for completion, unlock the buffer, check status */
901 	if (biowait(&dbuf.b_bio1, "dumpw")) {
902 	    BUF_UNLOCK(&dbuf);
903 	    return(dbuf.b_error ? dbuf.b_error : EIO);
904 	}
905 	BUF_UNLOCK(&dbuf);
906 	uninitbufbio(&dbuf);
907 
908 	return 0;
909 }
910 
911 static void
ata_raid_config_changed(struct ar_softc * rdp,int writeback)912 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
913 {
914     int disk, count, status;
915 
916     lockmgr(&rdp->lock, LK_EXCLUSIVE);
917 
918     /* set default all working mode */
919     status = rdp->status;
920     rdp->status &= ~AR_S_DEGRADED;
921     rdp->status |= AR_S_READY;
922 
923     /* make sure all lost drives are accounted for */
924     for (disk = 0; disk < rdp->total_disks; disk++) {
925 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
926 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
927     }
928 
929     /* depending on RAID type figure out our health status */
930     switch (rdp->type) {
931     case AR_T_JBOD:
932     case AR_T_SPAN:
933     case AR_T_RAID0:
934 	for (disk = 0; disk < rdp->total_disks; disk++)
935 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
936 		rdp->status &= ~AR_S_READY;
937 	break;
938 
939     case AR_T_RAID1:
940     case AR_T_RAID01:
941 	for (disk = 0; disk < rdp->width; disk++) {
942 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
943 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
944 		rdp->status &= ~AR_S_READY;
945 	    }
946 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
947 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
948 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
949 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
950 		rdp->status |= AR_S_DEGRADED;
951 	    }
952 	}
953 	break;
954 
955     case AR_T_RAID5:
956 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
957 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
958 		count++;
959 	}
960 	if (count) {
961 	    if (count > 1)
962 		rdp->status &= ~AR_S_READY;
963 	    else
964 		rdp->status |= AR_S_DEGRADED;
965 	}
966 	break;
967     default:
968 	rdp->status &= ~AR_S_READY;
969     }
970 
971     /*
972      * Note that when the array breaks so comes up broken we
973      * force a write of the array config to the remaining
974      * drives so that the generation will be incremented past
975      * those of the missing or failed drives (in all cases).
976      */
977     if (rdp->status != status) {
978 
979 	/* raid status has changed, update metadata */
980 	writeback = 1;
981 
982 	/* announce we have trouble ahead */
983 	if (!(rdp->status & AR_S_READY)) {
984 	    kprintf("ar%d: FAILURE - %s array broken\n",
985 		   rdp->lun, ata_raid_type(rdp));
986 	}
987 	else if (rdp->status & AR_S_DEGRADED) {
988 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
989 		kprintf("ar%d: WARNING - mirror", rdp->lun);
990 	    else
991 		kprintf("ar%d: WARNING - parity", rdp->lun);
992 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
993 		   ata_raid_type(rdp));
994 	}
995     }
996     lockmgr(&rdp->lock, LK_RELEASE);
997     if (writeback)
998 	ata_raid_write_metadata(rdp);
999 
1000 }
1001 
1002 static int
ata_raid_status(struct ata_ioc_raid_status * status)1003 ata_raid_status(struct ata_ioc_raid_status *status)
1004 {
1005     struct ar_softc *rdp;
1006     int i;
1007 
1008     if (!(rdp = ata_raid_arrays[status->lun]))
1009 	return ENXIO;
1010 
1011     status->type = rdp->type;
1012     status->total_disks = rdp->total_disks;
1013     for (i = 0; i < rdp->total_disks; i++ ) {
1014 	status->disks[i].state = 0;
1015 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev) {
1016 	    status->disks[i].lun = device_get_unit(rdp->disks[i].dev);
1017 	    if (rdp->disks[i].flags & AR_DF_PRESENT)
1018 		status->disks[i].state |= AR_DISK_PRESENT;
1019 	    if (rdp->disks[i].flags & AR_DF_ONLINE)
1020 		status->disks[i].state |= AR_DISK_ONLINE;
1021 	    if (rdp->disks[i].flags & AR_DF_SPARE)
1022 		status->disks[i].state |= AR_DISK_SPARE;
1023 	} else
1024 	    status->disks[i].lun = -1;
1025     }
1026     status->interleave = rdp->interleave;
1027     status->status = rdp->status;
1028     status->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1029     return 0;
1030 }
1031 
1032 static int
ata_raid_create(struct ata_ioc_raid_config * config)1033 ata_raid_create(struct ata_ioc_raid_config *config)
1034 {
1035     struct ar_softc *rdp;
1036     device_t subdisk;
1037     int array, disk;
1038     int ctlr = 0, total_disks = 0;
1039     u_int disk_size = 0;
1040 
1041     for (array = 0; array < MAX_ARRAYS; array++) {
1042 	if (!ata_raid_arrays[array])
1043 	    break;
1044     }
1045     if (array >= MAX_ARRAYS)
1046 	return ENOSPC;
1047 
1048     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1049 	M_WAITOK | M_ZERO);
1050 
1051     for (disk = 0; disk < config->total_disks; disk++) {
1052 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1053 					   config->disks[disk]))) {
1054 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1055 
1056 	    /* is device already assigned to another array ? */
1057 	    if (ars->raid[rdp->volume]) {
1058 		config->disks[disk] = -1;
1059 		kfree(rdp, M_AR);
1060 		return EBUSY;
1061 	    }
1062 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1063 
1064 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1065 	    case ATA_HIGHPOINT_ID:
1066 		/*
1067 		 * we need some way to decide if it should be v2 or v3
1068 		 * for now just use v2 since the v3 BIOS knows how to
1069 		 * handle that as well.
1070 		 */
1071 		ctlr = AR_F_HPTV2_RAID;
1072 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1073 		break;
1074 
1075 	    case ATA_INTEL_ID:
1076 		ctlr = AR_F_INTEL_RAID;
1077 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1078 		break;
1079 
1080 	    case ATA_ITE_ID:
1081 		ctlr = AR_F_ITE_RAID;
1082 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1083 		break;
1084 
1085 	    case ATA_JMICRON_ID:
1086 		ctlr = AR_F_JMICRON_RAID;
1087 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1088 		break;
1089 
1090 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1091 	    case ATA_PROMISE_ID:
1092 		ctlr = AR_F_PROMISE_RAID;
1093 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1094 		break;
1095 
1096 	    case ATA_SIS_ID:
1097 		ctlr = AR_F_SIS_RAID;
1098 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1099 		break;
1100 
1101 	    case ATA_ATI_ID:
1102 	    case ATA_VIA_ID:
1103 		ctlr = AR_F_VIA_RAID;
1104 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1105 		break;
1106 
1107 	    default:
1108 		/* XXX SOS
1109 		 * right, so here we are, we have an ATA chip and we want
1110 		 * to create a RAID and store the metadata.
1111 		 * we need to find a way to tell what kind of metadata this
1112 		 * hardware's BIOS might be using (good ideas are welcomed)
1113 		 * for now we just use our own native FreeBSD format.
1114 		 * the only way to get support for the BIOS format is to
1115 		 * setup the RAID from there, in that case we pickup the
1116 		 * metadata format from the disks (if we support it).
1117 		 */
1118 		kprintf("WARNING!! - not able to determine metadata format\n"
1119 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1120 		       "If that is not what you want, use the BIOS to "
1121 		       "create the array\n");
1122 		ctlr = AR_F_FREEBSD_RAID;
1123 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1124 		break;
1125 	    }
1126 
1127 	    /* we need all disks to be of the same format */
1128 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1129 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1130 		kfree(rdp, M_AR);
1131 		return EXDEV;
1132 	    }
1133 	    else
1134 		rdp->format = ctlr;
1135 
1136 	    /* use the smallest disk of the lots size */
1137 	    /* gigabyte boundry ??? XXX SOS */
1138 	    if (disk_size)
1139 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1140 	    else
1141 		disk_size = rdp->disks[disk].sectors;
1142 	    rdp->disks[disk].flags =
1143 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1144 
1145 	    total_disks++;
1146 	}
1147 	else {
1148 	    config->disks[disk] = -1;
1149 	    kfree(rdp, M_AR);
1150 	    return ENXIO;
1151 	}
1152     }
1153 
1154     if (total_disks != config->total_disks) {
1155 	kfree(rdp, M_AR);
1156 	return ENODEV;
1157     }
1158 
1159     switch (config->type) {
1160     case AR_T_JBOD:
1161     case AR_T_SPAN:
1162     case AR_T_RAID0:
1163 	break;
1164 
1165     case AR_T_RAID1:
1166 	if (total_disks != 2) {
1167 	    kfree(rdp, M_AR);
1168 	    return EPERM;
1169 	}
1170 	break;
1171 
1172     case AR_T_RAID01:
1173 	if (total_disks % 2 != 0) {
1174 	    kfree(rdp, M_AR);
1175 	    return EPERM;
1176 	}
1177 	break;
1178 
1179     case AR_T_RAID5:
1180 	if (total_disks < 3) {
1181 	    kfree(rdp, M_AR);
1182 	    return EPERM;
1183 	}
1184 	break;
1185 
1186     default:
1187 	kfree(rdp, M_AR);
1188 	return EOPNOTSUPP;
1189     }
1190     rdp->type = config->type;
1191     rdp->lun = array;
1192     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1193 	rdp->type == AR_T_RAID5) {
1194 	int bit = 0;
1195 
1196 	while (config->interleave >>= 1)
1197 	    bit++;
1198 	rdp->interleave = 1 << bit;
1199     }
1200     rdp->offset_sectors = 0;
1201 
1202     /* values that depend on metadata format */
1203     switch (rdp->format) {
1204     case AR_F_ADAPTEC_RAID:
1205 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1206 	break;
1207 
1208     case AR_F_HPTV2_RAID:
1209 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1210 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1211 	break;
1212 
1213     case AR_F_HPTV3_RAID:
1214 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1215 	break;
1216 
1217     case AR_F_INTEL_RAID:
1218 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1219 	break;
1220 
1221     case AR_F_ITE_RAID:
1222 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1223 	break;
1224 
1225     case AR_F_JMICRON_RAID:
1226 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1227 	break;
1228 
1229     case AR_F_LSIV2_RAID:
1230 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1231 	break;
1232 
1233     case AR_F_LSIV3_RAID:
1234 	rdp->interleave = min(max(2, rdp->interleave), 256);
1235 	break;
1236 
1237     case AR_F_PROMISE_RAID:
1238 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1239 	break;
1240 
1241     case AR_F_SII_RAID:
1242 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1243 	break;
1244 
1245     case AR_F_SIS_RAID:
1246 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1247 	break;
1248 
1249     case AR_F_VIA_RAID:
1250 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1251 	break;
1252     }
1253 
1254     rdp->total_disks = total_disks;
1255     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1256     rdp->total_sectors =
1257 	(uint64_t)disk_size * (rdp->width - (rdp->type == AR_RAID5));
1258     rdp->heads = 255;
1259     rdp->sectors = 63;
1260     rdp->cylinders = rdp->total_sectors / (255 * 63);
1261     rdp->rebuild_lba = 0;
1262     rdp->status |= AR_S_READY;
1263 
1264     /* we are committed to this array, grap the subdisks */
1265     for (disk = 0; disk < config->total_disks; disk++) {
1266 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1267 					   config->disks[disk]))) {
1268 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1269 
1270 	    ars->raid[rdp->volume] = rdp;
1271 	    ars->disk_number[rdp->volume] = disk;
1272 	}
1273     }
1274     ata_raid_attach(rdp, 1);
1275     ata_raid_arrays[array] = rdp;
1276     config->lun = array;
1277     return 0;
1278 }
1279 
1280 static int
ata_raid_delete(int array)1281 ata_raid_delete(int array)
1282 {
1283     struct ar_softc *rdp;
1284     device_t subdisk;
1285     int disk;
1286 
1287     if (!(rdp = ata_raid_arrays[array]))
1288 	return ENXIO;
1289 
1290     rdp->status &= ~AR_S_READY;
1291     disk_destroy(&rdp->disk);
1292     devstat_remove_entry(&rdp->devstat);
1293 
1294     for (disk = 0; disk < rdp->total_disks; disk++) {
1295 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1296 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1297 		     device_get_unit(rdp->disks[disk].dev)))) {
1298 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1299 
1300 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1301 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1302 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1303 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1304 		ars->raid[rdp->volume] = NULL;
1305 		ars->disk_number[rdp->volume] = -1;
1306 	    }
1307 	    rdp->disks[disk].flags = 0;
1308 	}
1309     }
1310     ata_raid_wipe_metadata(rdp);
1311     ata_raid_arrays[array] = NULL;
1312     kfree(rdp, M_AR);
1313     return 0;
1314 }
1315 
1316 static int
ata_raid_addspare(struct ata_ioc_raid_config * config)1317 ata_raid_addspare(struct ata_ioc_raid_config *config)
1318 {
1319     struct ar_softc *rdp;
1320     device_t subdisk;
1321     int disk;
1322 
1323     if (!(rdp = ata_raid_arrays[config->lun]))
1324 	return ENXIO;
1325     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1326 	return ENXIO;
1327     if (rdp->status & AR_S_REBUILDING)
1328 	return EBUSY;
1329     switch (rdp->type) {
1330     case AR_T_RAID1:
1331     case AR_T_RAID01:
1332     case AR_T_RAID5:
1333 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1334 
1335 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1336 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1337 		continue;
1338 
1339 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1340 					       config->disks[0] ))) {
1341 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1342 
1343 		if (ars->raid[rdp->volume])
1344 		    return EBUSY;
1345 
1346 		/* XXX SOS validate size etc etc */
1347 		ars->raid[rdp->volume] = rdp;
1348 		ars->disk_number[rdp->volume] = disk;
1349 		rdp->disks[disk].dev = device_get_parent(subdisk);
1350 		rdp->disks[disk].flags =
1351 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1352 
1353 		device_printf(rdp->disks[disk].dev,
1354 			      "inserted into ar%d disk%d as spare\n",
1355 			      rdp->lun, disk);
1356 		ata_raid_config_changed(rdp, 1);
1357 		return 0;
1358 	    }
1359 	}
1360 	return ENXIO;
1361 
1362     default:
1363 	return EPERM;
1364     }
1365 }
1366 
1367 static int
ata_raid_rebuild(int array)1368 ata_raid_rebuild(int array)
1369 {
1370     struct ar_softc *rdp;
1371     int disk, count;
1372 
1373     if (!(rdp = ata_raid_arrays[array]))
1374 	return ENXIO;
1375     /* XXX SOS we should lock the rdp softc here */
1376     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1377 	return ENXIO;
1378     if (rdp->status & AR_S_REBUILDING)
1379 	return EBUSY;
1380 
1381     switch (rdp->type) {
1382     case AR_T_RAID1:
1383     case AR_T_RAID01:
1384     case AR_T_RAID5:
1385 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1386 	    if (((rdp->disks[disk].flags &
1387 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1388 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1389 		rdp->disks[disk].dev) {
1390 		count++;
1391 	    }
1392 	}
1393 
1394 	if (count) {
1395 	    rdp->rebuild_lba = 0;
1396 	    rdp->status |= AR_S_REBUILDING;
1397 	    return 0;
1398 	}
1399 	return EIO;
1400 
1401     default:
1402 	return EPERM;
1403     }
1404 }
1405 
1406 static int
ata_raid_read_metadata(device_t subdisk)1407 ata_raid_read_metadata(device_t subdisk)
1408 {
1409     devclass_t pci_devclass = devclass_find("pci");
1410     devclass_t atapci_devclass = devclass_find("atapci");
1411     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1412 
1413     /* prioritize vendor native metadata layout if possible */
1414     if (devclass == pci_devclass || devclass == atapci_devclass) {
1415 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1416 	case ATA_HIGHPOINT_ID:
1417 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1418 		return 0;
1419 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1420 		return 0;
1421 	    break;
1422 
1423 	case ATA_INTEL_ID:
1424 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1425 		return 0;
1426 	    break;
1427 
1428 	case ATA_ITE_ID:
1429 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1430 		return 0;
1431 	    break;
1432 
1433 	case ATA_JMICRON_ID:
1434 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1435 		return 0;
1436 	    break;
1437 
1438 	case ATA_NVIDIA_ID:
1439 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1440 		return 0;
1441 	    break;
1442 
1443 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1444 	case ATA_PROMISE_ID:
1445 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1446 		return 0;
1447 	    break;
1448 
1449 	case ATA_ATI_ID:
1450 	case ATA_SILICON_IMAGE_ID:
1451 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1452 		return 0;
1453 	    break;
1454 
1455 	case ATA_SIS_ID:
1456 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1457 		return 0;
1458 	    break;
1459 
1460 	case ATA_VIA_ID:
1461 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1462 		return 0;
1463 	    break;
1464 	}
1465     }
1466 
1467     /* handle controllers that have multiple layout possibilities */
1468     /* NOTE: the order of these are not insignificant */
1469 
1470     /* Adaptec HostRAID */
1471     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1472 	return 0;
1473 
1474     /* LSILogic v3 and v2 */
1475     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1476 	return 0;
1477     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1478 	return 0;
1479 
1480     /* if none of the above matched, try FreeBSD native format */
1481     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1482 }
1483 
1484 static int
ata_raid_write_metadata(struct ar_softc * rdp)1485 ata_raid_write_metadata(struct ar_softc *rdp)
1486 {
1487     switch (rdp->format) {
1488     case AR_F_FREEBSD_RAID:
1489     case AR_F_PROMISE_RAID:
1490 	return ata_raid_promise_write_meta(rdp);
1491 
1492     case AR_F_HPTV3_RAID:
1493     case AR_F_HPTV2_RAID:
1494 	/*
1495 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1496 	 * this is handy since we cannot know what version BIOS is on there
1497 	 */
1498 	return ata_raid_hptv2_write_meta(rdp);
1499 
1500     case AR_F_INTEL_RAID:
1501 	return ata_raid_intel_write_meta(rdp);
1502 
1503     case AR_F_JMICRON_RAID:
1504 	return ata_raid_jmicron_write_meta(rdp);
1505 
1506     case AR_F_SIS_RAID:
1507 	return ata_raid_sis_write_meta(rdp);
1508 
1509     case AR_F_VIA_RAID:
1510 	return ata_raid_via_write_meta(rdp);
1511 #if 0
1512     case AR_F_HPTV3_RAID:
1513 	return ata_raid_hptv3_write_meta(rdp);
1514 
1515     case AR_F_ADAPTEC_RAID:
1516 	return ata_raid_adaptec_write_meta(rdp);
1517 
1518     case AR_F_ITE_RAID:
1519 	return ata_raid_ite_write_meta(rdp);
1520 
1521     case AR_F_LSIV2_RAID:
1522 	return ata_raid_lsiv2_write_meta(rdp);
1523 
1524     case AR_F_LSIV3_RAID:
1525 	return ata_raid_lsiv3_write_meta(rdp);
1526 
1527     case AR_F_NVIDIA_RAID:
1528 	return ata_raid_nvidia_write_meta(rdp);
1529 
1530     case AR_F_SII_RAID:
1531 	return ata_raid_sii_write_meta(rdp);
1532 
1533 #endif
1534     default:
1535 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1536 	       rdp->lun, ata_raid_format(rdp));
1537     }
1538     return -1;
1539 }
1540 
1541 static int
ata_raid_wipe_metadata(struct ar_softc * rdp)1542 ata_raid_wipe_metadata(struct ar_softc *rdp)
1543 {
1544     int disk, error = 0;
1545     u_int64_t lba;
1546     u_int32_t size;
1547     u_int8_t *meta;
1548 
1549     for (disk = 0; disk < rdp->total_disks; disk++) {
1550 	if (rdp->disks[disk].dev) {
1551 	    switch (rdp->format) {
1552 	    case AR_F_ADAPTEC_RAID:
1553 		lba = ADP_LBA(rdp->disks[disk].dev);
1554 		size = sizeof(struct adaptec_raid_conf);
1555 		break;
1556 
1557 	    case AR_F_HPTV2_RAID:
1558 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1559 		size = sizeof(struct hptv2_raid_conf);
1560 		break;
1561 
1562 	    case AR_F_HPTV3_RAID:
1563 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1564 		size = sizeof(struct hptv3_raid_conf);
1565 		break;
1566 
1567 	    case AR_F_INTEL_RAID:
1568 		lba = INTEL_LBA(rdp->disks[disk].dev);
1569 		size = 3 * 512;         /* XXX SOS */
1570 		break;
1571 
1572 	    case AR_F_ITE_RAID:
1573 		lba = ITE_LBA(rdp->disks[disk].dev);
1574 		size = sizeof(struct ite_raid_conf);
1575 		break;
1576 
1577 	    case AR_F_JMICRON_RAID:
1578 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1579 		size = sizeof(struct jmicron_raid_conf);
1580 		break;
1581 
1582 	    case AR_F_LSIV2_RAID:
1583 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1584 		size = sizeof(struct lsiv2_raid_conf);
1585 		break;
1586 
1587 	    case AR_F_LSIV3_RAID:
1588 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1589 		size = sizeof(struct lsiv3_raid_conf);
1590 		break;
1591 
1592 	    case AR_F_NVIDIA_RAID:
1593 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1594 		size = sizeof(struct nvidia_raid_conf);
1595 		break;
1596 
1597 	    case AR_F_FREEBSD_RAID:
1598 	    case AR_F_PROMISE_RAID:
1599 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1600 		size = sizeof(struct promise_raid_conf);
1601 		break;
1602 
1603 	    case AR_F_SII_RAID:
1604 		lba = SII_LBA(rdp->disks[disk].dev);
1605 		size = sizeof(struct sii_raid_conf);
1606 		break;
1607 
1608 	    case AR_F_SIS_RAID:
1609 		lba = SIS_LBA(rdp->disks[disk].dev);
1610 		size = sizeof(struct sis_raid_conf);
1611 		break;
1612 
1613 	    case AR_F_VIA_RAID:
1614 		lba = VIA_LBA(rdp->disks[disk].dev);
1615 		size = sizeof(struct via_raid_conf);
1616 		break;
1617 
1618 	    default:
1619 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1620 		       rdp->lun, ata_raid_format(rdp));
1621 		return ENXIO;
1622 	    }
1623 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1624 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1625 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1626 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1627 		error = EIO;
1628 	    }
1629 	    kfree(meta, M_AR);
1630 	}
1631     }
1632     return error;
1633 }
1634 
1635 /* Adaptec HostRAID Metadata */
1636 static int
ata_raid_adaptec_read_meta(device_t dev,struct ar_softc ** raidp)1637 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1638 {
1639     struct ata_raid_subdisk *ars = device_get_softc(dev);
1640     device_t parent = device_get_parent(dev);
1641     struct adaptec_raid_conf *meta;
1642     struct ar_softc *raid;
1643     int array, disk, retval = 0;
1644 
1645     meta = (struct adaptec_raid_conf *)
1646 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1647 
1648     if (ata_raid_rw(parent, ADP_LBA(parent),
1649 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1650 	if (testing || bootverbose)
1651 	    device_printf(parent, "Adaptec read metadata failed\n");
1652 	goto adaptec_out;
1653     }
1654 
1655     /* check if this is a Adaptec RAID struct */
1656     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1657 	if (testing || bootverbose)
1658 	    device_printf(parent, "Adaptec check1 failed\n");
1659 	goto adaptec_out;
1660     }
1661 
1662     if (testing || bootverbose)
1663 	ata_raid_adaptec_print_meta(meta);
1664 
1665     /* now convert Adaptec metadata into our generic form */
1666     for (array = 0; array < MAX_ARRAYS; array++) {
1667 	if (!raidp[array]) {
1668 	    raidp[array] =
1669 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1670 					  M_WAITOK | M_ZERO);
1671 	}
1672 	raid = raidp[array];
1673 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1674 	    continue;
1675 
1676 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1677 	    continue;
1678 
1679 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1680 	    switch (meta->configs[0].type) {
1681 	    case ADP_T_RAID0:
1682 		raid->magic_0 = meta->configs[0].magic_0;
1683 		raid->type = AR_T_RAID0;
1684 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1685 		raid->width = be16toh(meta->configs[0].total_disks);
1686 		break;
1687 
1688 	    case ADP_T_RAID1:
1689 		raid->magic_0 = meta->configs[0].magic_0;
1690 		raid->type = AR_T_RAID1;
1691 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1692 		break;
1693 
1694 	    default:
1695 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1696 			      meta->configs[0].type);
1697 		kfree(raidp[array], M_AR);
1698 		raidp[array] = NULL;
1699 		goto adaptec_out;
1700 	    }
1701 
1702 	    raid->format = AR_F_ADAPTEC_RAID;
1703 	    raid->generation = be32toh(meta->generation);
1704 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1705 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1706 	    raid->heads = 255;
1707 	    raid->sectors = 63;
1708 	    raid->cylinders = raid->total_sectors / (63 * 255);
1709 	    raid->offset_sectors = 0;
1710 	    raid->rebuild_lba = 0;
1711 	    raid->lun = array;
1712 	    strncpy(raid->name, meta->configs[0].name,
1713 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1714 
1715 	    /* clear out any old info */
1716 	    if (raid->generation) {
1717 		for (disk = 0; disk < raid->total_disks; disk++) {
1718 		    raid->disks[disk].dev = NULL;
1719 		    raid->disks[disk].flags = 0;
1720 		}
1721 	    }
1722 	}
1723 	if (be32toh(meta->generation) >= raid->generation) {
1724 	    struct ata_device *atadev = device_get_softc(parent);
1725 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1726 	    int disk_number =
1727 		(ch->unit << !(ch->flags & ATA_NO_SLAVE)) + atadev->unit;
1728 
1729 	    raid->disks[disk_number].dev = parent;
1730 	    raid->disks[disk_number].sectors =
1731 		be32toh(meta->configs[disk_number + 1].sectors);
1732 	    raid->disks[disk_number].flags =
1733 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1734 	    ars->raid[raid->volume] = raid;
1735 	    ars->disk_number[raid->volume] = disk_number;
1736 	    retval = 1;
1737 	}
1738 	break;
1739     }
1740 
1741 adaptec_out:
1742     kfree(meta, M_AR);
1743     return retval;
1744 }
1745 
1746 /* Highpoint V2 RocketRAID Metadata */
1747 static int
ata_raid_hptv2_read_meta(device_t dev,struct ar_softc ** raidp)1748 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1749 {
1750     struct ata_raid_subdisk *ars = device_get_softc(dev);
1751     device_t parent = device_get_parent(dev);
1752     struct hptv2_raid_conf *meta;
1753     struct ar_softc *raid = NULL;
1754     int array, disk_number = 0, retval = 0;
1755 
1756     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1757 	M_AR, M_WAITOK | M_ZERO);
1758 
1759     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1760 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1761 	if (testing || bootverbose)
1762 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1763 	goto hptv2_out;
1764     }
1765 
1766     /* check if this is a HighPoint v2 RAID struct */
1767     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1768 	if (testing || bootverbose)
1769 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1770 	goto hptv2_out;
1771     }
1772 
1773     /* is this disk defined, or an old leftover/spare ? */
1774     if (!meta->magic_0) {
1775 	if (testing || bootverbose)
1776 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1777 	goto hptv2_out;
1778     }
1779 
1780     if (testing || bootverbose)
1781 	ata_raid_hptv2_print_meta(meta);
1782 
1783     /* now convert HighPoint (v2) metadata into our generic form */
1784     for (array = 0; array < MAX_ARRAYS; array++) {
1785 	if (!raidp[array]) {
1786 	    raidp[array] =
1787 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1788 					  M_WAITOK | M_ZERO);
1789 	}
1790 	raid = raidp[array];
1791 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1792 	    continue;
1793 
1794 	switch (meta->type) {
1795 	case HPTV2_T_RAID0:
1796 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1797 		(HPTV2_O_RAID0|HPTV2_O_OK))
1798 		goto highpoint_raid1;
1799 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1800 		goto highpoint_raid01;
1801 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1802 		continue;
1803 	    raid->magic_0 = meta->magic_0;
1804 	    raid->type = AR_T_RAID0;
1805 	    raid->interleave = 1 << meta->stripe_shift;
1806 	    disk_number = meta->disk_number;
1807 	    if (!(meta->order & HPTV2_O_OK))
1808 		meta->magic = 0;        /* mark bad */
1809 	    break;
1810 
1811 	case HPTV2_T_RAID1:
1812 highpoint_raid1:
1813 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1814 		continue;
1815 	    raid->magic_0 = meta->magic_0;
1816 	    raid->type = AR_T_RAID1;
1817 	    disk_number = (meta->disk_number > 0);
1818 	    break;
1819 
1820 	case HPTV2_T_RAID01_RAID0:
1821 highpoint_raid01:
1822 	    if (meta->order & HPTV2_O_RAID0) {
1823 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1824 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1825 		    continue;
1826 		raid->magic_0 = meta->magic_0;
1827 		raid->magic_1 = meta->magic_1;
1828 		raid->type = AR_T_RAID01;
1829 		raid->interleave = 1 << meta->stripe_shift;
1830 		disk_number = meta->disk_number;
1831 	    }
1832 	    else {
1833 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1834 		    continue;
1835 		raid->magic_1 = meta->magic_1;
1836 		raid->type = AR_T_RAID01;
1837 		raid->interleave = 1 << meta->stripe_shift;
1838 		disk_number = meta->disk_number + meta->array_width;
1839 		if (!(meta->order & HPTV2_O_RAID1))
1840 		    meta->magic = 0;    /* mark bad */
1841 	    }
1842 	    break;
1843 
1844 	case HPTV2_T_SPAN:
1845 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1846 		continue;
1847 	    raid->magic_0 = meta->magic_0;
1848 	    raid->type = AR_T_SPAN;
1849 	    disk_number = meta->disk_number;
1850 	    break;
1851 
1852 	default:
1853 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1854 			  meta->type);
1855 	    kfree(raidp[array], M_AR);
1856 	    raidp[array] = NULL;
1857 	    goto hptv2_out;
1858 	}
1859 
1860 	raid->format |= AR_F_HPTV2_RAID;
1861 	raid->disks[disk_number].dev = parent;
1862 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1863 	raid->lun = array;
1864 	strncpy(raid->name, meta->name_1,
1865 		min(sizeof(raid->name), sizeof(meta->name_1)));
1866 	if (meta->magic == HPTV2_MAGIC_OK) {
1867 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1868 	    raid->width = meta->array_width;
1869 	    raid->total_sectors = meta->total_sectors;
1870 	    raid->heads = 255;
1871 	    raid->sectors = 63;
1872 	    raid->cylinders = raid->total_sectors / (63 * 255);
1873 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1874 	    raid->rebuild_lba = meta->rebuild_lba;
1875 	    raid->disks[disk_number].sectors =
1876 		raid->total_sectors / raid->width;
1877 	}
1878 	else
1879 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1880 
1881 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1882 	    raid->total_disks = raid->width;
1883 	if (disk_number >= raid->total_disks)
1884 	    raid->total_disks = disk_number + 1;
1885 	ars->raid[raid->volume] = raid;
1886 	ars->disk_number[raid->volume] = disk_number;
1887 	retval = 1;
1888 	break;
1889     }
1890 
1891 hptv2_out:
1892     kfree(meta, M_AR);
1893     return retval;
1894 }
1895 
1896 static int
ata_raid_hptv2_write_meta(struct ar_softc * rdp)1897 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1898 {
1899     struct hptv2_raid_conf *meta;
1900     struct timeval timestamp;
1901     int disk, error = 0;
1902 
1903     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1904 	M_AR, M_WAITOK | M_ZERO);
1905 
1906     microtime(&timestamp);
1907     rdp->magic_0 = timestamp.tv_sec + 2;
1908     rdp->magic_1 = timestamp.tv_sec;
1909 
1910     for (disk = 0; disk < rdp->total_disks; disk++) {
1911 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1912 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1913 	    meta->magic = HPTV2_MAGIC_OK;
1914 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1915 	    meta->magic_0 = rdp->magic_0;
1916 	    if (strlen(rdp->name))
1917 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1918 	    else
1919 		strcpy(meta->name_1, "FreeBSD");
1920 	}
1921 	meta->disk_number = disk;
1922 
1923 	switch (rdp->type) {
1924 	case AR_T_RAID0:
1925 	    meta->type = HPTV2_T_RAID0;
1926 	    strcpy(meta->name_2, "RAID 0");
1927 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1928 		meta->order = HPTV2_O_OK;
1929 	    break;
1930 
1931 	case AR_T_RAID1:
1932 	    meta->type = HPTV2_T_RAID0;
1933 	    strcpy(meta->name_2, "RAID 1");
1934 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1935 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1936 	    break;
1937 
1938 	case AR_T_RAID01:
1939 	    meta->type = HPTV2_T_RAID01_RAID0;
1940 	    strcpy(meta->name_2, "RAID 0+1");
1941 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1942 		if (disk < rdp->width) {
1943 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1944 		    meta->magic_0 = rdp->magic_0 - 1;
1945 		}
1946 		else {
1947 		    meta->order = HPTV2_O_RAID1;
1948 		    meta->disk_number -= rdp->width;
1949 		}
1950 	    }
1951 	    else
1952 		meta->magic_0 = rdp->magic_0 - 1;
1953 	    meta->magic_1 = rdp->magic_1;
1954 	    break;
1955 
1956 	case AR_T_SPAN:
1957 	    meta->type = HPTV2_T_SPAN;
1958 	    strcpy(meta->name_2, "SPAN");
1959 	    break;
1960 	default:
1961 	    kfree(meta, M_AR);
1962 	    return ENODEV;
1963 	}
1964 
1965 	meta->array_width = rdp->width;
1966 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1967 	meta->total_sectors = rdp->total_sectors;
1968 	meta->rebuild_lba = rdp->rebuild_lba;
1969 	if (testing || bootverbose)
1970 	    ata_raid_hptv2_print_meta(meta);
1971 	if (rdp->disks[disk].dev) {
1972 	    if (ata_raid_rw(rdp->disks[disk].dev,
1973 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1974 			    sizeof(struct promise_raid_conf),
1975 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1976 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1977 		error = EIO;
1978 	    }
1979 	}
1980     }
1981     kfree(meta, M_AR);
1982     return error;
1983 }
1984 
1985 /* Highpoint V3 RocketRAID Metadata */
1986 static int
ata_raid_hptv3_read_meta(device_t dev,struct ar_softc ** raidp)1987 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1988 {
1989     struct ata_raid_subdisk *ars = device_get_softc(dev);
1990     device_t parent = device_get_parent(dev);
1991     struct hptv3_raid_conf *meta;
1992     struct ar_softc *raid = NULL;
1993     int array, disk_number, retval = 0;
1994 
1995     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1996 	M_AR, M_WAITOK | M_ZERO);
1997 
1998     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1999 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2000 	if (testing || bootverbose)
2001 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2002 	goto hptv3_out;
2003     }
2004 
2005     /* check if this is a HighPoint v3 RAID struct */
2006     if (meta->magic != HPTV3_MAGIC) {
2007 	if (testing || bootverbose)
2008 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2009 	goto hptv3_out;
2010     }
2011 
2012     /* check if there are any config_entries */
2013     if (meta->config_entries < 1) {
2014 	if (testing || bootverbose)
2015 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2016 	goto hptv3_out;
2017     }
2018 
2019     if (testing || bootverbose)
2020 	ata_raid_hptv3_print_meta(meta);
2021 
2022     /* now convert HighPoint (v3) metadata into our generic form */
2023     for (array = 0; array < MAX_ARRAYS; array++) {
2024 	if (!raidp[array]) {
2025 	    raidp[array] =
2026 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2027 					  M_WAITOK | M_ZERO);
2028 	}
2029 	raid = raidp[array];
2030 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2031 	    continue;
2032 
2033 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2034 	    continue;
2035 
2036 	switch (meta->configs[0].type) {
2037 	case HPTV3_T_RAID0:
2038 	    raid->type = AR_T_RAID0;
2039 	    raid->width = meta->configs[0].total_disks;
2040 	    disk_number = meta->configs[0].disk_number;
2041 	    break;
2042 
2043 	case HPTV3_T_RAID1:
2044 	    raid->type = AR_T_RAID1;
2045 	    raid->width = meta->configs[0].total_disks / 2;
2046 	    disk_number = meta->configs[0].disk_number;
2047 	    break;
2048 
2049 	case HPTV3_T_RAID5:
2050 	    raid->type = AR_T_RAID5;
2051 	    raid->width = meta->configs[0].total_disks;
2052 	    disk_number = meta->configs[0].disk_number;
2053 	    break;
2054 
2055 	case HPTV3_T_SPAN:
2056 	    raid->type = AR_T_SPAN;
2057 	    raid->width = meta->configs[0].total_disks;
2058 	    disk_number = meta->configs[0].disk_number;
2059 	    break;
2060 
2061 	default:
2062 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2063 			  meta->configs[0].type);
2064 	    kfree(raidp[array], M_AR);
2065 	    raidp[array] = NULL;
2066 	    goto hptv3_out;
2067 	}
2068 	if (meta->config_entries == 2) {
2069 	    switch (meta->configs[1].type) {
2070 	    case HPTV3_T_RAID1:
2071 		if (raid->type == AR_T_RAID0) {
2072 		    raid->type = AR_T_RAID01;
2073 		    disk_number = meta->configs[1].disk_number +
2074 				  (meta->configs[0].disk_number << 1);
2075 		    break;
2076 		}
2077 	    default:
2078 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2079 			      meta->configs[1].type);
2080 		kfree(raidp[array], M_AR);
2081 		raidp[array] = NULL;
2082 		goto hptv3_out;
2083 	    }
2084 	}
2085 
2086 	raid->magic_0 = meta->magic_0;
2087 	raid->format = AR_F_HPTV3_RAID;
2088 	raid->generation = meta->timestamp;
2089 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2090 	raid->total_disks = meta->configs[0].total_disks +
2091 	    meta->configs[1].total_disks;
2092 	raid->total_sectors = meta->configs[0].total_sectors +
2093 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2094 	raid->heads = 255;
2095 	raid->sectors = 63;
2096 	raid->cylinders = raid->total_sectors / (63 * 255);
2097 	raid->offset_sectors = 0;
2098 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2099 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2100 	raid->lun = array;
2101 	strncpy(raid->name, meta->name,
2102 		min(sizeof(raid->name), sizeof(meta->name)));
2103 	raid->disks[disk_number].sectors = raid->total_sectors /
2104 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2105 	raid->disks[disk_number].dev = parent;
2106 	raid->disks[disk_number].flags =
2107 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2108 	ars->raid[raid->volume] = raid;
2109 	ars->disk_number[raid->volume] = disk_number;
2110 	retval = 1;
2111 	break;
2112     }
2113 
2114 hptv3_out:
2115     kfree(meta, M_AR);
2116     return retval;
2117 }
2118 
2119 /* Intel MatrixRAID Metadata */
2120 static int
ata_raid_intel_read_meta(device_t dev,struct ar_softc ** raidp)2121 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2122 {
2123     struct ata_raid_subdisk *ars = device_get_softc(dev);
2124     device_t parent = device_get_parent(dev);
2125     struct intel_raid_conf *meta;
2126     struct intel_raid_mapping *map;
2127     struct ar_softc *raid = NULL;
2128     u_int32_t checksum, *ptr;
2129     int array, count, disk, volume = 1, retval = 0;
2130     char *tmp;
2131 
2132     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2133 
2134     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2135 	if (testing || bootverbose)
2136 	    device_printf(parent, "Intel read metadata failed\n");
2137 	goto intel_out;
2138     }
2139     tmp = (char *)meta;
2140     bcopy(tmp, tmp+1024, 512);
2141     bcopy(tmp+512, tmp, 1024);
2142     bzero(tmp+1024, 512);
2143 
2144     /* check if this is a Intel RAID struct */
2145     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2146 	if (testing || bootverbose)
2147 	    device_printf(parent, "Intel check1 failed\n");
2148 	goto intel_out;
2149     }
2150 
2151     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2152 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2153 	checksum += *ptr++;
2154     }
2155     checksum -= meta->checksum;
2156     if (checksum != meta->checksum) {
2157 	if (testing || bootverbose)
2158 	    device_printf(parent, "Intel check2 failed\n");
2159 	goto intel_out;
2160     }
2161 
2162     if (testing || bootverbose)
2163 	ata_raid_intel_print_meta(meta);
2164 
2165     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2166 
2167     /* now convert Intel metadata into our generic form */
2168     for (array = 0; array < MAX_ARRAYS; array++) {
2169 	if (!raidp[array]) {
2170 	    raidp[array] =
2171 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2172 					  M_WAITOK | M_ZERO);
2173 	}
2174 	raid = raidp[array];
2175 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2176 	    continue;
2177 
2178 	if ((raid->format & AR_F_INTEL_RAID) &&
2179 	    (raid->magic_0 != meta->config_id))
2180 	    continue;
2181 
2182 	/*
2183 	 * update our knowledge about the array config based on generation
2184 	 * NOTE: there can be multiple volumes on a disk set
2185 	 */
2186 	if (!meta->generation || meta->generation > raid->generation) {
2187 	    switch (map->type) {
2188 	    case INTEL_T_RAID0:
2189 		raid->type = AR_T_RAID0;
2190 		raid->width = map->total_disks;
2191 		break;
2192 
2193 	    case INTEL_T_RAID1:
2194 		if (map->total_disks == 4)
2195 		    raid->type = AR_T_RAID01;
2196 		else
2197 		    raid->type = AR_T_RAID1;
2198 		raid->width = map->total_disks / 2;
2199 		break;
2200 
2201 	    case INTEL_T_RAID5:
2202 		raid->type = AR_T_RAID5;
2203 		raid->width = map->total_disks;
2204 		break;
2205 
2206 	    default:
2207 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2208 			      map->type);
2209 		kfree(raidp[array], M_AR);
2210 		raidp[array] = NULL;
2211 		goto intel_out;
2212 	    }
2213 
2214 	    switch (map->status) {
2215 	    case INTEL_S_READY:
2216 		raid->status = AR_S_READY;
2217 		break;
2218 	    case INTEL_S_DEGRADED:
2219 		raid->status |= AR_S_DEGRADED;
2220 		break;
2221 	    case INTEL_S_DISABLED:
2222 	    case INTEL_S_FAILURE:
2223 		raid->status = 0;
2224 	    }
2225 
2226 	    raid->magic_0 = meta->config_id;
2227 	    raid->format = AR_F_INTEL_RAID;
2228 	    raid->generation = meta->generation;
2229 	    raid->interleave = map->stripe_sectors;
2230 	    raid->total_disks = map->total_disks;
2231 	    raid->total_sectors = map->total_sectors;
2232 	    raid->heads = 255;
2233 	    raid->sectors = 63;
2234 	    raid->cylinders = raid->total_sectors / (63 * 255);
2235 	    raid->offset_sectors = map->offset;
2236 	    raid->rebuild_lba = 0;
2237 	    raid->lun = array;
2238 	    raid->volume = volume - 1;
2239 	    strncpy(raid->name, map->name,
2240 		    min(sizeof(raid->name), sizeof(map->name)));
2241 
2242 	    /* clear out any old info */
2243 	    for (disk = 0; disk < raid->total_disks; disk++) {
2244 		u_int disk_idx = map->disk_idx[disk] & 0xffff;
2245 
2246 		raid->disks[disk].dev = NULL;
2247 		bcopy(meta->disk[disk_idx].serial,
2248 		      raid->disks[disk].serial,
2249 		      sizeof(raid->disks[disk].serial));
2250 		raid->disks[disk].sectors =
2251 		    meta->disk[disk_idx].sectors;
2252 		raid->disks[disk].flags = 0;
2253 		if (meta->disk[disk_idx].flags & INTEL_F_ONLINE)
2254 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2255 		if (meta->disk[disk_idx].flags & INTEL_F_ASSIGNED)
2256 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2257 		if (meta->disk[disk_idx].flags & INTEL_F_SPARE) {
2258 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2259 		    raid->disks[disk].flags |= AR_DF_SPARE;
2260 		}
2261 		if (meta->disk[disk_idx].flags & INTEL_F_DOWN)
2262 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2263 	    }
2264 	}
2265 	if (meta->generation >= raid->generation) {
2266 	    for (disk = 0; disk < raid->total_disks; disk++) {
2267 		struct ata_device *atadev = device_get_softc(parent);
2268 		int len;
2269 
2270 		for (len = 0; len < sizeof(atadev->param.serial); len++) {
2271 		    if (atadev->param.serial[len] < 0x20)
2272 			break;
2273 		}
2274 		len = (len > sizeof(raid->disks[disk].serial)) ?
2275 		    len - sizeof(raid->disks[disk].serial) : 0;
2276 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial + len,
2277 		    sizeof(raid->disks[disk].serial))) {
2278 		    raid->disks[disk].dev = parent;
2279 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2280 		    ars->raid[raid->volume] = raid;
2281 		    ars->disk_number[raid->volume] = disk;
2282 		    retval = 1;
2283 		}
2284 	    }
2285 	}
2286 	else
2287 	    goto intel_out;
2288 
2289 	if (retval) {
2290 	    if (volume < meta->total_volumes) {
2291 		map = (struct intel_raid_mapping *)
2292 		      &map->disk_idx[map->total_disks];
2293 		volume++;
2294 		retval = 0;
2295 		continue;
2296 	    }
2297 	    break;
2298 	}
2299 	else {
2300 	    kfree(raidp[array], M_AR);
2301 	    raidp[array] = NULL;
2302 	    if (volume == 2)
2303 		retval = 1;
2304 	}
2305     }
2306 
2307 intel_out:
2308     kfree(meta, M_AR);
2309     return retval;
2310 }
2311 
2312 static int
ata_raid_intel_write_meta(struct ar_softc * rdp)2313 ata_raid_intel_write_meta(struct ar_softc *rdp)
2314 {
2315     struct intel_raid_conf *meta;
2316     struct intel_raid_mapping *map;
2317     struct timeval timestamp;
2318     u_int32_t checksum, *ptr;
2319     int count, disk, error = 0;
2320     char *tmp;
2321 
2322     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2323 
2324     rdp->generation++;
2325 
2326     /* Generate a new config_id if none exists */
2327     if (!rdp->magic_0) {
2328 	microtime(&timestamp);
2329 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2330     }
2331 
2332     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2333     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2334     meta->config_id = rdp->magic_0;
2335     meta->generation = rdp->generation;
2336     meta->total_disks = rdp->total_disks;
2337     meta->total_volumes = 1;                                    /* XXX SOS */
2338     for (disk = 0; disk < rdp->total_disks; disk++) {
2339 	if (rdp->disks[disk].dev) {
2340 	    struct ata_channel *ch =
2341 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2342 	    struct ata_device *atadev =
2343 		device_get_softc(rdp->disks[disk].dev);
2344 	    int len;
2345 
2346 	    for (len = 0; len < sizeof(atadev->param.serial); len++) {
2347 		if (atadev->param.serial[len] < 0x20)
2348 		    break;
2349 	    }
2350 	    len = (len > sizeof(rdp->disks[disk].serial)) ?
2351 	        len - sizeof(rdp->disks[disk].serial) : 0;
2352 	    bcopy(atadev->param.serial + len, meta->disk[disk].serial,
2353 		  sizeof(rdp->disks[disk].serial));
2354 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2355 	    meta->disk[disk].id = (ch->unit << 16) | atadev->unit;
2356 	}
2357 	else
2358 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2359 	meta->disk[disk].flags = 0;
2360 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2361 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2362 	else {
2363 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2364 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2365 	    else
2366 		meta->disk[disk].flags |= INTEL_F_DOWN;
2367 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2368 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2369 	}
2370     }
2371     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2372 
2373     bcopy(rdp->name, map->name, sizeof(rdp->name));
2374     map->total_sectors = rdp->total_sectors;
2375     map->state = 12;                                            /* XXX SOS */
2376     map->offset = rdp->offset_sectors;
2377     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2378     map->stripe_sectors =  rdp->interleave;
2379     map->disk_sectors = rdp->total_sectors / rdp->width;
2380     map->status = INTEL_S_READY;                                /* XXX SOS */
2381     switch (rdp->type) {
2382     case AR_T_RAID0:
2383 	map->type = INTEL_T_RAID0;
2384 	break;
2385     case AR_T_RAID1:
2386 	map->type = INTEL_T_RAID1;
2387 	break;
2388     case AR_T_RAID01:
2389 	map->type = INTEL_T_RAID1;
2390 	break;
2391     case AR_T_RAID5:
2392 	map->type = INTEL_T_RAID5;
2393 	break;
2394     default:
2395 	kfree(meta, M_AR);
2396 	return ENODEV;
2397     }
2398     map->total_disks = rdp->total_disks;
2399     map->magic[0] = 0x02;
2400     map->magic[1] = 0xff;
2401     map->magic[2] = 0x01;
2402     for (disk = 0; disk < rdp->total_disks; disk++)
2403 	map->disk_idx[disk] = disk;
2404 
2405     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2406     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2407 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2408 	checksum += *ptr++;
2409     }
2410     meta->checksum = checksum;
2411 
2412     if (testing || bootverbose)
2413 	ata_raid_intel_print_meta(meta);
2414 
2415     tmp = (char *)meta;
2416     bcopy(tmp, tmp+1024, 512);
2417     bcopy(tmp+512, tmp, 1024);
2418     bzero(tmp+1024, 512);
2419 
2420     for (disk = 0; disk < rdp->total_disks; disk++) {
2421 	if (rdp->disks[disk].dev) {
2422 	    if (ata_raid_rw(rdp->disks[disk].dev,
2423 			    INTEL_LBA(rdp->disks[disk].dev),
2424 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2425 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2426 		error = EIO;
2427 	    }
2428 	}
2429     }
2430     kfree(meta, M_AR);
2431     return error;
2432 }
2433 
2434 
2435 /* Integrated Technology Express Metadata */
2436 static int
ata_raid_ite_read_meta(device_t dev,struct ar_softc ** raidp)2437 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2438 {
2439     struct ata_raid_subdisk *ars = device_get_softc(dev);
2440     device_t parent = device_get_parent(dev);
2441     struct ite_raid_conf *meta;
2442     struct ar_softc *raid = NULL;
2443     int array, disk_number, count, retval = 0;
2444     u_int16_t *ptr;
2445 
2446     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2447 	M_WAITOK | M_ZERO);
2448 
2449     if (ata_raid_rw(parent, ITE_LBA(parent),
2450 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2451 	if (testing || bootverbose)
2452 	    device_printf(parent, "ITE read metadata failed\n");
2453 	goto ite_out;
2454     }
2455 
2456     /* check if this is a ITE RAID struct */
2457     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2458 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2459 	ptr[count] = be16toh(ptr[count]);
2460 
2461     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2462 	if (testing || bootverbose)
2463 	    device_printf(parent, "ITE check1 failed\n");
2464 	goto ite_out;
2465     }
2466 
2467     if (testing || bootverbose)
2468 	ata_raid_ite_print_meta(meta);
2469 
2470     /* now convert ITE metadata into our generic form */
2471     for (array = 0; array < MAX_ARRAYS; array++) {
2472 	if ((raid = raidp[array])) {
2473 	    if (raid->format != AR_F_ITE_RAID)
2474 		continue;
2475 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2476 		continue;
2477 	}
2478 
2479 	/* if we dont have a disks timestamp the RAID is invalidated */
2480 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2481 	    goto ite_out;
2482 
2483 	if (!raid) {
2484 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2485 						     M_AR, M_WAITOK | M_ZERO);
2486 	}
2487 
2488 	switch (meta->type) {
2489 	case ITE_T_RAID0:
2490 	    raid->type = AR_T_RAID0;
2491 	    raid->width = meta->array_width;
2492 	    raid->total_disks = meta->array_width;
2493 	    disk_number = meta->disk_number;
2494 	    break;
2495 
2496 	case ITE_T_RAID1:
2497 	    raid->type = AR_T_RAID1;
2498 	    raid->width = 1;
2499 	    raid->total_disks = 2;
2500 	    disk_number = meta->disk_number;
2501 	    break;
2502 
2503 	case ITE_T_RAID01:
2504 	    raid->type = AR_T_RAID01;
2505 	    raid->width = meta->array_width;
2506 	    raid->total_disks = 4;
2507 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2508 			  ((meta->disk_number & 0x01) << 1);
2509 	    break;
2510 
2511 	case ITE_T_SPAN:
2512 	    raid->type = AR_T_SPAN;
2513 	    raid->width = 1;
2514 	    raid->total_disks = meta->array_width;
2515 	    disk_number = meta->disk_number;
2516 	    break;
2517 
2518 	default:
2519 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2520 	    kfree(raidp[array], M_AR);
2521 	    raidp[array] = NULL;
2522 	    goto ite_out;
2523 	}
2524 
2525 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2526 	raid->format = AR_F_ITE_RAID;
2527 	raid->generation = 0;
2528 	raid->interleave = meta->stripe_sectors;
2529 	raid->total_sectors = meta->total_sectors;
2530 	raid->heads = 255;
2531 	raid->sectors = 63;
2532 	raid->cylinders = raid->total_sectors / (63 * 255);
2533 	raid->offset_sectors = 0;
2534 	raid->rebuild_lba = 0;
2535 	raid->lun = array;
2536 
2537 	raid->disks[disk_number].dev = parent;
2538 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2539 	raid->disks[disk_number].flags =
2540 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2541 	ars->raid[raid->volume] = raid;
2542 	ars->disk_number[raid->volume] = disk_number;
2543 	retval = 1;
2544 	break;
2545     }
2546 ite_out:
2547     kfree(meta, M_AR);
2548     return retval;
2549 }
2550 
2551 /* JMicron Technology Corp Metadata */
2552 static int
ata_raid_jmicron_read_meta(device_t dev,struct ar_softc ** raidp)2553 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2554 {
2555     struct ata_raid_subdisk *ars = device_get_softc(dev);
2556     device_t parent = device_get_parent(dev);
2557     struct jmicron_raid_conf *meta;
2558     struct ar_softc *raid = NULL;
2559     u_int16_t checksum, *ptr;
2560     u_int64_t disk_size;
2561     int count, array, disk, total_disks, retval = 0;
2562 
2563     meta = (struct jmicron_raid_conf *)
2564 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2565 
2566     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2567 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2568 	if (testing || bootverbose)
2569 	    device_printf(parent,
2570 			  "JMicron read metadata failed\n");
2571     }
2572 
2573     /* check for JMicron signature */
2574     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2575 	if (testing || bootverbose)
2576 	    device_printf(parent, "JMicron check1 failed\n");
2577 	goto jmicron_out;
2578     }
2579 
2580     /* calculate checksum and compare for valid */
2581     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2582 	checksum += *ptr++;
2583     if (checksum) {
2584 	if (testing || bootverbose)
2585 	    device_printf(parent, "JMicron check2 failed\n");
2586 	goto jmicron_out;
2587     }
2588 
2589     if (testing || bootverbose)
2590 	ata_raid_jmicron_print_meta(meta);
2591 
2592     /* now convert JMicron meta into our generic form */
2593     for (array = 0; array < MAX_ARRAYS; array++) {
2594 jmicron_next:
2595 	if (!raidp[array]) {
2596 	    raidp[array] =
2597 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2598 					  M_WAITOK | M_ZERO);
2599 	}
2600 	raid = raidp[array];
2601 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2602 	    continue;
2603 
2604 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2605 	    if (meta->disks[disk]) {
2606 		if (raid->format == AR_F_JMICRON_RAID) {
2607 		    if (bcmp(&meta->disks[disk],
2608 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2609 			array++;
2610 			goto jmicron_next;
2611 		    }
2612 		}
2613 		else
2614 		    bcopy(&meta->disks[disk],
2615 			  raid->disks[disk].serial, sizeof(u_int32_t));
2616 		total_disks++;
2617 	    }
2618 	}
2619 	/* handle spares XXX SOS */
2620 
2621 	switch (meta->type) {
2622 	case JM_T_RAID0:
2623 	    raid->type = AR_T_RAID0;
2624 	    raid->width = total_disks;
2625 	    break;
2626 
2627 	case JM_T_RAID1:
2628 	    raid->type = AR_T_RAID1;
2629 	    raid->width = 1;
2630 	    break;
2631 
2632 	case JM_T_RAID01:
2633 	    raid->type = AR_T_RAID01;
2634 	    raid->width = total_disks / 2;
2635 	    break;
2636 
2637 	case JM_T_RAID5:
2638 	    raid->type = AR_T_RAID5;
2639 	    raid->width = total_disks;
2640 	    break;
2641 
2642 	case JM_T_JBOD:
2643 	    raid->type = AR_T_SPAN;
2644 	    raid->width = 1;
2645 	    break;
2646 
2647 	default:
2648 	    device_printf(parent,
2649 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2650 	    kfree(raidp[array], M_AR);
2651 	    raidp[array] = NULL;
2652 	    goto jmicron_out;
2653 	}
2654 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2655 	raid->format = AR_F_JMICRON_RAID;
2656 	strncpy(raid->name, meta->name, sizeof(meta->name));
2657 	raid->generation = 0;
2658 	raid->interleave = 2 << meta->stripe_shift;
2659 	raid->total_disks = total_disks;
2660 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2661 	raid->heads = 255;
2662 	raid->sectors = 63;
2663 	raid->cylinders = raid->total_sectors / (63 * 255);
2664 	raid->offset_sectors = meta->offset * 16;
2665 	raid->rebuild_lba = 0;
2666 	raid->lun = array;
2667 
2668 	for (disk = 0; disk < raid->total_disks; disk++) {
2669 	    if (meta->disks[disk] == meta->disk_id) {
2670 		raid->disks[disk].dev = parent;
2671 		raid->disks[disk].sectors = disk_size;
2672 		raid->disks[disk].flags =
2673 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2674 		ars->raid[raid->volume] = raid;
2675 		ars->disk_number[raid->volume] = disk;
2676 		retval = 1;
2677 		break;
2678 	    }
2679 	}
2680 	break;
2681     }
2682 jmicron_out:
2683     kfree(meta, M_AR);
2684     return retval;
2685 }
2686 
2687 static int
ata_raid_jmicron_write_meta(struct ar_softc * rdp)2688 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2689 {
2690     struct jmicron_raid_conf *meta;
2691     u_int64_t disk_sectors;
2692     int disk, error = 0;
2693 
2694     meta = (struct jmicron_raid_conf *)
2695 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2696 
2697     rdp->generation++;
2698     switch (rdp->type) {
2699     case AR_T_JBOD:
2700 	meta->type = JM_T_JBOD;
2701 	break;
2702 
2703     case AR_T_RAID0:
2704 	meta->type = JM_T_RAID0;
2705 	break;
2706 
2707     case AR_T_RAID1:
2708 	meta->type = JM_T_RAID1;
2709 	break;
2710 
2711     case AR_T_RAID5:
2712 	meta->type = JM_T_RAID5;
2713 	break;
2714 
2715     case AR_T_RAID01:
2716 	meta->type = JM_T_RAID01;
2717 	break;
2718 
2719     default:
2720 	kfree(meta, M_AR);
2721 	return ENODEV;
2722     }
2723     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2724     meta->version = JMICRON_VERSION;
2725     meta->offset = rdp->offset_sectors / 16;
2726     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2727     meta->disk_sectors_low = disk_sectors & 0xffff;
2728     meta->disk_sectors_high = disk_sectors >> 16;
2729     strncpy(meta->name, rdp->name, sizeof(meta->name));
2730     meta->stripe_shift = ffs(rdp->interleave) - 2;
2731 
2732     for (disk = 0; disk < rdp->total_disks && disk < JM_MAX_DISKS; disk++) {
2733 	if (rdp->disks[disk].serial[0])
2734 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2735 	else
2736 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2737     }
2738 
2739     for (disk = 0; disk < rdp->total_disks; disk++) {
2740 	if (rdp->disks[disk].dev) {
2741 	    u_int16_t checksum = 0, *ptr;
2742 	    int count;
2743 
2744 	    meta->disk_id = meta->disks[disk];
2745 	    meta->checksum = 0;
2746 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2747 		checksum += *ptr++;
2748 	    meta->checksum -= checksum;
2749 
2750 	    if (testing || bootverbose)
2751 		ata_raid_jmicron_print_meta(meta);
2752 
2753 	    if (ata_raid_rw(rdp->disks[disk].dev,
2754 			    JMICRON_LBA(rdp->disks[disk].dev),
2755 			    meta, sizeof(struct jmicron_raid_conf),
2756 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2757 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2758 		error = EIO;
2759 	    }
2760 	}
2761     }
2762     /* handle spares XXX SOS */
2763 
2764     kfree(meta, M_AR);
2765     return error;
2766 }
2767 
2768 /* LSILogic V2 MegaRAID Metadata */
2769 static int
ata_raid_lsiv2_read_meta(device_t dev,struct ar_softc ** raidp)2770 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2771 {
2772     struct ata_raid_subdisk *ars = device_get_softc(dev);
2773     device_t parent = device_get_parent(dev);
2774     struct lsiv2_raid_conf *meta;
2775     struct ar_softc *raid = NULL;
2776     int array, retval = 0;
2777 
2778     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2779 	M_AR, M_WAITOK | M_ZERO);
2780 
2781     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2782 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2783 	if (testing || bootverbose)
2784 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2785 	goto lsiv2_out;
2786     }
2787 
2788     /* check if this is a LSI RAID struct */
2789     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2790 	if (testing || bootverbose)
2791 	    device_printf(parent, "LSI (v2) check1 failed\n");
2792 	goto lsiv2_out;
2793     }
2794 
2795     if (testing || bootverbose)
2796 	ata_raid_lsiv2_print_meta(meta);
2797 
2798     /* now convert LSI (v2) config meta into our generic form */
2799     for (array = 0; array < MAX_ARRAYS; array++) {
2800 	int raid_entry, conf_entry;
2801 
2802 	if (!raidp[array + meta->raid_number]) {
2803 	    raidp[array + meta->raid_number] =
2804 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2805 					  M_WAITOK | M_ZERO);
2806 	}
2807 	raid = raidp[array + meta->raid_number];
2808 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2809 	    continue;
2810 
2811 	if (raid->magic_0 &&
2812 	    ((raid->magic_0 != meta->timestamp) ||
2813 	     (raid->magic_1 != meta->raid_number)))
2814 	    continue;
2815 
2816 	array += meta->raid_number;
2817 
2818 	raid_entry = meta->raid_number;
2819 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2820 		     meta->disk_number - 1;
2821 
2822 	switch (meta->configs[raid_entry].raid.type) {
2823 	case LSIV2_T_RAID0:
2824 	    raid->magic_0 = meta->timestamp;
2825 	    raid->magic_1 = meta->raid_number;
2826 	    raid->type = AR_T_RAID0;
2827 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2828 	    raid->width = meta->configs[raid_entry].raid.array_width;
2829 	    break;
2830 
2831 	case LSIV2_T_RAID1:
2832 	    raid->magic_0 = meta->timestamp;
2833 	    raid->magic_1 = meta->raid_number;
2834 	    raid->type = AR_T_RAID1;
2835 	    raid->width = meta->configs[raid_entry].raid.array_width;
2836 	    break;
2837 
2838 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2839 	    raid->magic_0 = meta->timestamp;
2840 	    raid->magic_1 = meta->raid_number;
2841 	    raid->type = AR_T_RAID01;
2842 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2843 	    raid->width = meta->configs[raid_entry].raid.array_width;
2844 	    break;
2845 
2846 	default:
2847 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2848 			  meta->configs[raid_entry].raid.type);
2849 	    kfree(raidp[array], M_AR);
2850 	    raidp[array] = NULL;
2851 	    goto lsiv2_out;
2852 	}
2853 
2854 	raid->format = AR_F_LSIV2_RAID;
2855 	raid->generation = 0;
2856 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2857 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2858 	raid->heads = 255;
2859 	raid->sectors = 63;
2860 	raid->cylinders = raid->total_sectors / (63 * 255);
2861 	raid->offset_sectors = 0;
2862 	raid->rebuild_lba = 0;
2863 	raid->lun = array;
2864 
2865 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2866 	    raid->disks[meta->disk_number].dev = parent;
2867 	    raid->disks[meta->disk_number].sectors =
2868 		meta->configs[conf_entry].disk.disk_sectors;
2869 	    raid->disks[meta->disk_number].flags =
2870 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2871 	    ars->raid[raid->volume] = raid;
2872 	    ars->disk_number[raid->volume] = meta->disk_number;
2873 	    retval = 1;
2874 	}
2875 	else
2876 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2877 
2878 	break;
2879     }
2880 
2881 lsiv2_out:
2882     kfree(meta, M_AR);
2883     return retval;
2884 }
2885 
2886 /* LSILogic V3 MegaRAID Metadata */
2887 static int
ata_raid_lsiv3_read_meta(device_t dev,struct ar_softc ** raidp)2888 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2889 {
2890     struct ata_raid_subdisk *ars = device_get_softc(dev);
2891     device_t parent = device_get_parent(dev);
2892     struct lsiv3_raid_conf *meta;
2893     struct ar_softc *raid = NULL;
2894     u_int8_t checksum, *ptr;
2895     int array, entry, count, disk_number, retval = 0;
2896 
2897     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2898 	M_AR, M_WAITOK | M_ZERO);
2899 
2900     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2901 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2902 	if (testing || bootverbose)
2903 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2904 	goto lsiv3_out;
2905     }
2906 
2907     /* check if this is a LSI RAID struct */
2908     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2909 	if (testing || bootverbose)
2910 	    device_printf(parent, "LSI (v3) check1 failed\n");
2911 	goto lsiv3_out;
2912     }
2913 
2914     /* check if the checksum is OK */
2915     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2916 	checksum += *ptr++;
2917     if (checksum) {
2918 	if (testing || bootverbose)
2919 	    device_printf(parent, "LSI (v3) check2 failed\n");
2920 	goto lsiv3_out;
2921     }
2922 
2923     if (testing || bootverbose)
2924 	ata_raid_lsiv3_print_meta(meta);
2925 
2926     /* now convert LSI (v3) config meta into our generic form */
2927     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2928 	if (!raidp[array]) {
2929 	    raidp[array] =
2930 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2931 					  M_WAITOK | M_ZERO);
2932 	}
2933 	raid = raidp[array];
2934 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2935 	    array++;
2936 	    continue;
2937 	}
2938 
2939 	if ((raid->format == AR_F_LSIV3_RAID) &&
2940 	    (raid->magic_0 != meta->timestamp)) {
2941 	    array++;
2942 	    continue;
2943 	}
2944 
2945 	switch (meta->raid[entry].total_disks) {
2946 	case 0:
2947 	    entry++;
2948 	    continue;
2949 	case 1:
2950 	    if (meta->raid[entry].device == meta->device) {
2951 		disk_number = 0;
2952 		break;
2953 	    }
2954 	    if (raid->format)
2955 		array++;
2956 	    entry++;
2957 	    continue;
2958 	case 2:
2959 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2960 	    break;
2961 	default:
2962 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2963 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2964 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2965 	    break;
2966 	}
2967 
2968 	switch (meta->raid[entry].type) {
2969 	case LSIV3_T_RAID0:
2970 	    raid->type = AR_T_RAID0;
2971 	    raid->width = meta->raid[entry].total_disks;
2972 	    break;
2973 
2974 	case LSIV3_T_RAID1:
2975 	    raid->type = AR_T_RAID1;
2976 	    raid->width = meta->raid[entry].array_width;
2977 	    break;
2978 
2979 	default:
2980 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2981 			  meta->raid[entry].type);
2982 	    kfree(raidp[array], M_AR);
2983 	    raidp[array] = NULL;
2984 	    entry++;
2985 	    continue;
2986 	}
2987 
2988 	raid->magic_0 = meta->timestamp;
2989 	raid->format = AR_F_LSIV3_RAID;
2990 	raid->generation = 0;
2991 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2992 	raid->total_disks = meta->raid[entry].total_disks;
2993 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2994 	raid->heads = 255;
2995 	raid->sectors = 63;
2996 	raid->cylinders = raid->total_sectors / (63 * 255);
2997 	raid->offset_sectors = meta->raid[entry].offset;
2998 	raid->rebuild_lba = 0;
2999 	raid->lun = array;
3000 
3001 	raid->disks[disk_number].dev = parent;
3002 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
3003 	raid->disks[disk_number].flags =
3004 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3005 	ars->raid[raid->volume] = raid;
3006 	ars->disk_number[raid->volume] = disk_number;
3007 	retval = 1;
3008 	entry++;
3009 	array++;
3010     }
3011 
3012 lsiv3_out:
3013     kfree(meta, M_AR);
3014     return retval;
3015 }
3016 
3017 /* nVidia MediaShield Metadata */
3018 static int
ata_raid_nvidia_read_meta(device_t dev,struct ar_softc ** raidp)3019 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3020 {
3021     struct ata_raid_subdisk *ars = device_get_softc(dev);
3022     device_t parent = device_get_parent(dev);
3023     struct nvidia_raid_conf *meta;
3024     struct ar_softc *raid = NULL;
3025     u_int32_t checksum, *ptr;
3026     int array, count, retval = 0;
3027 
3028     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3029 	M_AR, M_WAITOK | M_ZERO);
3030 
3031     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3032 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3033 	if (testing || bootverbose)
3034 	    device_printf(parent, "nVidia read metadata failed\n");
3035 	goto nvidia_out;
3036     }
3037 
3038     /* check if this is a nVidia RAID struct */
3039     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3040 	if (testing || bootverbose)
3041 	    device_printf(parent, "nVidia check1 failed\n");
3042 	goto nvidia_out;
3043     }
3044 
3045     /* check if the checksum is OK */
3046     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3047 	 count < meta->config_size; count++)
3048 	checksum += *ptr++;
3049     if (checksum) {
3050 	if (testing || bootverbose)
3051 	    device_printf(parent, "nVidia check2 failed\n");
3052 	goto nvidia_out;
3053     }
3054 
3055     if (testing || bootverbose)
3056 	ata_raid_nvidia_print_meta(meta);
3057 
3058     /* now convert nVidia meta into our generic form */
3059     for (array = 0; array < MAX_ARRAYS; array++) {
3060 	if (!raidp[array]) {
3061 	    raidp[array] =
3062 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3063 					  M_WAITOK | M_ZERO);
3064 	}
3065 	raid = raidp[array];
3066 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3067 	    continue;
3068 
3069 	if (raid->format == AR_F_NVIDIA_RAID &&
3070 	    ((raid->magic_0 != meta->magic_1) ||
3071 	     (raid->magic_1 != meta->magic_2))) {
3072 	    continue;
3073 	}
3074 
3075 	switch (meta->type) {
3076 	case NV_T_SPAN:
3077 	    raid->type = AR_T_SPAN;
3078 	    break;
3079 
3080 	case NV_T_RAID0:
3081 	    raid->type = AR_T_RAID0;
3082 	    break;
3083 
3084 	case NV_T_RAID1:
3085 	    raid->type = AR_T_RAID1;
3086 	    break;
3087 
3088 	case NV_T_RAID5:
3089 	    raid->type = AR_T_RAID5;
3090 	    break;
3091 
3092 	case NV_T_RAID01:
3093 	    raid->type = AR_T_RAID01;
3094 	    break;
3095 
3096 	default:
3097 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3098 			  meta->type);
3099 	    kfree(raidp[array], M_AR);
3100 	    raidp[array] = NULL;
3101 	    goto nvidia_out;
3102 	}
3103 	raid->magic_0 = meta->magic_1;
3104 	raid->magic_1 = meta->magic_2;
3105 	raid->format = AR_F_NVIDIA_RAID;
3106 	raid->generation = 0;
3107 	raid->interleave = meta->stripe_sectors;
3108 	raid->width = meta->array_width;
3109 	raid->total_disks = meta->total_disks;
3110 	raid->total_sectors = meta->total_sectors;
3111 	raid->heads = 255;
3112 	raid->sectors = 63;
3113 	raid->cylinders = raid->total_sectors / (63 * 255);
3114 	raid->offset_sectors = 0;
3115 	raid->rebuild_lba = meta->rebuild_lba;
3116 	raid->lun = array;
3117 	raid->status = AR_S_READY;
3118 	if (meta->status & NV_S_DEGRADED)
3119 	    raid->status |= AR_S_DEGRADED;
3120 
3121 	raid->disks[meta->disk_number].dev = parent;
3122 	raid->disks[meta->disk_number].sectors =
3123 	    raid->total_sectors / raid->width;
3124 	raid->disks[meta->disk_number].flags =
3125 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3126 	ars->raid[raid->volume] = raid;
3127 	ars->disk_number[raid->volume] = meta->disk_number;
3128 	retval = 1;
3129 	break;
3130     }
3131 
3132 nvidia_out:
3133     kfree(meta, M_AR);
3134     return retval;
3135 }
3136 
3137 /* Promise FastTrak Metadata */
3138 static int
ata_raid_promise_read_meta(device_t dev,struct ar_softc ** raidp,int native)3139 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3140 {
3141     struct ata_raid_subdisk *ars = device_get_softc(dev);
3142     device_t parent = device_get_parent(dev);
3143     struct promise_raid_conf *meta;
3144     struct ar_softc *raid;
3145     u_int32_t checksum, *ptr;
3146     int array, count, disk, disksum = 0, retval = 0;
3147 
3148     meta = (struct promise_raid_conf *)
3149 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3150 
3151     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3152 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3153 	if (testing || bootverbose)
3154 	    device_printf(parent, "%s read metadata failed\n",
3155 			  native ? "FreeBSD" : "Promise");
3156 	goto promise_out;
3157     }
3158 
3159     /* check the signature */
3160     if (native) {
3161 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3162 	    if (testing || bootverbose)
3163 		device_printf(parent, "FreeBSD check1 failed\n");
3164 	    goto promise_out;
3165 	}
3166     }
3167     else {
3168 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3169 	    if (testing || bootverbose)
3170 		device_printf(parent, "Promise check1 failed\n");
3171 	    goto promise_out;
3172 	}
3173     }
3174 
3175     /* check if the checksum is OK */
3176     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3177 	checksum += *ptr++;
3178     if (checksum != *ptr) {
3179 	if (testing || bootverbose)
3180 	    device_printf(parent, "%s check2 failed\n",
3181 			  native ? "FreeBSD" : "Promise");
3182 	goto promise_out;
3183     }
3184 
3185     /* check on disk integrity status */
3186     if (meta->raid.integrity != PR_I_VALID) {
3187 	if (testing || bootverbose)
3188 	    device_printf(parent, "%s check3 failed\n",
3189 			  native ? "FreeBSD" : "Promise");
3190 	goto promise_out;
3191     }
3192 
3193     if (testing || bootverbose)
3194 	ata_raid_promise_print_meta(meta);
3195 
3196     /* now convert Promise metadata into our generic form */
3197     for (array = 0; array < MAX_ARRAYS; array++) {
3198 	if (!raidp[array]) {
3199 	    raidp[array] =
3200 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3201 					  M_WAITOK | M_ZERO);
3202 	}
3203 	raid = raidp[array];
3204 	if (raid->format &&
3205 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3206 	    continue;
3207 
3208 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3209 	    !(meta->raid.magic_1 == (raid->magic_1)))
3210 	    continue;
3211 
3212 	/* update our knowledge about the array config based on generation */
3213 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3214 	    switch (meta->raid.type) {
3215 	    case PR_T_SPAN:
3216 		raid->type = AR_T_SPAN;
3217 		break;
3218 
3219 	    case PR_T_JBOD:
3220 		raid->type = AR_T_JBOD;
3221 		break;
3222 
3223 	    case PR_T_RAID0:
3224 		raid->type = AR_T_RAID0;
3225 		break;
3226 
3227 	    case PR_T_RAID1:
3228 		raid->type = AR_T_RAID1;
3229 		if (meta->raid.array_width > 1)
3230 		    raid->type = AR_T_RAID01;
3231 		break;
3232 
3233 	    case PR_T_RAID5:
3234 		raid->type = AR_T_RAID5;
3235 		break;
3236 
3237 	    default:
3238 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3239 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3240 		kfree(raidp[array], M_AR);
3241 		raidp[array] = NULL;
3242 		goto promise_out;
3243 	    }
3244 	    raid->magic_1 = meta->raid.magic_1;
3245 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3246 	    raid->generation = meta->raid.generation;
3247 	    raid->interleave = 1 << meta->raid.stripe_shift;
3248 	    raid->width = meta->raid.array_width;
3249 	    raid->total_disks = meta->raid.total_disks;
3250 	    raid->heads = meta->raid.heads + 1;
3251 	    raid->sectors = meta->raid.sectors;
3252 	    raid->cylinders = meta->raid.cylinders + 1;
3253 	    raid->total_sectors = meta->raid.total_sectors;
3254 	    raid->offset_sectors = 0;
3255 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3256 	    raid->lun = array;
3257 	    if ((meta->raid.status &
3258 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3259 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3260 		raid->status |= AR_S_READY;
3261 		if (meta->raid.status & PR_S_DEGRADED)
3262 		    raid->status |= AR_S_DEGRADED;
3263 	    }
3264 	    else
3265 		raid->status &= ~AR_S_READY;
3266 
3267 	    /* convert disk flags to our internal types */
3268 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3269 		raid->disks[disk].dev = NULL;
3270 		raid->disks[disk].flags = 0;
3271 		*((u_int64_t *)(raid->disks[disk].serial)) =
3272 		    meta->raid.disk[disk].magic_0;
3273 		disksum += meta->raid.disk[disk].flags;
3274 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3275 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3276 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3277 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3278 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3279 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3280 		    raid->disks[disk].flags |= AR_DF_SPARE;
3281 		}
3282 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3283 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3284 	    }
3285 	    if (!disksum) {
3286 		device_printf(parent, "%s subdisks has no flags\n",
3287 			      native ? "FreeBSD" : "Promise");
3288 		kfree(raidp[array], M_AR);
3289 		raidp[array] = NULL;
3290 		goto promise_out;
3291 	    }
3292 	}
3293 	if (meta->raid.generation >= raid->generation) {
3294 	    int disk_number = meta->raid.disk_number;
3295 
3296 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3297 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3298 		raid->disks[disk_number].dev = parent;
3299 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3300 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3301 		if ((raid->disks[disk_number].flags &
3302 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3303 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3304 		    ars->raid[raid->volume] = raid;
3305 		    ars->disk_number[raid->volume] = disk_number;
3306 		    retval = 1;
3307 		}
3308 	    }
3309 	}
3310 	break;
3311     }
3312 
3313 promise_out:
3314     kfree(meta, M_AR);
3315     return retval;
3316 }
3317 
3318 static int
ata_raid_promise_write_meta(struct ar_softc * rdp)3319 ata_raid_promise_write_meta(struct ar_softc *rdp)
3320 {
3321     struct promise_raid_conf *meta;
3322     struct timeval timestamp;
3323     u_int32_t *ckptr;
3324     int count, disk, drive, error = 0;
3325 
3326     meta = (struct promise_raid_conf *)
3327 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3328 
3329     rdp->generation++;
3330     microtime(&timestamp);
3331 
3332     for (disk = 0; disk < rdp->total_disks; disk++) {
3333 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3334 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3335 	meta->dummy_0 = 0x00020000;
3336 	meta->raid.disk_number = disk;
3337 
3338 	if (rdp->disks[disk].dev) {
3339 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3340 	    struct ata_channel *ch =
3341 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3342 
3343 	    meta->raid.channel = ch->unit;
3344 	    meta->raid.device = atadev->unit;
3345 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3346 	    meta->raid.disk_offset = rdp->offset_sectors;
3347 	}
3348 	else {
3349 	    meta->raid.channel = 0;
3350 	    meta->raid.device = 0;
3351 	    meta->raid.disk_sectors = 0;
3352 	    meta->raid.disk_offset = 0;
3353 	}
3354 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3355 	meta->magic_1 = timestamp.tv_sec >> 16;
3356 	meta->magic_2 = timestamp.tv_sec;
3357 	meta->raid.integrity = PR_I_VALID;
3358 	meta->raid.magic_0 = meta->magic_0;
3359 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3360 	meta->raid.generation = rdp->generation;
3361 
3362 	if (rdp->status & AR_S_READY) {
3363 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3364 	    meta->raid.status =
3365 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3366 	    if (rdp->status & AR_S_DEGRADED)
3367 		meta->raid.status |= PR_S_DEGRADED;
3368 	    else
3369 		meta->raid.status |= PR_S_FUNCTIONAL;
3370 	}
3371 	else {
3372 	    meta->raid.flags = PR_F_DOWN;
3373 	    meta->raid.status = 0;
3374 	}
3375 
3376 	switch (rdp->type) {
3377 	case AR_T_RAID0:
3378 	    meta->raid.type = PR_T_RAID0;
3379 	    break;
3380 	case AR_T_RAID1:
3381 	    meta->raid.type = PR_T_RAID1;
3382 	    break;
3383 	case AR_T_RAID01:
3384 	    meta->raid.type = PR_T_RAID1;
3385 	    break;
3386 	case AR_T_RAID5:
3387 	    meta->raid.type = PR_T_RAID5;
3388 	    break;
3389 	case AR_T_SPAN:
3390 	    meta->raid.type = PR_T_SPAN;
3391 	    break;
3392 	case AR_T_JBOD:
3393 	    meta->raid.type = PR_T_JBOD;
3394 	    break;
3395 	default:
3396 	    kfree(meta, M_AR);
3397 	    return ENODEV;
3398 	}
3399 
3400 	meta->raid.total_disks = rdp->total_disks;
3401 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3402 	meta->raid.array_width = rdp->width;
3403 	meta->raid.array_number = rdp->lun;
3404 	meta->raid.total_sectors = rdp->total_sectors;
3405 	meta->raid.cylinders = rdp->cylinders - 1;
3406 	meta->raid.heads = rdp->heads - 1;
3407 	meta->raid.sectors = rdp->sectors;
3408 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3409 
3410 	bzero(&meta->raid.disk, 8 * 12);
3411 	for (drive = 0; drive < rdp->total_disks; drive++) {
3412 	    meta->raid.disk[drive].flags = 0;
3413 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3414 		meta->raid.disk[drive].flags |= PR_F_VALID;
3415 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3416 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3417 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3418 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3419 	    else
3420 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3421 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3422 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3423 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3424 	    meta->raid.disk[drive].dummy_0 = 0x0;
3425 	    if (rdp->disks[drive].dev) {
3426 		struct ata_channel *ch =
3427 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3428 		struct ata_device *atadev =
3429 		    device_get_softc(rdp->disks[drive].dev);
3430 
3431 		meta->raid.disk[drive].channel = ch->unit;
3432 		meta->raid.disk[drive].device = atadev->unit;
3433 	    }
3434 	    meta->raid.disk[drive].magic_0 =
3435 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3436 	}
3437 
3438 	if (rdp->disks[disk].dev) {
3439 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3440 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3441 		if (rdp->format == AR_F_FREEBSD_RAID)
3442 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3443 		else
3444 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3445 	    }
3446 	    else
3447 		bzero(meta->promise_id, sizeof(meta->promise_id));
3448 	    meta->checksum = 0;
3449 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3450 		meta->checksum += *ckptr++;
3451 	    if (testing || bootverbose)
3452 		ata_raid_promise_print_meta(meta);
3453 	    if (ata_raid_rw(rdp->disks[disk].dev,
3454 			    PROMISE_LBA(rdp->disks[disk].dev),
3455 			    meta, sizeof(struct promise_raid_conf),
3456 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3457 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3458 		error = EIO;
3459 	    }
3460 	}
3461     }
3462     kfree(meta, M_AR);
3463     return error;
3464 }
3465 
3466 /* Silicon Image Medley Metadata */
3467 static int
ata_raid_sii_read_meta(device_t dev,struct ar_softc ** raidp)3468 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3469 {
3470     struct ata_raid_subdisk *ars = device_get_softc(dev);
3471     device_t parent = device_get_parent(dev);
3472     struct sii_raid_conf *meta;
3473     struct ar_softc *raid = NULL;
3474     u_int16_t checksum, *ptr;
3475     int array, count, disk, retval = 0;
3476 
3477     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3478 	M_WAITOK | M_ZERO);
3479 
3480     if (ata_raid_rw(parent, SII_LBA(parent),
3481 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3482 	if (testing || bootverbose)
3483 	    device_printf(parent, "Silicon Image read metadata failed\n");
3484 	goto sii_out;
3485     }
3486 
3487     /* check if this is a Silicon Image (Medley) RAID struct */
3488     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3489 	checksum += *ptr++;
3490     if (checksum) {
3491 	if (testing || bootverbose)
3492 	    device_printf(parent, "Silicon Image check1 failed\n");
3493 	goto sii_out;
3494     }
3495 
3496     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3497 	checksum += *ptr++;
3498     if (checksum != meta->checksum_1) {
3499 	if (testing || bootverbose)
3500 	    device_printf(parent, "Silicon Image check2 failed\n");
3501 	goto sii_out;
3502     }
3503 
3504     /* check verison */
3505     if (meta->version_major != 0x0002 ||
3506 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3507 	if (testing || bootverbose)
3508 	    device_printf(parent, "Silicon Image check3 failed\n");
3509 	goto sii_out;
3510     }
3511 
3512     if (testing || bootverbose)
3513 	ata_raid_sii_print_meta(meta);
3514 
3515     /* now convert Silicon Image meta into our generic form */
3516     for (array = 0; array < MAX_ARRAYS; array++) {
3517 	if (!raidp[array]) {
3518 	    raidp[array] =
3519 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3520 					  M_WAITOK | M_ZERO);
3521 	}
3522 	raid = raidp[array];
3523 	if (raid->format && (raid->format != AR_F_SII_RAID))
3524 	    continue;
3525 
3526 	if (raid->format == AR_F_SII_RAID &&
3527 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3528 	    continue;
3529 	}
3530 
3531 	/* update our knowledge about the array config based on generation */
3532 	if (!meta->generation || meta->generation > raid->generation) {
3533 	    switch (meta->type) {
3534 	    case SII_T_RAID0:
3535 		raid->type = AR_T_RAID0;
3536 		break;
3537 
3538 	    case SII_T_RAID1:
3539 		raid->type = AR_T_RAID1;
3540 		break;
3541 
3542 	    case SII_T_RAID01:
3543 		raid->type = AR_T_RAID01;
3544 		break;
3545 
3546 	    case SII_T_SPARE:
3547 		device_printf(parent, "Silicon Image SPARE disk\n");
3548 		kfree(raidp[array], M_AR);
3549 		raidp[array] = NULL;
3550 		goto sii_out;
3551 
3552 	    default:
3553 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3554 			      meta->type);
3555 		kfree(raidp[array], M_AR);
3556 		raidp[array] = NULL;
3557 		goto sii_out;
3558 	    }
3559 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3560 	    raid->format = AR_F_SII_RAID;
3561 	    raid->generation = meta->generation;
3562 	    raid->interleave = meta->stripe_sectors;
3563 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3564 	    raid->total_disks =
3565 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3566 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3567 	    raid->total_sectors = meta->total_sectors;
3568 	    raid->heads = 255;
3569 	    raid->sectors = 63;
3570 	    raid->cylinders = raid->total_sectors / (63 * 255);
3571 	    raid->offset_sectors = 0;
3572 	    raid->rebuild_lba = meta->rebuild_lba;
3573 	    raid->lun = array;
3574 	    strncpy(raid->name, meta->name,
3575 		    min(sizeof(raid->name), sizeof(meta->name)));
3576 
3577 	    /* clear out any old info */
3578 	    if (raid->generation) {
3579 		for (disk = 0; disk < raid->total_disks; disk++) {
3580 		    raid->disks[disk].dev = NULL;
3581 		    raid->disks[disk].flags = 0;
3582 		}
3583 	    }
3584 	}
3585 	if (meta->generation >= raid->generation) {
3586 	    /* XXX SOS add check for the right physical disk by serial# */
3587 	    if (meta->status & SII_S_READY) {
3588 		int disk_number = (raid->type == AR_T_RAID01) ?
3589 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3590 		    meta->disk_number;
3591 
3592 		raid->disks[disk_number].dev = parent;
3593 		raid->disks[disk_number].sectors =
3594 		    raid->total_sectors / raid->width;
3595 		raid->disks[disk_number].flags =
3596 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3597 		ars->raid[raid->volume] = raid;
3598 		ars->disk_number[raid->volume] = disk_number;
3599 		retval = 1;
3600 	    }
3601 	}
3602 	break;
3603     }
3604 
3605 sii_out:
3606     kfree(meta, M_AR);
3607     return retval;
3608 }
3609 
3610 /* Silicon Integrated Systems Metadata */
3611 static int
ata_raid_sis_read_meta(device_t dev,struct ar_softc ** raidp)3612 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3613 {
3614     struct ata_raid_subdisk *ars = device_get_softc(dev);
3615     device_t parent = device_get_parent(dev);
3616     struct sis_raid_conf *meta;
3617     struct ar_softc *raid = NULL;
3618     int array, disk_number, drive, retval = 0;
3619 
3620     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3621 	M_WAITOK | M_ZERO);
3622 
3623     if (ata_raid_rw(parent, SIS_LBA(parent),
3624 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3625 	if (testing || bootverbose)
3626 	    device_printf(parent,
3627 			  "Silicon Integrated Systems read metadata failed\n");
3628     }
3629 
3630     /* check for SiS magic */
3631     if (meta->magic != SIS_MAGIC) {
3632 	if (testing || bootverbose)
3633 	    device_printf(parent,
3634 			  "Silicon Integrated Systems check1 failed\n");
3635 	goto sis_out;
3636     }
3637 
3638     if (testing || bootverbose)
3639 	ata_raid_sis_print_meta(meta);
3640 
3641     /* now convert SiS meta into our generic form */
3642     for (array = 0; array < MAX_ARRAYS; array++) {
3643 	if (!raidp[array]) {
3644 	    raidp[array] =
3645 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3646 					  M_WAITOK | M_ZERO);
3647 	}
3648 
3649 	raid = raidp[array];
3650 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3651 	    continue;
3652 
3653 	if ((raid->format == AR_F_SIS_RAID) &&
3654 	    ((raid->magic_0 != meta->controller_pci_id) ||
3655 	     (raid->magic_1 != meta->timestamp))) {
3656 	    continue;
3657 	}
3658 
3659 	switch (meta->type_total_disks & SIS_T_MASK) {
3660 	case SIS_T_JBOD:
3661 	    raid->type = AR_T_JBOD;
3662 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3663 	    raid->total_sectors += SIS_LBA(parent);
3664 	    break;
3665 
3666 	case SIS_T_RAID0:
3667 	    raid->type = AR_T_RAID0;
3668 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3669 	    if (!raid->total_sectors ||
3670 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3671 		raid->total_sectors = raid->width * SIS_LBA(parent);
3672 	    break;
3673 
3674 	case SIS_T_RAID1:
3675 	    raid->type = AR_T_RAID1;
3676 	    raid->width = 1;
3677 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3678 		raid->total_sectors = SIS_LBA(parent);
3679 	    break;
3680 
3681 	default:
3682 	    device_printf(parent, "Silicon Integrated Systems "
3683 			  "unknown RAID type 0x%08x\n", meta->magic);
3684 	    kfree(raidp[array], M_AR);
3685 	    raidp[array] = NULL;
3686 	    goto sis_out;
3687 	}
3688 	raid->magic_0 = meta->controller_pci_id;
3689 	raid->magic_1 = meta->timestamp;
3690 	raid->format = AR_F_SIS_RAID;
3691 	raid->generation = 0;
3692 	raid->interleave = meta->stripe_sectors;
3693 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3694 	raid->heads = 255;
3695 	raid->sectors = 63;
3696 	raid->cylinders = raid->total_sectors / (63 * 255);
3697 	raid->offset_sectors = 0;
3698 	raid->rebuild_lba = 0;
3699 	raid->lun = array;
3700 	/* XXX SOS if total_disks > 2 this doesn't float */
3701 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3702 	    disk_number = 0;
3703 	else
3704 	    disk_number = 1;
3705 
3706 	for (drive = 0; drive < raid->total_disks; drive++) {
3707 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3708 	    if (drive == disk_number) {
3709 		raid->disks[disk_number].dev = parent;
3710 		raid->disks[disk_number].flags =
3711 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3712 		ars->raid[raid->volume] = raid;
3713 		ars->disk_number[raid->volume] = disk_number;
3714 	    }
3715 	}
3716 	retval = 1;
3717 	break;
3718     }
3719 
3720 sis_out:
3721     kfree(meta, M_AR);
3722     return retval;
3723 }
3724 
3725 static int
ata_raid_sis_write_meta(struct ar_softc * rdp)3726 ata_raid_sis_write_meta(struct ar_softc *rdp)
3727 {
3728     struct sis_raid_conf *meta;
3729     struct timeval timestamp;
3730     int disk, error = 0;
3731 
3732     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3733 	M_WAITOK | M_ZERO);
3734 
3735     rdp->generation++;
3736     microtime(&timestamp);
3737 
3738     meta->magic = SIS_MAGIC;
3739     /* XXX SOS if total_disks > 2 this doesn't float */
3740     for (disk = 0; disk < rdp->total_disks; disk++) {
3741 	if (rdp->disks[disk].dev) {
3742 	    struct ata_channel *ch =
3743 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3744 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3745 	    int disk_number = 1 + atadev->unit + (ch->unit << 1);
3746 
3747 	    meta->disks |= disk_number << ((1 - disk) << 2);
3748 	}
3749     }
3750     switch (rdp->type) {
3751     case AR_T_JBOD:
3752 	meta->type_total_disks = SIS_T_JBOD;
3753 	break;
3754 
3755     case AR_T_RAID0:
3756 	meta->type_total_disks = SIS_T_RAID0;
3757 	break;
3758 
3759     case AR_T_RAID1:
3760 	meta->type_total_disks = SIS_T_RAID1;
3761 	break;
3762 
3763     default:
3764 	kfree(meta, M_AR);
3765 	return ENODEV;
3766     }
3767     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3768     meta->stripe_sectors = rdp->interleave;
3769     meta->timestamp = timestamp.tv_sec;
3770 
3771     for (disk = 0; disk < rdp->total_disks; disk++) {
3772 	if (rdp->disks[disk].dev) {
3773 	    struct ata_channel *ch =
3774 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3775 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3776 
3777 	    meta->controller_pci_id =
3778 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3779 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3780 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3781 
3782 	    /* XXX SOS if total_disks > 2 this may not float */
3783 	    meta->disk_number = 1 + atadev->unit + (ch->unit << 1);
3784 
3785 	    if (testing || bootverbose)
3786 		ata_raid_sis_print_meta(meta);
3787 
3788 	    if (ata_raid_rw(rdp->disks[disk].dev,
3789 			    SIS_LBA(rdp->disks[disk].dev),
3790 			    meta, sizeof(struct sis_raid_conf),
3791 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3792 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3793 		error = EIO;
3794 	    }
3795 	}
3796     }
3797     kfree(meta, M_AR);
3798     return error;
3799 }
3800 
3801 /* VIA Tech V-RAID Metadata */
3802 static int
ata_raid_via_read_meta(device_t dev,struct ar_softc ** raidp)3803 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3804 {
3805     struct ata_raid_subdisk *ars = device_get_softc(dev);
3806     device_t parent = device_get_parent(dev);
3807     struct via_raid_conf *meta;
3808     struct ar_softc *raid = NULL;
3809     u_int8_t checksum, *ptr;
3810     int array, count, disk, retval = 0;
3811 
3812     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3813 	M_WAITOK | M_ZERO);
3814 
3815     if (ata_raid_rw(parent, VIA_LBA(parent),
3816 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3817 	if (testing || bootverbose)
3818 	    device_printf(parent, "VIA read metadata failed\n");
3819 	goto via_out;
3820     }
3821 
3822     /* check if this is a VIA RAID struct */
3823     if (meta->magic != VIA_MAGIC) {
3824 	if (testing || bootverbose)
3825 	    device_printf(parent, "VIA check1 failed\n");
3826 	goto via_out;
3827     }
3828 
3829     /* calculate checksum and compare for valid */
3830     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3831 	checksum += *ptr++;
3832     if (checksum != meta->checksum) {
3833 	if (testing || bootverbose)
3834 	    device_printf(parent, "VIA check2 failed\n");
3835 	goto via_out;
3836     }
3837 
3838     if (testing || bootverbose)
3839 	ata_raid_via_print_meta(meta);
3840 
3841     /* now convert VIA meta into our generic form */
3842     for (array = 0; array < MAX_ARRAYS; array++) {
3843 	if (!raidp[array]) {
3844 	    raidp[array] =
3845 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3846 					  M_WAITOK | M_ZERO);
3847 	}
3848 	raid = raidp[array];
3849 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3850 	    continue;
3851 
3852 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3853 	    continue;
3854 
3855 	switch (meta->type & VIA_T_MASK) {
3856 	case VIA_T_RAID0:
3857 	    raid->type = AR_T_RAID0;
3858 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3859 	    if (!raid->total_sectors ||
3860 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3861 		raid->total_sectors = raid->width * meta->disk_sectors;
3862 	    break;
3863 
3864 	case VIA_T_RAID1:
3865 	    raid->type = AR_T_RAID1;
3866 	    raid->width = 1;
3867 	    raid->total_sectors = meta->disk_sectors;
3868 	    break;
3869 
3870 	case VIA_T_RAID01:
3871 	    raid->type = AR_T_RAID01;
3872 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3873 	    if (!raid->total_sectors ||
3874 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3875 		raid->total_sectors = raid->width * meta->disk_sectors;
3876 	    break;
3877 
3878 	case VIA_T_RAID5:
3879 	    raid->type = AR_T_RAID5;
3880 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3881 	    if (!raid->total_sectors ||
3882 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3883 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3884 	    break;
3885 
3886 	case VIA_T_SPAN:
3887 	    raid->type = AR_T_SPAN;
3888 	    raid->width = 1;
3889 	    raid->total_sectors += meta->disk_sectors;
3890 	    break;
3891 
3892 	default:
3893 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3894 	    kfree(raidp[array], M_AR);
3895 	    raidp[array] = NULL;
3896 	    goto via_out;
3897 	}
3898 	raid->magic_0 = meta->disks[0];
3899 	raid->format = AR_F_VIA_RAID;
3900 	raid->generation = 0;
3901 	raid->interleave =
3902 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3903 	for (count = 0, disk = 0; disk < 8; disk++)
3904 	    if (meta->disks[disk])
3905 		count++;
3906 	raid->total_disks = count;
3907 	raid->heads = 255;
3908 	raid->sectors = 63;
3909 	raid->cylinders = raid->total_sectors / (63 * 255);
3910 	raid->offset_sectors = 0;
3911 	raid->rebuild_lba = 0;
3912 	raid->lun = array;
3913 
3914 	for (disk = 0; disk < raid->total_disks; disk++) {
3915 	    if (meta->disks[disk] == meta->disk_id) {
3916 		raid->disks[disk].dev = parent;
3917 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3918 		      sizeof(u_int32_t));
3919 		raid->disks[disk].sectors = meta->disk_sectors;
3920 		raid->disks[disk].flags =
3921 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3922 		ars->raid[raid->volume] = raid;
3923 		ars->disk_number[raid->volume] = disk;
3924 		retval = 1;
3925 		break;
3926 	    }
3927 	}
3928 	break;
3929     }
3930 
3931 via_out:
3932     kfree(meta, M_AR);
3933     return retval;
3934 }
3935 
3936 static int
ata_raid_via_write_meta(struct ar_softc * rdp)3937 ata_raid_via_write_meta(struct ar_softc *rdp)
3938 {
3939     struct via_raid_conf *meta;
3940     int disk, error = 0;
3941 
3942     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3943 	M_WAITOK | M_ZERO);
3944 
3945     rdp->generation++;
3946 
3947     meta->magic = VIA_MAGIC;
3948     meta->dummy_0 = 0x02;
3949     switch (rdp->type) {
3950     case AR_T_SPAN:
3951 	meta->type = VIA_T_SPAN;
3952 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3953 	break;
3954 
3955     case AR_T_RAID0:
3956 	meta->type = VIA_T_RAID0;
3957 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3958 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3959 	break;
3960 
3961     case AR_T_RAID1:
3962 	meta->type = VIA_T_RAID1;
3963 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3964 	break;
3965 
3966     case AR_T_RAID5:
3967 	meta->type = VIA_T_RAID5;
3968 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3969 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3970 	break;
3971 
3972     case AR_T_RAID01:
3973 	meta->type = VIA_T_RAID01;
3974 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3975 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3976 	break;
3977 
3978     default:
3979 	kfree(meta, M_AR);
3980 	return ENODEV;
3981     }
3982     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3983     meta->disk_sectors =
3984 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3985     for (disk = 0; disk < rdp->total_disks; disk++)
3986 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3987 
3988     for (disk = 0; disk < rdp->total_disks; disk++) {
3989 	if (rdp->disks[disk].dev) {
3990 	    u_int8_t *ptr;
3991 	    int count;
3992 
3993 	    meta->disk_index = disk * sizeof(u_int32_t);
3994 	    if (rdp->type == AR_T_RAID01)
3995 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3996 				   (meta->disk_index & ~0x08);
3997 	    meta->disk_id = meta->disks[disk];
3998 	    meta->checksum = 0;
3999 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
4000 		meta->checksum += *ptr++;
4001 
4002 	    if (testing || bootverbose)
4003 		ata_raid_via_print_meta(meta);
4004 
4005 	    if (ata_raid_rw(rdp->disks[disk].dev,
4006 			    VIA_LBA(rdp->disks[disk].dev),
4007 			    meta, sizeof(struct via_raid_conf),
4008 			    ATA_R_WRITE | ATA_R_DIRECT)) {
4009 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
4010 		error = EIO;
4011 	    }
4012 	}
4013     }
4014     kfree(meta, M_AR);
4015     return error;
4016 }
4017 
4018 static struct ata_request *
ata_raid_init_request(struct ar_softc * rdp,struct bio * bio)4019 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4020 {
4021     struct ata_request *request;
4022 
4023     if (!(request = ata_alloc_request())) {
4024 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4025 	return NULL;
4026     }
4027     request->timeout = ATA_DEFAULT_TIMEOUT;
4028     request->retries = 2;
4029     request->callback = ata_raid_done;
4030     request->driver = rdp;
4031     request->bio = bio;
4032     switch (request->bio->bio_buf->b_cmd) {
4033     case BUF_CMD_READ:
4034 	request->flags = ATA_R_READ;
4035 	break;
4036     case BUF_CMD_WRITE:
4037 	request->flags = ATA_R_WRITE;
4038 	break;
4039     case BUF_CMD_FLUSH:
4040 	request->flags = ATA_R_CONTROL;
4041 	break;
4042     default:
4043 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4044 	ata_free_request(request);
4045 	return(NULL);
4046     }
4047     return request;
4048 }
4049 
4050 static int
ata_raid_send_request(struct ata_request * request)4051 ata_raid_send_request(struct ata_request *request)
4052 {
4053     struct ata_device *atadev = device_get_softc(request->dev);
4054 
4055     request->transfersize = min(request->bytecount, atadev->max_iosize);
4056     if (request->flags & ATA_R_READ) {
4057 	if (atadev->mode >= ATA_DMA) {
4058 	    request->flags |= ATA_R_DMA;
4059 	    request->u.ata.command = ATA_READ_DMA;
4060 	}
4061 	else if (atadev->max_iosize > DEV_BSIZE)
4062 	    request->u.ata.command = ATA_READ_MUL;
4063 	else
4064 	    request->u.ata.command = ATA_READ;
4065     }
4066     else if (request->flags & ATA_R_WRITE) {
4067 	if (atadev->mode >= ATA_DMA) {
4068 	    request->flags |= ATA_R_DMA;
4069 	    request->u.ata.command = ATA_WRITE_DMA;
4070 	}
4071 	else if (atadev->max_iosize > DEV_BSIZE)
4072 	    request->u.ata.command = ATA_WRITE_MUL;
4073 	else
4074 	    request->u.ata.command = ATA_WRITE;
4075     }
4076     else {
4077 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4078 	ata_free_request(request);
4079 	return EIO;
4080     }
4081     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4082     ata_queue_request(request);
4083     return 0;
4084 }
4085 
4086 static int
ata_raid_rw(device_t dev,u_int64_t lba,void * data,u_int bcount,int flags)4087 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4088 {
4089     struct ata_device *atadev = device_get_softc(dev);
4090     struct ata_request *request;
4091     int error;
4092 
4093     if (bcount % DEV_BSIZE) {
4094 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4095 	return ENOMEM;
4096     }
4097 
4098     if (!(request = ata_alloc_request())) {
4099 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4100 	return ENOMEM;
4101     }
4102 
4103     /* setup request */
4104     request->dev = dev;
4105     request->timeout = ATA_DEFAULT_TIMEOUT;
4106     request->retries = 0;
4107     request->data = data;
4108     request->bytecount = bcount;
4109     request->transfersize = DEV_BSIZE;
4110     request->u.ata.lba = lba;
4111     request->u.ata.count = request->bytecount / DEV_BSIZE;
4112     request->flags = flags;
4113 
4114     if (flags & ATA_R_READ) {
4115 	if (atadev->mode >= ATA_DMA) {
4116 	    request->u.ata.command = ATA_READ_DMA;
4117 	    request->flags |= ATA_R_DMA;
4118 	}
4119 	else
4120 	    request->u.ata.command = ATA_READ;
4121 	ata_queue_request(request);
4122     }
4123     else if (flags & ATA_R_WRITE) {
4124 	if (atadev->mode >= ATA_DMA) {
4125 	    request->u.ata.command = ATA_WRITE_DMA;
4126 	    request->flags |= ATA_R_DMA;
4127 	}
4128 	else
4129 	    request->u.ata.command = ATA_WRITE;
4130 	ata_queue_request(request);
4131     }
4132     else {
4133 	device_printf(dev, "FAILURE - unknown IO operation\n");
4134 	request->result = EIO;
4135     }
4136     error = request->result;
4137     ata_free_request(request);
4138     return error;
4139 }
4140 
4141 /*
4142  * module handeling
4143  */
4144 static int
ata_raid_subdisk_probe(device_t dev)4145 ata_raid_subdisk_probe(device_t dev)
4146 {
4147     device_quiet(dev);
4148     return 0;
4149 }
4150 
4151 static int
ata_raid_subdisk_attach(device_t dev)4152 ata_raid_subdisk_attach(device_t dev)
4153 {
4154     struct ata_raid_subdisk *ars = device_get_softc(dev);
4155     int volume;
4156 
4157     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4158 	ars->raid[volume] = NULL;
4159 	ars->disk_number[volume] = -1;
4160     }
4161     ata_raid_read_metadata(dev);
4162     return 0;
4163 }
4164 
4165 static int
ata_raid_subdisk_detach(device_t dev)4166 ata_raid_subdisk_detach(device_t dev)
4167 {
4168     struct ata_raid_subdisk *ars = device_get_softc(dev);
4169     int volume;
4170 
4171     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4172 	if (ars->raid[volume]) {
4173 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4174 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4175 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4176 #if 0
4177 	    if (mtx_initialized(&ars->raid[volume]->lock))
4178 #endif
4179 		ata_raid_config_changed(ars->raid[volume], 1);
4180 	    ars->raid[volume] = NULL;
4181 	    ars->disk_number[volume] = -1;
4182 	}
4183     }
4184     return 0;
4185 }
4186 
4187 static device_method_t ata_raid_sub_methods[] = {
4188     /* device interface */
4189     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4190     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4191     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4192     DEVMETHOD_END
4193 };
4194 
4195 static driver_t ata_raid_sub_driver = {
4196     "subdisk",
4197     ata_raid_sub_methods,
4198     sizeof(struct ata_raid_subdisk)
4199 };
4200 
4201 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4202 
4203 static int
ata_raid_module_event_handler(module_t mod,int what,void * arg)4204 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4205 {
4206     int i;
4207 
4208     switch (what) {
4209     case MOD_LOAD:
4210 	if (testing || bootverbose)
4211 	    kprintf("ATA PseudoRAID loaded\n");
4212 #if 0
4213 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4214 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4215 				M_AR, M_WAITOK | M_ZERO);
4216 #endif
4217 	/* attach found PseudoRAID arrays */
4218 	for (i = 0; i < MAX_ARRAYS; i++) {
4219 	    struct ar_softc *rdp = ata_raid_arrays[i];
4220 
4221 	    if (!rdp || !rdp->format)
4222 		continue;
4223 	    if (testing || bootverbose)
4224 		ata_raid_print_meta(rdp);
4225 	    ata_raid_attach(rdp, 0);
4226 	}
4227 	ata_raid_ioctl_func = ata_raid_ioctl;
4228 	return 0;
4229 
4230     case MOD_UNLOAD:
4231 	/* detach found PseudoRAID arrays */
4232 	for (i = 0; i < MAX_ARRAYS; i++) {
4233 	    struct ar_softc *rdp = ata_raid_arrays[i];
4234 
4235 	    if (!rdp || !rdp->status)
4236 		continue;
4237 #if 0
4238 	    if (mtx_initialized(&rdp->lock))
4239 		lockuninit(&rdp->lock);
4240 #endif
4241 	    disk_destroy(&rdp->disk);
4242 	}
4243 	if (testing || bootverbose)
4244 	    kprintf("ATA PseudoRAID unloaded\n");
4245 #if 0
4246 	kfree(ata_raid_arrays, M_AR);
4247 #endif
4248 	ata_raid_ioctl_func = NULL;
4249 	return 0;
4250 
4251     default:
4252 	return EOPNOTSUPP;
4253     }
4254 }
4255 
4256 static moduledata_t ata_raid_moduledata =
4257     { "ataraid", ata_raid_module_event_handler, NULL };
4258 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4259 MODULE_VERSION(ataraid, 1);
4260 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4261 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4262 
4263 static char *
ata_raid_format(struct ar_softc * rdp)4264 ata_raid_format(struct ar_softc *rdp)
4265 {
4266     switch (rdp->format) {
4267     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4268     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4269     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4270     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4271     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4272     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4273     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4274     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4275     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4276     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4277     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4278     case AR_F_SII_RAID:         return "Silicon Image Medley";
4279     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4280     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4281     default:                    return "UNKNOWN";
4282     }
4283 }
4284 
4285 static char *
ata_raid_type(struct ar_softc * rdp)4286 ata_raid_type(struct ar_softc *rdp)
4287 {
4288     switch (rdp->type) {
4289     case AR_T_JBOD:     return "JBOD";
4290     case AR_T_SPAN:     return "SPAN";
4291     case AR_T_RAID0:    return "RAID0";
4292     case AR_T_RAID1:    return "RAID1";
4293     case AR_T_RAID3:    return "RAID3";
4294     case AR_T_RAID4:    return "RAID4";
4295     case AR_T_RAID5:    return "RAID5";
4296     case AR_T_RAID01:   return "RAID0+1";
4297     default:            return "UNKNOWN";
4298     }
4299 }
4300 
4301 static char *
ata_raid_flags(struct ar_softc * rdp)4302 ata_raid_flags(struct ar_softc *rdp)
4303 {
4304     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4305     case AR_S_READY:                                    return "READY";
4306     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4307     case AR_S_READY | AR_S_REBUILDING:
4308     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4309     default:                                            return "BROKEN";
4310     }
4311 }
4312 
4313 /* debugging gunk */
4314 static void
ata_raid_print_meta(struct ar_softc * raid)4315 ata_raid_print_meta(struct ar_softc *raid)
4316 {
4317     int i;
4318 
4319     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4320     kprintf("=================================================\n");
4321     kprintf("format              %s\n", ata_raid_format(raid));
4322     kprintf("type                %s\n", ata_raid_type(raid));
4323     kprintf("flags               0x%02x %pb%i\n", raid->status,
4324 	   "\20\3REBUILDING\2DEGRADED\1READY\n", raid->status);
4325     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4326     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4327     kprintf("generation          %u\n", raid->generation);
4328     kprintf("total_sectors       %ju\n", raid->total_sectors);
4329     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4330     kprintf("heads               %u\n", raid->heads);
4331     kprintf("sectors             %u\n", raid->sectors);
4332     kprintf("cylinders           %u\n", raid->cylinders);
4333     kprintf("width               %u\n", raid->width);
4334     kprintf("interleave          %u\n", raid->interleave);
4335     kprintf("total_disks         %u\n", raid->total_disks);
4336     for (i = 0; i < raid->total_disks; i++) {
4337 	kprintf("    disk %d:      flags = 0x%02x %pb%i\n", i, raid->disks[i].flags,
4338 	       "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n", raid->disks[i].flags);
4339 	if (raid->disks[i].dev) {
4340 	    kprintf("        ");
4341 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4342 			  raid->disks[i].sectors);
4343 	}
4344     }
4345     kprintf("=================================================\n");
4346 }
4347 
4348 static char *
ata_raid_adaptec_type(int type)4349 ata_raid_adaptec_type(int type)
4350 {
4351     static char buffer[16];
4352 
4353     switch (type) {
4354     case ADP_T_RAID0:   return "RAID0";
4355     case ADP_T_RAID1:   return "RAID1";
4356     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4357 			return buffer;
4358     }
4359 }
4360 
4361 static void
ata_raid_adaptec_print_meta(struct adaptec_raid_conf * meta)4362 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4363 {
4364     int i;
4365 
4366     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4367     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4368     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4369     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4370     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4371     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4372     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4373     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4374     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4375     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4376     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4377     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4378 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4379 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4380     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4381 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4382 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4383 
4384     for (i = 0; i < be16toh(meta->total_configs); i++) {
4385 	kprintf("    %d   total_disks  %u\n", i,
4386 	       be16toh(meta->configs[i].disk_number));
4387 	kprintf("    %d   generation   %u\n", i,
4388 	       be16toh(meta->configs[i].generation));
4389 	kprintf("    %d   magic_0      0x%08x\n", i,
4390 	       be32toh(meta->configs[i].magic_0));
4391 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4392 	kprintf("    %d   type         %s\n", i,
4393 	       ata_raid_adaptec_type(meta->configs[i].type));
4394 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4395 	kprintf("    %d   flags        %d\n", i,
4396 	       be32toh(meta->configs[i].flags));
4397 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4398 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4399 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4400 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4401 	kprintf("    %d   disk_number  %u\n", i,
4402 	       be32toh(meta->configs[i].disk_number));
4403 	kprintf("    %d   dummy_6      0x%08x\n", i,
4404 	       be32toh(meta->configs[i].dummy_6));
4405 	kprintf("    %d   sectors      %u\n", i,
4406 	       be32toh(meta->configs[i].sectors));
4407 	kprintf("    %d   stripe_shift %u\n", i,
4408 	       be16toh(meta->configs[i].stripe_shift));
4409 	kprintf("    %d   dummy_7      0x%08x\n", i,
4410 	       be32toh(meta->configs[i].dummy_7));
4411 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4412 	       be32toh(meta->configs[i].dummy_8[0]),
4413 	       be32toh(meta->configs[i].dummy_8[1]),
4414 	       be32toh(meta->configs[i].dummy_8[2]),
4415 	       be32toh(meta->configs[i].dummy_8[3]));
4416 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4417     }
4418     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4419     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4420     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4421     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4422     kprintf("=================================================\n");
4423 }
4424 
4425 static char *
ata_raid_hptv2_type(int type)4426 ata_raid_hptv2_type(int type)
4427 {
4428     static char buffer[16];
4429 
4430     switch (type) {
4431     case HPTV2_T_RAID0:         return "RAID0";
4432     case HPTV2_T_RAID1:         return "RAID1";
4433     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4434     case HPTV2_T_SPAN:          return "SPAN";
4435     case HPTV2_T_RAID_3:        return "RAID3";
4436     case HPTV2_T_RAID_5:        return "RAID5";
4437     case HPTV2_T_JBOD:          return "JBOD";
4438     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4439     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4440 			return buffer;
4441     }
4442 }
4443 
4444 static void
ata_raid_hptv2_print_meta(struct hptv2_raid_conf * meta)4445 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4446 {
4447     int i;
4448 
4449     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4450     kprintf("magic               0x%08x\n", meta->magic);
4451     kprintf("magic_0             0x%08x\n", meta->magic_0);
4452     kprintf("magic_1             0x%08x\n", meta->magic_1);
4453     kprintf("order               0x%08x\n", meta->order);
4454     kprintf("array_width         %u\n", meta->array_width);
4455     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4456     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4457     kprintf("disk_number         %u\n", meta->disk_number);
4458     kprintf("total_sectors       %u\n", meta->total_sectors);
4459     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4460     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4461     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4462     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4463     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4464     kprintf("log_index           0x%02x\n", meta->error_log_index);
4465     if (meta->error_log_entries) {
4466 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4467 	for (i = meta->error_log_index;
4468 	     i < meta->error_log_index + meta->error_log_entries; i++)
4469 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4470 		   meta->errorlog[i%32].timestamp,
4471 		   meta->errorlog[i%32].reason,
4472 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4473 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4474     }
4475     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4476     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4477     kprintf("name_1              <%.15s>\n", meta->name_1);
4478     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4479     kprintf("name_2              <%.15s>\n", meta->name_2);
4480     kprintf("=================================================\n");
4481 }
4482 
4483 static char *
ata_raid_hptv3_type(int type)4484 ata_raid_hptv3_type(int type)
4485 {
4486     static char buffer[16];
4487 
4488     switch (type) {
4489     case HPTV3_T_SPARE: return "SPARE";
4490     case HPTV3_T_JBOD:  return "JBOD";
4491     case HPTV3_T_SPAN:  return "SPAN";
4492     case HPTV3_T_RAID0: return "RAID0";
4493     case HPTV3_T_RAID1: return "RAID1";
4494     case HPTV3_T_RAID3: return "RAID3";
4495     case HPTV3_T_RAID5: return "RAID5";
4496     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4497 			return buffer;
4498     }
4499 }
4500 
4501 static void
ata_raid_hptv3_print_meta(struct hptv3_raid_conf * meta)4502 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4503 {
4504     int i;
4505 
4506     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4507     kprintf("magic               0x%08x\n", meta->magic);
4508     kprintf("magic_0             0x%08x\n", meta->magic_0);
4509     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4510     kprintf("mode                0x%02x\n", meta->mode);
4511     kprintf("user_mode           0x%02x\n", meta->user_mode);
4512     kprintf("config_entries      0x%02x\n", meta->config_entries);
4513     for (i = 0; i < meta->config_entries; i++) {
4514 	kprintf("config %d:\n", i);
4515 	kprintf("    total_sectors       %ju\n",
4516 	       meta->configs[0].total_sectors +
4517 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4518 	kprintf("    type                %s\n",
4519 	       ata_raid_hptv3_type(meta->configs[i].type));
4520 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4521 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4522 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4523 	kprintf("    status              %pb%i\n",
4524 	       "\20\2RAID5\1NEED_REBUILD\n", meta->configs[i].status);
4525 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4526 	kprintf("    rebuild_lba         %ju\n",
4527 	       meta->configs_high[0].rebuild_lba +
4528 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4529     }
4530     kprintf("name                <%.16s>\n", meta->name);
4531     kprintf("timestamp           0x%08x\n", meta->timestamp);
4532     kprintf("description         <%.16s>\n", meta->description);
4533     kprintf("creator             <%.16s>\n", meta->creator);
4534     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4535     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4536     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4537     kprintf("flags               %pb%i\n",
4538 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n", meta->flags);
4539     kprintf("=================================================\n");
4540 }
4541 
4542 static char *
ata_raid_intel_type(int type)4543 ata_raid_intel_type(int type)
4544 {
4545     static char buffer[16];
4546 
4547     switch (type) {
4548     case INTEL_T_RAID0: return "RAID0";
4549     case INTEL_T_RAID1: return "RAID1";
4550     case INTEL_T_RAID5: return "RAID5";
4551     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4552 			return buffer;
4553     }
4554 }
4555 
4556 static void
ata_raid_intel_print_meta(struct intel_raid_conf * meta)4557 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4558 {
4559     struct intel_raid_mapping *map;
4560     int i, j;
4561 
4562     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4563     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4564     kprintf("version             <%.6s>\n", meta->version);
4565     kprintf("checksum            0x%08x\n", meta->checksum);
4566     kprintf("config_size         0x%08x\n", meta->config_size);
4567     kprintf("config_id           0x%08x\n", meta->config_id);
4568     kprintf("generation          0x%08x\n", meta->generation);
4569     kprintf("total_disks         %u\n", meta->total_disks);
4570     kprintf("total_volumes       %u\n", meta->total_volumes);
4571     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4572     for (i = 0; i < meta->total_disks; i++ ) {
4573 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4574 	       meta->disk[i].serial, meta->disk[i].sectors,
4575 	       meta->disk[i].id, meta->disk[i].flags);
4576     }
4577     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4578     for (j = 0; j < meta->total_volumes; j++) {
4579 	kprintf("name                %.16s\n", map->name);
4580 	kprintf("total_sectors       %ju\n", map->total_sectors);
4581 	kprintf("state               %u\n", map->state);
4582 	kprintf("reserved            %u\n", map->reserved);
4583 	kprintf("offset              %u\n", map->offset);
4584 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4585 	kprintf("stripe_count        %u\n", map->stripe_count);
4586 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4587 	kprintf("status              %u\n", map->status);
4588 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4589 	kprintf("total_disks         %u\n", map->total_disks);
4590 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4591 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4592 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4593 	for (i = 0; i < map->total_disks; i++ ) {
4594 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4595 	}
4596 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4597     }
4598     kprintf("=================================================\n");
4599 }
4600 
4601 static char *
ata_raid_ite_type(int type)4602 ata_raid_ite_type(int type)
4603 {
4604     static char buffer[16];
4605 
4606     switch (type) {
4607     case ITE_T_RAID0:   return "RAID0";
4608     case ITE_T_RAID1:   return "RAID1";
4609     case ITE_T_RAID01:  return "RAID0+1";
4610     case ITE_T_SPAN:    return "SPAN";
4611     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4612 			return buffer;
4613     }
4614 }
4615 
4616 static void
ata_raid_ite_print_meta(struct ite_raid_conf * meta)4617 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4618 {
4619     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4620     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4621     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4622 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4623 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4624 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4625     kprintf("total_sectors       %jd\n", meta->total_sectors);
4626     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4627     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4628     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4629 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4630 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4631 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4632     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4633     kprintf("array_width         %u\n", meta->array_width);
4634     kprintf("disk_number         %u\n", meta->disk_number);
4635     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4636     kprintf("=================================================\n");
4637 }
4638 
4639 static char *
ata_raid_jmicron_type(int type)4640 ata_raid_jmicron_type(int type)
4641 {
4642     static char buffer[16];
4643 
4644     switch (type) {
4645     case JM_T_RAID0:	return "RAID0";
4646     case JM_T_RAID1:	return "RAID1";
4647     case JM_T_RAID01:	return "RAID0+1";
4648     case JM_T_JBOD:	return "JBOD";
4649     case JM_T_RAID5:	return "RAID5";
4650     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4651 			return buffer;
4652     }
4653 }
4654 
4655 static void
ata_raid_jmicron_print_meta(struct jmicron_raid_conf * meta)4656 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4657 {
4658     int i;
4659 
4660     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4661     kprintf("signature           %.2s\n", meta->signature);
4662     kprintf("version             0x%04x\n", meta->version);
4663     kprintf("checksum            0x%04x\n", meta->checksum);
4664     kprintf("disk_id             0x%08x\n", meta->disk_id);
4665     kprintf("offset              0x%08x\n", meta->offset);
4666     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4667     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4668     kprintf("name                %.16s\n", meta->name);
4669     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4670     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4671     kprintf("flags               0x%04x\n", meta->flags);
4672     kprintf("spare:\n");
4673     for (i=0; i < 2 && meta->spare[i]; i++)
4674 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4675     kprintf("disks:\n");
4676     for (i=0; i < 8 && meta->disks[i]; i++)
4677 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4678     kprintf("=================================================\n");
4679 }
4680 
4681 static char *
ata_raid_lsiv2_type(int type)4682 ata_raid_lsiv2_type(int type)
4683 {
4684     static char buffer[16];
4685 
4686     switch (type) {
4687     case LSIV2_T_RAID0: return "RAID0";
4688     case LSIV2_T_RAID1: return "RAID1";
4689     case LSIV2_T_SPARE: return "SPARE";
4690     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4691 			return buffer;
4692     }
4693 }
4694 
4695 static void
ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf * meta)4696 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4697 {
4698     int i;
4699 
4700     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4701     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4702     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4703     kprintf("flags               0x%02x\n", meta->flags);
4704     kprintf("version             0x%04x\n", meta->version);
4705     kprintf("config_entries      0x%02x\n", meta->config_entries);
4706     kprintf("raid_count          0x%02x\n", meta->raid_count);
4707     kprintf("total_disks         0x%02x\n", meta->total_disks);
4708     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4709     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4710     for (i = 0; i < meta->config_entries; i++) {
4711 	kprintf("    type             %s\n",
4712 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4713 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4714 	kprintf("    stripe_sectors   %u\n",
4715 	       meta->configs[i].raid.stripe_sectors);
4716 	kprintf("    array_width      %u\n",
4717 	       meta->configs[i].raid.array_width);
4718 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4719 	kprintf("    config_offset    %u\n",
4720 	       meta->configs[i].raid.config_offset);
4721 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4722 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4723 	kprintf("    total_sectors    %u\n",
4724 	       meta->configs[i].raid.total_sectors);
4725     }
4726     kprintf("disk_number         0x%02x\n", meta->disk_number);
4727     kprintf("raid_number         0x%02x\n", meta->raid_number);
4728     kprintf("timestamp           0x%08x\n", meta->timestamp);
4729     kprintf("=================================================\n");
4730 }
4731 
4732 static char *
ata_raid_lsiv3_type(int type)4733 ata_raid_lsiv3_type(int type)
4734 {
4735     static char buffer[16];
4736 
4737     switch (type) {
4738     case LSIV3_T_RAID0: return "RAID0";
4739     case LSIV3_T_RAID1: return "RAID1";
4740     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4741 			return buffer;
4742     }
4743 }
4744 
4745 static void
ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf * meta)4746 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4747 {
4748     int i;
4749 
4750     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4751     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4752     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4753     kprintf("version             0x%04x\n", meta->version);
4754     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4755     kprintf("RAID configs:\n");
4756     for (i = 0; i < 8; i++) {
4757 	if (meta->raid[i].total_disks) {
4758 	    kprintf("%02d  stripe_pages       %u\n", i,
4759 		   meta->raid[i].stripe_pages);
4760 	    kprintf("%02d  type               %s\n", i,
4761 		   ata_raid_lsiv3_type(meta->raid[i].type));
4762 	    kprintf("%02d  total_disks        %u\n", i,
4763 		   meta->raid[i].total_disks);
4764 	    kprintf("%02d  array_width        %u\n", i,
4765 		   meta->raid[i].array_width);
4766 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4767 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4768 	    kprintf("%02d  device             0x%02x\n", i,
4769 		   meta->raid[i].device);
4770 	}
4771     }
4772     kprintf("DISK configs:\n");
4773     for (i = 0; i < 6; i++) {
4774 	    if (meta->disk[i].disk_sectors) {
4775 	    kprintf("%02d  disk_sectors       %u\n", i,
4776 		   meta->disk[i].disk_sectors);
4777 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4778 	}
4779     }
4780     kprintf("device              0x%02x\n", meta->device);
4781     kprintf("timestamp           0x%08x\n", meta->timestamp);
4782     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4783     kprintf("=================================================\n");
4784 }
4785 
4786 static char *
ata_raid_nvidia_type(int type)4787 ata_raid_nvidia_type(int type)
4788 {
4789     static char buffer[16];
4790 
4791     switch (type) {
4792     case NV_T_SPAN:     return "SPAN";
4793     case NV_T_RAID0:    return "RAID0";
4794     case NV_T_RAID1:    return "RAID1";
4795     case NV_T_RAID3:    return "RAID3";
4796     case NV_T_RAID5:    return "RAID5";
4797     case NV_T_RAID01:   return "RAID0+1";
4798     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4799 			return buffer;
4800     }
4801 }
4802 
4803 static void
ata_raid_nvidia_print_meta(struct nvidia_raid_conf * meta)4804 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4805 {
4806     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4807     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4808     kprintf("config_size         %u\n", meta->config_size);
4809     kprintf("checksum            0x%08x\n", meta->checksum);
4810     kprintf("version             0x%04x\n", meta->version);
4811     kprintf("disk_number         %u\n", meta->disk_number);
4812     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4813     kprintf("total_sectors       %u\n", meta->total_sectors);
4814     kprintf("sectors_size        %u\n", meta->sector_size);
4815     kprintf("serial              %.16s\n", meta->serial);
4816     kprintf("revision            %.4s\n", meta->revision);
4817     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4818     kprintf("magic_0             0x%08x\n", meta->magic_0);
4819     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4820     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4821     kprintf("flags               0x%02x\n", meta->flags);
4822     kprintf("array_width         %u\n", meta->array_width);
4823     kprintf("total_disks         %u\n", meta->total_disks);
4824     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4825     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4826     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4827     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4828     kprintf("stripe_bytes        %u\n", meta->stripe_bytes);
4829     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4830     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4831     kprintf("stripe_sizesectors  %u\n", meta->stripe_sizesectors);
4832     kprintf("stripe_sizebytes    %u\n", meta->stripe_sizebytes);
4833     kprintf("rebuild_lba         %u\n", meta->rebuild_lba);
4834     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4835     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4836     kprintf("status              0x%08x\n", meta->status);
4837     kprintf("=================================================\n");
4838 }
4839 
4840 static char *
ata_raid_promise_type(int type)4841 ata_raid_promise_type(int type)
4842 {
4843     static char buffer[16];
4844 
4845     switch (type) {
4846     case PR_T_RAID0:    return "RAID0";
4847     case PR_T_RAID1:    return "RAID1";
4848     case PR_T_RAID3:    return "RAID3";
4849     case PR_T_RAID5:    return "RAID5";
4850     case PR_T_SPAN:     return "SPAN";
4851     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4852 			return buffer;
4853     }
4854 }
4855 
4856 static void
ata_raid_promise_print_meta(struct promise_raid_conf * meta)4857 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4858 {
4859     int i;
4860 
4861     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4862     kprintf("promise_id          <%s>\n", meta->promise_id);
4863     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4864     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4865     kprintf("magic_1             0x%04x\n", meta->magic_1);
4866     kprintf("magic_2             0x%08x\n", meta->magic_2);
4867     kprintf("integrity           0x%08x %pb%i\n", meta->raid.integrity,
4868 	   "\20\10VALID\n", meta->raid.integrity);
4869     kprintf("flags               0x%02x %pb%i\n",
4870 	   meta->raid.flags,
4871 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4872 	   "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.flags);
4873     kprintf("disk_number         %d\n", meta->raid.disk_number);
4874     kprintf("channel             0x%02x\n", meta->raid.channel);
4875     kprintf("device              0x%02x\n", meta->raid.device);
4876     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4877     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4878     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4879     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4880     kprintf("generation          0x%04x\n", meta->raid.generation);
4881     kprintf("status              0x%02x %pb%i\n",
4882 	    meta->raid.status,
4883 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n",
4884 	    meta->raid.status);
4885     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4886     kprintf("total_disks         %u\n", meta->raid.total_disks);
4887     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4888     kprintf("array_width         %u\n", meta->raid.array_width);
4889     kprintf("array_number        %u\n", meta->raid.array_number);
4890     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4891     kprintf("cylinders           %u\n", meta->raid.cylinders);
4892     kprintf("heads               %u\n", meta->raid.heads);
4893     kprintf("sectors             %u\n", meta->raid.sectors);
4894     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4895     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4896     for (i = 0; i < 8; i++) {
4897 	kprintf("  %d    %pb%i    0x%02x  0x%02x  0x%02x  ", i,
4898 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4899 	       "\3ASSIGNED\2ONLINE\1VALID\n",
4900 	       meta->raid.disk[i].flags, meta->raid.disk[i].dummy_0,
4901 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4902 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4903     }
4904     kprintf("checksum            0x%08x\n", meta->checksum);
4905     kprintf("=================================================\n");
4906 }
4907 
4908 static char *
ata_raid_sii_type(int type)4909 ata_raid_sii_type(int type)
4910 {
4911     static char buffer[16];
4912 
4913     switch (type) {
4914     case SII_T_RAID0:   return "RAID0";
4915     case SII_T_RAID1:   return "RAID1";
4916     case SII_T_RAID01:  return "RAID0+1";
4917     case SII_T_SPARE:   return "SPARE";
4918     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4919 			return buffer;
4920     }
4921 }
4922 
4923 static void
ata_raid_sii_print_meta(struct sii_raid_conf * meta)4924 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4925 {
4926     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4927     kprintf("total_sectors       %ju\n", meta->total_sectors);
4928     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4929     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4930     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4931     kprintf("version_minor       0x%04x\n", meta->version_minor);
4932     kprintf("version_major       0x%04x\n", meta->version_major);
4933     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4934 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4935 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4936     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4937     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4938     kprintf("disk_number         %u\n", meta->disk_number);
4939     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4940     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4941     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4942     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4943     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4944     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4945     kprintf("generation          0x%08x\n", meta->generation);
4946     kprintf("status              0x%02x %pb%i\n",
4947 	    meta->status, "\20\1READY\n", meta->status);
4948     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4949     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4950     kprintf("position            %02x\n", meta->position);
4951     kprintf("dummy_3             %04x\n", meta->dummy_3);
4952     kprintf("name                <%.16s>\n", meta->name);
4953     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4954     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4955     kprintf("=================================================\n");
4956 }
4957 
4958 static char *
ata_raid_sis_type(int type)4959 ata_raid_sis_type(int type)
4960 {
4961     static char buffer[16];
4962 
4963     switch (type) {
4964     case SIS_T_JBOD:    return "JBOD";
4965     case SIS_T_RAID0:   return "RAID0";
4966     case SIS_T_RAID1:   return "RAID1";
4967     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4968 			return buffer;
4969     }
4970 }
4971 
4972 static void
ata_raid_sis_print_meta(struct sis_raid_conf * meta)4973 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4974 {
4975     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4976     kprintf("magic               0x%04x\n", meta->magic);
4977     kprintf("disks               0x%02x\n", meta->disks);
4978     kprintf("type                %s\n",
4979 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4980     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4981     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4982     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4983     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4984     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4985     kprintf("timestamp           0x%08x\n", meta->timestamp);
4986     kprintf("model               %.40s\n", meta->model);
4987     kprintf("disk_number         %u\n", meta->disk_number);
4988     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4989 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4990     kprintf("=================================================\n");
4991 }
4992 
4993 static char *
ata_raid_via_type(int type)4994 ata_raid_via_type(int type)
4995 {
4996     static char buffer[16];
4997 
4998     switch (type) {
4999     case VIA_T_RAID0:   return "RAID0";
5000     case VIA_T_RAID1:   return "RAID1";
5001     case VIA_T_RAID5:   return "RAID5";
5002     case VIA_T_RAID01:  return "RAID0+1";
5003     case VIA_T_SPAN:    return "SPAN";
5004     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
5005 			return buffer;
5006     }
5007 }
5008 
5009 static void
ata_raid_via_print_meta(struct via_raid_conf * meta)5010 ata_raid_via_print_meta(struct via_raid_conf *meta)
5011 {
5012     int i;
5013 
5014     kprintf("*************** ATA VIA Metadata ****************\n");
5015     kprintf("magic               0x%02x\n", meta->magic);
5016     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5017     kprintf("type                %s\n",
5018 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5019     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5020     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5021     kprintf("disk_index          0x%02x\n", meta->disk_index);
5022     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5023     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5024     kprintf(" stripe_sectors     %d\n",
5025 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5026     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5027     kprintf("disk_id             0x%08x\n", meta->disk_id);
5028     kprintf("DISK#   disk_id\n");
5029     for (i = 0; i < 8; i++) {
5030 	if (meta->disks[i])
5031 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5032     }
5033     kprintf("checksum            0x%02x\n", meta->checksum);
5034     kprintf("=================================================\n");
5035 }
5036