xref: /netbsd/sys/dev/pci/if_ti.c (revision ca21b0fc)
1 /* $NetBSD: if_ti.c,v 1.123 2022/05/23 13:53:37 rin Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring descriptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.123 2022/05/23 13:53:37 rin Exp $");
85 
86 #include "opt_inet.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 
115 #include <sys/bus.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120 
121 #include <dev/pci/if_tireg.h>
122 
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static const struct ti_type ti_devs[] = {
131 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
132 		"Alteon AceNIC 1000BASE-SX Ethernet" },
133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 		"Alteon AceNIC 1000BASE-T Ethernet" },
135 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 		"Netgear GA620 1000BASE-SX Ethernet" },
139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 		"Netgear GA620 1000BASE-T Ethernet" },
141 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX,
144 		"Farallon PN9000SX Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static const struct ti_type *ti_type_match(struct pci_attach_args *);
149 static int ti_probe(device_t, cfdata_t, void *);
150 static void ti_attach(device_t, device_t, void *);
151 static bool ti_shutdown(device_t, int);
152 static void ti_txeof_tigon1(struct ti_softc *);
153 static void ti_txeof_tigon2(struct ti_softc *);
154 static void ti_rxeof(struct ti_softc *);
155 
156 static void ti_stats_update(struct ti_softc *);
157 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
158 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
159 
160 static int ti_intr(void *);
161 static void ti_start(struct ifnet *);
162 static int ti_ioctl(struct ifnet *, u_long, void *);
163 static void ti_init(void *);
164 static void ti_init2(struct ti_softc *);
165 static void ti_stop(struct ti_softc *);
166 static void ti_watchdog(struct ifnet *);
167 static int ti_ifmedia_upd(struct ifnet *);
168 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
169 
170 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
171 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
172 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
173 
174 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
175 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
176 static void ti_setmulti(struct ti_softc *);
177 
178 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
179 static void ti_loadfw(struct ti_softc *);
180 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
181 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
182 static void ti_handle_events(struct ti_softc *);
183 static int ti_alloc_jumbo_mem(struct ti_softc *);
184 static void *ti_jalloc(struct ti_softc *);
185 static void ti_jfree(struct mbuf *, void *, size_t, void *);
186 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
187 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
188 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
189 static int ti_init_rx_ring_std(struct ti_softc *);
190 static void ti_free_rx_ring_std(struct ti_softc *);
191 static int ti_init_rx_ring_jumbo(struct ti_softc *);
192 static void ti_free_rx_ring_jumbo(struct ti_softc *);
193 static int ti_init_rx_ring_mini(struct ti_softc *);
194 static void ti_free_rx_ring_mini(struct ti_softc *);
195 static void ti_free_tx_ring(struct ti_softc *);
196 static int ti_init_tx_ring(struct ti_softc *);
197 
198 static int ti_64bitslot_war(struct ti_softc *);
199 static int ti_chipinit(struct ti_softc *);
200 static int ti_gibinit(struct ti_softc *);
201 
202 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
203 
204 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
205     ti_probe, ti_attach, NULL, NULL);
206 
207 /*
208  * Send an instruction or address to the EEPROM, check for ACK.
209  */
210 static uint32_t
ti_eeprom_putbyte(struct ti_softc * sc,int byte)211 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
212 {
213 	int i, ack = 0;
214 
215 	/*
216 	 * Make sure we're in TX mode.
217 	 */
218 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
219 
220 	/*
221 	 * Feed in each bit and strobe the clock.
222 	 */
223 	for (i = 0x80; i; i >>= 1) {
224 		if (byte & i) {
225 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 		} else {
227 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
228 		}
229 		DELAY(1);
230 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 		DELAY(1);
232 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
233 	}
234 
235 	/*
236 	 * Turn off TX mode.
237 	 */
238 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239 
240 	/*
241 	 * Check for ack.
242 	 */
243 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
245 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 
247 	return (ack);
248 }
249 
250 /*
251  * Read a byte of data stored in the EEPROM at address 'addr.'
252  * We have to send two address bytes since the EEPROM can hold
253  * more than 256 bytes of data.
254  */
255 static uint8_t
ti_eeprom_getbyte(struct ti_softc * sc,int addr,uint8_t * dest)256 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
257 {
258 	int		i;
259 	uint8_t		byte = 0;
260 
261 	EEPROM_START();
262 
263 	/*
264 	 * Send write control code to EEPROM.
265 	 */
266 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
267 		printf("%s: failed to send write command, status: %x\n",
268 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
269 		return (1);
270 	}
271 
272 	/*
273 	 * Send first byte of address of byte we want to read.
274 	 */
275 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
276 		printf("%s: failed to send address, status: %x\n",
277 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
278 		return (1);
279 	}
280 	/*
281 	 * Send second byte address of byte we want to read.
282 	 */
283 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
284 		printf("%s: failed to send address, status: %x\n",
285 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 		return (1);
287 	}
288 
289 	EEPROM_STOP();
290 	EEPROM_START();
291 	/*
292 	 * Send read control code to EEPROM.
293 	 */
294 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
295 		printf("%s: failed to send read command, status: %x\n",
296 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return (1);
298 	}
299 
300 	/*
301 	 * Start reading bits from EEPROM.
302 	 */
303 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
304 	for (i = 0x80; i; i >>= 1) {
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
308 			byte |= i;
309 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310 		DELAY(1);
311 	}
312 
313 	EEPROM_STOP();
314 
315 	/*
316 	 * No ACK generated for read, so just return byte.
317 	 */
318 
319 	*dest = byte;
320 
321 	return (0);
322 }
323 
324 /*
325  * Read a sequence of bytes from the EEPROM.
326  */
327 static int
ti_read_eeprom(struct ti_softc * sc,void * destv,int off,int cnt)328 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
329 {
330 	char *dest = destv;
331 	int err = 0, i;
332 	uint8_t byte = 0;
333 
334 	for (i = 0; i < cnt; i++) {
335 		err = ti_eeprom_getbyte(sc, off + i, &byte);
336 		if (err)
337 			break;
338 		*(dest + i) = byte;
339 	}
340 
341 	return (err ? 1 : 0);
342 }
343 
344 /*
345  * NIC memory access function. Can be used to either clear a section
346  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
347  */
348 static void
ti_mem(struct ti_softc * sc,uint32_t addr,uint32_t len,const void * xbuf)349 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
350 {
351 	int			segptr, segsize, cnt;
352 	const void		*ptr;
353 
354 	segptr = addr;
355 	cnt = len;
356 	ptr = xbuf;
357 
358 	while (cnt) {
359 		if (cnt < TI_WINLEN)
360 			segsize = cnt;
361 		else
362 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
363 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
364 		if (xbuf == NULL) {
365 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
366 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
367 			    segsize / 4);
368 		} else {
369 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
370 			bus_space_write_region_stream_4(sc->ti_btag,
371 			    sc->ti_bhandle,
372 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
373 			    (const uint32_t *)ptr, segsize / 4);
374 #else
375 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
376 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
377 			    (const uint32_t *)ptr, segsize / 4);
378 #endif
379 			ptr = (const char *)ptr + segsize;
380 		}
381 		segptr += segsize;
382 		cnt -= segsize;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Load firmware image into the NIC. Check that the firmware revision
390  * is acceptable and see if we want the firmware for the Tigon 1 or
391  * Tigon 2.
392  */
393 static void
ti_loadfw(struct ti_softc * sc)394 ti_loadfw(struct ti_softc *sc)
395 {
396 	switch (sc->ti_hwrev) {
397 	case TI_HWREV_TIGON:
398 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
399 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
400 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
401 			printf("%s: firmware revision mismatch; want "
402 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
403 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
404 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
405 			    tigonFwReleaseMinor, tigonFwReleaseFix);
406 			return;
407 		}
408 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
409 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
410 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
411 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
412 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
413 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
414 		break;
415 	case TI_HWREV_TIGON_II:
416 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
417 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
418 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
419 			printf("%s: firmware revision mismatch; want "
420 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
421 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
422 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
423 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
424 			return;
425 		}
426 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
427 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
428 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
429 		    tigon2FwRodata);
430 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
431 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
432 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
433 		break;
434 	default:
435 		printf("%s: can't load firmware: unknown hardware rev\n",
436 		    device_xname(sc->sc_dev));
437 		break;
438 	}
439 
440 	return;
441 }
442 
443 /*
444  * Send the NIC a command via the command ring.
445  */
446 static void
ti_cmd(struct ti_softc * sc,struct ti_cmd_desc * cmd)447 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
448 {
449 	uint32_t		index;
450 
451 	index = sc->ti_cmd_saved_prodidx;
452 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
453 	TI_INC(index, TI_CMD_RING_CNT);
454 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
455 	sc->ti_cmd_saved_prodidx = index;
456 }
457 
458 /*
459  * Send the NIC an extended command. The 'len' parameter specifies the
460  * number of command slots to include after the initial command.
461  */
462 static void
ti_cmd_ext(struct ti_softc * sc,struct ti_cmd_desc * cmd,void * argv,int len)463 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
464 {
465 	char		*arg = argv;
466 	uint32_t	index;
467 	int		i;
468 
469 	index = sc->ti_cmd_saved_prodidx;
470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
471 	TI_INC(index, TI_CMD_RING_CNT);
472 	for (i = 0; i < len; i++) {
473 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
474 		    *(uint32_t *)(&arg[i * 4]));
475 		TI_INC(index, TI_CMD_RING_CNT);
476 	}
477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
478 	sc->ti_cmd_saved_prodidx = index;
479 }
480 
481 /*
482  * Handle events that have triggered interrupts.
483  */
484 static void
ti_handle_events(struct ti_softc * sc)485 ti_handle_events(struct ti_softc *sc)
486 {
487 	struct ti_event_desc	*e;
488 
489 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
490 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
491 		switch (TI_EVENT_EVENT(e)) {
492 		case TI_EV_LINKSTAT_CHANGED:
493 			sc->ti_linkstat = TI_EVENT_CODE(e);
494 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
495 				printf("%s: 10/100 link up\n",
496 				       device_xname(sc->sc_dev));
497 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
498 				printf("%s: gigabit link up\n",
499 				       device_xname(sc->sc_dev));
500 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
501 				printf("%s: link down\n",
502 				       device_xname(sc->sc_dev));
503 			break;
504 		case TI_EV_ERROR:
505 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
506 				printf("%s: invalid command\n",
507 				       device_xname(sc->sc_dev));
508 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
509 				printf("%s: unknown command\n",
510 				       device_xname(sc->sc_dev));
511 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
512 				printf("%s: bad config data\n",
513 				       device_xname(sc->sc_dev));
514 			break;
515 		case TI_EV_FIRMWARE_UP:
516 			ti_init2(sc);
517 			break;
518 		case TI_EV_STATS_UPDATED:
519 			ti_stats_update(sc);
520 			break;
521 		case TI_EV_RESET_JUMBO_RING:
522 		case TI_EV_MCAST_UPDATED:
523 			/* Who cares. */
524 			break;
525 		default:
526 			printf("%s: unknown event: %d\n",
527 			    device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
528 			break;
529 		}
530 		/* Advance the consumer index. */
531 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
532 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
533 	}
534 
535 	return;
536 }
537 
538 /*
539  * Memory management for the jumbo receive ring is a pain in the
540  * butt. We need to allocate at least 9018 bytes of space per frame,
541  * _and_ it has to be contiguous (unless you use the extended
542  * jumbo descriptor format). Using malloc() all the time won't
543  * work: malloc() allocates memory in powers of two, which means we
544  * would end up wasting a considerable amount of space by allocating
545  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
546  * to do our own memory management.
547  *
548  * The driver needs to allocate a contiguous chunk of memory at boot
549  * time. We then chop this up ourselves into 9K pieces and use them
550  * as external mbuf storage.
551  *
552  * One issue here is how much memory to allocate. The jumbo ring has
553  * 256 slots in it, but at 9K per slot than can consume over 2MB of
554  * RAM. This is a bit much, especially considering we also need
555  * RAM for the standard ring and mini ring (on the Tigon 2). To
556  * save space, we only actually allocate enough memory for 64 slots
557  * by default, which works out to between 500 and 600K. This can
558  * be tuned by changing a #define in if_tireg.h.
559  */
560 
561 static int
ti_alloc_jumbo_mem(struct ti_softc * sc)562 ti_alloc_jumbo_mem(struct ti_softc *sc)
563 {
564 	char *ptr;
565 	int i;
566 	struct ti_jpool_entry	*entry;
567 	bus_dma_segment_t dmaseg;
568 	int error, dmanseg;
569 
570 	/* Grab a big chunk o' storage. */
571 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
572 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
573 	    BUS_DMA_NOWAIT)) != 0) {
574 		aprint_error_dev(sc->sc_dev,
575 		    "can't allocate jumbo buffer, error = %d\n", error);
576 		return (error);
577 	}
578 
579 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
580 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
581 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
582 		aprint_error_dev(sc->sc_dev,
583 		    "can't map jumbo buffer, error = %d\n", error);
584 		return (error);
585 	}
586 
587 	if ((error = bus_dmamap_create(sc->sc_dmat,
588 	    TI_JMEM, 1,
589 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
590 	    &sc->jumbo_dmamap)) != 0) {
591 		aprint_error_dev(sc->sc_dev,
592 		    "can't create jumbo buffer DMA map, error = %d\n", error);
593 		return (error);
594 	}
595 
596 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
597 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
598 	    BUS_DMA_NOWAIT)) != 0) {
599 		aprint_error_dev(sc->sc_dev,
600 		    "can't load jumbo buffer DMA map, error = %d\n", error);
601 		return (error);
602 	}
603 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
604 
605 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
606 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
607 
608 	/*
609 	 * Now divide it up into 9K pieces and save the addresses
610 	 * in an array.
611 	 */
612 	ptr = sc->ti_cdata.ti_jumbo_buf;
613 	for (i = 0; i < TI_JSLOTS; i++) {
614 		sc->ti_cdata.ti_jslots[i] = ptr;
615 		ptr += TI_JLEN;
616 		entry = malloc(sizeof(struct ti_jpool_entry),
617 			       M_DEVBUF, M_WAITOK);
618 		entry->slot = i;
619 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
620 				    jpool_entries);
621 	}
622 
623 	return (0);
624 }
625 
626 /*
627  * Allocate a jumbo buffer.
628  */
629 static void *
ti_jalloc(struct ti_softc * sc)630 ti_jalloc(struct ti_softc *sc)
631 {
632 	struct ti_jpool_entry	*entry;
633 
634 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
635 
636 	if (entry == NULL) {
637 		printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
638 		return (NULL);
639 	}
640 
641 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
642 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
643 
644 	return (sc->ti_cdata.ti_jslots[entry->slot]);
645 }
646 
647 /*
648  * Release a jumbo buffer.
649  */
650 static void
ti_jfree(struct mbuf * m,void * tbuf,size_t size,void * arg)651 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
652 {
653 	struct ti_softc		*sc;
654 	int			i, s;
655 	struct ti_jpool_entry	*entry;
656 
657 	/* Extract the softc struct pointer. */
658 	sc = (struct ti_softc *)arg;
659 
660 	if (sc == NULL)
661 		panic("ti_jfree: didn't get softc pointer!");
662 
663 	/* calculate the slot this buffer belongs to */
664 
665 	i = ((char *)tbuf
666 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
667 
668 	if ((i < 0) || (i >= TI_JSLOTS))
669 		panic("ti_jfree: asked to free buffer that we don't manage!");
670 
671 	s = splvm();
672 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
673 	if (entry == NULL)
674 		panic("ti_jfree: buffer not in use!");
675 	entry->slot = i;
676 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
677 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
678 
679 	if (__predict_true(m != NULL))
680 		pool_cache_put(mb_cache, m);
681 	splx(s);
682 }
683 
684 
685 /*
686  * Initialize a standard receive ring descriptor.
687  */
688 static int
ti_newbuf_std(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
690 {
691 	struct mbuf		*m_new = NULL;
692 	struct ti_rx_desc	*r;
693 	int error;
694 
695 	if (dmamap == NULL) {
696 		/* if (m) panic() */
697 
698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
699 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
700 					       &dmamap)) != 0) {
701 			aprint_error_dev(sc->sc_dev,
702 			    "can't create recv map, error = %d\n", error);
703 			return (ENOMEM);
704 		}
705 	}
706 	sc->std_dmamap[i] = dmamap;
707 
708 	if (m == NULL) {
709 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
710 		if (m_new == NULL) {
711 			aprint_error_dev(sc->sc_dev,
712 			    "mbuf allocation failed -- packet dropped!\n");
713 			return (ENOBUFS);
714 		}
715 
716 		MCLGET(m_new, M_DONTWAIT);
717 		if (!(m_new->m_flags & M_EXT)) {
718 			aprint_error_dev(sc->sc_dev,
719 			    "cluster allocation failed -- packet dropped!\n");
720 			m_freem(m_new);
721 			return (ENOBUFS);
722 		}
723 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
724 		m_adj(m_new, ETHER_ALIGN);
725 
726 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
727 				mtod(m_new, void *), m_new->m_len, NULL,
728 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
729 			aprint_error_dev(sc->sc_dev,
730 			    "can't load recv map, error = %d\n", error);
731 			m_freem(m_new);
732 			return (ENOMEM);
733 		}
734 	} else {
735 		m_new = m;
736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
737 		m_new->m_data = m_new->m_ext.ext_buf;
738 		m_adj(m_new, ETHER_ALIGN);
739 
740 		/* reuse the dmamap */
741 	}
742 
743 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
744 	r = &sc->ti_rdata->ti_rx_std_ring[i];
745 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
746 	r->ti_type = TI_BDTYPE_RECV_BD;
747 	r->ti_flags = 0;
748 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
749 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
750 	if (sc->ethercom.ec_if.if_capenable &
751 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
752 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
753 	r->ti_len = m_new->m_len; /* == ds_len */
754 	r->ti_idx = i;
755 
756 	return (0);
757 }
758 
759 /*
760  * Initialize a mini receive ring descriptor. This only applies to
761  * the Tigon 2.
762  */
763 static int
ti_newbuf_mini(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)764 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
765 {
766 	struct mbuf		*m_new = NULL;
767 	struct ti_rx_desc	*r;
768 	int error;
769 
770 	if (dmamap == NULL) {
771 		/* if (m) panic() */
772 
773 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
774 					       MHLEN, 0, BUS_DMA_NOWAIT,
775 					       &dmamap)) != 0) {
776 			aprint_error_dev(sc->sc_dev,
777 			    "can't create recv map, error = %d\n", error);
778 			return (ENOMEM);
779 		}
780 	}
781 	sc->mini_dmamap[i] = dmamap;
782 
783 	if (m == NULL) {
784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
785 		if (m_new == NULL) {
786 			aprint_error_dev(sc->sc_dev,
787 			    "mbuf allocation failed -- packet dropped!\n");
788 			return (ENOBUFS);
789 		}
790 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
791 		m_adj(m_new, ETHER_ALIGN);
792 
793 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
794 				mtod(m_new, void *), m_new->m_len, NULL,
795 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
796 			aprint_error_dev(sc->sc_dev,
797 			    "can't load recv map, error = %d\n", error);
798 			m_freem(m_new);
799 			return (ENOMEM);
800 		}
801 	} else {
802 		m_new = m;
803 		m_new->m_data = m_new->m_pktdat;
804 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
805 		m_adj(m_new, ETHER_ALIGN);
806 
807 		/* reuse the dmamap */
808 	}
809 
810 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
811 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
812 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
813 	r->ti_type = TI_BDTYPE_RECV_BD;
814 	r->ti_flags = TI_BDFLAG_MINI_RING;
815 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
816 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
817 	if (sc->ethercom.ec_if.if_capenable &
818 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
819 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
820 	r->ti_len = m_new->m_len; /* == ds_len */
821 	r->ti_idx = i;
822 
823 	return (0);
824 }
825 
826 /*
827  * Initialize a jumbo receive ring descriptor. This allocates
828  * a jumbo buffer from the pool managed internally by the driver.
829  */
830 static int
ti_newbuf_jumbo(struct ti_softc * sc,int i,struct mbuf * m)831 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
832 {
833 	struct mbuf		*m_new = NULL;
834 	struct ti_rx_desc	*r;
835 
836 	if (m == NULL) {
837 		void *		tbuf = NULL;
838 
839 		/* Allocate the mbuf. */
840 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
841 		if (m_new == NULL) {
842 			aprint_error_dev(sc->sc_dev,
843 			    "mbuf allocation failed -- packet dropped!\n");
844 			return (ENOBUFS);
845 		}
846 
847 		/* Allocate the jumbo buffer */
848 		tbuf = ti_jalloc(sc);
849 		if (tbuf == NULL) {
850 			m_freem(m_new);
851 			aprint_error_dev(sc->sc_dev,
852 			    "jumbo allocation failed -- packet dropped!\n");
853 			return (ENOBUFS);
854 		}
855 
856 		/* Attach the buffer to the mbuf. */
857 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
858 		    M_DEVBUF, ti_jfree, sc);
859 		m_new->m_flags |= M_EXT_RW;
860 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
861 	} else {
862 		m_new = m;
863 		m_new->m_data = m_new->m_ext.ext_buf;
864 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
865 	}
866 
867 	m_adj(m_new, ETHER_ALIGN);
868 	/* Set up the descriptor. */
869 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
870 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
871 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
872 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
873 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
874 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
875 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
876 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
877 	if (sc->ethercom.ec_if.if_capenable &
878 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
879 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
880 	r->ti_len = m_new->m_len;
881 	r->ti_idx = i;
882 
883 	return (0);
884 }
885 
886 /*
887  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
888  * that's 1MB or memory, which is a lot. For now, we fill only the first
889  * 256 ring entries and hope that our CPU is fast enough to keep up with
890  * the NIC.
891  */
892 static int
ti_init_rx_ring_std(struct ti_softc * sc)893 ti_init_rx_ring_std(struct ti_softc *sc)
894 {
895 	int		i;
896 	struct ti_cmd_desc	cmd;
897 
898 	for (i = 0; i < TI_SSLOTS; i++) {
899 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
900 			return (ENOBUFS);
901 	}
902 
903 	TI_UPDATE_STDPROD(sc, i - 1);
904 	sc->ti_std = i - 1;
905 
906 	return (0);
907 }
908 
909 static void
ti_free_rx_ring_std(struct ti_softc * sc)910 ti_free_rx_ring_std(struct ti_softc *sc)
911 {
912 	int		i;
913 
914 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
915 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
916 			/* if (sc->std_dmamap[i] == 0) panic() */
917 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
918 			sc->std_dmamap[i] = 0;
919 
920 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
921 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
922 		}
923 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
924 		    sizeof(struct ti_rx_desc));
925 	}
926 
927 	return;
928 }
929 
930 static int
ti_init_rx_ring_jumbo(struct ti_softc * sc)931 ti_init_rx_ring_jumbo(struct ti_softc *sc)
932 {
933 	int		i;
934 	struct ti_cmd_desc	cmd;
935 
936 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
937 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
938 			return (ENOBUFS);
939 	}
940 
941 	TI_UPDATE_JUMBOPROD(sc, i - 1);
942 	sc->ti_jumbo = i - 1;
943 
944 	return (0);
945 }
946 
947 static void
ti_free_rx_ring_jumbo(struct ti_softc * sc)948 ti_free_rx_ring_jumbo(struct ti_softc *sc)
949 {
950 	int		i;
951 
952 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
953 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
954 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
955 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
956 		}
957 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
958 		    sizeof(struct ti_rx_desc));
959 	}
960 
961 	return;
962 }
963 
964 static int
ti_init_rx_ring_mini(struct ti_softc * sc)965 ti_init_rx_ring_mini(struct ti_softc *sc)
966 {
967 	int		i;
968 
969 	for (i = 0; i < TI_MSLOTS; i++) {
970 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
971 			return (ENOBUFS);
972 	}
973 
974 	TI_UPDATE_MINIPROD(sc, i - 1);
975 	sc->ti_mini = i - 1;
976 
977 	return (0);
978 }
979 
980 static void
ti_free_rx_ring_mini(struct ti_softc * sc)981 ti_free_rx_ring_mini(struct ti_softc *sc)
982 {
983 	int		i;
984 
985 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
986 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
987 			/* if (sc->mini_dmamap[i] == 0) panic() */
988 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
989 			sc->mini_dmamap[i] = 0;
990 
991 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
992 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
993 		}
994 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
995 		    sizeof(struct ti_rx_desc));
996 	}
997 
998 	return;
999 }
1000 
1001 static void
ti_free_tx_ring(struct ti_softc * sc)1002 ti_free_tx_ring(struct ti_softc *sc)
1003 {
1004 	int		i;
1005 	struct txdmamap_pool_entry *dma;
1006 
1007 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1008 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1009 			dma = sc->txdma[i];
1010 			KDASSERT(dma != NULL);
1011 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
1012 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1013 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
1014 
1015 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1016 					    link);
1017 			sc->txdma[i] = NULL;
1018 
1019 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1020 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1021 		}
1022 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1023 		    sizeof(struct ti_tx_desc));
1024 	}
1025 
1026 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1027 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1028 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1029 		free(dma, M_DEVBUF);
1030 	}
1031 
1032 	return;
1033 }
1034 
1035 static int
ti_init_tx_ring(struct ti_softc * sc)1036 ti_init_tx_ring(struct ti_softc *sc)
1037 {
1038 	int i, error;
1039 	bus_dmamap_t dmamap;
1040 	struct txdmamap_pool_entry *dma;
1041 
1042 	sc->ti_txcnt = 0;
1043 	sc->ti_tx_saved_considx = 0;
1044 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1045 
1046 	SIMPLEQ_INIT(&sc->txdma_list);
1047 	for (i = 0; i < TI_RSLOTS; i++) {
1048 		/* I've seen mbufs with 30 fragments. */
1049 		if ((error = bus_dmamap_create(sc->sc_dmat,
1050 			    ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1051 			    BUS_DMA_NOWAIT, &dmamap)) != 0) {
1052 			aprint_error_dev(sc->sc_dev,
1053 			    "can't create tx map, error = %d\n", error);
1054 			return (ENOMEM);
1055 		}
1056 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1057 		if (!dma) {
1058 			aprint_error_dev(sc->sc_dev,
1059 			    "can't alloc txdmamap_pool_entry\n");
1060 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1061 			return (ENOMEM);
1062 		}
1063 		dma->dmamap = dmamap;
1064 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1065 	}
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1072  * but we have to support the old way too so that Tigon 1 cards will
1073  * work.
1074  */
1075 static void
ti_add_mcast(struct ti_softc * sc,struct ether_addr * addr)1076 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1077 {
1078 	struct ti_cmd_desc	cmd;
1079 	uint16_t		*m;
1080 	uint32_t		ext[2] = {0, 0};
1081 
1082 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1083 
1084 	switch (sc->ti_hwrev) {
1085 	case TI_HWREV_TIGON:
1086 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1089 		break;
1090 	case TI_HWREV_TIGON_II:
1091 		ext[0] = htons(m[0]);
1092 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1094 		break;
1095 	default:
1096 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1097 		break;
1098 	}
1099 
1100 	return;
1101 }
1102 
1103 static void
ti_del_mcast(struct ti_softc * sc,struct ether_addr * addr)1104 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1105 {
1106 	struct ti_cmd_desc	cmd;
1107 	uint16_t		*m;
1108 	uint32_t		ext[2] = {0, 0};
1109 
1110 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1111 
1112 	switch (sc->ti_hwrev) {
1113 	case TI_HWREV_TIGON:
1114 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1115 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1116 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1117 		break;
1118 	case TI_HWREV_TIGON_II:
1119 		ext[0] = htons(m[0]);
1120 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1121 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1122 		break;
1123 	default:
1124 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1125 		break;
1126 	}
1127 
1128 	return;
1129 }
1130 
1131 /*
1132  * Configure the Tigon's multicast address filter.
1133  *
1134  * The actual multicast table management is a bit of a pain, thanks to
1135  * slight brain damage on the part of both Alteon and us. With our
1136  * multicast code, we are only alerted when the multicast address table
1137  * changes and at that point we only have the current list of addresses:
1138  * we only know the current state, not the previous state, so we don't
1139  * actually know what addresses were removed or added. The firmware has
1140  * state, but we can't get our grubby mits on it, and there is no 'delete
1141  * all multicast addresses' command. Hence, we have to maintain our own
1142  * state so we know what addresses have been programmed into the NIC at
1143  * any given time.
1144  */
1145 static void
ti_setmulti(struct ti_softc * sc)1146 ti_setmulti(struct ti_softc *sc)
1147 {
1148 	struct ethercom		*ec = &sc->ethercom;
1149 	struct ifnet		*ifp = &ec->ec_if;
1150 	struct ti_cmd_desc	cmd;
1151 	struct ti_mc_entry	*mc;
1152 	uint32_t		intrs;
1153 	struct ether_multi	*enm;
1154 	struct ether_multistep	step;
1155 
1156 	/* Disable interrupts. */
1157 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1158 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1159 
1160 	/* First, zot all the existing filters. */
1161 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1162 		ti_del_mcast(sc, &mc->mc_addr);
1163 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1164 		free(mc, M_DEVBUF);
1165 	}
1166 
1167 	/*
1168 	 * Remember all multicast addresses so that we can delete them
1169 	 * later.  Punt if there is a range of addresses or memory shortage.
1170 	 */
1171 	ETHER_LOCK(ec);
1172 	ETHER_FIRST_MULTI(step, ec, enm);
1173 	while (enm != NULL) {
1174 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1175 		    ETHER_ADDR_LEN) != 0) {
1176 			ETHER_UNLOCK(ec);
1177 			goto allmulti;
1178 		}
1179 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1180 		    M_NOWAIT)) == NULL) {
1181 			ETHER_UNLOCK(ec);
1182 			goto allmulti;
1183 		}
1184 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1185 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1186 		ETHER_NEXT_MULTI(step, enm);
1187 	}
1188 	ETHER_UNLOCK(ec);
1189 
1190 	/* Accept only programmed multicast addresses */
1191 	ifp->if_flags &= ~IFF_ALLMULTI;
1192 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1193 
1194 	/* Now program new ones. */
1195 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1196 		ti_add_mcast(sc, &mc->mc_addr);
1197 
1198 	/* Re-enable interrupts. */
1199 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1200 
1201 	return;
1202 
1203 allmulti:
1204 	/* No need to keep individual multicast addresses */
1205 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1207 		free(mc, M_DEVBUF);
1208 	}
1209 
1210 	/* Accept all multicast addresses */
1211 	ifp->if_flags |= IFF_ALLMULTI;
1212 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1213 
1214 	/* Re-enable interrupts. */
1215 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1216 }
1217 
1218 /*
1219  * Check to see if the BIOS has configured us for a 64 bit slot when
1220  * we aren't actually in one. If we detect this condition, we can work
1221  * around it on the Tigon 2 by setting a bit in the PCI state register,
1222  * but for the Tigon 1 we must give up and abort the interface attach.
1223  */
1224 static int
ti_64bitslot_war(struct ti_softc * sc)1225 ti_64bitslot_war(struct ti_softc *sc)
1226 {
1227 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1228 		CSR_WRITE_4(sc, 0x600, 0);
1229 		CSR_WRITE_4(sc, 0x604, 0);
1230 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1231 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1232 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1233 				return (EINVAL);
1234 			else {
1235 				TI_SETBIT(sc, TI_PCI_STATE,
1236 				    TI_PCISTATE_32BIT_BUS);
1237 				return (0);
1238 			}
1239 		}
1240 	}
1241 
1242 	return (0);
1243 }
1244 
1245 /*
1246  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1247  * self-test results.
1248  */
1249 static int
ti_chipinit(struct ti_softc * sc)1250 ti_chipinit(struct ti_softc *sc)
1251 {
1252 	uint32_t	cacheline;
1253 	uint32_t	pci_writemax = 0;
1254 	uint32_t	rev;
1255 
1256 	/* Initialize link to down state. */
1257 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1258 
1259 	/* Set endianness before we access any non-PCI registers. */
1260 #if BYTE_ORDER == BIG_ENDIAN
1261 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1262 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1263 #else
1264 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1266 #endif
1267 
1268 	/* Check the ROM failed bit to see if self-tests passed. */
1269 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1270 		printf("%s: board self-diagnostics failed!\n",
1271 		       device_xname(sc->sc_dev));
1272 		return (ENODEV);
1273 	}
1274 
1275 	/* Halt the CPU. */
1276 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1277 
1278 	/* Figure out the hardware revision. */
1279 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1280 	switch (rev) {
1281 	case TI_REV_TIGON_I:
1282 		sc->ti_hwrev = TI_HWREV_TIGON;
1283 		break;
1284 	case TI_REV_TIGON_II:
1285 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1286 		break;
1287 	default:
1288 		printf("%s: unsupported chip revision 0x%x\n",
1289 		    device_xname(sc->sc_dev), rev);
1290 		return (ENODEV);
1291 	}
1292 
1293 	/* Do special setup for Tigon 2. */
1294 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1295 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1296 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1297 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1298 	}
1299 
1300 	/* Set up the PCI state register. */
1301 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1302 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1303 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1304 	}
1305 
1306 	/* Clear the read/write max DMA parameters. */
1307 	TI_CLRBIT(sc, TI_PCI_STATE,
1308 	    (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
1309 
1310 	/* Get cache line size. */
1311 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1312 
1313 	/*
1314 	 * If the system has set enabled the PCI memory write
1315 	 * and invalidate command in the command register, set
1316 	 * the write max parameter accordingly. This is necessary
1317 	 * to use MWI with the Tigon 2.
1318 	 */
1319 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1320 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1321 		switch (cacheline) {
1322 		case 1:
1323 		case 4:
1324 		case 8:
1325 		case 16:
1326 		case 32:
1327 		case 64:
1328 			break;
1329 		default:
1330 		/* Disable PCI memory write and invalidate. */
1331 			if (bootverbose)
1332 				printf("%s: cache line size %d not "
1333 				    "supported; disabling PCI MWI\n",
1334 				    device_xname(sc->sc_dev), cacheline);
1335 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1336 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1337 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1338 			break;
1339 		}
1340 	}
1341 
1342 #ifdef __brokenalpha__
1343 	/*
1344 	 * From the Alteon sample driver:
1345 	 * Must insure that we do not cross an 8K (bytes) boundary
1346 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1347 	 * restriction on some ALPHA platforms with early revision
1348 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1349 	 */
1350 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
1351 #else
1352 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1353 #endif
1354 
1355 	/* This sets the min dma param all the way up (0xff). */
1356 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1357 
1358 	/* Configure DMA variables. */
1359 #if BYTE_ORDER == BIG_ENDIAN
1360 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1361 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1362 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1363 	    TI_OPMODE_DONT_FRAG_JUMBO);
1364 #else
1365 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
1366 	    TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
1367 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
1368 #endif
1369 
1370 	/*
1371 	 * Only allow 1 DMA channel to be active at a time.
1372 	 * I don't think this is a good idea, but without it
1373 	 * the firmware racks up lots of nicDmaReadRingFull
1374 	 * errors.
1375 	 * Incompatible with hardware assisted checksums.
1376 	 */
1377 	if ((sc->ethercom.ec_if.if_capenable &
1378 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1379 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1380 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1381 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1382 
1383 	/* Recommended settings from Tigon manual. */
1384 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1385 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1386 
1387 	if (ti_64bitslot_war(sc)) {
1388 		printf("%s: bios thinks we're in a 64 bit slot, "
1389 		    "but we aren't", device_xname(sc->sc_dev));
1390 		return (EINVAL);
1391 	}
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Initialize the general information block and firmware, and
1398  * start the CPU(s) running.
1399  */
1400 static int
ti_gibinit(struct ti_softc * sc)1401 ti_gibinit(struct ti_softc *sc)
1402 {
1403 	struct ti_rcb		*rcb;
1404 	int			i;
1405 	struct ifnet		*ifp;
1406 
1407 	ifp = &sc->ethercom.ec_if;
1408 
1409 	/* Disable interrupts for now. */
1410 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1411 
1412 	/* Tell the chip where to find the general information block. */
1413 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1414 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1415 
1416 	/* Load the firmware into SRAM. */
1417 	ti_loadfw(sc);
1418 
1419 	/* Set up the contents of the general info and ring control blocks. */
1420 
1421 	/* Set up the event ring and producer pointer. */
1422 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1423 
1424 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1425 	rcb->ti_flags = 0;
1426 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1427 	    TI_CDEVPRODADDR(sc);
1428 
1429 	sc->ti_ev_prodidx.ti_idx = 0;
1430 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1431 	sc->ti_ev_saved_considx = 0;
1432 
1433 	/* Set up the command ring and producer mailbox. */
1434 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1435 
1436 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1437 	rcb->ti_flags = 0;
1438 	rcb->ti_max_len = 0;
1439 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1440 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1441 	}
1442 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1443 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1444 	sc->ti_cmd_saved_prodidx = 0;
1445 
1446 	/*
1447 	 * Assign the address of the stats refresh buffer.
1448 	 * We re-use the current stats buffer for this to
1449 	 * conserve memory.
1450 	 */
1451 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1452 	    TI_CDSTATSADDR(sc);
1453 
1454 	/* Set up the standard receive ring. */
1455 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1456 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1457 	rcb->ti_max_len = ETHER_MAX_LEN;
1458 	rcb->ti_flags = 0;
1459 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1460 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1461 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1462 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1463 	if (VLAN_ATTACHED(&sc->ethercom))
1464 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1465 
1466 	/* Set up the jumbo receive ring. */
1467 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1468 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1469 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1470 	rcb->ti_flags = 0;
1471 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1472 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1473 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1474 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1475 	if (VLAN_ATTACHED(&sc->ethercom))
1476 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1477 
1478 	/*
1479 	 * Set up the mini ring. Only activated on the
1480 	 * Tigon 2 but the slot in the config block is
1481 	 * still there on the Tigon 1.
1482 	 */
1483 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1484 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1485 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1486 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1487 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1488 	else
1489 		rcb->ti_flags = 0;
1490 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1491 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1492 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1493 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1494 	if (VLAN_ATTACHED(&sc->ethercom))
1495 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1496 
1497 	/*
1498 	 * Set up the receive return ring.
1499 	 */
1500 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1501 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1502 	rcb->ti_flags = 0;
1503 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1504 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1505 	    TI_CDRTNPRODADDR(sc);
1506 
1507 	/*
1508 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1509 	 * of putting the transmit ring in the host's address space and
1510 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1511 	 * memory and accessing it through the shared memory region. We
1512 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1513 	 * so we have to revert to the shared memory scheme if we detect
1514 	 * a Tigon 1 chip.
1515 	 */
1516 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1517 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1518 		sc->ti_tx_ring_nic =
1519 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1520 	}
1521 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1522 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1523 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1524 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1525 		rcb->ti_flags = 0;
1526 	else
1527 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1528 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1529 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1530 	/*
1531 	 * When we get the packet, there is a pseudo-header seed already
1532 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1533 	 * compute the pseudo-header checksum again!
1534 	 */
1535 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
1536 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1537 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1538 	if (VLAN_ATTACHED(&sc->ethercom))
1539 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1540 	rcb->ti_max_len = TI_TX_RING_CNT;
1541 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1542 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1543 	else
1544 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1545 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1546 	    TI_CDTXCONSADDR(sc);
1547 
1548 	/*
1549 	 * We're done frobbing the General Information Block.  Sync
1550 	 * it.  Note we take care of the first stats sync here, as
1551 	 * well.
1552 	 */
1553 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1554 
1555 	/* Set up tuneables */
1556 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1557 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1558 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1559 		    (sc->ti_rx_coal_ticks / 10));
1560 	else
1561 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1562 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1563 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1564 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1565 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1566 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1567 
1568 	/* Turn interrupts on. */
1569 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1570 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1571 
1572 	/* Start CPU. */
1573 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
1574 
1575 	return (0);
1576 }
1577 
1578 /*
1579  * look for id in the device list, returning the first match
1580  */
1581 static const struct ti_type *
ti_type_match(struct pci_attach_args * pa)1582 ti_type_match(struct pci_attach_args *pa)
1583 {
1584 	const struct ti_type	      *t;
1585 
1586 	t = ti_devs;
1587 	while (t->ti_name != NULL) {
1588 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1589 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1590 			return (t);
1591 		}
1592 		t++;
1593 	}
1594 
1595 	return (NULL);
1596 }
1597 
1598 /*
1599  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1600  * against our list and return its name if we find a match.
1601  */
1602 static int
ti_probe(device_t parent,cfdata_t match,void * aux)1603 ti_probe(device_t parent, cfdata_t match, void *aux)
1604 {
1605 	struct pci_attach_args	*pa = aux;
1606 	const struct ti_type	*t;
1607 
1608 	t = ti_type_match(pa);
1609 
1610 	return ((t == NULL) ? 0 : 1);
1611 }
1612 
1613 static void
ti_attach(device_t parent,device_t self,void * aux)1614 ti_attach(device_t parent, device_t self, void *aux)
1615 {
1616 	uint32_t		command;
1617 	struct ifnet		*ifp;
1618 	struct ti_softc		*sc;
1619 	uint8_t eaddr[ETHER_ADDR_LEN];
1620 	struct pci_attach_args *pa = aux;
1621 	pci_chipset_tag_t pc = pa->pa_pc;
1622 	pci_intr_handle_t ih;
1623 	const char *intrstr = NULL;
1624 	bus_dma_segment_t dmaseg;
1625 	int error, dmanseg, nolinear;
1626 	const struct ti_type		*t;
1627 	char intrbuf[PCI_INTRSTR_LEN];
1628 
1629 	t = ti_type_match(pa);
1630 	if (t == NULL) {
1631 		aprint_error("ti_attach: were did the card go ?\n");
1632 		return;
1633 	}
1634 
1635 	aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1636 	    PCI_REVISION(pa->pa_class));
1637 
1638 	sc = device_private(self);
1639 	sc->sc_dev = self;
1640 
1641 	/*
1642 	 * Map control/status registers.
1643 	 */
1644 	nolinear = 0;
1645 	if (pci_mapreg_map(pa, 0x10,
1646 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1647 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1648 	    NULL, NULL)) {
1649 		nolinear = 1;
1650 		if (pci_mapreg_map(pa, 0x10,
1651 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1652 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1653 			aprint_error_dev(self, "can't map memory space\n");
1654 			return;
1655 		}
1656 	}
1657 	if (nolinear == 0)
1658 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1659 	else
1660 		sc->ti_vhandle = NULL;
1661 
1662 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1663 	command |= PCI_COMMAND_MASTER_ENABLE;
1664 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1665 
1666 	/* Allocate interrupt */
1667 	if (pci_intr_map(pa, &ih)) {
1668 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1669 		return;
1670 	}
1671 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1672 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
1673 	    device_xname(self));
1674 	if (sc->sc_ih == NULL) {
1675 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1676 		if (intrstr != NULL)
1677 			aprint_error(" at %s", intrstr);
1678 		aprint_error("\n");
1679 		return;
1680 	}
1681 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1682 
1683 	if (ti_chipinit(sc)) {
1684 		aprint_error_dev(self, "chip initialization failed\n");
1685 		goto fail2;
1686 	}
1687 
1688 	/*
1689 	 * Deal with some chip diffrences.
1690 	 */
1691 	switch (sc->ti_hwrev) {
1692 	case TI_HWREV_TIGON:
1693 		sc->sc_tx_encap = ti_encap_tigon1;
1694 		sc->sc_tx_eof = ti_txeof_tigon1;
1695 		if (nolinear == 1)
1696 			aprint_error_dev(self,
1697 			    "memory space not mapped linear\n");
1698 		break;
1699 
1700 	case TI_HWREV_TIGON_II:
1701 		sc->sc_tx_encap = ti_encap_tigon2;
1702 		sc->sc_tx_eof = ti_txeof_tigon2;
1703 		break;
1704 
1705 	default:
1706 		aprint_error_dev(self, "Unknown chip version: %d\n",
1707 		    sc->ti_hwrev);
1708 		goto fail2;
1709 	}
1710 
1711 	/* Zero out the NIC's on-board SRAM. */
1712 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1713 
1714 	/* Init again -- zeroing memory may have clobbered some registers. */
1715 	if (ti_chipinit(sc)) {
1716 		aprint_error_dev(self, "chip initialization failed\n");
1717 		goto fail2;
1718 	}
1719 
1720 	/*
1721 	 * Get station address from the EEPROM. Note: the manual states
1722 	 * that the MAC address is at offset 0x8c, however the data is
1723 	 * stored as two longwords (since that's how it's loaded into
1724 	 * the NIC). This means the MAC address is actually preceded
1725 	 * by two zero bytes. We need to skip over those.
1726 	 */
1727 	if (ti_read_eeprom(sc, (void *)&eaddr,
1728 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1729 		aprint_error_dev(self, "failed to read station address\n");
1730 		goto fail2;
1731 	}
1732 
1733 	/*
1734 	 * A Tigon chip was detected. Inform the world.
1735 	 */
1736 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1737 
1738 	sc->sc_dmat = pa->pa_dmat;
1739 
1740 	/* Allocate the general information block and ring buffers. */
1741 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1742 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1743 	    BUS_DMA_NOWAIT)) != 0) {
1744 		aprint_error_dev(self,
1745 		    "can't allocate ring buffer, error = %d\n", error);
1746 		goto fail2;
1747 	}
1748 
1749 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1750 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1751 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1752 		aprint_error_dev(self,
1753 		    "can't map ring buffer, error = %d\n", error);
1754 		goto fail2;
1755 	}
1756 
1757 	if ((error = bus_dmamap_create(sc->sc_dmat,
1758 	    sizeof(struct ti_ring_data), 1,
1759 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1760 	    &sc->info_dmamap)) != 0) {
1761 		aprint_error_dev(self,
1762 		    "can't create ring buffer DMA map, error = %d\n", error);
1763 		goto fail2;
1764 	}
1765 
1766 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1767 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1768 	    BUS_DMA_NOWAIT)) != 0) {
1769 		aprint_error_dev(self,
1770 		    "can't load ring buffer DMA map, error = %d\n", error);
1771 		goto fail2;
1772 	}
1773 
1774 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1775 
1776 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1777 
1778 	/* Try to allocate memory for jumbo buffers. */
1779 	if (ti_alloc_jumbo_mem(sc)) {
1780 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
1781 		goto fail2;
1782 	}
1783 
1784 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1785 
1786 	/*
1787 	 * We really need a better way to tell a 1000baseT card
1788 	 * from a 1000baseSX one, since in theory there could be
1789 	 * OEMed 1000baseT cards from lame vendors who aren't
1790 	 * clever enough to change the PCI ID. For the moment
1791 	 * though, the AceNIC is the only copper card available.
1792 	 */
1793 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1794 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1795 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1796 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1797 		sc->ti_copper = 1;
1798 	else
1799 		sc->ti_copper = 0;
1800 
1801 	/* Set default tuneable values. */
1802 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1803 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1804 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1805 	sc->ti_rx_max_coal_bds = 64;
1806 	sc->ti_tx_max_coal_bds = 128;
1807 	sc->ti_tx_buf_ratio = 21;
1808 
1809 	/* Set up ifnet structure */
1810 	ifp = &sc->ethercom.ec_if;
1811 	ifp->if_softc = sc;
1812 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1813 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1814 	ifp->if_ioctl = ti_ioctl;
1815 	ifp->if_start = ti_start;
1816 	ifp->if_watchdog = ti_watchdog;
1817 	IFQ_SET_READY(&ifp->if_snd);
1818 
1819 #if 0
1820 	/*
1821 	 * XXX This is not really correct -- we don't necessarily
1822 	 * XXX want to queue up as many as we can transmit at the
1823 	 * XXX upper layer like that.  Someone with a board should
1824 	 * XXX check to see how this affects performance.
1825 	 */
1826 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1827 #endif
1828 
1829 	/*
1830 	 * We can support 802.1Q VLAN-sized frames.
1831 	 */
1832 	sc->ethercom.ec_capabilities |=
1833 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1834 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1835 
1836 	/*
1837 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1838 	 */
1839 	ifp->if_capabilities |=
1840 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1841 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1842 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1843 
1844 	/* Set up ifmedia support. */
1845 	sc->ethercom.ec_ifmedia = &sc->ifmedia;
1846 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1847 	if (sc->ti_copper) {
1848 		/*
1849 		 * Copper cards allow manual 10/100 mode selection,
1850 		 * but not manual 1000baseT mode selection. Why?
1851 		 * Because currently there's no way to specify the
1852 		 * master/slave setting through the firmware interface,
1853 		 * so Alteon decided to just bag it and handle it
1854 		 * via autonegotiation.
1855 		 */
1856 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
1857 		ifmedia_add(&sc->ifmedia,
1858 		    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1859 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
1860 		ifmedia_add(&sc->ifmedia,
1861 		    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1862 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1863 		ifmedia_add(&sc->ifmedia,
1864 		    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1865 	} else {
1866 		/* Fiber cards don't support 10/100 modes. */
1867 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
1868 		ifmedia_add(&sc->ifmedia,
1869 		    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1870 	}
1871 	ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1872 	ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
1873 
1874 	/*
1875 	 * Call MI attach routines.
1876 	 */
1877 	if_attach(ifp);
1878 	if_deferred_start_init(ifp, NULL);
1879 	ether_ifattach(ifp, eaddr);
1880 
1881 	/*
1882 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1883 	 * doing do could allow DMA to corrupt kernel memory during the
1884 	 * reboot before the driver initializes.
1885 	 */
1886 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1887 		pmf_class_network_register(self, ifp);
1888 	else
1889 		aprint_error_dev(self, "couldn't establish power handler\n");
1890 
1891 	return;
1892 fail2:
1893 	pci_intr_disestablish(pc, sc->sc_ih);
1894 	return;
1895 }
1896 
1897 /*
1898  * Frame reception handling. This is called if there's a frame
1899  * on the receive return list.
1900  *
1901  * Note: we have to be able to handle three possibilities here:
1902  * 1) the frame is from the mini receive ring (can only happen)
1903  *    on Tigon 2 boards)
1904  * 2) the frame is from the jumbo receive ring
1905  * 3) the frame is from the standard receive ring
1906  */
1907 
1908 static void
ti_rxeof(struct ti_softc * sc)1909 ti_rxeof(struct ti_softc *sc)
1910 {
1911 	struct ifnet		*ifp;
1912 	struct ti_cmd_desc	cmd;
1913 
1914 	ifp = &sc->ethercom.ec_if;
1915 
1916 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1917 		struct ti_rx_desc	*cur_rx;
1918 		uint32_t		rxidx;
1919 		struct mbuf		*m = NULL;
1920 		struct ether_header	*eh;
1921 		bus_dmamap_t dmamap;
1922 
1923 		cur_rx =
1924 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1925 		rxidx = cur_rx->ti_idx;
1926 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1927 
1928 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1929 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1930 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1931 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1932 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1933 				if_statinc(ifp, if_ierrors);
1934 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1935 				continue;
1936 			}
1937 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1938 			    == ENOBUFS) {
1939 				if_statinc(ifp, if_ierrors);
1940 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1941 				continue;
1942 			}
1943 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1944 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1945 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1946 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1947 			dmamap = sc->mini_dmamap[rxidx];
1948 			sc->mini_dmamap[rxidx] = 0;
1949 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1950 				if_statinc(ifp, if_ierrors);
1951 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1952 				continue;
1953 			}
1954 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1955 			    == ENOBUFS) {
1956 				if_statinc(ifp, if_ierrors);
1957 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1958 				continue;
1959 			}
1960 		} else {
1961 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1962 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1963 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1964 			dmamap = sc->std_dmamap[rxidx];
1965 			sc->std_dmamap[rxidx] = 0;
1966 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1967 				if_statinc(ifp, if_ierrors);
1968 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1969 				continue;
1970 			}
1971 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1972 			    == ENOBUFS) {
1973 				if_statinc(ifp, if_ierrors);
1974 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1975 				continue;
1976 			}
1977 		}
1978 
1979 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1980 		m_set_rcvif(m, ifp);
1981 
1982 		eh = mtod(m, struct ether_header *);
1983 		switch (ntohs(eh->ether_type)) {
1984 #ifdef INET
1985 		case ETHERTYPE_IP:
1986 		    {
1987 			struct ip *ip = (struct ip *) (eh + 1);
1988 
1989 			/*
1990 			 * Note the Tigon firmware does not invert
1991 			 * the checksum for us, hence the XOR.
1992 			 */
1993 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1994 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1995 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1996 			/*
1997 			 * ntohs() the constant so the compiler can
1998 			 * optimize...
1999 			 *
2000 			 * XXX Figure out a sane way to deal with
2001 			 * fragmented packets.
2002 			 */
2003 			if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
2004 				switch (ip->ip_p) {
2005 				case IPPROTO_TCP:
2006 					m->m_pkthdr.csum_data =
2007 					    cur_rx->ti_tcp_udp_cksum;
2008 					m->m_pkthdr.csum_flags |=
2009 					    M_CSUM_TCPv4 | M_CSUM_DATA;
2010 					break;
2011 				case IPPROTO_UDP:
2012 					m->m_pkthdr.csum_data =
2013 					    cur_rx->ti_tcp_udp_cksum;
2014 					m->m_pkthdr.csum_flags |=
2015 					    M_CSUM_UDPv4 | M_CSUM_DATA;
2016 					break;
2017 				default:
2018 					/* Nothing */;
2019 				}
2020 			}
2021 			break;
2022 		    }
2023 #endif
2024 		default:
2025 			/* Nothing. */
2026 			break;
2027 		}
2028 
2029 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG)
2030 			vlan_set_tag(m, cur_rx->ti_vlan_tag);
2031 
2032 		if_percpuq_enqueue(ifp->if_percpuq, m);
2033 	}
2034 
2035 	/* Only necessary on the Tigon 1. */
2036 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2037 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2038 		    sc->ti_rx_saved_considx);
2039 
2040 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2041 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2042 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2043 }
2044 
2045 static void
ti_txeof_tigon1(struct ti_softc * sc)2046 ti_txeof_tigon1(struct ti_softc *sc)
2047 {
2048 	struct ti_tx_desc	*cur_tx = NULL;
2049 	struct ifnet		*ifp;
2050 	struct txdmamap_pool_entry *dma;
2051 
2052 	ifp = &sc->ethercom.ec_if;
2053 
2054 	/*
2055 	 * Go through our tx ring and free mbufs for those
2056 	 * frames that have been sent.
2057 	 */
2058 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2059 		uint32_t	idx = 0;
2060 
2061 		idx = sc->ti_tx_saved_considx;
2062 		if (idx > 383)
2063 			CSR_WRITE_4(sc, TI_WINBASE,
2064 			    TI_TX_RING_BASE + 6144);
2065 		else if (idx > 255)
2066 			CSR_WRITE_4(sc, TI_WINBASE,
2067 			    TI_TX_RING_BASE + 4096);
2068 		else if (idx > 127)
2069 			CSR_WRITE_4(sc, TI_WINBASE,
2070 			    TI_TX_RING_BASE + 2048);
2071 		else
2072 			CSR_WRITE_4(sc, TI_WINBASE,
2073 			    TI_TX_RING_BASE);
2074 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2075 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2076 			if_statinc(ifp, if_opackets);
2077 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2078 			dma = sc->txdma[idx];
2079 			KDASSERT(dma != NULL);
2080 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2081 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2082 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2083 
2084 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2085 			sc->txdma[idx] = NULL;
2086 
2087 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2088 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2089 		}
2090 		sc->ti_txcnt--;
2091 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2092 		ifp->if_timer = 0;
2093 	}
2094 
2095 	if (cur_tx != NULL)
2096 		ifp->if_flags &= ~IFF_OACTIVE;
2097 }
2098 
2099 static void
ti_txeof_tigon2(struct ti_softc * sc)2100 ti_txeof_tigon2(struct ti_softc *sc)
2101 {
2102 	struct ti_tx_desc	*cur_tx = NULL;
2103 	struct ifnet		*ifp;
2104 	struct txdmamap_pool_entry *dma;
2105 	int firstidx, cnt;
2106 
2107 	ifp = &sc->ethercom.ec_if;
2108 
2109 	/*
2110 	 * Go through our tx ring and free mbufs for those
2111 	 * frames that have been sent.
2112 	 */
2113 	firstidx = sc->ti_tx_saved_considx;
2114 	cnt = 0;
2115 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2116 		uint32_t	idx = 0;
2117 
2118 		idx = sc->ti_tx_saved_considx;
2119 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2120 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2121 			if_statinc(ifp, if_opackets);
2122 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2123 			dma = sc->txdma[idx];
2124 			KDASSERT(dma != NULL);
2125 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2126 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2127 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2128 
2129 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2130 			sc->txdma[idx] = NULL;
2131 
2132 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2133 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2134 		}
2135 		cnt++;
2136 		sc->ti_txcnt--;
2137 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2138 		ifp->if_timer = 0;
2139 	}
2140 
2141 	if (cnt != 0)
2142 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2143 
2144 	if (cur_tx != NULL)
2145 		ifp->if_flags &= ~IFF_OACTIVE;
2146 }
2147 
2148 static int
ti_intr(void * xsc)2149 ti_intr(void *xsc)
2150 {
2151 	struct ti_softc	*sc;
2152 	struct ifnet	*ifp;
2153 
2154 	sc = xsc;
2155 	ifp = &sc->ethercom.ec_if;
2156 
2157 #ifdef notdef
2158 	/* Avoid this for now -- checking this register is expensive. */
2159 	/* Make sure this is really our interrupt. */
2160 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2161 		return (0);
2162 #endif
2163 
2164 	/* Ack interrupt and stop others from occurring. */
2165 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2166 
2167 	if (ifp->if_flags & IFF_RUNNING) {
2168 		/* Check RX return ring producer/consumer */
2169 		ti_rxeof(sc);
2170 
2171 		/* Check TX ring producer/consumer */
2172 		(*sc->sc_tx_eof)(sc);
2173 	}
2174 
2175 	ti_handle_events(sc);
2176 
2177 	/* Re-enable interrupts. */
2178 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2179 
2180 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2181 		if_schedule_deferred_start(ifp);
2182 
2183 	return (1);
2184 }
2185 
2186 static void
ti_stats_update(struct ti_softc * sc)2187 ti_stats_update(struct ti_softc *sc)
2188 {
2189 	struct ifnet *ifp = &sc->ethercom.ec_if;
2190 
2191 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2192 
2193 	uint64_t collisions =
2194 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2195 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2196 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2197 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
2198 	if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
2199 	sc->ti_if_collisions = collisions;
2200 
2201 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2202 }
2203 
2204 /*
2205  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2206  * pointers to descriptors.
2207  */
2208 static int
ti_encap_tigon1(struct ti_softc * sc,struct mbuf * m_head,uint32_t * txidx)2209 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2210 {
2211 	struct ti_tx_desc	*f = NULL;
2212 	uint32_t		frag, cur, cnt = 0;
2213 	struct txdmamap_pool_entry *dma;
2214 	bus_dmamap_t dmamap;
2215 	int error, i;
2216 	uint16_t csum_flags = 0;
2217 
2218 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2219 	if (dma == NULL) {
2220 		return ENOMEM;
2221 	}
2222 	dmamap = dma->dmamap;
2223 
2224 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2225 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2226 	if (error) {
2227 		struct mbuf *m;
2228 		int j = 0;
2229 		for (m = m_head; m; m = m->m_next)
2230 			j++;
2231 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2232 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2233 		return (ENOMEM);
2234 	}
2235 
2236 	cur = frag = *txidx;
2237 
2238 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2239 		/* IP header checksum field must be 0! */
2240 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2241 	}
2242 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2243 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2244 
2245 	/* XXX fragmented packet checksum capability? */
2246 
2247 	/*
2248 	 * Start packing the mbufs in this chain into
2249 	 * the fragment pointers. Stop when we run out
2250 	 * of fragments or hit the end of the mbuf chain.
2251 	 */
2252 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2253 		if (frag > 383)
2254 			CSR_WRITE_4(sc, TI_WINBASE,
2255 			    TI_TX_RING_BASE + 6144);
2256 		else if (frag > 255)
2257 			CSR_WRITE_4(sc, TI_WINBASE,
2258 			    TI_TX_RING_BASE + 4096);
2259 		else if (frag > 127)
2260 			CSR_WRITE_4(sc, TI_WINBASE,
2261 			    TI_TX_RING_BASE + 2048);
2262 		else
2263 			CSR_WRITE_4(sc, TI_WINBASE,
2264 			    TI_TX_RING_BASE);
2265 		f = &sc->ti_tx_ring_nic[frag % 128];
2266 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2267 			break;
2268 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2269 		f->ti_len = dmamap->dm_segs[i].ds_len;
2270 		f->ti_flags = csum_flags;
2271 		if (vlan_has_tag(m_head)) {
2272 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2273 			f->ti_vlan_tag = vlan_get_tag(m_head);
2274 		} else {
2275 			f->ti_vlan_tag = 0;
2276 		}
2277 		/*
2278 		 * Sanity check: avoid coming within 16 descriptors
2279 		 * of the end of the ring.
2280 		 */
2281 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2282 			return (ENOBUFS);
2283 		cur = frag;
2284 		TI_INC(frag, TI_TX_RING_CNT);
2285 		cnt++;
2286 	}
2287 
2288 	if (i < dmamap->dm_nsegs)
2289 		return (ENOBUFS);
2290 
2291 	if (frag == sc->ti_tx_saved_considx)
2292 		return (ENOBUFS);
2293 
2294 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2295 	    TI_BDFLAG_END;
2296 
2297 	/* Sync the packet's DMA map. */
2298 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2299 	    BUS_DMASYNC_PREWRITE);
2300 
2301 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2302 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2303 	sc->txdma[cur] = dma;
2304 	sc->ti_txcnt += cnt;
2305 
2306 	*txidx = frag;
2307 
2308 	return (0);
2309 }
2310 
2311 static int
ti_encap_tigon2(struct ti_softc * sc,struct mbuf * m_head,uint32_t * txidx)2312 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2313 {
2314 	struct ti_tx_desc	*f = NULL;
2315 	uint32_t		frag, firstfrag, cur, cnt = 0;
2316 	struct txdmamap_pool_entry *dma;
2317 	bus_dmamap_t dmamap;
2318 	int error, i;
2319 	uint16_t csum_flags = 0;
2320 
2321 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2322 	if (dma == NULL) {
2323 		return ENOMEM;
2324 	}
2325 	dmamap = dma->dmamap;
2326 
2327 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2328 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2329 	if (error) {
2330 		struct mbuf *m;
2331 		int j = 0;
2332 		for (m = m_head; m; m = m->m_next)
2333 			j++;
2334 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2335 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2336 		return (ENOMEM);
2337 	}
2338 
2339 	cur = firstfrag = frag = *txidx;
2340 
2341 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2342 		/* IP header checksum field must be 0! */
2343 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2344 	}
2345 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2346 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2347 
2348 	/* XXX fragmented packet checksum capability? */
2349 
2350 	/*
2351 	 * Start packing the mbufs in this chain into
2352 	 * the fragment pointers. Stop when we run out
2353 	 * of fragments or hit the end of the mbuf chain.
2354 	 */
2355 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2356 		f = &sc->ti_rdata->ti_tx_ring[frag];
2357 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2358 			break;
2359 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2360 		f->ti_len = dmamap->dm_segs[i].ds_len;
2361 		f->ti_flags = csum_flags;
2362 		if (vlan_has_tag(m_head)) {
2363 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2364 			f->ti_vlan_tag = vlan_get_tag(m_head);
2365 		} else {
2366 			f->ti_vlan_tag = 0;
2367 		}
2368 		/*
2369 		 * Sanity check: avoid coming within 16 descriptors
2370 		 * of the end of the ring.
2371 		 */
2372 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2373 			return (ENOBUFS);
2374 		cur = frag;
2375 		TI_INC(frag, TI_TX_RING_CNT);
2376 		cnt++;
2377 	}
2378 
2379 	if (i < dmamap->dm_nsegs)
2380 		return (ENOBUFS);
2381 
2382 	if (frag == sc->ti_tx_saved_considx)
2383 		return (ENOBUFS);
2384 
2385 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2386 
2387 	/* Sync the packet's DMA map. */
2388 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2389 	    BUS_DMASYNC_PREWRITE);
2390 
2391 	/* Sync the descriptors we are using. */
2392 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2393 
2394 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2395 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2396 	sc->txdma[cur] = dma;
2397 	sc->ti_txcnt += cnt;
2398 
2399 	*txidx = frag;
2400 
2401 	return (0);
2402 }
2403 
2404 /*
2405  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2406  * to the mbuf data regions directly in the transmit descriptors.
2407  */
2408 static void
ti_start(struct ifnet * ifp)2409 ti_start(struct ifnet *ifp)
2410 {
2411 	struct ti_softc	*sc;
2412 	struct mbuf	*m_head = NULL;
2413 	uint32_t	prodidx = 0;
2414 
2415 	sc = ifp->if_softc;
2416 
2417 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2418 
2419 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2420 		IFQ_POLL(&ifp->if_snd, m_head);
2421 		if (m_head == NULL)
2422 			break;
2423 
2424 		/*
2425 		 * Pack the data into the transmit ring. If we
2426 		 * don't have room, set the OACTIVE flag and wait
2427 		 * for the NIC to drain the ring.
2428 		 */
2429 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2430 			ifp->if_flags |= IFF_OACTIVE;
2431 			break;
2432 		}
2433 
2434 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2435 
2436 		/*
2437 		 * If there's a BPF listener, bounce a copy of this frame
2438 		 * to him.
2439 		 */
2440 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2441 	}
2442 
2443 	/* Transmit */
2444 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2445 
2446 	/* Set a timeout in case the chip goes out to lunch. */
2447 	ifp->if_timer = 5;
2448 }
2449 
2450 static void
ti_init(void * xsc)2451 ti_init(void *xsc)
2452 {
2453 	struct ti_softc		*sc = xsc;
2454 	int			s;
2455 
2456 	s = splnet();
2457 
2458 	/* Cancel pending I/O and flush buffers. */
2459 	ti_stop(sc);
2460 
2461 	/* Init the gen info block, ring control blocks and firmware. */
2462 	if (ti_gibinit(sc)) {
2463 		aprint_error_dev(sc->sc_dev, "initialization failure\n");
2464 		splx(s);
2465 		return;
2466 	}
2467 
2468 	splx(s);
2469 }
2470 
2471 static void
ti_init2(struct ti_softc * sc)2472 ti_init2(struct ti_softc *sc)
2473 {
2474 	struct ti_cmd_desc	cmd;
2475 	struct ifnet		*ifp;
2476 	const uint8_t		*m;
2477 	struct ifmedia		*ifm;
2478 	int			tmp;
2479 
2480 	ifp = &sc->ethercom.ec_if;
2481 
2482 	/* Specify MTU and interface index. */
2483 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2484 
2485 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2486 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2487 		tmp += ETHER_VLAN_ENCAP_LEN;
2488 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2489 
2490 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2491 
2492 	/* Load our MAC address. */
2493 	m = (const uint8_t *)CLLADDR(ifp->if_sadl);
2494 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2495 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2496 		    | (m[4] << 8) | m[5]);
2497 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2498 
2499 	/* Enable or disable promiscuous mode as needed. */
2500 	if (ifp->if_flags & IFF_PROMISC) {
2501 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2502 	} else {
2503 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2504 	}
2505 
2506 	/* Program multicast filter. */
2507 	ti_setmulti(sc);
2508 
2509 	/*
2510 	 * If this is a Tigon 1, we should tell the
2511 	 * firmware to use software packet filtering.
2512 	 */
2513 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2514 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2515 	}
2516 
2517 	/* Init RX ring. */
2518 	ti_init_rx_ring_std(sc);
2519 
2520 	/* Init jumbo RX ring. */
2521 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2522 		ti_init_rx_ring_jumbo(sc);
2523 
2524 	/*
2525 	 * If this is a Tigon 2, we can also configure the
2526 	 * mini ring.
2527 	 */
2528 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2529 		ti_init_rx_ring_mini(sc);
2530 
2531 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2532 	sc->ti_rx_saved_considx = 0;
2533 
2534 	/* Init TX ring. */
2535 	ti_init_tx_ring(sc);
2536 
2537 	/* Tell firmware we're alive. */
2538 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2539 
2540 	/* Enable host interrupts. */
2541 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2542 
2543 	ifp->if_flags |= IFF_RUNNING;
2544 	ifp->if_flags &= ~IFF_OACTIVE;
2545 
2546 	/*
2547 	 * Make sure to set media properly. We have to do this
2548 	 * here since we have to issue commands in order to set
2549 	 * the link negotiation and we can't issue commands until
2550 	 * the firmware is running.
2551 	 */
2552 	ifm = &sc->ifmedia;
2553 	tmp = ifm->ifm_media;
2554 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2555 	ti_ifmedia_upd(ifp);
2556 	ifm->ifm_media = tmp;
2557 }
2558 
2559 /*
2560  * Set media options.
2561  */
2562 static int
ti_ifmedia_upd(struct ifnet * ifp)2563 ti_ifmedia_upd(struct ifnet *ifp)
2564 {
2565 	struct ti_softc		*sc;
2566 	struct ifmedia		*ifm;
2567 	struct ti_cmd_desc	cmd;
2568 
2569 	sc = ifp->if_softc;
2570 	ifm = &sc->ifmedia;
2571 
2572 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2573 		return (EINVAL);
2574 
2575 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2576 	case IFM_AUTO:
2577 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2578 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2579 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2580 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2581 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2582 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2583 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2584 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2585 		break;
2586 	case IFM_1000_SX:
2587 	case IFM_1000_T:
2588 		if ((ifm->ifm_media & IFM_FDX) != 0) {
2589 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2590 			    TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
2591 			    | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2592 		} else {
2593 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2594 			    TI_GLNK_PREF | TI_GLNK_1000MB |
2595 			    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2596 		}
2597 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2598 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2599 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2600 		break;
2601 	case IFM_100_FX:
2602 	case IFM_10_FL:
2603 	case IFM_100_TX:
2604 	case IFM_10_T:
2605 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2606 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2607 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2608 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2609 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2610 		} else {
2611 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2612 		}
2613 		if ((ifm->ifm_media & IFM_FDX) != 0) {
2614 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2615 		} else {
2616 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2617 		}
2618 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2619 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2620 		break;
2621 	}
2622 
2623 	sc->ethercom.ec_if.if_baudrate =
2624 	    ifmedia_baudrate(ifm->ifm_media);
2625 
2626 	return (0);
2627 }
2628 
2629 /*
2630  * Report current media status.
2631  */
2632 static void
ti_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2633 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2634 {
2635 	struct ti_softc		*sc;
2636 	uint32_t		media = 0;
2637 
2638 	sc = ifp->if_softc;
2639 
2640 	ifmr->ifm_status = IFM_AVALID;
2641 	ifmr->ifm_active = IFM_ETHER;
2642 
2643 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2644 		return;
2645 
2646 	ifmr->ifm_status |= IFM_ACTIVE;
2647 
2648 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2649 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2650 		if (sc->ti_copper)
2651 			ifmr->ifm_active |= IFM_1000_T;
2652 		else
2653 			ifmr->ifm_active |= IFM_1000_SX;
2654 		if (media & TI_GLNK_FULL_DUPLEX)
2655 			ifmr->ifm_active |= IFM_FDX;
2656 		else
2657 			ifmr->ifm_active |= IFM_HDX;
2658 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2659 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2660 		if (sc->ti_copper) {
2661 			if (media & TI_LNK_100MB)
2662 				ifmr->ifm_active |= IFM_100_TX;
2663 			if (media & TI_LNK_10MB)
2664 				ifmr->ifm_active |= IFM_10_T;
2665 		} else {
2666 			if (media & TI_LNK_100MB)
2667 				ifmr->ifm_active |= IFM_100_FX;
2668 			if (media & TI_LNK_10MB)
2669 				ifmr->ifm_active |= IFM_10_FL;
2670 		}
2671 		if (media & TI_LNK_FULL_DUPLEX)
2672 			ifmr->ifm_active |= IFM_FDX;
2673 		if (media & TI_LNK_HALF_DUPLEX)
2674 			ifmr->ifm_active |= IFM_HDX;
2675 	}
2676 
2677 	sc->ethercom.ec_if.if_baudrate =
2678 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2679 }
2680 
2681 static int
ti_ether_ioctl(struct ifnet * ifp,u_long cmd,void * data)2682 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2683 {
2684 	struct ifaddr *ifa = (struct ifaddr *)data;
2685 	struct ti_softc *sc = ifp->if_softc;
2686 
2687 	if ((ifp->if_flags & IFF_UP) == 0) {
2688 		ifp->if_flags |= IFF_UP;
2689 		ti_init(sc);
2690 	}
2691 
2692 	switch (cmd) {
2693 	case SIOCINITIFADDR:
2694 
2695 		switch (ifa->ifa_addr->sa_family) {
2696 #ifdef INET
2697 		case AF_INET:
2698 			arp_ifinit(ifp, ifa);
2699 			break;
2700 #endif
2701 		default:
2702 			break;
2703 		}
2704 		break;
2705 
2706 	default:
2707 		return (EINVAL);
2708 	}
2709 
2710 	return (0);
2711 }
2712 
2713 static int
ti_ioctl(struct ifnet * ifp,u_long command,void * data)2714 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2715 {
2716 	struct ti_softc		*sc = ifp->if_softc;
2717 	struct ifreq		*ifr = (struct ifreq *)data;
2718 	int			s, error = 0;
2719 	struct ti_cmd_desc	cmd;
2720 
2721 	s = splnet();
2722 
2723 	switch (command) {
2724 	case SIOCINITIFADDR:
2725 		error = ti_ether_ioctl(ifp, command, data);
2726 		break;
2727 	case SIOCSIFMTU:
2728 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2729 			error = EINVAL;
2730 		else if ((error = ifioctl_common(ifp, command, data))
2731 		    == ENETRESET) {
2732 			ti_init(sc);
2733 			error = 0;
2734 		}
2735 		break;
2736 	case SIOCSIFFLAGS:
2737 		if ((error = ifioctl_common(ifp, command, data)) != 0)
2738 			break;
2739 		if (ifp->if_flags & IFF_UP) {
2740 			/*
2741 			 * If only the state of the PROMISC flag changed,
2742 			 * then just use the 'set promisc mode' command
2743 			 * instead of reinitializing the entire NIC. Doing
2744 			 * a full re-init means reloading the firmware and
2745 			 * waiting for it to start up, which may take a
2746 			 * second or two.
2747 			 */
2748 			if (ifp->if_flags & IFF_RUNNING &&
2749 			    ifp->if_flags & IFF_PROMISC &&
2750 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2751 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2752 				    TI_CMD_CODE_PROMISC_ENB, 0);
2753 			} else if (ifp->if_flags & IFF_RUNNING &&
2754 			    !(ifp->if_flags & IFF_PROMISC) &&
2755 			    sc->ti_if_flags & IFF_PROMISC) {
2756 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2757 				    TI_CMD_CODE_PROMISC_DIS, 0);
2758 			} else
2759 				ti_init(sc);
2760 		} else {
2761 			if (ifp->if_flags & IFF_RUNNING) {
2762 				ti_stop(sc);
2763 			}
2764 		}
2765 		sc->ti_if_flags = ifp->if_flags;
2766 		error = 0;
2767 		break;
2768 	default:
2769 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2770 			break;
2771 
2772 		error = 0;
2773 
2774 		if (command == SIOCSIFCAP)
2775 			ti_init(sc);
2776 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2777 			;
2778 		else if (ifp->if_flags & IFF_RUNNING)
2779 			ti_setmulti(sc);
2780 		break;
2781 	}
2782 
2783 	(void)splx(s);
2784 
2785 	return (error);
2786 }
2787 
2788 static void
ti_watchdog(struct ifnet * ifp)2789 ti_watchdog(struct ifnet *ifp)
2790 {
2791 	struct ti_softc		*sc;
2792 
2793 	sc = ifp->if_softc;
2794 
2795 	aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2796 	ti_stop(sc);
2797 	ti_init(sc);
2798 
2799 	if_statinc(ifp, if_oerrors);
2800 }
2801 
2802 /*
2803  * Stop the adapter and free any mbufs allocated to the
2804  * RX and TX lists.
2805  */
2806 static void
ti_stop(struct ti_softc * sc)2807 ti_stop(struct ti_softc *sc)
2808 {
2809 	struct ifnet		*ifp;
2810 	struct ti_cmd_desc	cmd;
2811 
2812 	ifp = &sc->ethercom.ec_if;
2813 
2814 	/* Disable host interrupts. */
2815 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2816 	/*
2817 	 * Tell firmware we're shutting down.
2818 	 */
2819 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2820 
2821 	/* Halt and reinitialize. */
2822 	ti_chipinit(sc);
2823 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2824 	ti_chipinit(sc);
2825 
2826 	/* Free the RX lists. */
2827 	ti_free_rx_ring_std(sc);
2828 
2829 	/* Free jumbo RX list. */
2830 	ti_free_rx_ring_jumbo(sc);
2831 
2832 	/* Free mini RX list. */
2833 	ti_free_rx_ring_mini(sc);
2834 
2835 	/* Free TX buffers. */
2836 	ti_free_tx_ring(sc);
2837 
2838 	sc->ti_ev_prodidx.ti_idx = 0;
2839 	sc->ti_return_prodidx.ti_idx = 0;
2840 	sc->ti_tx_considx.ti_idx = 0;
2841 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2842 
2843 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2844 }
2845 
2846 /*
2847  * Stop all chip I/O so that the kernel's probe routines don't
2848  * get confused by errant DMAs when rebooting.
2849  */
2850 static bool
ti_shutdown(device_t self,int howto)2851 ti_shutdown(device_t self, int howto)
2852 {
2853 	struct ti_softc *sc;
2854 
2855 	sc = device_private(self);
2856 	ti_chipinit(sc);
2857 
2858 	return true;
2859 }
2860