1 /* $OpenBSD: ti.c,v 1.31 2024/09/20 02:00:46 jsg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/pci/if_ti.c,v 1.25 2000/01/18 00:26:29 wpaul Exp $
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for OpenBSD.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45 /*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring descriptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The following people deserve special thanks:
65 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
66 * for testing
67 * - Raymond Lee of Netgear, for providing a pair of Netgear
68 * GA620 Tigon 2 boards for testing
69 * - Ulf Zimmermann, for bringing the GA260 to my attention and
70 * convincing me to write this driver.
71 * - Andrew Gallatin for providing FreeBSD/Alpha support.
72 */
73
74 #include "bpfilter.h"
75 #include "vlan.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/device.h>
85 #include <sys/queue.h>
86
87 #include <net/if.h>
88
89 #include <netinet/in.h>
90 #include <netinet/if_ether.h>
91
92 #include <net/if_media.h>
93
94 #if NBPFILTER > 0
95 #include <net/bpf.h>
96 #endif
97
98 #include <machine/bus.h>
99
100 #include <dev/ic/tireg.h>
101 #include <dev/ic/tivar.h>
102 #include <dev/pci/pcireg.h>
103
104 struct cfdriver ti_cd = {
105 NULL, "ti", DV_IFNET
106 };
107
108 void ti_txeof_tigon1(struct ti_softc *);
109 void ti_txeof_tigon2(struct ti_softc *);
110 void ti_rxeof(struct ti_softc *);
111
112 void ti_stats_update(struct ti_softc *);
113 int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
114 int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
115
116 int ti_intr(void *);
117 void ti_start(struct ifnet *);
118 int ti_ioctl(struct ifnet *, u_long, caddr_t);
119 void ti_init(void *);
120 void ti_init2(struct ti_softc *);
121 void ti_stop(struct ti_softc *);
122 void ti_watchdog(struct ifnet *);
123 int ti_ifmedia_upd(struct ifnet *);
124 void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
125
126 u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
127 u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
128 int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
129
130 void ti_add_mcast(struct ti_softc *, struct ether_addr *);
131 void ti_del_mcast(struct ti_softc *, struct ether_addr *);
132 void ti_iff(struct ti_softc *);
133
134 void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
135 void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, const void*);
136 void ti_mem_set(struct ti_softc *, u_int32_t, u_int32_t);
137 void ti_loadfw(struct ti_softc *);
138 void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
139 void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
140 caddr_t, int);
141 void ti_handle_events(struct ti_softc *);
142 int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
143 int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
144 int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
145 int ti_init_rx_ring_std(struct ti_softc *);
146 void ti_free_rx_ring_std(struct ti_softc *);
147 int ti_init_rx_ring_jumbo(struct ti_softc *);
148 void ti_free_rx_ring_jumbo(struct ti_softc *);
149 int ti_init_rx_ring_mini(struct ti_softc *);
150 void ti_free_rx_ring_mini(struct ti_softc *);
151 void ti_free_tx_ring(struct ti_softc *);
152 int ti_init_tx_ring(struct ti_softc *);
153
154 int ti_64bitslot_war(struct ti_softc *);
155 int ti_chipinit(struct ti_softc *);
156 void ti_chipinit_pci(struct ti_softc *);
157 void ti_chipinit_sbus(struct ti_softc *);
158 int ti_gibinit(struct ti_softc *);
159
160 /*
161 * Send an instruction or address to the EEPROM, check for ACK.
162 */
163 u_int32_t
ti_eeprom_putbyte(struct ti_softc * sc,int byte)164 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
165 {
166 int i, ack = 0;
167
168 /*
169 * Make sure we're in TX mode.
170 */
171 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
172
173 /*
174 * Feed in each bit and strobe the clock.
175 */
176 for (i = 0x80; i; i >>= 1) {
177 if (byte & i)
178 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
179 else
180 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
181 DELAY(1);
182 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
183 DELAY(1);
184 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
185 }
186
187 /*
188 * Turn off TX mode.
189 */
190 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
191
192 /*
193 * Check for ack.
194 */
195 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
196 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
197 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
198
199 return (ack);
200 }
201
202 /*
203 * Read a byte of data stored in the EEPROM at address 'addr.'
204 * We have to send two address bytes since the EEPROM can hold
205 * more than 256 bytes of data.
206 */
207 u_int8_t
ti_eeprom_getbyte(struct ti_softc * sc,int addr,u_int8_t * dest)208 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
209 {
210 int i;
211 u_int8_t byte = 0;
212
213 EEPROM_START;
214
215 /*
216 * Send write control code to EEPROM.
217 */
218 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
219 printf("%s: failed to send write command, status: %x\n",
220 sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
221 return (1);
222 }
223
224 /*
225 * Send first byte of address of byte we want to read.
226 */
227 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
228 printf("%s: failed to send address, status: %x\n",
229 sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
230 return (1);
231 }
232 /*
233 * Send second byte address of byte we want to read.
234 */
235 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
236 printf("%s: failed to send address, status: %x\n",
237 sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
238 return (1);
239 }
240
241 EEPROM_STOP;
242 EEPROM_START;
243 /*
244 * Send read control code to EEPROM.
245 */
246 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
247 printf("%s: failed to send read command, status: %x\n",
248 sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
249 return (1);
250 }
251
252 /*
253 * Start reading bits from EEPROM.
254 */
255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256 for (i = 0x80; i; i >>= 1) {
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 DELAY(1);
259 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
260 byte |= i;
261 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
262 DELAY(1);
263 }
264
265 EEPROM_STOP;
266
267 /*
268 * No ACK generated for read, so just return byte.
269 */
270
271 *dest = byte;
272
273 return (0);
274 }
275
276 /*
277 * Read a sequence of bytes from the EEPROM.
278 */
279 int
ti_read_eeprom(struct ti_softc * sc,caddr_t dest,int off,int cnt)280 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
281 {
282 int err = 0, i;
283 u_int8_t byte = 0;
284
285 for (i = 0; i < cnt; i++) {
286 err = ti_eeprom_getbyte(sc, off + i, &byte);
287 if (err)
288 break;
289 *(dest + i) = byte;
290 }
291
292 return (err ? 1 : 0);
293 }
294
295 /*
296 * NIC memory read function.
297 * Can be used to copy data from NIC local memory.
298 */
299 void
ti_mem_read(struct ti_softc * sc,u_int32_t addr,u_int32_t len,void * buf)300 ti_mem_read(struct ti_softc *sc, u_int32_t addr, u_int32_t len, void *buf)
301 {
302 int segptr, segsize, cnt;
303 caddr_t ptr;
304
305 segptr = addr;
306 cnt = len;
307 ptr = buf;
308
309 while(cnt) {
310 if (cnt < TI_WINLEN)
311 segsize = cnt;
312 else
313 segsize = TI_WINLEN - (segptr % TI_WINLEN);
314 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
315 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
316 TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
317 segsize / 4);
318 ptr += segsize;
319 segptr += segsize;
320 cnt -= segsize;
321 }
322 }
323
324 /*
325 * NIC memory write function.
326 * Can be used to copy data into NIC local memory.
327 */
328 void
ti_mem_write(struct ti_softc * sc,u_int32_t addr,u_int32_t len,const void * buf)329 ti_mem_write(struct ti_softc *sc, u_int32_t addr, u_int32_t len,
330 const void *buf)
331 {
332 int segptr, segsize, cnt;
333 const char *ptr;
334
335 segptr = addr;
336 cnt = len;
337 ptr = buf;
338
339 while(cnt) {
340 if (cnt < TI_WINLEN)
341 segsize = cnt;
342 else
343 segsize = TI_WINLEN - (segptr % TI_WINLEN);
344 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
345 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
346 TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
347 segsize / 4);
348 ptr += segsize;
349 segptr += segsize;
350 cnt -= segsize;
351 }
352 }
353
354 /*
355 * NIC memory write function.
356 * Can be used to clear a section of NIC local memory.
357 */
358 void
ti_mem_set(struct ti_softc * sc,u_int32_t addr,u_int32_t len)359 ti_mem_set(struct ti_softc *sc, u_int32_t addr, u_int32_t len)
360 {
361 int segptr, segsize, cnt;
362
363 segptr = addr;
364 cnt = len;
365
366 while(cnt) {
367 if (cnt < TI_WINLEN)
368 segsize = cnt;
369 else
370 segsize = TI_WINLEN - (segptr % TI_WINLEN);
371 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
372 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
373 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
374 segptr += segsize;
375 cnt -= segsize;
376 }
377 }
378
379 /*
380 * Load firmware image into the NIC. Check that the firmware revision
381 * is acceptable and see if we want the firmware for the Tigon 1 or
382 * Tigon 2.
383 */
384 void
ti_loadfw(struct ti_softc * sc)385 ti_loadfw(struct ti_softc *sc)
386 {
387 struct tigon_firmware *tf;
388 u_char *buf = NULL;
389 u_int32_t *b;
390 size_t buflen, i, cnt;
391 char *name;
392 int error;
393
394 switch(sc->ti_hwrev) {
395 case TI_HWREV_TIGON:
396 name = "tigon1";
397 break;
398 case TI_HWREV_TIGON_II:
399 name = "tigon2";
400 break;
401 default:
402 printf("%s: can't load firmware: unknown hardware rev\n",
403 sc->sc_dv.dv_xname);
404 return;
405 }
406
407 error = loadfirmware(name, &buf, &buflen);
408 if (error)
409 return;
410 /* convert firmware to host byte order */
411 b = (u_int32_t *)buf;
412 cnt = buflen / sizeof(u_int32_t);
413 for (i = 0; i < cnt; i++)
414 b[i] = letoh32(b[i]);
415
416 tf = (struct tigon_firmware *)buf;
417 if (tf->FwReleaseMajor != TI_FIRMWARE_MAJOR ||
418 tf->FwReleaseMinor != TI_FIRMWARE_MINOR ||
419 tf->FwReleaseFix != TI_FIRMWARE_FIX) {
420 printf("%s: firmware revision mismatch; want "
421 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dv.dv_xname,
422 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
423 TI_FIRMWARE_FIX, tf->FwReleaseMajor,
424 tf->FwReleaseMinor, tf->FwReleaseFix);
425 free(buf, M_DEVBUF, buflen);
426 return;
427 }
428 ti_mem_write(sc, tf->FwTextAddr, tf->FwTextLen,
429 (caddr_t)&tf->data[tf->FwTextOffset]);
430 ti_mem_write(sc, tf->FwRodataAddr, tf->FwRodataLen,
431 (caddr_t)&tf->data[tf->FwRodataOffset]);
432 ti_mem_write(sc, tf->FwDataAddr, tf->FwDataLen,
433 (caddr_t)&tf->data[tf->FwDataOffset]);
434 ti_mem_set(sc, tf->FwBssAddr, tf->FwBssLen);
435 ti_mem_set(sc, tf->FwSbssAddr, tf->FwSbssLen);
436 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tf->FwStartAddr);
437 free(buf, M_DEVBUF, buflen);
438 }
439
440 /*
441 * Send the NIC a command via the command ring.
442 */
443 void
ti_cmd(struct ti_softc * sc,struct ti_cmd_desc * cmd)444 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
445 {
446 u_int32_t index;
447
448 index = sc->ti_cmd_saved_prodidx;
449 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
450 TI_INC(index, TI_CMD_RING_CNT);
451 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
452 sc->ti_cmd_saved_prodidx = index;
453 }
454
455 /*
456 * Send the NIC an extended command. The 'len' parameter specifies the
457 * number of command slots to include after the initial command.
458 */
459 void
ti_cmd_ext(struct ti_softc * sc,struct ti_cmd_desc * cmd,caddr_t arg,int len)460 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg,
461 int len)
462 {
463 u_int32_t index;
464 int i;
465
466 index = sc->ti_cmd_saved_prodidx;
467 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 TI_INC(index, TI_CMD_RING_CNT);
469 for (i = 0; i < len; i++) {
470 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
471 *(u_int32_t *)(&arg[i * 4]));
472 TI_INC(index, TI_CMD_RING_CNT);
473 }
474 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
475 sc->ti_cmd_saved_prodidx = index;
476 }
477
478 /*
479 * Handle events that have triggered interrupts.
480 */
481 void
ti_handle_events(struct ti_softc * sc)482 ti_handle_events(struct ti_softc *sc)
483 {
484 struct ti_event_desc *e;
485 struct ifnet *ifp = &sc->arpcom.ac_if;
486
487 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
488 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
489 switch (TI_EVENT_EVENT(e)) {
490 case TI_EV_LINKSTAT_CHANGED:
491 sc->ti_linkstat = TI_EVENT_CODE(e);
492 switch (sc->ti_linkstat) {
493 case TI_EV_CODE_LINK_UP:
494 case TI_EV_CODE_GIG_LINK_UP:
495 {
496 struct ifmediareq ifmr;
497
498 bzero(&ifmr, sizeof(ifmr));
499 ti_ifmedia_sts(ifp, &ifmr);
500 if (ifmr.ifm_active & IFM_FDX) {
501 ifp->if_link_state =
502 LINK_STATE_FULL_DUPLEX;
503 } else {
504 ifp->if_link_state =
505 LINK_STATE_HALF_DUPLEX;
506 }
507 if_link_state_change(ifp);
508 ifp->if_baudrate =
509 ifmedia_baudrate(ifmr.ifm_active);
510 break;
511 }
512 case TI_EV_CODE_LINK_DOWN:
513 ifp->if_link_state = LINK_STATE_DOWN;
514 if_link_state_change(ifp);
515 ifp->if_baudrate = 0;
516 break;
517 default:
518 printf("%s: unknown link state code %d\n",
519 sc->sc_dv.dv_xname, sc->ti_linkstat);
520 }
521 break;
522 case TI_EV_ERROR:
523 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
524 printf("%s: invalid command\n",
525 sc->sc_dv.dv_xname);
526 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
527 printf("%s: unknown command\n",
528 sc->sc_dv.dv_xname);
529 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
530 printf("%s: bad config data\n",
531 sc->sc_dv.dv_xname);
532 break;
533 case TI_EV_FIRMWARE_UP:
534 ti_init2(sc);
535 break;
536 case TI_EV_STATS_UPDATED:
537 ti_stats_update(sc);
538 break;
539 case TI_EV_RESET_JUMBO_RING:
540 case TI_EV_MCAST_UPDATED:
541 /* Who cares. */
542 break;
543 default:
544 printf("%s: unknown event: %d\n", sc->sc_dv.dv_xname,
545 TI_EVENT_EVENT(e));
546 break;
547 }
548 /* Advance the consumer index. */
549 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
550 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
551 }
552 }
553
554 /*
555 * Initialize a standard receive ring descriptor.
556 */
557 int
ti_newbuf_std(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)558 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m,
559 bus_dmamap_t dmamap)
560 {
561 struct mbuf *m_new = NULL;
562 struct ti_rx_desc *r;
563
564 if (dmamap == NULL) {
565 /* if (m) panic() */
566
567 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
568 0, BUS_DMA_NOWAIT, &dmamap)) {
569 printf("%s: can't create recv map\n",
570 sc->sc_dv.dv_xname);
571 return (ENOMEM);
572 }
573 } else if (m == NULL)
574 bus_dmamap_unload(sc->sc_dmatag, dmamap);
575
576 sc->ti_cdata.ti_rx_std_map[i] = dmamap;
577
578 if (m == NULL) {
579 m_new = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
580 if (m_new == NULL)
581 return (ENOBUFS);
582
583 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
584 m_adj(m_new, ETHER_ALIGN);
585
586 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
587 BUS_DMA_NOWAIT)) {
588 m_freem(m_new);
589 return (ENOBUFS);
590 }
591 } else {
592 /*
593 * We're re-using a previously allocated mbuf;
594 * be sure to re-init pointers and lengths to
595 * default values.
596 */
597 m_new = m;
598 m_new->m_data = m_new->m_ext.ext_buf;
599 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
600 m_adj(m_new, ETHER_ALIGN);
601 }
602
603 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
604 r = &sc->ti_rdata->ti_rx_std_ring[i];
605 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
606 r->ti_type = TI_BDTYPE_RECV_BD;
607 r->ti_flags = TI_BDFLAG_IP_CKSUM;
608 r->ti_len = dmamap->dm_segs[0].ds_len;
609 r->ti_idx = i;
610
611 return (0);
612 }
613
614 /*
615 * Initialize a mini receive ring descriptor. This only applies to
616 * the Tigon 2.
617 */
618 int
ti_newbuf_mini(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)619 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m,
620 bus_dmamap_t dmamap)
621 {
622 struct mbuf *m_new = NULL;
623 struct ti_rx_desc *r;
624
625 if (dmamap == NULL) {
626 /* if (m) panic() */
627
628 if (bus_dmamap_create(sc->sc_dmatag, MHLEN, 1, MHLEN,
629 0, BUS_DMA_NOWAIT, &dmamap)) {
630 printf("%s: can't create recv map\n",
631 sc->sc_dv.dv_xname);
632 return (ENOMEM);
633 }
634 } else if (m == NULL)
635 bus_dmamap_unload(sc->sc_dmatag, dmamap);
636
637 sc->ti_cdata.ti_rx_mini_map[i] = dmamap;
638
639 if (m == NULL) {
640 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
641 if (m_new == NULL)
642 return (ENOBUFS);
643
644 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
645 m_adj(m_new, ETHER_ALIGN);
646
647 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
648 BUS_DMA_NOWAIT)) {
649 m_freem(m_new);
650 return (ENOBUFS);
651 }
652 } else {
653 /*
654 * We're re-using a previously allocated mbuf;
655 * be sure to re-init pointers and lengths to
656 * default values.
657 */
658 m_new = m;
659 m_new->m_data = m_new->m_pktdat;
660 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
661 }
662
663 r = &sc->ti_rdata->ti_rx_mini_ring[i];
664 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
665 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
666 r->ti_type = TI_BDTYPE_RECV_BD;
667 r->ti_flags = TI_BDFLAG_MINI_RING | TI_BDFLAG_IP_CKSUM;
668 r->ti_len = dmamap->dm_segs[0].ds_len;
669 r->ti_idx = i;
670
671 return (0);
672 }
673
674 /*
675 * Initialize a jumbo receive ring descriptor. This allocates
676 * a jumbo buffer from the pool managed internally by the driver.
677 */
678 int
ti_newbuf_jumbo(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)679 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m,
680 bus_dmamap_t dmamap)
681 {
682 struct mbuf *m_new = NULL;
683 struct ti_rx_desc *r;
684
685 if (dmamap == NULL) {
686 /* if (m) panic() */
687
688 if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN, 1,
689 TI_JUMBO_FRAMELEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
690 printf("%s: can't create recv map\n",
691 sc->sc_dv.dv_xname);
692 return (ENOMEM);
693 }
694 } else if (m == NULL)
695 bus_dmamap_unload(sc->sc_dmatag, dmamap);
696
697 if (m == NULL) {
698 m_new = MCLGETL(NULL, M_DONTWAIT, TI_JUMBO_FRAMELEN);
699 if (m_new == NULL)
700 return (ENOBUFS);
701
702 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
703 m_adj(m_new, ETHER_ALIGN);
704
705 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
706 BUS_DMA_NOWAIT)) {
707 m_freem(m_new);
708 return (ENOBUFS);
709 }
710 } else {
711 /*
712 * We're re-using a previously allocated mbuf;
713 * be sure to re-init pointers and lengths to
714 * default values.
715 */
716 m_new = m;
717 m_new->m_data = m_new->m_ext.ext_buf;
718 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
719 m_adj(m_new, ETHER_ALIGN);
720 }
721
722 /* Set up the descriptor. */
723 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
724 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
725 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
726 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
727 r->ti_flags = TI_BDFLAG_JUMBO_RING | TI_BDFLAG_IP_CKSUM;
728 r->ti_len = m_new->m_len;
729 r->ti_idx = i;
730
731 return (0);
732 }
733
734 /*
735 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
736 * that's 1MB of memory, which is a lot. For now, we fill only the first
737 * 256 ring entries and hope that our CPU is fast enough to keep up with
738 * the NIC.
739 */
740 int
ti_init_rx_ring_std(struct ti_softc * sc)741 ti_init_rx_ring_std(struct ti_softc *sc)
742 {
743 int i;
744 struct ti_cmd_desc cmd;
745
746 for (i = 0; i < TI_SSLOTS; i++) {
747 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
748 return (ENOBUFS);
749 }
750
751 TI_UPDATE_STDPROD(sc, i - 1);
752 sc->ti_std = i - 1;
753
754 return (0);
755 }
756
757 void
ti_free_rx_ring_std(struct ti_softc * sc)758 ti_free_rx_ring_std(struct ti_softc *sc)
759 {
760 int i;
761
762 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
763 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
764 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
765 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
766 bus_dmamap_destroy(sc->sc_dmatag,
767 sc->ti_cdata.ti_rx_std_map[i]);
768 sc->ti_cdata.ti_rx_std_map[i] = 0;
769 }
770 bzero(&sc->ti_rdata->ti_rx_std_ring[i],
771 sizeof(struct ti_rx_desc));
772 }
773 }
774
775 int
ti_init_rx_ring_jumbo(struct ti_softc * sc)776 ti_init_rx_ring_jumbo(struct ti_softc *sc)
777 {
778 int i;
779 struct ti_cmd_desc cmd;
780
781 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
782 if (ti_newbuf_jumbo(sc, i, NULL, 0) == ENOBUFS)
783 return (ENOBUFS);
784 }
785
786 TI_UPDATE_JUMBOPROD(sc, i - 1);
787 sc->ti_jumbo = i - 1;
788
789 return (0);
790 }
791
792 void
ti_free_rx_ring_jumbo(struct ti_softc * sc)793 ti_free_rx_ring_jumbo(struct ti_softc *sc)
794 {
795 int i;
796
797 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
798 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
799 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
800 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
801 }
802 bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
803 sizeof(struct ti_rx_desc));
804 }
805 }
806
807 int
ti_init_rx_ring_mini(struct ti_softc * sc)808 ti_init_rx_ring_mini(struct ti_softc *sc)
809 {
810 int i;
811
812 for (i = 0; i < TI_MSLOTS; i++) {
813 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
814 return (ENOBUFS);
815 }
816
817 TI_UPDATE_MINIPROD(sc, i - 1);
818 sc->ti_mini = i - 1;
819
820 return (0);
821 }
822
823 void
ti_free_rx_ring_mini(struct ti_softc * sc)824 ti_free_rx_ring_mini(struct ti_softc *sc)
825 {
826 int i;
827
828 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
829 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
830 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
831 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
832 bus_dmamap_destroy(sc->sc_dmatag,
833 sc->ti_cdata.ti_rx_mini_map[i]);
834 sc->ti_cdata.ti_rx_mini_map[i] = 0;
835 }
836 bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
837 sizeof(struct ti_rx_desc));
838 }
839 }
840
841 void
ti_free_tx_ring(struct ti_softc * sc)842 ti_free_tx_ring(struct ti_softc *sc)
843 {
844 int i;
845 struct ti_txmap_entry *entry;
846
847 for (i = 0; i < TI_TX_RING_CNT; i++) {
848 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
849 m_freem(sc->ti_cdata.ti_tx_chain[i]);
850 sc->ti_cdata.ti_tx_chain[i] = NULL;
851 SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead,
852 sc->ti_cdata.ti_tx_map[i], link);
853 sc->ti_cdata.ti_tx_map[i] = 0;
854 }
855 bzero(&sc->ti_rdata->ti_tx_ring[i],
856 sizeof(struct ti_tx_desc));
857 }
858
859 while ((entry = SLIST_FIRST(&sc->ti_tx_map_listhead))) {
860 SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
861 bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
862 free(entry, M_DEVBUF, sizeof *entry);
863 }
864 }
865
866 int
ti_init_tx_ring(struct ti_softc * sc)867 ti_init_tx_ring(struct ti_softc *sc)
868 {
869 int i;
870 bus_dmamap_t dmamap;
871 struct ti_txmap_entry *entry;
872
873 sc->ti_txcnt = 0;
874 sc->ti_tx_saved_considx = 0;
875 sc->ti_tx_saved_prodidx = 0;
876 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
877
878 SLIST_INIT(&sc->ti_tx_map_listhead);
879 for (i = 0; i < TI_TX_RING_CNT; i++) {
880 if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN,
881 TI_NTXSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap))
882 return (ENOBUFS);
883
884 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
885 if (!entry) {
886 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
887 return (ENOBUFS);
888 }
889 entry->dmamap = dmamap;
890 SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry, link);
891 }
892
893 return (0);
894 }
895
896 /*
897 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
898 * but we have to support the old way too so that Tigon 1 cards will
899 * work.
900 */
901 void
ti_add_mcast(struct ti_softc * sc,struct ether_addr * addr)902 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
903 {
904 struct ti_cmd_desc cmd;
905 u_int16_t *m;
906 u_int32_t ext[2] = {0, 0};
907
908 m = (u_int16_t *)&addr->ether_addr_octet[0];
909
910 switch(sc->ti_hwrev) {
911 case TI_HWREV_TIGON:
912 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
913 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
914 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
915 break;
916 case TI_HWREV_TIGON_II:
917 ext[0] = htons(m[0]);
918 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
919 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
920 break;
921 default:
922 printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
923 break;
924 }
925 }
926
927 void
ti_del_mcast(struct ti_softc * sc,struct ether_addr * addr)928 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
929 {
930 struct ti_cmd_desc cmd;
931 u_int16_t *m;
932 u_int32_t ext[2] = {0, 0};
933
934 m = (u_int16_t *)&addr->ether_addr_octet[0];
935
936 switch(sc->ti_hwrev) {
937 case TI_HWREV_TIGON:
938 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
939 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
940 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
941 break;
942 case TI_HWREV_TIGON_II:
943 ext[0] = htons(m[0]);
944 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
945 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
946 break;
947 default:
948 printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
949 break;
950 }
951 }
952
953 /*
954 * Configure the Tigon's multicast address filter.
955 *
956 * The actual multicast table management is a bit of a pain, thanks to
957 * slight brain damage on the part of both Alteon and us. With our
958 * multicast code, we are only alerted when the multicast address table
959 * changes and at that point we only have the current list of addresses:
960 * we only know the current state, not the previous state, so we don't
961 * actually know what addresses were removed or added. The firmware has
962 * state, but we can't get our grubby mits on it, and there is no 'delete
963 * all multicast addresses' command. Hence, we have to maintain our own
964 * state so we know what addresses have been programmed into the NIC at
965 * any given time.
966 */
967 void
ti_iff(struct ti_softc * sc)968 ti_iff(struct ti_softc *sc)
969 {
970 struct ifnet *ifp = &sc->arpcom.ac_if;
971 struct arpcom *ac = &sc->arpcom;
972 struct ether_multi *enm;
973 struct ether_multistep step;
974 struct ti_cmd_desc cmd;
975 struct ti_mc_entry *mc;
976 u_int32_t intrs;
977
978 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
979 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
980 ifp->if_flags &= ~IFF_ALLMULTI;
981
982 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
983 ifp->if_flags |= IFF_ALLMULTI;
984 if (ifp->if_flags & IFF_PROMISC) {
985 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
986 TI_CMD_CODE_PROMISC_ENB, 0);
987 } else {
988 TI_DO_CMD(TI_CMD_SET_ALLMULTI,
989 TI_CMD_CODE_ALLMULTI_ENB, 0);
990 }
991 } else {
992 /* Disable interrupts. */
993 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
994 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
995
996 /* First, zot all the existing filters. */
997 while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
998 mc = SLIST_FIRST(&sc->ti_mc_listhead);
999 ti_del_mcast(sc, &mc->mc_addr);
1000 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1001 free(mc, M_DEVBUF, sizeof *mc);
1002 }
1003
1004 /* Now program new ones. */
1005 ETHER_FIRST_MULTI(step, ac, enm);
1006 while (enm != NULL) {
1007 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1008 M_NOWAIT);
1009 if (mc == NULL)
1010 panic("ti_iff");
1011
1012 bcopy(enm->enm_addrlo, &mc->mc_addr,
1013 ETHER_ADDR_LEN);
1014 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc,
1015 mc_entries);
1016 ti_add_mcast(sc, &mc->mc_addr);
1017
1018 ETHER_NEXT_MULTI(step, enm);
1019 }
1020
1021 /* Re-enable interrupts. */
1022 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1023 }
1024 }
1025
1026 /*
1027 * Check to see if the BIOS has configured us for a 64 bit slot when
1028 * we aren't actually in one. If we detect this condition, we can work
1029 * around it on the Tigon 2 by setting a bit in the PCI state register,
1030 * but for the Tigon 1 we must give up and abort the interface attach.
1031 */
1032 int
ti_64bitslot_war(struct ti_softc * sc)1033 ti_64bitslot_war(struct ti_softc *sc)
1034 {
1035 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1036 CSR_WRITE_4(sc, 0x600, 0);
1037 CSR_WRITE_4(sc, 0x604, 0);
1038 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1039 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1040 if (sc->ti_hwrev == TI_HWREV_TIGON)
1041 return (EINVAL);
1042 else {
1043 TI_SETBIT(sc, TI_PCI_STATE,
1044 TI_PCISTATE_32BIT_BUS);
1045 return (0);
1046 }
1047 }
1048 }
1049
1050 return (0);
1051 }
1052
1053 /*
1054 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1055 * self-test results.
1056 */
1057 int
ti_chipinit(struct ti_softc * sc)1058 ti_chipinit(struct ti_softc *sc)
1059 {
1060 u_int32_t chip_rev;
1061
1062 /* Initialize link to down state. */
1063 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1064
1065 /* Set endianness before we access any non-PCI registers. */
1066 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1067 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1068
1069 /* Check the ROM failed bit to see if self-tests passed. */
1070 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1071 printf("%s: board self-diagnostics failed!\n",
1072 sc->sc_dv.dv_xname);
1073 return (ENODEV);
1074 }
1075
1076 /* Halt the CPU. */
1077 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1078
1079 /* Figure out the hardware revision. */
1080 chip_rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1081 switch(chip_rev) {
1082 case TI_REV_TIGON_I:
1083 sc->ti_hwrev = TI_HWREV_TIGON;
1084 break;
1085 case TI_REV_TIGON_II:
1086 sc->ti_hwrev = TI_HWREV_TIGON_II;
1087 break;
1088 default:
1089 printf("\n");
1090 printf("%s: unsupported chip revision: %x\n",
1091 sc->sc_dv.dv_xname, chip_rev);
1092 return (ENODEV);
1093 }
1094
1095 /* Do special setup for Tigon 2. */
1096 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1097 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1098 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1099 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1100 }
1101
1102 if (sc->ti_sbus)
1103 ti_chipinit_sbus(sc);
1104 else
1105 ti_chipinit_pci(sc);
1106
1107 /* Recommended settings from Tigon manual. */
1108 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1109 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1110
1111 if (ti_64bitslot_war(sc)) {
1112 printf("%s: bios thinks we're in a 64 bit slot, "
1113 "but we aren't", sc->sc_dv.dv_xname);
1114 return (EINVAL);
1115 }
1116
1117 return (0);
1118 }
1119
1120 void
ti_chipinit_pci(struct ti_softc * sc)1121 ti_chipinit_pci(struct ti_softc *sc)
1122 {
1123 u_int32_t cacheline;
1124 u_int32_t pci_writemax = 0;
1125
1126 /* Set up the PCI state register. */
1127 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1128 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
1129 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1130
1131 /* Clear the read/write max DMA parameters. */
1132 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1133 TI_PCISTATE_READ_MAXDMA));
1134
1135 /* Get cache line size. */
1136 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1137
1138 /*
1139 * If the system has set enabled the PCI memory write
1140 * and invalidate command in the command register, set
1141 * the write max parameter accordingly. This is necessary
1142 * to use MWI with the Tigon 2.
1143 */
1144 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCI_COMMAND_INVALIDATE_ENABLE) {
1145 switch(cacheline) {
1146 case 1:
1147 case 4:
1148 case 8:
1149 case 16:
1150 case 32:
1151 case 64:
1152 break;
1153 default:
1154 /* Disable PCI memory write and invalidate. */
1155 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1156 TI_PCI_CMDSTAT) & ~PCI_COMMAND_INVALIDATE_ENABLE);
1157 break;
1158 }
1159 }
1160
1161 #ifdef __brokenalpha__
1162 /*
1163 * From the Alteon sample driver:
1164 * Must insure that we do not cross an 8K (bytes) boundary
1165 * for DMA reads. Our highest limit is 1K bytes. This is a
1166 * restriction on some ALPHA platforms with early revision
1167 * 21174 PCI chipsets, such as the AlphaPC 164lx
1168 */
1169 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1170 #else
1171 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1172 #endif
1173
1174 /* This sets the min dma param all the way up (0xff). */
1175 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1176
1177 /* Configure DMA variables. */
1178 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_DMA_SWAP_OPTIONS |
1179 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1180 TI_OPMODE_DONT_FRAG_JUMBO);
1181 }
1182
1183 void
ti_chipinit_sbus(struct ti_softc * sc)1184 ti_chipinit_sbus(struct ti_softc *sc)
1185 {
1186 /* Set up the PCI state register. */
1187 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD |
1188 TI_PCISTATE_NO_SWAP_READ_DMA | TI_PCISTATE_NO_SWAP_WRITE_DMA |
1189 TI_PCI_WRITEMAX_64 | TI_PCI_READMAX_64 |
1190 TI_PCISTATE_PROVIDE_LEN);
1191
1192 /* Configure DMA variables. */
1193 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_WORDSWAP_BD |
1194 TI_OPMODE_1_DMA_ACTIVE | TI_OPMODE_SBUS |
1195 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1196 TI_OPMODE_DONT_FRAG_JUMBO);
1197 }
1198
1199 /*
1200 * Initialize the general information block and firmware, and
1201 * start the CPU(s) running.
1202 */
1203 int
ti_gibinit(struct ti_softc * sc)1204 ti_gibinit(struct ti_softc *sc)
1205 {
1206 struct ti_rcb *rcb;
1207 int i;
1208 struct ifnet *ifp;
1209
1210 ifp = &sc->arpcom.ac_if;
1211
1212 /* Disable interrupts for now. */
1213 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1214
1215 /*
1216 * Tell the chip where to find the general information block.
1217 * While this struct could go into >4GB memory, we allocate it in a
1218 * single slab with the other descriptors, and those don't seem to
1219 * support being located in a 64-bit region.
1220 */
1221 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1222 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
1223 TI_RING_DMA_ADDR(sc, ti_info) & 0xffffffff);
1224
1225 /* Load the firmware into SRAM. */
1226 ti_loadfw(sc);
1227
1228 /* Set up the contents of the general info and ring control blocks. */
1229
1230 /* Set up the event ring and producer pointer. */
1231 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1232
1233 TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_event_ring);
1234 rcb->ti_flags = 0;
1235 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1236 TI_RING_DMA_ADDR(sc, ti_ev_prodidx_r);
1237 sc->ti_ev_prodidx.ti_idx = 0;
1238 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1239 sc->ti_ev_saved_considx = 0;
1240
1241 /* Set up the command ring and producer mailbox. */
1242 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1243
1244 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1245 rcb->ti_flags = 0;
1246 rcb->ti_max_len = 0;
1247 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1248 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1249 }
1250 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1251 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1252 sc->ti_cmd_saved_prodidx = 0;
1253
1254 /*
1255 * Assign the address of the stats refresh buffer.
1256 * We re-use the current stats buffer for this to
1257 * conserve memory.
1258 */
1259 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1260 TI_RING_DMA_ADDR(sc, ti_info.ti_stats);
1261
1262 /* Set up the standard receive ring. */
1263 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1264 TI_HOSTADDR(rcb->ti_hostaddr) =
1265 TI_RING_DMA_ADDR(sc, ti_rx_std_ring);
1266 rcb->ti_max_len = ETHER_MAX_LEN;
1267 rcb->ti_flags = 0;
1268 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1269 #if NVLAN > 0
1270 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1271 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1272 #endif
1273
1274 /* Set up the jumbo receive ring. */
1275 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1276 TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_jumbo_ring);
1277 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1278 rcb->ti_flags = 0;
1279 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1280 #if NVLAN > 0
1281 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1282 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1283 #endif
1284
1285 /*
1286 * Set up the mini ring. Only activated on the
1287 * Tigon 2 but the slot in the config block is
1288 * still there on the Tigon 1.
1289 */
1290 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1291 TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_mini_ring);
1292 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1293 if (sc->ti_hwrev == TI_HWREV_TIGON)
1294 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1295 else
1296 rcb->ti_flags = 0;
1297 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1298 #if NVLAN > 0
1299 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1300 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1301 #endif
1302
1303 /*
1304 * Set up the receive return ring.
1305 */
1306 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1307 TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc,ti_rx_return_ring);
1308 rcb->ti_flags = 0;
1309 rcb->ti_max_len = TI_RETURN_RING_CNT;
1310 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1311 TI_RING_DMA_ADDR(sc, ti_return_prodidx_r);
1312
1313 /*
1314 * Set up the tx ring. Note: for the Tigon 2, we have the option
1315 * of putting the transmit ring in the host's address space and
1316 * letting the chip DMA it instead of leaving the ring in the NIC's
1317 * memory and accessing it through the shared memory region. We
1318 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1319 * so we have to revert to the shared memory scheme if we detect
1320 * a Tigon 1 chip.
1321 */
1322 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1323 bzero(sc->ti_rdata->ti_tx_ring,
1324 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1325 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1326 if (sc->ti_hwrev == TI_HWREV_TIGON)
1327 rcb->ti_flags = 0;
1328 else
1329 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1330 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1331 #if NVLAN > 0
1332 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1333 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1334 #endif
1335 rcb->ti_max_len = TI_TX_RING_CNT;
1336 if (sc->ti_hwrev == TI_HWREV_TIGON)
1337 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1338 else
1339 TI_HOSTADDR(rcb->ti_hostaddr) =
1340 TI_RING_DMA_ADDR(sc, ti_tx_ring);
1341 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1342 TI_RING_DMA_ADDR(sc, ti_tx_considx_r);
1343
1344 TI_RING_DMASYNC(sc, ti_info, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1345
1346 /* Set up tuneables */
1347 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10));
1348 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1349 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1350 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1351 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1352 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1353
1354 /* Turn interrupts on. */
1355 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1356 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1357
1358 /* Start CPU. */
1359 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1360
1361 return (0);
1362 }
1363
1364 int
ti_attach(struct ti_softc * sc)1365 ti_attach(struct ti_softc *sc)
1366 {
1367 bus_dma_segment_t seg;
1368 int rseg;
1369 struct ifnet *ifp;
1370 caddr_t kva;
1371
1372 if (ti_chipinit(sc)) {
1373 printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
1374 return (1);
1375 }
1376
1377 /* Zero out the NIC's on-board SRAM. */
1378 ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
1379
1380 /* Init again -- zeroing memory may have clobbered some registers. */
1381 if (ti_chipinit(sc)) {
1382 printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
1383 return (1);
1384 }
1385
1386 /*
1387 * Get station address from the EEPROM. Note: the manual states
1388 * that the MAC address is at offset 0x8c, however the data is
1389 * stored as two longwords (since that's how it's loaded into
1390 * the NIC). This means the MAC address is actually preceded
1391 * by two zero bytes. We need to skip over those.
1392 */
1393 if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1394 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1395 printf("%s: failed to read station address\n",
1396 sc->sc_dv.dv_xname);
1397 return (1);
1398 }
1399
1400 /*
1401 * A Tigon chip was detected. Inform the world.
1402 */
1403 printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
1404
1405 /* Allocate the general information block and ring buffers. */
1406 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct ti_ring_data),
1407 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1408 printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
1409 return (1);
1410 }
1411 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1412 sizeof(struct ti_ring_data), &kva, BUS_DMA_NOWAIT)) {
1413 printf("%s: can't map dma buffers (%zu bytes)\n",
1414 sc->sc_dv.dv_xname, sizeof(struct ti_ring_data));
1415 goto fail_1;
1416 }
1417 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct ti_ring_data), 1,
1418 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1419 &sc->ti_ring_map)) {
1420 printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
1421 goto fail_2;
1422 }
1423 if (bus_dmamap_load(sc->sc_dmatag, sc->ti_ring_map, kva,
1424 sizeof(struct ti_ring_data), NULL, BUS_DMA_NOWAIT)) {
1425 goto fail_3;
1426 }
1427 sc->ti_rdata = (struct ti_ring_data *)kva;
1428 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1429
1430 /* Set default tuneable values. */
1431 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1432 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1433 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1434 sc->ti_rx_max_coal_bds = 64;
1435 sc->ti_tx_max_coal_bds = 128;
1436 sc->ti_tx_buf_ratio = 21;
1437
1438 /* Set up ifnet structure */
1439 ifp = &sc->arpcom.ac_if;
1440 ifp->if_softc = sc;
1441 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1442 ifp->if_ioctl = ti_ioctl;
1443 ifp->if_start = ti_start;
1444 ifp->if_watchdog = ti_watchdog;
1445 ifp->if_hardmtu = TI_JUMBO_FRAMELEN - ETHER_HDR_LEN;
1446 ifq_init_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1447 bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
1448
1449 ifp->if_capabilities = IFCAP_VLAN_MTU;
1450
1451 #if NVLAN > 0
1452 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1453 #endif
1454
1455 /* Set up ifmedia support. */
1456 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1457 if (sc->ti_copper) {
1458 /*
1459 * Copper cards allow manual 10/100 mode selection,
1460 * but not manual 1000baseTX mode selection. Why?
1461 * Because currently there's no way to specify the
1462 * master/slave setting through the firmware interface,
1463 * so Alteon decided to just bag it and handle it
1464 * via autonegotiation.
1465 */
1466 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1467 ifmedia_add(&sc->ifmedia,
1468 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1469 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1470 ifmedia_add(&sc->ifmedia,
1471 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1472 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1473 ifmedia_add(&sc->ifmedia,
1474 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1475 } else {
1476 /* Fiber cards don't support 10/100 modes. */
1477 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1478 ifmedia_add(&sc->ifmedia,
1479 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1480 }
1481 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1482 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1483
1484 /*
1485 * Call MI attach routines.
1486 */
1487 if_attach(ifp);
1488 ether_ifattach(ifp);
1489
1490 return (0);
1491
1492 fail_3:
1493 bus_dmamap_destroy(sc->sc_dmatag, sc->ti_ring_map);
1494
1495 fail_2:
1496 bus_dmamem_unmap(sc->sc_dmatag, kva,
1497 sizeof(struct ti_ring_data));
1498
1499 fail_1:
1500 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1501
1502 return (1);
1503 }
1504
1505 /*
1506 * Frame reception handling. This is called if there's a frame
1507 * on the receive return list.
1508 *
1509 * Note: we have to be able to handle three possibilities here:
1510 * 1) the frame is from the mini receive ring (can only happen)
1511 * on Tigon 2 boards)
1512 * 2) the frame is from the jumbo receive ring
1513 * 3) the frame is from the standard receive ring
1514 */
1515
1516 void
ti_rxeof(struct ti_softc * sc)1517 ti_rxeof(struct ti_softc *sc)
1518 {
1519 struct ifnet *ifp;
1520 struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1521 struct ti_cmd_desc cmd;
1522
1523 ifp = &sc->arpcom.ac_if;
1524
1525 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1526 struct ti_rx_desc *cur_rx;
1527 u_int32_t rxidx;
1528 struct mbuf *m = NULL;
1529 bus_dmamap_t dmamap;
1530
1531 cur_rx =
1532 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1533 rxidx = cur_rx->ti_idx;
1534 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1535
1536 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1537 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1538 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1539 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1540 dmamap = sc->ti_cdata.ti_rx_jumbo_map[rxidx];
1541 sc->ti_cdata.ti_rx_jumbo_map[rxidx] = 0;
1542 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1543 ifp->if_ierrors++;
1544 ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
1545 continue;
1546 }
1547 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL, dmamap)
1548 == ENOBUFS) {
1549 ifp->if_ierrors++;
1550 ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
1551 continue;
1552 }
1553 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1554 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1555 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1556 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1557 dmamap = sc->ti_cdata.ti_rx_mini_map[rxidx];
1558 sc->ti_cdata.ti_rx_mini_map[rxidx] = 0;
1559 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1560 ifp->if_ierrors++;
1561 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1562 continue;
1563 }
1564 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1565 == ENOBUFS) {
1566 ifp->if_ierrors++;
1567 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1568 continue;
1569 }
1570 } else {
1571 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1572 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1573 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1574 dmamap = sc->ti_cdata.ti_rx_std_map[rxidx];
1575 sc->ti_cdata.ti_rx_std_map[rxidx] = 0;
1576 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1577 ifp->if_ierrors++;
1578 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1579 continue;
1580 }
1581 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1582 == ENOBUFS) {
1583 ifp->if_ierrors++;
1584 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1585 continue;
1586 }
1587 }
1588
1589 if (m == NULL)
1590 panic("%s: couldn't get mbuf", sc->sc_dv.dv_xname);
1591
1592 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1593
1594 #if NVLAN > 0
1595 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1596 m->m_pkthdr.ether_vtag = cur_rx->ti_vlan_tag;
1597 m->m_flags |= M_VLANTAG;
1598 }
1599 #endif
1600
1601 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1602 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1603
1604 ml_enqueue(&ml, m);
1605 }
1606
1607 /* Only necessary on the Tigon 1. */
1608 if (sc->ti_hwrev == TI_HWREV_TIGON)
1609 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1610 sc->ti_rx_saved_considx);
1611
1612 TI_UPDATE_STDPROD(sc, sc->ti_std);
1613 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1614 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1615
1616 if_input(ifp, &ml);
1617 }
1618
1619 void
ti_txeof_tigon1(struct ti_softc * sc)1620 ti_txeof_tigon1(struct ti_softc *sc)
1621 {
1622 struct ifnet *ifp;
1623 struct ti_txmap_entry *entry;
1624 int active = 1;
1625
1626 ifp = &sc->arpcom.ac_if;
1627
1628 /*
1629 * Go through our tx ring and free mbufs for those
1630 * frames that have been sent.
1631 */
1632 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1633 u_int32_t idx = 0;
1634 struct ti_tx_desc txdesc;
1635
1636 idx = sc->ti_tx_saved_considx;
1637 ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
1638 sizeof(txdesc), (caddr_t)&txdesc);
1639
1640 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1641 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1642 sc->ti_cdata.ti_tx_chain[idx] = NULL;
1643
1644 entry = sc->ti_cdata.ti_tx_map[idx];
1645 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1646 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1647
1648 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1649 SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
1650 link);
1651 sc->ti_cdata.ti_tx_map[idx] = NULL;
1652
1653 }
1654 sc->ti_txcnt--;
1655 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1656 ifp->if_timer = 0;
1657
1658 active = 0;
1659 }
1660
1661 if (!active)
1662 ifq_clr_oactive(&ifp->if_snd);
1663 }
1664
1665 void
ti_txeof_tigon2(struct ti_softc * sc)1666 ti_txeof_tigon2(struct ti_softc *sc)
1667 {
1668 struct ti_tx_desc *cur_tx = NULL;
1669 struct ifnet *ifp;
1670 struct ti_txmap_entry *entry;
1671
1672 ifp = &sc->arpcom.ac_if;
1673
1674 /*
1675 * Go through our tx ring and free mbufs for those
1676 * frames that have been sent.
1677 */
1678 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1679 u_int32_t idx = 0;
1680
1681 idx = sc->ti_tx_saved_considx;
1682 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1683
1684 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1685 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1686 sc->ti_cdata.ti_tx_chain[idx] = NULL;
1687
1688 entry = sc->ti_cdata.ti_tx_map[idx];
1689 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1690 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1691
1692 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1693 SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
1694 link);
1695 sc->ti_cdata.ti_tx_map[idx] = NULL;
1696
1697 }
1698 sc->ti_txcnt--;
1699 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1700 ifp->if_timer = 0;
1701 }
1702
1703 if (cur_tx != NULL)
1704 ifq_clr_oactive(&ifp->if_snd);
1705 }
1706
1707 int
ti_intr(void * xsc)1708 ti_intr(void *xsc)
1709 {
1710 struct ti_softc *sc;
1711 struct ifnet *ifp;
1712
1713 sc = xsc;
1714 ifp = &sc->arpcom.ac_if;
1715
1716 /* XXX checking this register is expensive. */
1717 /* Make sure this is really our interrupt. */
1718 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1719 return (0);
1720
1721 /* Ack interrupt and stop others from occurring. */
1722 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1723
1724 if (ifp->if_flags & IFF_RUNNING) {
1725 /* Check RX return ring producer/consumer */
1726 ti_rxeof(sc);
1727
1728 /* Check TX ring producer/consumer */
1729 if (sc->ti_hwrev == TI_HWREV_TIGON)
1730 ti_txeof_tigon1(sc);
1731 else
1732 ti_txeof_tigon2(sc);
1733 }
1734
1735 ti_handle_events(sc);
1736
1737 /* Re-enable interrupts. */
1738 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1739
1740 if (ifp->if_flags & IFF_RUNNING && !ifq_empty(&ifp->if_snd))
1741 ti_start(ifp);
1742
1743 return (1);
1744 }
1745
1746 void
ti_stats_update(struct ti_softc * sc)1747 ti_stats_update(struct ti_softc *sc)
1748 {
1749 struct ifnet *ifp;
1750 struct ti_stats *stats = &sc->ti_rdata->ti_info.ti_stats;
1751
1752 ifp = &sc->arpcom.ac_if;
1753
1754 TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_POSTREAD);
1755
1756 ifp->if_collisions += stats->dot3StatsSingleCollisionFrames +
1757 stats->dot3StatsMultipleCollisionFrames +
1758 stats->dot3StatsExcessiveCollisions +
1759 stats->dot3StatsLateCollisions -
1760 ifp->if_collisions;
1761
1762 TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_PREREAD);
1763 }
1764
1765 /*
1766 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1767 * pointers to descriptors.
1768 */
1769 int
ti_encap_tigon1(struct ti_softc * sc,struct mbuf * m_head,u_int32_t * txidx)1770 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1771 {
1772 u_int32_t frag, cur;
1773 struct ti_txmap_entry *entry;
1774 bus_dmamap_t txmap;
1775 struct ti_tx_desc txdesc;
1776 int i = 0;
1777
1778 entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
1779 if (entry == NULL)
1780 return (ENOBUFS);
1781 txmap = entry->dmamap;
1782
1783 cur = frag = *txidx;
1784
1785 /*
1786 * Start packing the mbufs in this chain into
1787 * the fragment pointers. Stop when we run out
1788 * of fragments or hit the end of the mbuf chain.
1789 */
1790 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1791 BUS_DMA_NOWAIT))
1792 return (ENOBUFS);
1793
1794 /*
1795 * Sanity check: avoid coming within 16 descriptors
1796 * of the end of the ring.
1797 */
1798 if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
1799 goto fail_unload;
1800
1801 for (i = 0; i < txmap->dm_nsegs; i++) {
1802 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1803 break;
1804
1805 memset(&txdesc, 0, sizeof(txdesc));
1806
1807 TI_HOSTADDR(txdesc.ti_addr) = txmap->dm_segs[i].ds_addr;
1808 txdesc.ti_len = txmap->dm_segs[i].ds_len & 0xffff;
1809 txdesc.ti_flags = 0;
1810 txdesc.ti_vlan_tag = 0;
1811
1812 #if NVLAN > 0
1813 if (m_head->m_flags & M_VLANTAG) {
1814 txdesc.ti_flags |= TI_BDFLAG_VLAN_TAG;
1815 txdesc.ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
1816 }
1817 #endif
1818
1819 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
1820 sizeof(txdesc), (caddr_t)&txdesc);
1821
1822 cur = frag;
1823 TI_INC(frag, TI_TX_RING_CNT);
1824 }
1825
1826 if (frag == sc->ti_tx_saved_considx)
1827 goto fail_unload;
1828
1829 txdesc.ti_flags |= TI_BDFLAG_END;
1830 ti_mem_write(sc, TI_TX_RING_BASE + cur * sizeof(txdesc),
1831 sizeof(txdesc), (caddr_t)&txdesc);
1832
1833 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1834 BUS_DMASYNC_PREWRITE);
1835
1836 sc->ti_cdata.ti_tx_chain[cur] = m_head;
1837 SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
1838 sc->ti_cdata.ti_tx_map[cur] = entry;
1839 sc->ti_txcnt += txmap->dm_nsegs;
1840
1841 *txidx = frag;
1842
1843 return (0);
1844
1845 fail_unload:
1846 bus_dmamap_unload(sc->sc_dmatag, txmap);
1847
1848 return (ENOBUFS);
1849 }
1850
1851 /*
1852 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1853 * pointers to descriptors.
1854 */
1855 int
ti_encap_tigon2(struct ti_softc * sc,struct mbuf * m_head,u_int32_t * txidx)1856 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1857 {
1858 struct ti_tx_desc *f = NULL;
1859 u_int32_t frag, cur;
1860 struct ti_txmap_entry *entry;
1861 bus_dmamap_t txmap;
1862 int i = 0;
1863
1864 entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
1865 if (entry == NULL)
1866 return (ENOBUFS);
1867 txmap = entry->dmamap;
1868
1869 cur = frag = *txidx;
1870
1871 /*
1872 * Start packing the mbufs in this chain into
1873 * the fragment pointers. Stop when we run out
1874 * of fragments or hit the end of the mbuf chain.
1875 */
1876 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1877 BUS_DMA_NOWAIT))
1878 return (ENOBUFS);
1879
1880 /*
1881 * Sanity check: avoid coming within 16 descriptors
1882 * of the end of the ring.
1883 */
1884 if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
1885 goto fail_unload;
1886
1887 for (i = 0; i < txmap->dm_nsegs; i++) {
1888 f = &sc->ti_rdata->ti_tx_ring[frag];
1889
1890 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1891 break;
1892
1893 TI_HOSTADDR(f->ti_addr) = txmap->dm_segs[i].ds_addr;
1894 f->ti_len = txmap->dm_segs[i].ds_len & 0xffff;
1895 f->ti_flags = 0;
1896 f->ti_vlan_tag = 0;
1897
1898 #if NVLAN > 0
1899 if (m_head->m_flags & M_VLANTAG) {
1900 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1901 f->ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
1902 }
1903 #endif
1904
1905 cur = frag;
1906 TI_INC(frag, TI_TX_RING_CNT);
1907 }
1908
1909 if (frag == sc->ti_tx_saved_considx)
1910 goto fail_unload;
1911
1912 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1913
1914 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1915 BUS_DMASYNC_PREWRITE);
1916
1917 TI_RING_DMASYNC(sc, ti_tx_ring[cur], BUS_DMASYNC_POSTREAD);
1918
1919 sc->ti_cdata.ti_tx_chain[cur] = m_head;
1920 SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
1921 sc->ti_cdata.ti_tx_map[cur] = entry;
1922 sc->ti_txcnt += txmap->dm_nsegs;
1923
1924 *txidx = frag;
1925
1926 return (0);
1927
1928 fail_unload:
1929 bus_dmamap_unload(sc->sc_dmatag, txmap);
1930
1931 return (ENOBUFS);
1932 }
1933
1934 /*
1935 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1936 * to the mbuf data regions directly in the transmit descriptors.
1937 */
1938 void
ti_start(struct ifnet * ifp)1939 ti_start(struct ifnet *ifp)
1940 {
1941 struct ti_softc *sc;
1942 struct mbuf *m_head = NULL;
1943 u_int32_t prodidx;
1944 int pkts = 0, error;
1945
1946 sc = ifp->if_softc;
1947
1948 prodidx = sc->ti_tx_saved_prodidx;
1949
1950 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1951 m_head = ifq_deq_begin(&ifp->if_snd);
1952 if (m_head == NULL)
1953 break;
1954
1955 /*
1956 * Pack the data into the transmit ring. If we
1957 * don't have room, set the OACTIVE flag and wait
1958 * for the NIC to drain the ring.
1959 */
1960 if (sc->ti_hwrev == TI_HWREV_TIGON)
1961 error = ti_encap_tigon1(sc, m_head, &prodidx);
1962 else
1963 error = ti_encap_tigon2(sc, m_head, &prodidx);
1964
1965 if (error) {
1966 ifq_deq_rollback(&ifp->if_snd, m_head);
1967 ifq_set_oactive(&ifp->if_snd);
1968 break;
1969 }
1970
1971 /* now we are committed to transmit the packet */
1972 ifq_deq_commit(&ifp->if_snd, m_head);
1973 pkts++;
1974
1975 /*
1976 * If there's a BPF listener, bounce a copy of this frame
1977 * to him.
1978 */
1979 #if NBPFILTER > 0
1980 if (ifp->if_bpf)
1981 bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1982 #endif
1983 }
1984 if (pkts == 0)
1985 return;
1986
1987 /* Transmit */
1988 sc->ti_tx_saved_prodidx = prodidx;
1989 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1990
1991 /*
1992 * Set a timeout in case the chip goes out to lunch.
1993 */
1994 ifp->if_timer = 5;
1995 }
1996
1997 void
ti_init(void * xsc)1998 ti_init(void *xsc)
1999 {
2000 struct ti_softc *sc = xsc;
2001 int s;
2002
2003 s = splnet();
2004
2005 /* Cancel pending I/O and flush buffers. */
2006 ti_stop(sc);
2007
2008 /* Init the gen info block, ring control blocks and firmware. */
2009 if (ti_gibinit(sc)) {
2010 printf("%s: initialization failure\n", sc->sc_dv.dv_xname);
2011 splx(s);
2012 return;
2013 }
2014
2015 splx(s);
2016 }
2017
2018 void
ti_init2(struct ti_softc * sc)2019 ti_init2(struct ti_softc *sc)
2020 {
2021 struct ti_cmd_desc cmd;
2022 struct ifnet *ifp;
2023 u_int16_t *m;
2024 struct ifmedia *ifm;
2025 int tmp;
2026
2027 ifp = &sc->arpcom.ac_if;
2028
2029 /* Specify MTU and interface index. */
2030 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dv.dv_unit);
2031 CSR_WRITE_4(sc, TI_GCR_IFMTU,
2032 TI_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN);
2033 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2034
2035 /* Load our MAC address. */
2036 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2037 CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2038 CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2039 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2040
2041 /* Program promiscuous mode and multicast filters. */
2042 ti_iff(sc);
2043
2044 /*
2045 * If this is a Tigon 1, we should tell the
2046 * firmware to use software packet filtering.
2047 */
2048 if (sc->ti_hwrev == TI_HWREV_TIGON)
2049 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2050
2051 /* Init RX ring. */
2052 if (ti_init_rx_ring_std(sc) == ENOBUFS)
2053 panic("not enough mbufs for rx ring");
2054
2055 /* Init jumbo RX ring. */
2056 ti_init_rx_ring_jumbo(sc);
2057
2058 /*
2059 * If this is a Tigon 2, we can also configure the
2060 * mini ring.
2061 */
2062 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2063 ti_init_rx_ring_mini(sc);
2064
2065 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2066 sc->ti_rx_saved_considx = 0;
2067
2068 /* Init TX ring. */
2069 ti_init_tx_ring(sc);
2070
2071 /* Tell firmware we're alive. */
2072 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2073
2074 /* Enable host interrupts. */
2075 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2076
2077 ifp->if_flags |= IFF_RUNNING;
2078 ifq_clr_oactive(&ifp->if_snd);
2079
2080 /*
2081 * Make sure to set media properly. We have to do this
2082 * here since we have to issue commands in order to set
2083 * the link negotiation and we can't issue commands until
2084 * the firmware is running.
2085 */
2086 ifm = &sc->ifmedia;
2087 tmp = ifm->ifm_media;
2088 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2089 ti_ifmedia_upd(ifp);
2090 ifm->ifm_media = tmp;
2091 }
2092
2093 /*
2094 * Set media options.
2095 */
2096 int
ti_ifmedia_upd(struct ifnet * ifp)2097 ti_ifmedia_upd(struct ifnet *ifp)
2098 {
2099 struct ti_softc *sc;
2100 struct ifmedia *ifm;
2101 struct ti_cmd_desc cmd;
2102
2103 sc = ifp->if_softc;
2104 ifm = &sc->ifmedia;
2105
2106 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2107 return(EINVAL);
2108
2109 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2110 case IFM_AUTO:
2111 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2112 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2113 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2114 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2115 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2116 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2117 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2118 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2119 break;
2120 case IFM_1000_SX:
2121 case IFM_1000_T:
2122 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2123 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2124 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2125 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2126 TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2127 }
2128 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2129 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2130 break;
2131 case IFM_100_FX:
2132 case IFM_10_FL:
2133 case IFM_100_TX:
2134 case IFM_10_T:
2135 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2136 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2137 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2138 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2139 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2140 } else {
2141 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2142 }
2143 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2144 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2145 } else {
2146 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2147 }
2148 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2149 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2150 break;
2151 }
2152
2153 return (0);
2154 }
2155
2156 /*
2157 * Report current media status.
2158 */
2159 void
ti_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2160 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2161 {
2162 struct ti_softc *sc;
2163 u_int32_t media = 0;
2164
2165 sc = ifp->if_softc;
2166
2167 ifmr->ifm_status = IFM_AVALID;
2168 ifmr->ifm_active = IFM_ETHER;
2169
2170 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
2171 ifmr->ifm_active |= IFM_NONE;
2172 return;
2173 }
2174
2175 ifmr->ifm_status |= IFM_ACTIVE;
2176
2177 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2178 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2179 if (sc->ti_copper)
2180 ifmr->ifm_active |= IFM_1000_T;
2181 else
2182 ifmr->ifm_active |= IFM_1000_SX;
2183 if (media & TI_GLNK_FULL_DUPLEX)
2184 ifmr->ifm_active |= IFM_FDX;
2185 else
2186 ifmr->ifm_active |= IFM_HDX;
2187 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2188 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2189 if (sc->ti_copper) {
2190 if (media & TI_LNK_100MB)
2191 ifmr->ifm_active |= IFM_100_TX;
2192 if (media & TI_LNK_10MB)
2193 ifmr->ifm_active |= IFM_10_T;
2194 } else {
2195 if (media & TI_LNK_100MB)
2196 ifmr->ifm_active |= IFM_100_FX;
2197 if (media & TI_LNK_10MB)
2198 ifmr->ifm_active |= IFM_10_FL;
2199 }
2200 if (media & TI_LNK_FULL_DUPLEX)
2201 ifmr->ifm_active |= IFM_FDX;
2202 if (media & TI_LNK_HALF_DUPLEX)
2203 ifmr->ifm_active |= IFM_HDX;
2204 }
2205 }
2206
2207 int
ti_ioctl(struct ifnet * ifp,u_long command,caddr_t data)2208 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2209 {
2210 struct ti_softc *sc = ifp->if_softc;
2211 struct ifreq *ifr = (struct ifreq *)data;
2212 int s, error = 0;
2213
2214 s = splnet();
2215
2216 switch(command) {
2217 case SIOCSIFADDR:
2218 ifp->if_flags |= IFF_UP;
2219 if ((ifp->if_flags & IFF_RUNNING) == 0)
2220 ti_init(sc);
2221 break;
2222
2223 case SIOCSIFFLAGS:
2224 if (ifp->if_flags & IFF_UP) {
2225 if (ifp->if_flags & IFF_RUNNING)
2226 error = ENETRESET;
2227 else
2228 ti_init(sc);
2229 } else {
2230 if (ifp->if_flags & IFF_RUNNING)
2231 ti_stop(sc);
2232 }
2233 break;
2234
2235 case SIOCSIFMEDIA:
2236 case SIOCGIFMEDIA:
2237 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2238 break;
2239
2240 default:
2241 error = ether_ioctl(ifp, &sc->arpcom, command, data);
2242 }
2243
2244 if (error == ENETRESET) {
2245 if (ifp->if_flags & IFF_RUNNING)
2246 ti_iff(sc);
2247 error = 0;
2248 }
2249
2250 splx(s);
2251 return (error);
2252 }
2253
2254 void
ti_watchdog(struct ifnet * ifp)2255 ti_watchdog(struct ifnet *ifp)
2256 {
2257 struct ti_softc *sc;
2258
2259 sc = ifp->if_softc;
2260
2261 printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname);
2262 ti_stop(sc);
2263 ti_init(sc);
2264
2265 ifp->if_oerrors++;
2266 }
2267
2268 /*
2269 * Stop the adapter and free any mbufs allocated to the
2270 * RX and TX lists.
2271 */
2272 void
ti_stop(struct ti_softc * sc)2273 ti_stop(struct ti_softc *sc)
2274 {
2275 struct ifnet *ifp;
2276 struct ti_cmd_desc cmd;
2277
2278 ifp = &sc->arpcom.ac_if;
2279
2280 ifp->if_flags &= ~IFF_RUNNING;
2281 ifq_clr_oactive(&ifp->if_snd);
2282
2283 /* Disable host interrupts. */
2284 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2285 /*
2286 * Tell firmware we're shutting down.
2287 */
2288 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2289
2290 /* Halt and reinitialize. */
2291 ti_chipinit(sc);
2292 ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
2293 ti_chipinit(sc);
2294
2295 /* Free the RX lists. */
2296 ti_free_rx_ring_std(sc);
2297
2298 /* Free jumbo RX list. */
2299 ti_free_rx_ring_jumbo(sc);
2300
2301 /* Free mini RX list. */
2302 ti_free_rx_ring_mini(sc);
2303
2304 /* Free TX buffers. */
2305 ti_free_tx_ring(sc);
2306
2307 sc->ti_ev_prodidx.ti_idx = 0;
2308 sc->ti_return_prodidx.ti_idx = 0;
2309 sc->ti_tx_considx.ti_idx = 0;
2310 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2311 }
2312