1 /* $NetBSD: kern_tc.c,v 1.46 2013/09/14 20:52:43 martin Exp $ */
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * ----------------------------------------------------------------------------
34  * "THE BEER-WARE LICENSE" (Revision 42):
35  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
36  * can do whatever you want with this stuff. If we meet some day, and you think
37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
38  * ---------------------------------------------------------------------------
39  */
40 
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.46 2013/09/14 20:52:43 martin Exp $");
44 
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63 
64 /*
65  * A large step happens on boot.  This constant detects such steps.
66  * It is relatively small so that ntp_update_second gets called enough
67  * in the typical 'missed a couple of seconds' case, but doesn't loop
68  * forever when the time step is large.
69  */
70 #define LARGE_STEP	200
71 
72 /*
73  * Implement a dummy timecounter which we can use until we get a real one
74  * in the air.  This allows the console and other early stuff to use
75  * time services.
76  */
77 
78 static u_int
dummy_get_timecount(struct timecounter * tc)79 dummy_get_timecount(struct timecounter *tc)
80 {
81 	static u_int now;
82 
83 	return (++now);
84 }
85 
86 static struct timecounter dummy_timecounter = {
87 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
88 };
89 
90 struct timehands {
91 	/* These fields must be initialized by the driver. */
92 	struct timecounter	*th_counter;     /* active timecounter */
93 	int64_t			th_adjustment;   /* frequency adjustment */
94 						 /* (NTP/adjtime) */
95 	u_int64_t		th_scale;        /* scale factor (counter */
96 						 /* tick->time) */
97 	u_int64_t 		th_offset_count; /* offset at last time */
98 						 /* update (tc_windup()) */
99 	struct bintime		th_offset;       /* bin (up)time at windup */
100 	struct timeval		th_microtime;    /* cached microtime */
101 	struct timespec		th_nanotime;     /* cached nanotime */
102 	/* Fields not to be copied in tc_windup start with th_generation. */
103 	volatile u_int		th_generation;   /* current genration */
104 	struct timehands	*th_next;        /* next timehand */
105 };
106 
107 static struct timehands th0;
108 static struct timehands th9 = { .th_next = &th0, };
109 static struct timehands th8 = { .th_next = &th9, };
110 static struct timehands th7 = { .th_next = &th8, };
111 static struct timehands th6 = { .th_next = &th7, };
112 static struct timehands th5 = { .th_next = &th6, };
113 static struct timehands th4 = { .th_next = &th5, };
114 static struct timehands th3 = { .th_next = &th4, };
115 static struct timehands th2 = { .th_next = &th3, };
116 static struct timehands th1 = { .th_next = &th2, };
117 static struct timehands th0 = {
118 	.th_counter = &dummy_timecounter,
119 	.th_scale = (uint64_t)-1 / 1000000,
120 	.th_offset = { .sec = 1, .frac = 0 },
121 	.th_generation = 1,
122 	.th_next = &th1,
123 };
124 
125 static struct timehands *volatile timehands = &th0;
126 struct timecounter *timecounter = &dummy_timecounter;
127 static struct timecounter *timecounters = &dummy_timecounter;
128 
129 volatile time_t time_second = 1;
130 volatile time_t time_uptime = 1;
131 
132 static struct bintime timebasebin;
133 
134 static int timestepwarnings;
135 
136 kmutex_t timecounter_lock;
137 static u_int timecounter_mods;
138 static volatile int timecounter_removals = 1;
139 static u_int timecounter_bad;
140 
141 #ifdef __FreeBSD__
142 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
143     &timestepwarnings, 0, "");
144 #endif /* __FreeBSD__ */
145 
146 /*
147  * sysctl helper routine for kern.timercounter.hardware
148  */
149 static int
sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 	struct sysctlnode node;
153 	int error;
154 	char newname[MAX_TCNAMELEN];
155 	struct timecounter *newtc, *tc;
156 
157 	tc = timecounter;
158 
159 	strlcpy(newname, tc->tc_name, sizeof(newname));
160 
161 	node = *rnode;
162 	node.sysctl_data = newname;
163 	node.sysctl_size = sizeof(newname);
164 
165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
166 
167 	if (error ||
168 	    newp == NULL ||
169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 		return error;
171 
172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 	    NULL, NULL)) != 0)
175 		return (error);
176 
177 	if (!cold)
178 		mutex_spin_enter(&timecounter_lock);
179 	error = EINVAL;
180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 		if (strcmp(newname, newtc->tc_name) != 0)
182 			continue;
183 		/* Warm up new timecounter. */
184 		(void)newtc->tc_get_timecount(newtc);
185 		(void)newtc->tc_get_timecount(newtc);
186 		timecounter = newtc;
187 		error = 0;
188 		break;
189 	}
190 	if (!cold)
191 		mutex_spin_exit(&timecounter_lock);
192 	return error;
193 }
194 
195 static int
sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 	char buf[MAX_TCNAMELEN+48];
199 	char *where;
200 	const char *spc;
201 	struct timecounter *tc;
202 	size_t needed, left, slen;
203 	int error, mods;
204 
205 	if (newp != NULL)
206 		return (EPERM);
207 	if (namelen != 0)
208 		return (EINVAL);
209 
210 	mutex_spin_enter(&timecounter_lock);
211  retry:
212 	spc = "";
213 	error = 0;
214 	needed = 0;
215 	left = *oldlenp;
216 	where = oldp;
217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 		if (where == NULL) {
219 			needed += sizeof(buf);  /* be conservative */
220 		} else {
221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
223 					tc->tc_frequency);
224 			if (left < slen + 1)
225 				break;
226 		 	mods = timecounter_mods;
227 			mutex_spin_exit(&timecounter_lock);
228 			error = copyout(buf, where, slen + 1);
229 			mutex_spin_enter(&timecounter_lock);
230 			if (mods != timecounter_mods) {
231 				goto retry;
232 			}
233 			spc = " ";
234 			where += slen;
235 			needed += slen;
236 			left -= slen;
237 		}
238 	}
239 	mutex_spin_exit(&timecounter_lock);
240 
241 	*oldlenp = needed;
242 	return (error);
243 }
244 
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 	const struct sysctlnode *node;
248 
249 	sysctl_createv(clog, 0, NULL, &node,
250 		       CTLFLAG_PERMANENT,
251 		       CTLTYPE_NODE, "timecounter",
252 		       SYSCTL_DESCR("time counter information"),
253 		       NULL, 0, NULL, 0,
254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
255 
256 	if (node != NULL) {
257 		sysctl_createv(clog, 0, NULL, NULL,
258 			       CTLFLAG_PERMANENT,
259 			       CTLTYPE_STRING, "choice",
260 			       SYSCTL_DESCR("available counters"),
261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263 
264 		sysctl_createv(clog, 0, NULL, NULL,
265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 			       CTLTYPE_STRING, "hardware",
267 			       SYSCTL_DESCR("currently active time counter"),
268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270 
271 		sysctl_createv(clog, 0, NULL, NULL,
272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 			       CTLTYPE_INT, "timestepwarnings",
274 			       SYSCTL_DESCR("log time steps"),
275 			       NULL, 0, &timestepwarnings, 0,
276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 	}
278 }
279 
280 #ifdef TC_COUNTERS
281 #define	TC_STATS(name)							\
282 static struct evcnt n##name =						\
283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define	TC_COUNT(var)	var.ev_count++
291 #undef TC_STATS
292 #else
293 #define	TC_COUNT(var)	/* nothing */
294 #endif	/* TC_COUNTERS */
295 
296 static void tc_windup(void);
297 
298 /*
299  * Return the difference between the timehands' counter value now and what
300  * was when we copied it to the timehands' offset_count.
301  */
302 static inline u_int
tc_delta(struct timehands * th)303 tc_delta(struct timehands *th)
304 {
305 	struct timecounter *tc;
306 
307 	tc = th->th_counter;
308 	return ((tc->tc_get_timecount(tc) -
309 		 th->th_offset_count) & tc->tc_counter_mask);
310 }
311 
312 /*
313  * Functions for reading the time.  We have to loop until we are sure that
314  * the timehands that we operated on was not updated under our feet.  See
315  * the comment in <sys/timevar.h> for a description of these 12 functions.
316  */
317 
318 void
binuptime(struct bintime * bt)319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	lwp_t *l;
323 	u_int lgen, gen;
324 
325 	TC_COUNT(nbinuptime);
326 
327 	/*
328 	 * Provide exclusion against tc_detach().
329 	 *
330 	 * We record the number of timecounter removals before accessing
331 	 * timecounter state.  Note that the LWP can be using multiple
332 	 * "generations" at once, due to interrupts (interrupted while in
333 	 * this function).  Hardware interrupts will borrow the interrupted
334 	 * LWP's l_tcgen value for this purpose, and can themselves be
335 	 * interrupted by higher priority interrupts.  In this case we need
336 	 * to ensure that the oldest generation in use is recorded.
337 	 *
338 	 * splsched() is too expensive to use, so we take care to structure
339 	 * this code in such a way that it is not required.  Likewise, we
340 	 * do not disable preemption.
341 	 *
342 	 * Memory barriers are also too expensive to use for such a
343 	 * performance critical function.  The good news is that we do not
344 	 * need memory barriers for this type of exclusion, as the thread
345 	 * updating timecounter_removals will issue a broadcast cross call
346 	 * before inspecting our l_tcgen value (this elides memory ordering
347 	 * issues).
348 	 */
349 	l = curlwp;
350 	lgen = l->l_tcgen;
351 	if (__predict_true(lgen == 0)) {
352 		l->l_tcgen = timecounter_removals;
353 	}
354 	__insn_barrier();
355 
356 	do {
357 		th = timehands;
358 		gen = th->th_generation;
359 		*bt = th->th_offset;
360 		bintime_addx(bt, th->th_scale * tc_delta(th));
361 	} while (gen == 0 || gen != th->th_generation);
362 
363 	__insn_barrier();
364 	l->l_tcgen = lgen;
365 }
366 
367 void
nanouptime(struct timespec * tsp)368 nanouptime(struct timespec *tsp)
369 {
370 	struct bintime bt;
371 
372 	TC_COUNT(nnanouptime);
373 	binuptime(&bt);
374 	bintime2timespec(&bt, tsp);
375 }
376 
377 void
microuptime(struct timeval * tvp)378 microuptime(struct timeval *tvp)
379 {
380 	struct bintime bt;
381 
382 	TC_COUNT(nmicrouptime);
383 	binuptime(&bt);
384 	bintime2timeval(&bt, tvp);
385 }
386 
387 void
bintime(struct bintime * bt)388 bintime(struct bintime *bt)
389 {
390 
391 	TC_COUNT(nbintime);
392 	binuptime(bt);
393 	bintime_add(bt, &timebasebin);
394 }
395 
396 void
nanotime(struct timespec * tsp)397 nanotime(struct timespec *tsp)
398 {
399 	struct bintime bt;
400 
401 	TC_COUNT(nnanotime);
402 	bintime(&bt);
403 	bintime2timespec(&bt, tsp);
404 }
405 
406 void
microtime(struct timeval * tvp)407 microtime(struct timeval *tvp)
408 {
409 	struct bintime bt;
410 
411 	TC_COUNT(nmicrotime);
412 	bintime(&bt);
413 	bintime2timeval(&bt, tvp);
414 }
415 
416 void
getbinuptime(struct bintime * bt)417 getbinuptime(struct bintime *bt)
418 {
419 	struct timehands *th;
420 	u_int gen;
421 
422 	TC_COUNT(ngetbinuptime);
423 	do {
424 		th = timehands;
425 		gen = th->th_generation;
426 		*bt = th->th_offset;
427 	} while (gen == 0 || gen != th->th_generation);
428 }
429 
430 void
getnanouptime(struct timespec * tsp)431 getnanouptime(struct timespec *tsp)
432 {
433 	struct timehands *th;
434 	u_int gen;
435 
436 	TC_COUNT(ngetnanouptime);
437 	do {
438 		th = timehands;
439 		gen = th->th_generation;
440 		bintime2timespec(&th->th_offset, tsp);
441 	} while (gen == 0 || gen != th->th_generation);
442 }
443 
444 void
getmicrouptime(struct timeval * tvp)445 getmicrouptime(struct timeval *tvp)
446 {
447 	struct timehands *th;
448 	u_int gen;
449 
450 	TC_COUNT(ngetmicrouptime);
451 	do {
452 		th = timehands;
453 		gen = th->th_generation;
454 		bintime2timeval(&th->th_offset, tvp);
455 	} while (gen == 0 || gen != th->th_generation);
456 }
457 
458 void
getbintime(struct bintime * bt)459 getbintime(struct bintime *bt)
460 {
461 	struct timehands *th;
462 	u_int gen;
463 
464 	TC_COUNT(ngetbintime);
465 	do {
466 		th = timehands;
467 		gen = th->th_generation;
468 		*bt = th->th_offset;
469 	} while (gen == 0 || gen != th->th_generation);
470 	bintime_add(bt, &timebasebin);
471 }
472 
473 void
getnanotime(struct timespec * tsp)474 getnanotime(struct timespec *tsp)
475 {
476 	struct timehands *th;
477 	u_int gen;
478 
479 	TC_COUNT(ngetnanotime);
480 	do {
481 		th = timehands;
482 		gen = th->th_generation;
483 		*tsp = th->th_nanotime;
484 	} while (gen == 0 || gen != th->th_generation);
485 }
486 
487 void
getmicrotime(struct timeval * tvp)488 getmicrotime(struct timeval *tvp)
489 {
490 	struct timehands *th;
491 	u_int gen;
492 
493 	TC_COUNT(ngetmicrotime);
494 	do {
495 		th = timehands;
496 		gen = th->th_generation;
497 		*tvp = th->th_microtime;
498 	} while (gen == 0 || gen != th->th_generation);
499 }
500 
501 /*
502  * Initialize a new timecounter and possibly use it.
503  */
504 void
tc_init(struct timecounter * tc)505 tc_init(struct timecounter *tc)
506 {
507 	u_int u;
508 
509 	u = tc->tc_frequency / tc->tc_counter_mask;
510 	/* XXX: We need some margin here, 10% is a guess */
511 	u *= 11;
512 	u /= 10;
513 	if (u > hz && tc->tc_quality >= 0) {
514 		tc->tc_quality = -2000;
515 		aprint_verbose(
516 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
517 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
518 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
519 	} else if (tc->tc_quality >= 0 || bootverbose) {
520 		aprint_verbose(
521 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
522 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
523 		    tc->tc_quality);
524 	}
525 
526 	mutex_spin_enter(&timecounter_lock);
527 	tc->tc_next = timecounters;
528 	timecounters = tc;
529 	timecounter_mods++;
530 	/*
531 	 * Never automatically use a timecounter with negative quality.
532 	 * Even though we run on the dummy counter, switching here may be
533 	 * worse since this timecounter may not be monotonous.
534 	 */
535 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
536 	    (tc->tc_quality == timecounter->tc_quality &&
537 	    tc->tc_frequency > timecounter->tc_frequency))) {
538 		(void)tc->tc_get_timecount(tc);
539 		(void)tc->tc_get_timecount(tc);
540 		timecounter = tc;
541 		tc_windup();
542 	}
543 	mutex_spin_exit(&timecounter_lock);
544 }
545 
546 /*
547  * Pick a new timecounter due to the existing counter going bad.
548  */
549 static void
tc_pick(void)550 tc_pick(void)
551 {
552 	struct timecounter *best, *tc;
553 
554 	KASSERT(mutex_owned(&timecounter_lock));
555 
556 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
557 		if (tc->tc_quality > best->tc_quality)
558 			best = tc;
559 		else if (tc->tc_quality < best->tc_quality)
560 			continue;
561 		else if (tc->tc_frequency > best->tc_frequency)
562 			best = tc;
563 	}
564 	(void)best->tc_get_timecount(best);
565 	(void)best->tc_get_timecount(best);
566 	timecounter = best;
567 }
568 
569 /*
570  * A timecounter has gone bad, arrange to pick a new one at the next
571  * clock tick.
572  */
573 void
tc_gonebad(struct timecounter * tc)574 tc_gonebad(struct timecounter *tc)
575 {
576 
577 	tc->tc_quality = -100;
578 	membar_producer();
579 	atomic_inc_uint(&timecounter_bad);
580 }
581 
582 /*
583  * Stop using a timecounter and remove it from the timecounters list.
584  */
585 int
tc_detach(struct timecounter * target)586 tc_detach(struct timecounter *target)
587 {
588 	struct timecounter *tc;
589 	struct timecounter **tcp = NULL;
590 	int removals;
591 	uint64_t where;
592 	lwp_t *l;
593 
594 	/* First, find the timecounter. */
595 	mutex_spin_enter(&timecounter_lock);
596 	for (tcp = &timecounters, tc = timecounters;
597 	     tc != NULL;
598 	     tcp = &tc->tc_next, tc = tc->tc_next) {
599 		if (tc == target)
600 			break;
601 	}
602 	if (tc == NULL) {
603 		mutex_spin_exit(&timecounter_lock);
604 		return ESRCH;
605 	}
606 
607 	/* And now, remove it. */
608 	*tcp = tc->tc_next;
609 	if (timecounter == target) {
610 		tc_pick();
611 		tc_windup();
612 	}
613 	timecounter_mods++;
614 	removals = timecounter_removals++;
615 	mutex_spin_exit(&timecounter_lock);
616 
617 	/*
618 	 * We now have to determine if any threads in the system are still
619 	 * making use of this timecounter.
620 	 *
621 	 * We issue a broadcast cross call to elide memory ordering issues,
622 	 * then scan all LWPs in the system looking at each's timecounter
623 	 * generation number.  We need to see a value of zero (not actively
624 	 * using a timecounter) or a value greater than our removal value.
625 	 *
626 	 * We may race with threads that read `timecounter_removals' and
627 	 * and then get preempted before updating `l_tcgen'.  This is not
628 	 * a problem, since it means that these threads have not yet started
629 	 * accessing timecounter state.  All we do need is one clean
630 	 * snapshot of the system where every thread appears not to be using
631 	 * old timecounter state.
632 	 */
633 	for (;;) {
634 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
635 		xc_wait(where);
636 
637 		mutex_enter(proc_lock);
638 		LIST_FOREACH(l, &alllwp, l_list) {
639 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
640 				/*
641 				 * Not using timecounter or old timecounter
642 				 * state at time of our xcall or later.
643 				 */
644 				continue;
645 			}
646 			break;
647 		}
648 		mutex_exit(proc_lock);
649 
650 		/*
651 		 * If the timecounter is still in use, wait at least 10ms
652 		 * before retrying.
653 		 */
654 		if (l == NULL) {
655 			return 0;
656 		}
657 		(void)kpause("tcdetach", false, mstohz(10), NULL);
658 	}
659 }
660 
661 /* Report the frequency of the current timecounter. */
662 u_int64_t
tc_getfrequency(void)663 tc_getfrequency(void)
664 {
665 
666 	return (timehands->th_counter->tc_frequency);
667 }
668 
669 /*
670  * Step our concept of UTC.  This is done by modifying our estimate of
671  * when we booted.
672  */
673 void
tc_setclock(const struct timespec * ts)674 tc_setclock(const struct timespec *ts)
675 {
676 	struct timespec ts2;
677 	struct bintime bt, bt2;
678 
679 	mutex_spin_enter(&timecounter_lock);
680 	TC_COUNT(nsetclock);
681 	binuptime(&bt2);
682 	timespec2bintime(ts, &bt);
683 	bintime_sub(&bt, &bt2);
684 	bintime_add(&bt2, &timebasebin);
685 	timebasebin = bt;
686 	tc_windup();
687 	mutex_spin_exit(&timecounter_lock);
688 
689 	if (timestepwarnings) {
690 		bintime2timespec(&bt2, &ts2);
691 		log(LOG_INFO,
692 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
693 		    (long long)ts2.tv_sec, ts2.tv_nsec,
694 		    (long long)ts->tv_sec, ts->tv_nsec);
695 	}
696 }
697 
698 /*
699  * Initialize the next struct timehands in the ring and make
700  * it the active timehands.  Along the way we might switch to a different
701  * timecounter and/or do seconds processing in NTP.  Slightly magic.
702  */
703 static void
tc_windup(void)704 tc_windup(void)
705 {
706 	struct bintime bt;
707 	struct timehands *th, *tho;
708 	u_int64_t scale;
709 	u_int delta, ncount, ogen;
710 	int i, s_update;
711 	time_t t;
712 
713 	KASSERT(mutex_owned(&timecounter_lock));
714 
715 	s_update = 0;
716 
717 	/*
718 	 * Make the next timehands a copy of the current one, but do not
719 	 * overwrite the generation or next pointer.  While we update
720 	 * the contents, the generation must be zero.  Ensure global
721 	 * visibility of the generation before proceeding.
722 	 */
723 	tho = timehands;
724 	th = tho->th_next;
725 	ogen = th->th_generation;
726 	th->th_generation = 0;
727 	membar_producer();
728 	bcopy(tho, th, offsetof(struct timehands, th_generation));
729 
730 	/*
731 	 * Capture a timecounter delta on the current timecounter and if
732 	 * changing timecounters, a counter value from the new timecounter.
733 	 * Update the offset fields accordingly.
734 	 */
735 	delta = tc_delta(th);
736 	if (th->th_counter != timecounter)
737 		ncount = timecounter->tc_get_timecount(timecounter);
738 	else
739 		ncount = 0;
740 	th->th_offset_count += delta;
741 	bintime_addx(&th->th_offset, th->th_scale * delta);
742 
743 	/*
744 	 * Hardware latching timecounters may not generate interrupts on
745 	 * PPS events, so instead we poll them.  There is a finite risk that
746 	 * the hardware might capture a count which is later than the one we
747 	 * got above, and therefore possibly in the next NTP second which might
748 	 * have a different rate than the current NTP second.  It doesn't
749 	 * matter in practice.
750 	 */
751 	if (tho->th_counter->tc_poll_pps)
752 		tho->th_counter->tc_poll_pps(tho->th_counter);
753 
754 	/*
755 	 * Deal with NTP second processing.  The for loop normally
756 	 * iterates at most once, but in extreme situations it might
757 	 * keep NTP sane if timeouts are not run for several seconds.
758 	 * At boot, the time step can be large when the TOD hardware
759 	 * has been read, so on really large steps, we call
760 	 * ntp_update_second only twice.  We need to call it twice in
761 	 * case we missed a leap second.
762 	 * If NTP is not compiled in ntp_update_second still calculates
763 	 * the adjustment resulting from adjtime() calls.
764 	 */
765 	bt = th->th_offset;
766 	bintime_add(&bt, &timebasebin);
767 	i = bt.sec - tho->th_microtime.tv_sec;
768 	if (i > LARGE_STEP)
769 		i = 2;
770 	for (; i > 0; i--) {
771 		t = bt.sec;
772 		ntp_update_second(&th->th_adjustment, &bt.sec);
773 		s_update = 1;
774 		if (bt.sec != t)
775 			timebasebin.sec += bt.sec - t;
776 	}
777 
778 	/* Update the UTC timestamps used by the get*() functions. */
779 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
780 	bintime2timeval(&bt, &th->th_microtime);
781 	bintime2timespec(&bt, &th->th_nanotime);
782 	/* Now is a good time to change timecounters. */
783 	if (th->th_counter != timecounter) {
784 		th->th_counter = timecounter;
785 		th->th_offset_count = ncount;
786 		s_update = 1;
787 	}
788 
789 	/*-
790 	 * Recalculate the scaling factor.  We want the number of 1/2^64
791 	 * fractions of a second per period of the hardware counter, taking
792 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
793 	 * processing provides us with.
794 	 *
795 	 * The th_adjustment is nanoseconds per second with 32 bit binary
796 	 * fraction and we want 64 bit binary fraction of second:
797 	 *
798 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
799 	 *
800 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
801 	 * we can only multiply by about 850 without overflowing, but that
802 	 * leaves suitably precise fractions for multiply before divide.
803 	 *
804 	 * Divide before multiply with a fraction of 2199/512 results in a
805 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
806 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
807  	 *
808 	 * We happily sacrifice the lowest of the 64 bits of our result
809 	 * to the goddess of code clarity.
810 	 *
811 	 */
812 	if (s_update) {
813 		scale = (u_int64_t)1 << 63;
814 		scale += (th->th_adjustment / 1024) * 2199;
815 		scale /= th->th_counter->tc_frequency;
816 		th->th_scale = scale * 2;
817 	}
818 	/*
819 	 * Now that the struct timehands is again consistent, set the new
820 	 * generation number, making sure to not make it zero.  Ensure
821 	 * changes are globally visible before changing.
822 	 */
823 	if (++ogen == 0)
824 		ogen = 1;
825 	membar_producer();
826 	th->th_generation = ogen;
827 
828 	/*
829 	 * Go live with the new struct timehands.  Ensure changes are
830 	 * globally visible before changing.
831 	 */
832 	time_second = th->th_microtime.tv_sec;
833 	time_uptime = th->th_offset.sec;
834 	membar_producer();
835 	timehands = th;
836 
837 	/*
838 	 * Force users of the old timehand to move on.  This is
839 	 * necessary for MP systems; we need to ensure that the
840 	 * consumers will move away from the old timehand before
841 	 * we begin updating it again when we eventually wrap
842 	 * around.
843 	 */
844 	if (++tho->th_generation == 0)
845 		tho->th_generation = 1;
846 }
847 
848 /*
849  * RFC 2783 PPS-API implementation.
850  */
851 
852 int
pps_ioctl(u_long cmd,void * data,struct pps_state * pps)853 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
854 {
855 	pps_params_t *app;
856 	pps_info_t *pipi;
857 #ifdef PPS_SYNC
858 	int *epi;
859 #endif
860 
861 	KASSERT(mutex_owned(&timecounter_lock));
862 
863 	KASSERT(pps != NULL);
864 
865 	switch (cmd) {
866 	case PPS_IOC_CREATE:
867 		return (0);
868 	case PPS_IOC_DESTROY:
869 		return (0);
870 	case PPS_IOC_SETPARAMS:
871 		app = (pps_params_t *)data;
872 		if (app->mode & ~pps->ppscap)
873 			return (EINVAL);
874 		pps->ppsparam = *app;
875 		return (0);
876 	case PPS_IOC_GETPARAMS:
877 		app = (pps_params_t *)data;
878 		*app = pps->ppsparam;
879 		app->api_version = PPS_API_VERS_1;
880 		return (0);
881 	case PPS_IOC_GETCAP:
882 		*(int*)data = pps->ppscap;
883 		return (0);
884 	case PPS_IOC_FETCH:
885 		pipi = (pps_info_t *)data;
886 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
887 		*pipi = pps->ppsinfo;
888 		return (0);
889 	case PPS_IOC_KCBIND:
890 #ifdef PPS_SYNC
891 		epi = (int *)data;
892 		/* XXX Only root should be able to do this */
893 		if (*epi & ~pps->ppscap)
894 			return (EINVAL);
895 		pps->kcmode = *epi;
896 		return (0);
897 #else
898 		return (EOPNOTSUPP);
899 #endif
900 	default:
901 		return (EPASSTHROUGH);
902 	}
903 }
904 
905 void
pps_init(struct pps_state * pps)906 pps_init(struct pps_state *pps)
907 {
908 
909 	KASSERT(mutex_owned(&timecounter_lock));
910 
911 	pps->ppscap |= PPS_TSFMT_TSPEC;
912 	if (pps->ppscap & PPS_CAPTUREASSERT)
913 		pps->ppscap |= PPS_OFFSETASSERT;
914 	if (pps->ppscap & PPS_CAPTURECLEAR)
915 		pps->ppscap |= PPS_OFFSETCLEAR;
916 }
917 
918 /*
919  * capture a timetamp in the pps structure
920  */
921 void
pps_capture(struct pps_state * pps)922 pps_capture(struct pps_state *pps)
923 {
924 	struct timehands *th;
925 
926 	KASSERT(mutex_owned(&timecounter_lock));
927 	KASSERT(pps != NULL);
928 
929 	th = timehands;
930 	pps->capgen = th->th_generation;
931 	pps->capth = th;
932 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
933 	if (pps->capgen != th->th_generation)
934 		pps->capgen = 0;
935 }
936 
937 #ifdef PPS_DEBUG
938 int ppsdebug = 0;
939 #endif
940 
941 /*
942  * process a pps_capture()ed event
943  */
944 void
pps_event(struct pps_state * pps,int event)945 pps_event(struct pps_state *pps, int event)
946 {
947 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
948 }
949 
950 /*
951  * extended pps api /  kernel pll/fll entry point
952  *
953  * feed reference time stamps to PPS engine
954  *
955  * will simulate a PPS event and feed
956  * the NTP PLL/FLL if requested.
957  *
958  * the ref time stamps should be roughly once
959  * a second but do not need to be exactly in phase
960  * with the UTC second but should be close to it.
961  * this relaxation of requirements allows callout
962  * driven timestamping mechanisms to feed to pps
963  * capture/kernel pll logic.
964  *
965  * calling pattern is:
966  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
967  *  read timestamp from reference source
968  *  pps_ref_event()
969  *
970  * supported refmodes:
971  *  PPS_REFEVNT_CAPTURE
972  *    use system timestamp of pps_capture()
973  *  PPS_REFEVNT_CURRENT
974  *    use system timestamp of this call
975  *  PPS_REFEVNT_CAPCUR
976  *    use average of read capture and current system time stamp
977  *  PPS_REFEVNT_PPS
978  *    assume timestamp on second mark - ref_ts is ignored
979  *
980  */
981 
982 void
pps_ref_event(struct pps_state * pps,int event,struct bintime * ref_ts,int refmode)983 pps_ref_event(struct pps_state *pps,
984 	      int event,
985 	      struct bintime *ref_ts,
986 	      int refmode
987 	)
988 {
989 	struct bintime bt;	/* current time */
990 	struct bintime btd;	/* time difference */
991 	struct bintime bt_ref;	/* reference time */
992 	struct timespec ts, *tsp, *osp;
993 	struct timehands *th;
994 	u_int64_t tcount, acount, dcount, *pcount;
995 	int foff, gen;
996 #ifdef PPS_SYNC
997 	int fhard;
998 #endif
999 	pps_seq_t *pseq;
1000 
1001 	KASSERT(mutex_owned(&timecounter_lock));
1002 
1003 	KASSERT(pps != NULL);
1004 
1005         /* pick up current time stamp if needed */
1006 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1007 		/* pick up current time stamp */
1008 		th = timehands;
1009 		gen = th->th_generation;
1010 		tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1011 		if (gen != th->th_generation)
1012 			gen = 0;
1013 
1014 		/* If the timecounter was wound up underneath us, bail out. */
1015 		if (pps->capgen == 0 ||
1016 		    pps->capgen != pps->capth->th_generation ||
1017 		    gen == 0 ||
1018 		    gen != pps->capgen) {
1019 #ifdef PPS_DEBUG
1020 			if (ppsdebug & 0x1) {
1021 				log(LOG_DEBUG,
1022 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1023 				    pps, event);
1024 			}
1025 #endif
1026 			return;
1027 		}
1028 	} else {
1029 		tcount = 0;	/* keep GCC happy */
1030 	}
1031 
1032 #ifdef PPS_DEBUG
1033 	if (ppsdebug & 0x1) {
1034 		struct timespec tmsp;
1035 
1036 		if (ref_ts == NULL) {
1037 			tmsp.tv_sec = 0;
1038 			tmsp.tv_nsec = 0;
1039 		} else {
1040 			bintime2timespec(ref_ts, &tmsp);
1041 		}
1042 
1043 		log(LOG_DEBUG,
1044 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1045 		    ".%09"PRIi32", refmode=0x%1x)\n",
1046 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1047 	}
1048 #endif
1049 
1050 	/* setup correct event references */
1051 	if (event == PPS_CAPTUREASSERT) {
1052 		tsp = &pps->ppsinfo.assert_timestamp;
1053 		osp = &pps->ppsparam.assert_offset;
1054 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1055 #ifdef PPS_SYNC
1056 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1057 #endif
1058 		pcount = &pps->ppscount[0];
1059 		pseq = &pps->ppsinfo.assert_sequence;
1060 	} else {
1061 		tsp = &pps->ppsinfo.clear_timestamp;
1062 		osp = &pps->ppsparam.clear_offset;
1063 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1064 #ifdef PPS_SYNC
1065 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1066 #endif
1067 		pcount = &pps->ppscount[1];
1068 		pseq = &pps->ppsinfo.clear_sequence;
1069 	}
1070 
1071 	/* determine system time stamp according to refmode */
1072 	dcount = 0;		/* keep GCC happy */
1073 	switch (refmode & PPS_REFEVNT_RMASK) {
1074 	case PPS_REFEVNT_CAPTURE:
1075 		acount = pps->capcount;	/* use capture timestamp */
1076 		break;
1077 
1078 	case PPS_REFEVNT_CURRENT:
1079 		acount = tcount; /* use current timestamp */
1080 		break;
1081 
1082 	case PPS_REFEVNT_CAPCUR:
1083 		/*
1084 		 * calculate counter value between pps_capture() and
1085 		 * pps_ref_event()
1086 		 */
1087 		dcount = tcount - pps->capcount;
1088 		acount = (dcount / 2) + pps->capcount;
1089 		break;
1090 
1091 	default:		/* ignore call error silently */
1092 		return;
1093 	}
1094 
1095 	/*
1096 	 * If the timecounter changed, we cannot compare the count values, so
1097 	 * we have to drop the rest of the PPS-stuff until the next event.
1098 	 */
1099 	if (pps->ppstc != pps->capth->th_counter) {
1100 		pps->ppstc = pps->capth->th_counter;
1101 		pps->capcount = acount;
1102 		*pcount = acount;
1103 		pps->ppscount[2] = acount;
1104 #ifdef PPS_DEBUG
1105 		if (ppsdebug & 0x1) {
1106 			log(LOG_DEBUG,
1107 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1108 			    pps, event);
1109 		}
1110 #endif
1111 		return;
1112 	}
1113 
1114 	pps->capcount = acount;
1115 
1116 	/* Convert the count to a bintime. */
1117 	bt = pps->capth->th_offset;
1118 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1119 	bintime_add(&bt, &timebasebin);
1120 
1121 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
1122 		/* determine difference to reference time stamp */
1123 		bt_ref = *ref_ts;
1124 
1125 		btd = bt;
1126 		bintime_sub(&btd, &bt_ref);
1127 
1128 		/*
1129 		 * simulate a PPS timestamp by dropping the fraction
1130 		 * and applying the offset
1131 		 */
1132 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1133 			bt.sec++;
1134 		bt.frac = 0;
1135 		bintime_add(&bt, &btd);
1136 	} else {
1137 		/*
1138 		 * create ref_ts from current time -
1139 		 * we are supposed to be called on
1140 		 * the second mark
1141 		 */
1142 		bt_ref = bt;
1143 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1144 			bt_ref.sec++;
1145 		bt_ref.frac = 0;
1146 	}
1147 
1148 	/* convert bintime to timestamp */
1149 	bintime2timespec(&bt, &ts);
1150 
1151 	/* If the timecounter was wound up underneath us, bail out. */
1152 	if (pps->capgen != pps->capth->th_generation)
1153 		return;
1154 
1155 	/* store time stamp */
1156 	*pcount = pps->capcount;
1157 	(*pseq)++;
1158 	*tsp = ts;
1159 
1160 	/* add offset correction */
1161 	if (foff) {
1162 		timespecadd(tsp, osp, tsp);
1163 		if (tsp->tv_nsec < 0) {
1164 			tsp->tv_nsec += 1000000000;
1165 			tsp->tv_sec -= 1;
1166 		}
1167 	}
1168 
1169 #ifdef PPS_DEBUG
1170 	if (ppsdebug & 0x2) {
1171 		struct timespec ts2;
1172 		struct timespec ts3;
1173 
1174 		bintime2timespec(&bt_ref, &ts2);
1175 
1176 		bt.sec = 0;
1177 		bt.frac = 0;
1178 
1179 		if (refmode & PPS_REFEVNT_CAPCUR) {
1180 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
1181 		}
1182 		bintime2timespec(&bt, &ts3);
1183 
1184 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1185 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1186 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1187 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1188 		    timespec2ns(&ts3));
1189 	}
1190 #endif
1191 
1192 #ifdef PPS_SYNC
1193 	if (fhard) {
1194 		uint64_t scale;
1195 		uint64_t div;
1196 
1197 		/*
1198 		 * Feed the NTP PLL/FLL.
1199 		 * The FLL wants to know how many (hardware) nanoseconds
1200 		 * elapsed since the previous event (mod 1 second) thus
1201 		 * we are actually looking at the frequency difference scaled
1202 		 * in nsec.
1203 		 * As the counter time stamps are not truly at 1Hz
1204 		 * we need to scale the count by the elapsed
1205 		 * reference time.
1206 		 * valid sampling interval: [0.5..2[ sec
1207 		 */
1208 
1209 		/* calculate elapsed raw count */
1210 		tcount = pps->capcount - pps->ppscount[2];
1211 		pps->ppscount[2] = pps->capcount;
1212 		tcount &= pps->capth->th_counter->tc_counter_mask;
1213 
1214 		/* calculate elapsed ref time */
1215 		btd = bt_ref;
1216 		bintime_sub(&btd, &pps->ref_time);
1217 		pps->ref_time = bt_ref;
1218 
1219 		/* check that we stay below 2 sec */
1220 		if (btd.sec < 0 || btd.sec > 1)
1221 			return;
1222 
1223 		/* we want at least 0.5 sec between samples */
1224 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1225 			return;
1226 
1227 		/*
1228 		 * calculate cycles per period by multiplying
1229 		 * the frequency with the elapsed period
1230 		 * we pick a fraction of 30 bits
1231 		 * ~1ns resolution for elapsed time
1232 		 */
1233 		div   = (uint64_t)btd.sec << 30;
1234 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1235 		div  *= pps->capth->th_counter->tc_frequency;
1236 		div >>= 30;
1237 
1238 		if (div == 0)	/* safeguard */
1239 			return;
1240 
1241 		scale = (uint64_t)1 << 63;
1242 		scale /= div;
1243 		scale *= 2;
1244 
1245 		bt.sec = 0;
1246 		bt.frac = 0;
1247 		bintime_addx(&bt, scale * tcount);
1248 		bintime2timespec(&bt, &ts);
1249 
1250 #ifdef PPS_DEBUG
1251 		if (ppsdebug & 0x4) {
1252 			struct timespec ts2;
1253 			int64_t df;
1254 
1255 			bintime2timespec(&bt_ref, &ts2);
1256 			df = timespec2ns(&ts);
1257 			if (df > 500000000)
1258 				df -= 1000000000;
1259 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1260 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1261 			    ", freqdiff=%"PRIi64" ns/s\n",
1262 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1263 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1264 			    df);
1265 		}
1266 #endif
1267 
1268 		hardpps(tsp, timespec2ns(&ts));
1269 	}
1270 #endif
1271 }
1272 
1273 /*
1274  * Timecounters need to be updated every so often to prevent the hardware
1275  * counter from overflowing.  Updating also recalculates the cached values
1276  * used by the get*() family of functions, so their precision depends on
1277  * the update frequency.
1278  */
1279 
1280 static int tc_tick;
1281 
1282 void
tc_ticktock(void)1283 tc_ticktock(void)
1284 {
1285 	static int count;
1286 
1287 	if (++count < tc_tick)
1288 		return;
1289 	count = 0;
1290 	mutex_spin_enter(&timecounter_lock);
1291 	if (timecounter_bad != 0) {
1292 		/* An existing timecounter has gone bad, pick a new one. */
1293 		(void)atomic_swap_uint(&timecounter_bad, 0);
1294 		if (timecounter->tc_quality < 0) {
1295 			tc_pick();
1296 		}
1297 	}
1298 	tc_windup();
1299 	mutex_spin_exit(&timecounter_lock);
1300 }
1301 
1302 void
inittimecounter(void)1303 inittimecounter(void)
1304 {
1305 	u_int p;
1306 
1307 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1308 
1309 	/*
1310 	 * Set the initial timeout to
1311 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1312 	 * People should probably not use the sysctl to set the timeout
1313 	 * to smaller than its inital value, since that value is the
1314 	 * smallest reasonable one.  If they want better timestamps they
1315 	 * should use the non-"get"* functions.
1316 	 */
1317 	if (hz > 1000)
1318 		tc_tick = (hz + 500) / 1000;
1319 	else
1320 		tc_tick = 1;
1321 	p = (tc_tick * 1000000) / hz;
1322 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1323 	    p / 1000, p % 1000);
1324 
1325 	/* warm up new timecounter (again) and get rolling. */
1326 	(void)timecounter->tc_get_timecount(timecounter);
1327 	(void)timecounter->tc_get_timecount(timecounter);
1328 }
1329