1 /* $OpenBSD: kern_timeout.c,v 1.101 2025/01/13 03:21:10 mvs Exp $ */
2 /*
3 * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
4 * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
17 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
19 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kthread.h>
31 #include <sys/proc.h>
32 #include <sys/timeout.h>
33 #include <sys/mutex.h>
34 #include <sys/kernel.h>
35 #include <sys/queue.h> /* _Q_INVALIDATE */
36 #include <sys/sysctl.h>
37 #include <sys/witness.h>
38
39 #ifdef DDB
40 #include <machine/db_machdep.h>
41 #include <ddb/db_interface.h>
42 #include <ddb/db_sym.h>
43 #include <ddb/db_output.h>
44 #endif
45
46 #include "kcov.h"
47 #if NKCOV > 0
48 #include <sys/kcov.h>
49 #endif
50
51 /*
52 * Locks used to protect global variables in this file:
53 *
54 * I immutable after initialization
55 * T timeout_mutex
56 */
57 struct mutex timeout_mutex = MUTEX_INITIALIZER(IPL_HIGH);
58
59 void *softclock_si; /* [I] softclock() interrupt handle */
60 struct timeoutstat tostat; /* [T] statistics and totals */
61
62 /*
63 * Timeouts are kept in a hierarchical timing wheel. The to_time is the value
64 * of the global variable "ticks" when the timeout should be called. There are
65 * four levels with 256 buckets each.
66 */
67 #define WHEELCOUNT 4
68 #define WHEELSIZE 256
69 #define WHEELMASK 255
70 #define WHEELBITS 8
71 #define BUCKETS (WHEELCOUNT * WHEELSIZE)
72
73 struct circq timeout_wheel[BUCKETS]; /* [T] Tick-based timeouts */
74 struct circq timeout_wheel_kc[BUCKETS]; /* [T] Clock-based timeouts */
75 struct circq timeout_new; /* [T] New, unscheduled timeouts */
76 struct circq timeout_todo; /* [T] Due or needs rescheduling */
77 struct circq timeout_proc; /* [T] Due + needs process context */
78 #ifdef MULTIPROCESSOR
79 struct circq timeout_proc_mp; /* [T] Process ctx + no kernel lock */
80 #endif
81
82 time_t timeout_level_width[WHEELCOUNT]; /* [I] Wheel level width (seconds) */
83 struct timespec tick_ts; /* [I] Length of a tick (1/hz secs) */
84
85 struct kclock {
86 struct timespec kc_lastscan; /* [T] Clock time at last wheel scan */
87 struct timespec kc_late; /* [T] Late if due prior */
88 struct timespec kc_offset; /* [T] Offset from primary kclock */
89 } timeout_kclock[KCLOCK_MAX];
90
91 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
92
93 #define BUCKET(rel, abs) \
94 (timeout_wheel[ \
95 ((rel) <= (1 << (2*WHEELBITS))) \
96 ? ((rel) <= (1 << WHEELBITS)) \
97 ? MASKWHEEL(0, (abs)) \
98 : MASKWHEEL(1, (abs)) + WHEELSIZE \
99 : ((rel) <= (1 << (3*WHEELBITS))) \
100 ? MASKWHEEL(2, (abs)) + 2*WHEELSIZE \
101 : MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
102
103 #define MOVEBUCKET(wheel, time) \
104 CIRCQ_CONCAT(&timeout_todo, \
105 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
106
107 /*
108 * Circular queue definitions.
109 */
110
111 #define CIRCQ_INIT(elem) do { \
112 (elem)->next = (elem); \
113 (elem)->prev = (elem); \
114 } while (0)
115
116 #define CIRCQ_INSERT_TAIL(list, elem) do { \
117 (elem)->prev = (list)->prev; \
118 (elem)->next = (list); \
119 (list)->prev->next = (elem); \
120 (list)->prev = (elem); \
121 tostat.tos_pending++; \
122 } while (0)
123
124 #define CIRCQ_CONCAT(fst, snd) do { \
125 if (!CIRCQ_EMPTY(snd)) { \
126 (fst)->prev->next = (snd)->next;\
127 (snd)->next->prev = (fst)->prev;\
128 (snd)->prev->next = (fst); \
129 (fst)->prev = (snd)->prev; \
130 CIRCQ_INIT(snd); \
131 } \
132 } while (0)
133
134 #define CIRCQ_REMOVE(elem) do { \
135 (elem)->next->prev = (elem)->prev; \
136 (elem)->prev->next = (elem)->next; \
137 _Q_INVALIDATE((elem)->prev); \
138 _Q_INVALIDATE((elem)->next); \
139 tostat.tos_pending--; \
140 } while (0)
141
142 #define CIRCQ_FIRST(elem) ((elem)->next)
143
144 #define CIRCQ_EMPTY(elem) (CIRCQ_FIRST(elem) == (elem))
145
146 #define CIRCQ_FOREACH(elem, list) \
147 for ((elem) = CIRCQ_FIRST(list); \
148 (elem) != (list); \
149 (elem) = CIRCQ_FIRST(elem))
150
151 #ifdef WITNESS
152 struct lock_object timeout_sleeplock_obj = {
153 .lo_name = "timeout",
154 .lo_flags = LO_WITNESS | LO_INITIALIZED | LO_SLEEPABLE |
155 (LO_CLASS_RWLOCK << LO_CLASSSHIFT)
156 };
157 struct lock_object timeout_spinlock_obj = {
158 .lo_name = "timeout",
159 .lo_flags = LO_WITNESS | LO_INITIALIZED |
160 (LO_CLASS_MUTEX << LO_CLASSSHIFT)
161 };
162 struct lock_type timeout_sleeplock_type = {
163 .lt_name = "timeout"
164 };
165 struct lock_type timeout_spinlock_type = {
166 .lt_name = "timeout"
167 };
168 #define TIMEOUT_LOCK_OBJ(needsproc) \
169 ((needsproc) ? &timeout_sleeplock_obj : &timeout_spinlock_obj)
170 #endif
171
172 void softclock(void *);
173 void softclock_create_thread(void *);
174 void softclock_process_kclock_timeout(struct timeout *, int);
175 void softclock_process_tick_timeout(struct timeout *, int);
176 void softclock_thread(void *);
177 #ifdef MULTIPROCESSOR
178 void softclock_thread_mp(void *);
179 #endif
180 void timeout_barrier_timeout(void *);
181 uint32_t timeout_bucket(const struct timeout *);
182 uint32_t timeout_maskwheel(uint32_t, const struct timespec *);
183 void timeout_run(struct timeout *);
184
185 /*
186 * The first thing in a struct timeout is its struct circq, so we
187 * can get back from a pointer to the latter to a pointer to the
188 * whole timeout with just a cast.
189 */
190 static inline struct timeout *
timeout_from_circq(struct circq * p)191 timeout_from_circq(struct circq *p)
192 {
193 return ((struct timeout *)(p));
194 }
195
196 static inline void
timeout_sync_order(int needsproc)197 timeout_sync_order(int needsproc)
198 {
199 WITNESS_CHECKORDER(TIMEOUT_LOCK_OBJ(needsproc), LOP_NEWORDER, NULL);
200 }
201
202 static inline void
timeout_sync_enter(int needsproc)203 timeout_sync_enter(int needsproc)
204 {
205 timeout_sync_order(needsproc);
206 WITNESS_LOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
207 }
208
209 static inline void
timeout_sync_leave(int needsproc)210 timeout_sync_leave(int needsproc)
211 {
212 WITNESS_UNLOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
213 }
214
215 /*
216 * Some of the "math" in here is a bit tricky.
217 *
218 * We have to beware of wrapping ints.
219 * We use the fact that any element added to the queue must be added with a
220 * positive time. That means that any element `to' on the queue cannot be
221 * scheduled to timeout further in time than INT_MAX, but to->to_time can
222 * be positive or negative so comparing it with anything is dangerous.
223 * The only way we can use the to->to_time value in any predictable way
224 * is when we calculate how far in the future `to' will timeout -
225 * "to->to_time - ticks". The result will always be positive for future
226 * timeouts and 0 or negative for due timeouts.
227 */
228
229 void
timeout_startup(void)230 timeout_startup(void)
231 {
232 int b, level;
233
234 CIRCQ_INIT(&timeout_new);
235 CIRCQ_INIT(&timeout_todo);
236 CIRCQ_INIT(&timeout_proc);
237 #ifdef MULTIPROCESSOR
238 CIRCQ_INIT(&timeout_proc_mp);
239 #endif
240 for (b = 0; b < nitems(timeout_wheel); b++)
241 CIRCQ_INIT(&timeout_wheel[b]);
242 for (b = 0; b < nitems(timeout_wheel_kc); b++)
243 CIRCQ_INIT(&timeout_wheel_kc[b]);
244
245 for (level = 0; level < nitems(timeout_level_width); level++)
246 timeout_level_width[level] = 2 << (level * WHEELBITS);
247 NSEC_TO_TIMESPEC(tick_nsec, &tick_ts);
248 }
249
250 void
timeout_proc_init(void)251 timeout_proc_init(void)
252 {
253 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
254 if (softclock_si == NULL)
255 panic("%s: unable to register softclock interrupt", __func__);
256
257 WITNESS_INIT(&timeout_sleeplock_obj, &timeout_sleeplock_type);
258 WITNESS_INIT(&timeout_spinlock_obj, &timeout_spinlock_type);
259
260 kthread_create_deferred(softclock_create_thread, NULL);
261 }
262
263 void
timeout_set(struct timeout * new,void (* fn)(void *),void * arg)264 timeout_set(struct timeout *new, void (*fn)(void *), void *arg)
265 {
266 timeout_set_flags(new, fn, arg, KCLOCK_NONE, 0);
267 }
268
269 void
timeout_set_flags(struct timeout * to,void (* fn)(void *),void * arg,int kclock,int flags)270 timeout_set_flags(struct timeout *to, void (*fn)(void *), void *arg, int kclock,
271 int flags)
272 {
273 KASSERT(!ISSET(flags, ~(TIMEOUT_PROC | TIMEOUT_MPSAFE)));
274 KASSERT(kclock >= KCLOCK_NONE && kclock < KCLOCK_MAX);
275
276 to->to_func = fn;
277 to->to_arg = arg;
278 to->to_kclock = kclock;
279 to->to_flags = flags | TIMEOUT_INITIALIZED;
280
281 /* For now, only process context timeouts may be marked MP-safe. */
282 if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
283 KASSERT(ISSET(to->to_flags, TIMEOUT_PROC));
284 }
285
286 void
timeout_set_proc(struct timeout * new,void (* fn)(void *),void * arg)287 timeout_set_proc(struct timeout *new, void (*fn)(void *), void *arg)
288 {
289 timeout_set_flags(new, fn, arg, KCLOCK_NONE, TIMEOUT_PROC);
290 }
291
292 int
timeout_add(struct timeout * new,int to_ticks)293 timeout_add(struct timeout *new, int to_ticks)
294 {
295 int old_time;
296 int ret = 1;
297
298 KASSERT(ISSET(new->to_flags, TIMEOUT_INITIALIZED));
299 KASSERT(new->to_kclock == KCLOCK_NONE);
300 KASSERT(to_ticks >= 0);
301
302 mtx_enter(&timeout_mutex);
303
304 /* Initialize the time here, it won't change. */
305 old_time = new->to_time;
306 new->to_time = to_ticks + ticks;
307 CLR(new->to_flags, TIMEOUT_TRIGGERED);
308
309 /*
310 * If this timeout already is scheduled and now is moved
311 * earlier, reschedule it now. Otherwise leave it in place
312 * and let it be rescheduled later.
313 */
314 if (ISSET(new->to_flags, TIMEOUT_ONQUEUE)) {
315 if (new->to_time - ticks < old_time - ticks) {
316 CIRCQ_REMOVE(&new->to_list);
317 CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
318 }
319 tostat.tos_readded++;
320 ret = 0;
321 } else {
322 SET(new->to_flags, TIMEOUT_ONQUEUE);
323 CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
324 }
325 #if NKCOV > 0
326 if (!kcov_cold)
327 new->to_process = curproc->p_p;
328 #endif
329 tostat.tos_added++;
330 mtx_leave(&timeout_mutex);
331
332 return ret;
333 }
334
335 static inline int
timeout_add_ticks(struct timeout * to,uint64_t to_ticks,int notzero)336 timeout_add_ticks(struct timeout *to, uint64_t to_ticks, int notzero)
337 {
338 if (to_ticks > INT_MAX)
339 to_ticks = INT_MAX;
340 else if (to_ticks == 0 && notzero)
341 to_ticks = 1;
342
343 return timeout_add(to, (int)to_ticks);
344 }
345
346 int
timeout_add_tv(struct timeout * to,const struct timeval * tv)347 timeout_add_tv(struct timeout *to, const struct timeval *tv)
348 {
349 uint64_t to_ticks;
350
351 to_ticks = (uint64_t)hz * tv->tv_sec + tv->tv_usec / tick;
352
353 return timeout_add_ticks(to, to_ticks, tv->tv_usec > 0);
354 }
355
356 int
timeout_add_sec(struct timeout * to,int secs)357 timeout_add_sec(struct timeout *to, int secs)
358 {
359 uint64_t to_ticks;
360
361 to_ticks = (uint64_t)hz * secs;
362
363 return timeout_add_ticks(to, to_ticks, 1);
364 }
365
366 int
timeout_add_msec(struct timeout * to,uint64_t msecs)367 timeout_add_msec(struct timeout *to, uint64_t msecs)
368 {
369 uint64_t to_ticks;
370
371 to_ticks = msecs * 1000 / tick;
372
373 return timeout_add_ticks(to, to_ticks, msecs > 0);
374 }
375
376 int
timeout_add_usec(struct timeout * to,uint64_t usecs)377 timeout_add_usec(struct timeout *to, uint64_t usecs)
378 {
379 uint64_t to_ticks;
380
381 to_ticks = usecs / tick;
382
383 return timeout_add_ticks(to, to_ticks, usecs > 0);
384 }
385
386 int
timeout_add_nsec(struct timeout * to,uint64_t nsecs)387 timeout_add_nsec(struct timeout *to, uint64_t nsecs)
388 {
389 uint64_t to_ticks;
390
391 to_ticks = nsecs / (tick * 1000);
392
393 return timeout_add_ticks(to, to_ticks, nsecs > 0);
394 }
395
396 int
timeout_abs_ts(struct timeout * to,const struct timespec * abstime)397 timeout_abs_ts(struct timeout *to, const struct timespec *abstime)
398 {
399 struct timespec old_abstime;
400 int ret = 1;
401
402 mtx_enter(&timeout_mutex);
403
404 KASSERT(ISSET(to->to_flags, TIMEOUT_INITIALIZED));
405 KASSERT(to->to_kclock == KCLOCK_UPTIME);
406
407 old_abstime = to->to_abstime;
408 to->to_abstime = *abstime;
409 CLR(to->to_flags, TIMEOUT_TRIGGERED);
410
411 if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
412 if (timespeccmp(abstime, &old_abstime, <)) {
413 CIRCQ_REMOVE(&to->to_list);
414 CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
415 }
416 tostat.tos_readded++;
417 ret = 0;
418 } else {
419 SET(to->to_flags, TIMEOUT_ONQUEUE);
420 CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
421 }
422 #if NKCOV > 0
423 if (!kcov_cold)
424 to->to_process = curproc->p_p;
425 #endif
426 tostat.tos_added++;
427
428 mtx_leave(&timeout_mutex);
429
430 return ret;
431 }
432
433 int
timeout_del(struct timeout * to)434 timeout_del(struct timeout *to)
435 {
436 int ret = 0;
437
438 mtx_enter(&timeout_mutex);
439 if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
440 CIRCQ_REMOVE(&to->to_list);
441 CLR(to->to_flags, TIMEOUT_ONQUEUE);
442 tostat.tos_cancelled++;
443 ret = 1;
444 }
445 CLR(to->to_flags, TIMEOUT_TRIGGERED);
446 tostat.tos_deleted++;
447 mtx_leave(&timeout_mutex);
448
449 return ret;
450 }
451
452 int
timeout_del_barrier(struct timeout * to)453 timeout_del_barrier(struct timeout *to)
454 {
455 int removed;
456
457 timeout_sync_order(ISSET(to->to_flags, TIMEOUT_PROC));
458
459 removed = timeout_del(to);
460 timeout_barrier(to);
461
462 return removed;
463 }
464
465 void
timeout_barrier(struct timeout * to)466 timeout_barrier(struct timeout *to)
467 {
468 struct timeout barrier;
469 struct cond c;
470 int flags;
471
472 flags = to->to_flags & (TIMEOUT_PROC | TIMEOUT_MPSAFE);
473 timeout_sync_order(ISSET(flags, TIMEOUT_PROC));
474
475 timeout_set_flags(&barrier, timeout_barrier_timeout, &c, KCLOCK_NONE,
476 flags);
477 barrier.to_process = curproc->p_p;
478 cond_init(&c);
479
480 mtx_enter(&timeout_mutex);
481
482 barrier.to_time = ticks;
483 SET(barrier.to_flags, TIMEOUT_ONQUEUE);
484 if (ISSET(flags, TIMEOUT_PROC)) {
485 #ifdef MULTIPROCESSOR
486 if (ISSET(flags, TIMEOUT_MPSAFE))
487 CIRCQ_INSERT_TAIL(&timeout_proc_mp, &barrier.to_list);
488 else
489 #endif
490 CIRCQ_INSERT_TAIL(&timeout_proc, &barrier.to_list);
491 } else
492 CIRCQ_INSERT_TAIL(&timeout_todo, &barrier.to_list);
493
494 mtx_leave(&timeout_mutex);
495
496 if (ISSET(flags, TIMEOUT_PROC)) {
497 #ifdef MULTIPROCESSOR
498 if (ISSET(flags, TIMEOUT_MPSAFE))
499 wakeup_one(&timeout_proc_mp);
500 else
501 #endif
502 wakeup_one(&timeout_proc);
503 } else
504 softintr_schedule(softclock_si);
505
506 cond_wait(&c, "tmobar");
507 }
508
509 void
timeout_barrier_timeout(void * arg)510 timeout_barrier_timeout(void *arg)
511 {
512 struct cond *c = arg;
513
514 cond_signal(c);
515 }
516
517 uint32_t
timeout_bucket(const struct timeout * to)518 timeout_bucket(const struct timeout *to)
519 {
520 struct timespec diff, shifted_abstime;
521 struct kclock *kc;
522 uint32_t level;
523
524 KASSERT(to->to_kclock == KCLOCK_UPTIME);
525 kc = &timeout_kclock[to->to_kclock];
526
527 KASSERT(timespeccmp(&kc->kc_lastscan, &to->to_abstime, <));
528 timespecsub(&to->to_abstime, &kc->kc_lastscan, &diff);
529 for (level = 0; level < nitems(timeout_level_width) - 1; level++) {
530 if (diff.tv_sec < timeout_level_width[level])
531 break;
532 }
533 timespecadd(&to->to_abstime, &kc->kc_offset, &shifted_abstime);
534 return level * WHEELSIZE + timeout_maskwheel(level, &shifted_abstime);
535 }
536
537 /*
538 * Hash the absolute time into a bucket on a given level of the wheel.
539 *
540 * The complete hash is 32 bits. The upper 25 bits are seconds, the
541 * lower 7 bits are nanoseconds. tv_nsec is a positive value less
542 * than one billion so we need to divide it to isolate the desired
543 * bits. We can't just shift it.
544 *
545 * The level is used to isolate an 8-bit portion of the hash. The
546 * resulting number indicates which bucket the absolute time belongs
547 * in on the given level of the wheel.
548 */
549 uint32_t
timeout_maskwheel(uint32_t level,const struct timespec * abstime)550 timeout_maskwheel(uint32_t level, const struct timespec *abstime)
551 {
552 uint32_t hi, lo;
553
554 hi = abstime->tv_sec << 7;
555 lo = abstime->tv_nsec / 7812500;
556
557 return ((hi | lo) >> (level * WHEELBITS)) & WHEELMASK;
558 }
559
560 /*
561 * This is called from hardclock() on the primary CPU at the start of
562 * every tick.
563 */
564 void
timeout_hardclock_update(void)565 timeout_hardclock_update(void)
566 {
567 struct timespec elapsed, now;
568 struct kclock *kc;
569 struct timespec *lastscan = &timeout_kclock[KCLOCK_UPTIME].kc_lastscan;
570 int b, done, first, i, last, level, need_softclock = 1, off;
571
572 mtx_enter(&timeout_mutex);
573
574 MOVEBUCKET(0, ticks);
575 if (MASKWHEEL(0, ticks) == 0) {
576 MOVEBUCKET(1, ticks);
577 if (MASKWHEEL(1, ticks) == 0) {
578 MOVEBUCKET(2, ticks);
579 if (MASKWHEEL(2, ticks) == 0)
580 MOVEBUCKET(3, ticks);
581 }
582 }
583
584 /*
585 * Dump the buckets that expired while we were away.
586 *
587 * If the elapsed time has exceeded a level's limit then we need
588 * to dump every bucket in the level. We have necessarily completed
589 * a lap of that level, too, so we need to process buckets in the
590 * next level.
591 *
592 * Otherwise we need to compare indices: if the index of the first
593 * expired bucket is greater than that of the last then we have
594 * completed a lap of the level and need to process buckets in the
595 * next level.
596 */
597 nanouptime(&now);
598 timespecsub(&now, lastscan, &elapsed);
599 for (level = 0; level < nitems(timeout_level_width); level++) {
600 first = timeout_maskwheel(level, lastscan);
601 if (elapsed.tv_sec >= timeout_level_width[level]) {
602 last = (first == 0) ? WHEELSIZE - 1 : first - 1;
603 done = 0;
604 } else {
605 last = timeout_maskwheel(level, &now);
606 done = first <= last;
607 }
608 off = level * WHEELSIZE;
609 for (b = first;; b = (b + 1) % WHEELSIZE) {
610 CIRCQ_CONCAT(&timeout_todo, &timeout_wheel_kc[off + b]);
611 if (b == last)
612 break;
613 }
614 if (done)
615 break;
616 }
617
618 /*
619 * Update the cached state for each kclock.
620 */
621 for (i = 0; i < nitems(timeout_kclock); i++) {
622 kc = &timeout_kclock[i];
623 timespecadd(&now, &kc->kc_offset, &kc->kc_lastscan);
624 timespecsub(&kc->kc_lastscan, &tick_ts, &kc->kc_late);
625 }
626
627 if (CIRCQ_EMPTY(&timeout_new) && CIRCQ_EMPTY(&timeout_todo))
628 need_softclock = 0;
629
630 mtx_leave(&timeout_mutex);
631
632 if (need_softclock)
633 softintr_schedule(softclock_si);
634 }
635
636 void
timeout_run(struct timeout * to)637 timeout_run(struct timeout *to)
638 {
639 void (*fn)(void *);
640 void *arg;
641 int needsproc;
642
643 MUTEX_ASSERT_LOCKED(&timeout_mutex);
644
645 CLR(to->to_flags, TIMEOUT_ONQUEUE);
646 SET(to->to_flags, TIMEOUT_TRIGGERED);
647
648 fn = to->to_func;
649 arg = to->to_arg;
650 needsproc = ISSET(to->to_flags, TIMEOUT_PROC);
651 #if NKCOV > 0
652 struct process *kcov_process = to->to_process;
653 #endif
654
655 mtx_leave(&timeout_mutex);
656 timeout_sync_enter(needsproc);
657 #if NKCOV > 0
658 kcov_remote_enter(KCOV_REMOTE_COMMON, kcov_process);
659 #endif
660 fn(arg);
661 #if NKCOV > 0
662 kcov_remote_leave(KCOV_REMOTE_COMMON, kcov_process);
663 #endif
664 timeout_sync_leave(needsproc);
665 mtx_enter(&timeout_mutex);
666 }
667
668 void
softclock_process_kclock_timeout(struct timeout * to,int new)669 softclock_process_kclock_timeout(struct timeout *to, int new)
670 {
671 struct kclock *kc = &timeout_kclock[to->to_kclock];
672
673 if (timespeccmp(&to->to_abstime, &kc->kc_lastscan, >)) {
674 tostat.tos_scheduled++;
675 if (!new)
676 tostat.tos_rescheduled++;
677 CIRCQ_INSERT_TAIL(&timeout_wheel_kc[timeout_bucket(to)],
678 &to->to_list);
679 return;
680 }
681 if (!new && timespeccmp(&to->to_abstime, &kc->kc_late, <=))
682 tostat.tos_late++;
683 if (ISSET(to->to_flags, TIMEOUT_PROC)) {
684 #ifdef MULTIPROCESSOR
685 if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
686 CIRCQ_INSERT_TAIL(&timeout_proc_mp, &to->to_list);
687 else
688 #endif
689 CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
690 return;
691 }
692 timeout_run(to);
693 tostat.tos_run_softclock++;
694 }
695
696 void
softclock_process_tick_timeout(struct timeout * to,int new)697 softclock_process_tick_timeout(struct timeout *to, int new)
698 {
699 int delta = to->to_time - ticks;
700
701 if (delta > 0) {
702 tostat.tos_scheduled++;
703 if (!new)
704 tostat.tos_rescheduled++;
705 CIRCQ_INSERT_TAIL(&BUCKET(delta, to->to_time), &to->to_list);
706 return;
707 }
708 if (!new && delta < 0)
709 tostat.tos_late++;
710 if (ISSET(to->to_flags, TIMEOUT_PROC)) {
711 #ifdef MULTIPROCESSOR
712 if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
713 CIRCQ_INSERT_TAIL(&timeout_proc_mp, &to->to_list);
714 else
715 #endif
716 CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
717 return;
718 }
719 timeout_run(to);
720 tostat.tos_run_softclock++;
721 }
722
723 /*
724 * Timeouts are processed here instead of timeout_hardclock_update()
725 * to avoid doing any more work at IPL_CLOCK than absolutely necessary.
726 * Down here at IPL_SOFTCLOCK other interrupts can be serviced promptly
727 * so the system remains responsive even if there is a surge of timeouts.
728 */
729 void
softclock(void * arg)730 softclock(void *arg)
731 {
732 struct timeout *first_new, *to;
733 int needsproc, new;
734 #ifdef MULTIPROCESSOR
735 int need_proc_mp;
736 #endif
737
738 first_new = NULL;
739 new = 0;
740
741 mtx_enter(&timeout_mutex);
742 if (!CIRCQ_EMPTY(&timeout_new))
743 first_new = timeout_from_circq(CIRCQ_FIRST(&timeout_new));
744 CIRCQ_CONCAT(&timeout_todo, &timeout_new);
745 while (!CIRCQ_EMPTY(&timeout_todo)) {
746 to = timeout_from_circq(CIRCQ_FIRST(&timeout_todo));
747 CIRCQ_REMOVE(&to->to_list);
748 if (to == first_new)
749 new = 1;
750 if (to->to_kclock == KCLOCK_NONE)
751 softclock_process_tick_timeout(to, new);
752 else if (to->to_kclock == KCLOCK_UPTIME)
753 softclock_process_kclock_timeout(to, new);
754 else {
755 panic("%s: invalid to_clock: %d",
756 __func__, to->to_kclock);
757 }
758 }
759 tostat.tos_softclocks++;
760 needsproc = !CIRCQ_EMPTY(&timeout_proc);
761 #ifdef MULTIPROCESSOR
762 need_proc_mp = !CIRCQ_EMPTY(&timeout_proc_mp);
763 #endif
764 mtx_leave(&timeout_mutex);
765
766 if (needsproc)
767 wakeup(&timeout_proc);
768 #ifdef MULTIPROCESSOR
769 if (need_proc_mp)
770 wakeup(&timeout_proc_mp);
771 #endif
772 }
773
774 void
softclock_create_thread(void * arg)775 softclock_create_thread(void *arg)
776 {
777 if (kthread_create(softclock_thread, NULL, NULL, "softclock"))
778 panic("fork softclock");
779 #ifdef MULTIPROCESSOR
780 if (kthread_create(softclock_thread_mp, NULL, NULL, "softclockmp"))
781 panic("kthread_create softclock_thread_mp");
782 #endif
783 }
784
785 void
softclock_thread(void * arg)786 softclock_thread(void *arg)
787 {
788 CPU_INFO_ITERATOR cii;
789 struct cpu_info *ci;
790 struct timeout *to;
791 int s;
792
793 KERNEL_ASSERT_LOCKED();
794
795 /* Be conservative for the moment */
796 CPU_INFO_FOREACH(cii, ci) {
797 if (CPU_IS_PRIMARY(ci))
798 break;
799 }
800 KASSERT(ci != NULL);
801 sched_peg_curproc(ci);
802
803 s = splsoftclock();
804 mtx_enter(&timeout_mutex);
805 for (;;) {
806 while (!CIRCQ_EMPTY(&timeout_proc)) {
807 to = timeout_from_circq(CIRCQ_FIRST(&timeout_proc));
808 CIRCQ_REMOVE(&to->to_list);
809 timeout_run(to);
810 tostat.tos_run_thread++;
811 }
812 tostat.tos_thread_wakeups++;
813 msleep_nsec(&timeout_proc, &timeout_mutex, PSWP, "tmoslp",
814 INFSLP);
815 }
816 splx(s);
817 }
818
819 #ifdef MULTIPROCESSOR
820 void
softclock_thread_mp(void * arg)821 softclock_thread_mp(void *arg)
822 {
823 struct timeout *to;
824
825 KERNEL_ASSERT_LOCKED();
826 KERNEL_UNLOCK();
827
828 mtx_enter(&timeout_mutex);
829 for (;;) {
830 while (!CIRCQ_EMPTY(&timeout_proc_mp)) {
831 to = timeout_from_circq(CIRCQ_FIRST(&timeout_proc_mp));
832 CIRCQ_REMOVE(&to->to_list);
833 timeout_run(to);
834 tostat.tos_run_thread++;
835 }
836 tostat.tos_thread_wakeups++;
837 msleep_nsec(&timeout_proc_mp, &timeout_mutex, PSWP, "tmoslp",
838 INFSLP);
839 }
840 }
841 #endif /* MULTIPROCESSOR */
842
843 #ifndef SMALL_KERNEL
844 void
timeout_adjust_ticks(int adj)845 timeout_adjust_ticks(int adj)
846 {
847 struct timeout *to;
848 struct circq *p;
849 int new_ticks, b;
850
851 /* adjusting the monotonic clock backwards would be a Bad Thing */
852 if (adj <= 0)
853 return;
854
855 mtx_enter(&timeout_mutex);
856 new_ticks = ticks + adj;
857 for (b = 0; b < nitems(timeout_wheel); b++) {
858 p = CIRCQ_FIRST(&timeout_wheel[b]);
859 while (p != &timeout_wheel[b]) {
860 to = timeout_from_circq(p);
861 p = CIRCQ_FIRST(p);
862
863 /* when moving a timeout forward need to reinsert it */
864 if (to->to_time - ticks < adj)
865 to->to_time = new_ticks;
866 CIRCQ_REMOVE(&to->to_list);
867 CIRCQ_INSERT_TAIL(&timeout_todo, &to->to_list);
868 }
869 }
870 ticks = new_ticks;
871 mtx_leave(&timeout_mutex);
872 }
873 #endif
874
875 int
timeout_sysctl(void * oldp,size_t * oldlenp,void * newp,size_t newlen)876 timeout_sysctl(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
877 {
878 struct timeoutstat status;
879
880 mtx_enter(&timeout_mutex);
881 memcpy(&status, &tostat, sizeof(status));
882 mtx_leave(&timeout_mutex);
883
884 return sysctl_rdstruct(oldp, oldlenp, newp, &status, sizeof(status));
885 }
886
887 #ifdef DDB
888 const char *db_kclock(int);
889 void db_show_callout_bucket(struct circq *);
890 void db_show_timeout(struct timeout *, struct circq *);
891 const char *db_timespec(const struct timespec *);
892
893 const char *
db_kclock(int kclock)894 db_kclock(int kclock)
895 {
896 switch (kclock) {
897 case KCLOCK_UPTIME:
898 return "uptime";
899 default:
900 return "invalid";
901 }
902 }
903
904 const char *
db_timespec(const struct timespec * ts)905 db_timespec(const struct timespec *ts)
906 {
907 static char buf[32];
908 struct timespec tmp, zero;
909
910 if (ts->tv_sec >= 0) {
911 snprintf(buf, sizeof(buf), "%lld.%09ld",
912 ts->tv_sec, ts->tv_nsec);
913 return buf;
914 }
915
916 timespecclear(&zero);
917 timespecsub(&zero, ts, &tmp);
918 snprintf(buf, sizeof(buf), "-%lld.%09ld", tmp.tv_sec, tmp.tv_nsec);
919 return buf;
920 }
921
922 void
db_show_callout_bucket(struct circq * bucket)923 db_show_callout_bucket(struct circq *bucket)
924 {
925 struct circq *p;
926
927 CIRCQ_FOREACH(p, bucket)
928 db_show_timeout(timeout_from_circq(p), bucket);
929 }
930
931 void
db_show_timeout(struct timeout * to,struct circq * bucket)932 db_show_timeout(struct timeout *to, struct circq *bucket)
933 {
934 struct timespec remaining;
935 struct kclock *kc;
936 char buf[8];
937 db_expr_t offset;
938 struct circq *wheel;
939 const char *name, *where;
940 int width = sizeof(long) * 2;
941
942 db_find_sym_and_offset((vaddr_t)to->to_func, &name, &offset);
943 name = name ? name : "?";
944 if (bucket == &timeout_new)
945 where = "new";
946 else if (bucket == &timeout_todo)
947 where = "softint";
948 else if (bucket == &timeout_proc)
949 where = "thread";
950 #ifdef MULTIPROCESSOR
951 else if (bucket == &timeout_proc_mp)
952 where = "thread-mp";
953 #endif
954 else {
955 if (to->to_kclock == KCLOCK_UPTIME)
956 wheel = timeout_wheel_kc;
957 else if (to->to_kclock == KCLOCK_NONE)
958 wheel = timeout_wheel;
959 else
960 goto invalid;
961 snprintf(buf, sizeof(buf), "%3ld/%1ld",
962 (bucket - wheel) % WHEELSIZE,
963 (bucket - wheel) / WHEELSIZE);
964 where = buf;
965 }
966 if (to->to_kclock == KCLOCK_UPTIME) {
967 kc = &timeout_kclock[to->to_kclock];
968 timespecsub(&to->to_abstime, &kc->kc_lastscan, &remaining);
969 db_printf("%20s %8s %9s 0x%0*lx %s\n",
970 db_timespec(&remaining), db_kclock(to->to_kclock), where,
971 width, (ulong)to->to_arg, name);
972 } else if (to->to_kclock == KCLOCK_NONE) {
973 db_printf("%20d %8s %9s 0x%0*lx %s\n",
974 to->to_time - ticks, "ticks", where,
975 width, (ulong)to->to_arg, name);
976 } else
977 goto invalid;
978 return;
979
980 invalid:
981 db_printf("%s: timeout 0x%p: invalid to_kclock: %d",
982 __func__, to, to->to_kclock);
983 }
984
985 void
db_show_callout(db_expr_t addr,int haddr,db_expr_t count,char * modif)986 db_show_callout(db_expr_t addr, int haddr, db_expr_t count, char *modif)
987 {
988 struct kclock *kc;
989 int width = sizeof(long) * 2 + 2;
990 int b, i;
991
992 db_printf("%20s %8s\n", "lastscan", "clock");
993 db_printf("%20d %8s\n", ticks, "ticks");
994 for (i = 0; i < nitems(timeout_kclock); i++) {
995 kc = &timeout_kclock[i];
996 db_printf("%20s %8s\n",
997 db_timespec(&kc->kc_lastscan), db_kclock(i));
998 }
999 db_printf("\n");
1000 db_printf("%20s %8s %9s %*s %s\n",
1001 "remaining", "clock", "wheel", width, "arg", "func");
1002 db_show_callout_bucket(&timeout_new);
1003 db_show_callout_bucket(&timeout_todo);
1004 db_show_callout_bucket(&timeout_proc);
1005 #ifdef MULTIPROCESSOR
1006 db_show_callout_bucket(&timeout_proc_mp);
1007 #endif
1008 for (b = 0; b < nitems(timeout_wheel); b++)
1009 db_show_callout_bucket(&timeout_wheel[b]);
1010 for (b = 0; b < nitems(timeout_wheel_kc); b++)
1011 db_show_callout_bucket(&timeout_wheel_kc[b]);
1012 }
1013 #endif
1014