xref: /openbsd/gnu/usr.bin/perl/lib/Benchmark.pm (revision 3d61058a)
1package Benchmark;
2
3use strict;
4
5
6=head1 NAME
7
8Benchmark - benchmark running times of Perl code
9
10=head1 SYNOPSIS
11
12    use Benchmark qw(:all) ;
13
14    timethis ($count, "code");
15
16    # Use Perl code in strings...
17    timethese($count, {
18	'Name1' => '...code1...',
19	'Name2' => '...code2...',
20    });
21
22    # ... or use subroutine references.
23    timethese($count, {
24	'Name1' => sub { ...code1... },
25	'Name2' => sub { ...code2... },
26    });
27
28    # cmpthese can be used both ways as well
29    cmpthese($count, {
30	'Name1' => '...code1...',
31	'Name2' => '...code2...',
32    });
33
34    cmpthese($count, {
35	'Name1' => sub { ...code1... },
36	'Name2' => sub { ...code2... },
37    });
38
39    # ...or in two stages
40    $results = timethese($count,
41        {
42	    'Name1' => sub { ...code1... },
43	    'Name2' => sub { ...code2... },
44        },
45	'none'
46    );
47    cmpthese( $results ) ;
48
49    $t = timeit($count, '...other code...')
50    print "$count loops of other code took:",timestr($t),"\n";
51
52    $t = countit($time, '...other code...')
53    $count = $t->iters ;
54    print "$count loops of other code took:",timestr($t),"\n";
55
56    # enable hires wallclock timing if possible
57    use Benchmark ':hireswallclock';
58
59=head1 DESCRIPTION
60
61The Benchmark module encapsulates a number of routines to help you
62figure out how long it takes to execute some code.
63
64timethis - run a chunk of code several times
65
66timethese - run several chunks of code several times
67
68cmpthese - print results of timethese as a comparison chart
69
70timeit - run a chunk of code and see how long it goes
71
72countit - see how many times a chunk of code runs in a given time
73
74
75=head2 Methods
76
77=over 10
78
79=item new
80
81Returns the current time.   Example:
82
83    use Benchmark;
84    $t0 = Benchmark->new;
85    # ... your code here ...
86    $t1 = Benchmark->new;
87    $td = timediff($t1, $t0);
88    print "the code took:",timestr($td),"\n";
89
90=item debug
91
92Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
93
94    Benchmark->debug(1);
95    $t = timeit(10, ' 5 ** $Global ');
96    Benchmark->debug(0);
97
98=item iters
99
100Returns the number of iterations.
101
102=back
103
104=head2 Standard Exports
105
106The following routines will be exported into your namespace
107if you use the Benchmark module:
108
109=over 10
110
111=item timeit(COUNT, CODE)
112
113Arguments: COUNT is the number of times to run the loop, and CODE is
114the code to run.  CODE may be either a code reference or a string to
115be eval'd; either way it will be run in the caller's package.
116
117Returns: a Benchmark object.
118
119=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
120
121Time COUNT iterations of CODE. CODE may be a string to eval or a
122code reference; either way the CODE will run in the caller's package.
123Results will be printed to STDOUT as TITLE followed by the times.
124TITLE defaults to "timethis COUNT" if none is provided. STYLE
125determines the format of the output, as described for timestr() below.
126
127The COUNT can be zero or negative: this means the I<minimum number of
128CPU seconds> to run.  A zero signifies the default of 3 seconds.  For
129example to run at least for 10 seconds:
130
131	timethis(-10, $code)
132
133or to run two pieces of code tests for at least 3 seconds:
134
135	timethese(0, { test1 => '...', test2 => '...'})
136
137CPU seconds is, in UNIX terms, the user time plus the system time of
138the process itself, as opposed to the real (wallclock) time and the
139time spent by the child processes.  Less than 0.1 seconds is not
140accepted (-0.01 as the count, for example, will cause a fatal runtime
141exception).
142
143Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144other operating system factors may complicate the attempt so that a
145little bit more time is spent.  The benchmark output will, however,
146also tell the number of C<$code> runs/second, which should be a more
147interesting number than the actually spent seconds.
148
149Returns a Benchmark object.
150
151=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
152
153The CODEHASHREF is a reference to a hash containing names as keys
154and either a string to eval or a code reference for each value.
155For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156call
157
158	timethis(COUNT, VALUE, KEY, STYLE)
159
160The routines are called in string comparison order of KEY.
161
162The COUNT can be zero or negative, see timethis().
163
164Returns a hash reference of Benchmark objects, keyed by name.
165
166=item timediff ( T1, T2 )
167
168Returns the difference between two Benchmark times as a Benchmark
169object suitable for passing to timestr().
170
171=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
172
173Returns a string that formats the times in the TIMEDIFF object in
174the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175similar to that returned by timediff().
176
177STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178each of the 5 times available ('wallclock' time, user time, system time,
179user time of children, and system time of children). 'noc' shows all
180except the two children times. 'nop' shows only wallclock and the
181two children times. 'auto' (the default) will act as 'all' unless
182the children times are both zero, in which case it acts as 'noc'.
183'none' prevents output.
184
185FORMAT is the L<printf(3)>-style format specifier (without the
186leading '%') to use to print the times. It defaults to '5.2f'.
187
188=back
189
190=head2 Optional Exports
191
192The following routines will be exported into your namespace
193if you specifically ask that they be imported:
194
195=over 10
196
197=item clearcache ( COUNT )
198
199Clear the cached time for COUNT rounds of the null loop.
200
201=item clearallcache ( )
202
203Clear all cached times.
204
205=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
206
207=item cmpthese ( RESULTSHASHREF, [ STYLE ] )
208
209Optionally calls timethese(), then outputs comparison chart.  This:
210
211    cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
212
213outputs a chart like:
214
215           Rate    b    a
216    b 2831802/s   -- -61%
217    a 7208959/s 155%   --
218
219This chart is sorted from slowest to fastest, and shows the percent speed
220difference between each pair of tests.
221
222C<cmpthese> can also be passed the data structure that timethese() returns:
223
224    $results = timethese( -1,
225        { a => "++\$i", b => "\$i *= 2" } ) ;
226    cmpthese( $results );
227
228in case you want to see both sets of results.
229If the first argument is an unblessed hash reference,
230that is RESULTSHASHREF; otherwise that is COUNT.
231
232Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
233above chart, including labels. This:
234
235    my $rows = cmpthese( -1,
236        { a => '++$i', b => '$i *= 2' }, "none" );
237
238returns a data structure like:
239
240    [
241        [ '',       'Rate',   'b',    'a' ],
242        [ 'b', '2885232/s',  '--', '-59%' ],
243        [ 'a', '7099126/s', '146%',  '--' ],
244    ]
245
246B<NOTE>: This result value differs from previous versions, which returned
247the C<timethese()> result structure.  If you want that, just use the two
248statement C<timethese>...C<cmpthese> idiom shown above.
249
250Incidentally, note the variance in the result values between the two examples;
251this is typical of benchmarking.  If this were a real benchmark, you would
252probably want to run a lot more iterations.
253
254=item countit(TIME, CODE)
255
256Arguments: TIME is the minimum length of time to run CODE for, and CODE is
257the code to run.  CODE may be either a code reference or a string to
258be eval'd; either way it will be run in the caller's package.
259
260TIME is I<not> negative.  countit() will run the loop many times to
261calculate the speed of CODE before running it for TIME.  The actual
262time run for will usually be greater than TIME due to system clock
263resolution, so it's best to look at the number of iterations divided
264by the times that you are concerned with, not just the iterations.
265
266Returns: a Benchmark object.
267
268=item disablecache ( )
269
270Disable caching of timings for the null loop. This will force Benchmark
271to recalculate these timings for each new piece of code timed.
272
273=item enablecache ( )
274
275Enable caching of timings for the null loop. The time taken for COUNT
276rounds of the null loop will be calculated only once for each
277different COUNT used.
278
279=item timesum ( T1, T2 )
280
281Returns the sum of two Benchmark times as a Benchmark object suitable
282for passing to timestr().
283
284=back
285
286=head2 :hireswallclock
287
288If the Time::HiRes module has been installed, you can specify the
289special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
290available, the tag will be silently ignored).  This tag will cause the
291wallclock time to be measured in microseconds, instead of integer
292seconds.  Note though that the speed computations are still conducted
293in CPU time, not wallclock time.
294
295=head1 Benchmark Object
296
297Many of the functions in this module return a Benchmark object,
298or in the case of C<timethese()>, a reference to a hash, the values of
299which are Benchmark objects.  This is useful if you want to store or
300further process results from Benchmark functions.
301
302Internally the Benchmark object holds timing values,
303described in L</"NOTES"> below.
304The following methods can be used to access them:
305
306=over 4
307
308=item cpu_p
309
310Total CPU (User + System) of the main (parent) process.
311
312=item cpu_c
313
314Total CPU (User + System) of any children processes.
315
316=item cpu_a
317
318Total CPU of parent and any children processes.
319
320=item real
321
322Real elapsed time "wallclock seconds".
323
324=item iters
325
326Number of iterations run.
327
328=back
329
330The following illustrates use of the Benchmark object:
331
332    $result = timethis(100000, sub { ... });
333    print "total CPU = ", $result->cpu_a, "\n";
334
335=head1 NOTES
336
337The data is stored as a list of values from the time and times
338functions:
339
340      ($real, $user, $system, $children_user, $children_system, $iters)
341
342in seconds for the whole loop (not divided by the number of rounds).
343
344The timing is done using time(3) and times(3).
345
346Code is executed in the caller's package.
347
348The time of the null loop (a loop with the same
349number of rounds but empty loop body) is subtracted
350from the time of the real loop.
351
352The null loop times can be cached, the key being the
353number of rounds. The caching can be controlled using
354calls like these:
355
356    clearcache($key);
357    clearallcache();
358
359    disablecache();
360    enablecache();
361
362Caching is off by default, as it can (usually slightly) decrease
363accuracy and does not usually noticeably affect runtimes.
364
365=head1 EXAMPLES
366
367For example,
368
369    use Benchmark qw( cmpthese ) ;
370    $x = 3;
371    cmpthese( -5, {
372        a => sub{$x*$x},
373        b => sub{$x**2},
374    } );
375
376outputs something like this:
377
378   Benchmark: running a, b, each for at least 5 CPU seconds...
379          Rate    b    a
380   b 1559428/s   -- -62%
381   a 4152037/s 166%   --
382
383
384while
385
386    use Benchmark qw( timethese cmpthese ) ;
387    $x = 3;
388    $r = timethese( -5, {
389        a => sub{$x*$x},
390        b => sub{$x**2},
391    } );
392    cmpthese $r;
393
394outputs something like this:
395
396    Benchmark: running a, b, each for at least 5 CPU seconds...
397             a: 10 wallclock secs ( 5.14 usr +  0.13 sys =  5.27 CPU) @ 3835055.60/s (n=20210743)
398             b:  5 wallclock secs ( 5.41 usr +  0.00 sys =  5.41 CPU) @ 1574944.92/s (n=8520452)
399           Rate    b    a
400    b 1574945/s   -- -59%
401    a 3835056/s 144%   --
402
403
404=head1 INHERITANCE
405
406Benchmark inherits from no other class, except of course
407from Exporter.
408
409=head1 CAVEATS
410
411Comparing eval'd strings with code references will give you
412inaccurate results: a code reference will show a slightly slower
413execution time than the equivalent eval'd string.
414
415The real time timing is done using time(2) and
416the granularity is therefore only one second.
417
418Short tests may produce negative figures because perl
419can appear to take longer to execute the empty loop
420than a short test; try:
421
422    timethis(100,'1');
423
424The system time of the null loop might be slightly
425more than the system time of the loop with the actual
426code and therefore the difference might end up being E<lt> 0.
427
428=head1 SEE ALSO
429
430L<Devel::NYTProf> - a Perl code profiler
431
432=head1 AUTHORS
433
434Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
435
436=head1 MODIFICATION HISTORY
437
438September 8th, 1994; by Tim Bunce.
439
440March 28th, 1997; by Hugo van der Sanden: added support for code
441references and the already documented 'debug' method; revamped
442documentation.
443
444April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
445functionality.
446
447September, 1999; by Barrie Slaymaker: math fixes and accuracy and
448efficiency tweaks.  Added cmpthese().  A result is now returned from
449timethese().  Exposed countit() (was runfor()).
450
451December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
452and return an empty string. If cmpthese is calling timethese, make it pass the
453style in. (so that 'none' will suppress output). Make sub new dump its
454debugging output to STDERR, to be consistent with everything else.
455All bugs found while writing a regression test.
456
457September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
458
459February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
460statistics for children instead of parent when the style is 'nop'.
461
462November, 2007; by Christophe Grosjean: make cmpthese and timestr compute
463time consistently with style argument, default is 'all' not 'noc' any more.
464
465=cut
466
467# evaluate something in a clean lexical environment
468sub _doeval { no strict;  eval shift }
469
470#
471# put any lexicals at file scope AFTER here
472#
473
474use Carp;
475use Exporter;
476
477our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
478
479@ISA=qw(Exporter);
480@EXPORT=qw(timeit timethis timethese timediff timestr);
481@EXPORT_OK=qw(timesum cmpthese countit
482	      clearcache clearallcache disablecache enablecache);
483%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
484
485$VERSION = 1.25;
486
487# --- ':hireswallclock' special handling
488
489my $hirestime;
490
491sub mytime () { time }
492
493init();
494
495sub BEGIN {
496    if (eval 'require Time::HiRes') {
497	Time::HiRes->import('time');
498	$hirestime = \&Time::HiRes::time;
499    }
500}
501
502sub import {
503    my $class = shift;
504    if (grep { $_ eq ":hireswallclock" } @_) {
505	@_ = grep { $_ ne ":hireswallclock" } @_;
506	local $^W=0;
507	*mytime = $hirestime if defined $hirestime;
508    }
509    Benchmark->export_to_level(1, $class, @_);
510}
511
512our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
513    %_Usage, %Cache, $Do_Cache);
514
515sub init {
516    $Debug = 0;
517    $Min_Count = 4;
518    $Min_CPU   = 0.4;
519    $Default_Format = '5.2f';
520    $Default_Style = 'auto';
521    # The cache can cause a slight loss of sys time accuracy. If a
522    # user does many tests (>10) with *very* large counts (>10000)
523    # or works on a very slow machine the cache may be useful.
524    disablecache();
525    clearallcache();
526}
527
528sub debug { $Debug = ($_[1] != 0); }
529
530sub usage {
531    my $calling_sub = (caller(1))[3];
532    $calling_sub =~ s/^Benchmark:://;
533    return $_Usage{$calling_sub} || '';
534}
535
536# The cache needs two branches: 's' for strings and 'c' for code.  The
537# empty loop is different in these two cases.
538
539$_Usage{clearcache} = <<'USAGE';
540usage: clearcache($count);
541USAGE
542
543sub clearcache    {
544    die usage unless @_ == 1;
545    delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
546}
547
548$_Usage{clearallcache} = <<'USAGE';
549usage: clearallcache();
550USAGE
551
552sub clearallcache {
553    die usage if @_;
554    %Cache = ();
555}
556
557$_Usage{enablecache} = <<'USAGE';
558usage: enablecache();
559USAGE
560
561sub enablecache   {
562    die usage if @_;
563    $Do_Cache = 1;
564}
565
566$_Usage{disablecache} = <<'USAGE';
567usage: disablecache();
568USAGE
569
570sub disablecache  {
571    die usage if @_;
572    $Do_Cache = 0;
573}
574
575
576# --- Functions to process the 'time' data type
577
578sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
579	  print STDERR "new=@t\n" if $Debug;
580	  bless \@t; }
581
582sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps         ; }
583sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]};         $cu+$cs ; }
584sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
585sub real  { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r              ; }
586sub iters { $_[0]->[5] ; }
587
588# return the sum of various times: which ones depending on $style
589
590sub elapsed {
591    my ($self, $style) = @_;
592    $style = "" unless defined $style;
593
594    return $self->cpu_c if $style eq 'nop';
595    return $self->cpu_p if $style eq 'noc';
596    return $self->cpu_a;
597}
598
599
600$_Usage{timediff} = <<'USAGE';
601usage: $result_diff = timediff($result1, $result2);
602USAGE
603
604sub timediff {
605    my($a, $b) = @_;
606
607    die usage unless ref $a and ref $b;
608
609    my @r;
610    for (my $i=0; $i < @$a; ++$i) {
611	push(@r, $a->[$i] - $b->[$i]);
612    }
613    #die "Bad timediff(): ($r[1] + $r[2]) <= 0 (@$a[1,2]|@$b[1,2])\n"
614    #        if ($r[1] + $r[2]) < 0;
615    bless \@r;
616}
617
618$_Usage{timesum} = <<'USAGE';
619usage: $sum = timesum($result1, $result2);
620USAGE
621
622sub timesum {
623    my($a, $b) = @_;
624
625    die usage unless ref $a and ref $b;
626
627    my @r;
628    for (my $i=0; $i < @$a; ++$i) {
629 	push(@r, $a->[$i] + $b->[$i]);
630    }
631    bless \@r;
632}
633
634
635$_Usage{timestr} = <<'USAGE';
636usage: $formatted_result = timestr($result1);
637USAGE
638
639sub timestr {
640    my($tr, $style, $f) = @_;
641
642    die usage unless ref $tr;
643
644    my @t = @$tr;
645    warn "bad time value (@t)" unless @t==6;
646    my($r, $pu, $ps, $cu, $cs, $n) = @t;
647    my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
648    $f = $Default_Format unless defined $f;
649    # format a time in the required style, other formats may be added here
650    $style ||= $Default_Style;
651    return '' if $style eq 'none';
652    $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
653    my $s = "@t $style"; # default for unknown style
654    my $w = $hirestime ? "%2g" : "%2d";
655    $s = sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
656			    $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
657    $s = sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
658			    $r,$pu,$ps,$pt) if $style eq 'noc';
659    $s = sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
660			    $r,$cu,$cs,$ct) if $style eq 'nop';
661    my $elapsed = $tr->elapsed($style);
662    $s .= sprintf(" @ %$f/s (n=$n)",$n/($elapsed)) if $n && $elapsed;
663    $s;
664}
665
666sub timedebug {
667    my($msg, $t) = @_;
668    print STDERR "$msg",timestr($t),"\n" if $Debug;
669}
670
671# --- Functions implementing low-level support for timing loops
672
673$_Usage{runloop} = <<'USAGE';
674usage: runloop($number, [$string | $coderef])
675USAGE
676
677sub runloop {
678    my($n, $c) = @_;
679
680    $n+=0; # force numeric now, so garbage won't creep into the eval
681    croak "negative loopcount $n" if $n<0;
682    confess usage unless defined $c;
683    my($t0, $t1, $td); # before, after, difference
684
685    # find package of caller so we can execute code there
686    my $curpack = caller(0);
687    my($i, $pack)= 0;
688    while ($pack = caller(++$i)) {
689	last if $pack ne $curpack;
690    }
691
692    my ($subcode, $subref);
693    if (ref $c eq 'CODE') {
694	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
695        $subref  = eval $subcode;
696    }
697    else {
698	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
699        $subref  = _doeval($subcode);
700    }
701    croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
702    print STDERR "runloop $n '$subcode'\n" if $Debug;
703
704    # Wait for the user timer to tick.  This makes the error range more like
705    # -0.01, +0.  If we don't wait, then it's more like -0.01, +0.01.  This
706    # may not seem important, but it significantly reduces the chances of
707    # getting a too low initial $n in the initial, 'find the minimum' loop
708    # in &countit.  This, in turn, can reduce the number of calls to
709    # &runloop a lot, and thus reduce additive errors.
710    #
711    # Note that its possible for the act of reading the system clock to
712    # burn lots of system CPU while we burn very little user clock in the
713    # busy loop, which can cause the loop to run for a very long wall time.
714    # So gradually ramp up the duration of the loop. See RT #122003
715    #
716    my $tbase = Benchmark->new(0)->[1];
717    my $limit = 1;
718    while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {
719        for (my $i=0; $i < $limit; $i++) { my $x = $i / 1.5 } # burn user CPU
720        $limit *= 1.1;
721    }
722    $subref->();
723    $t1 = Benchmark->new($n);
724    $td = &timediff($t1, $t0);
725    timedebug("runloop:",$td);
726    $td;
727}
728
729$_Usage{timeit} = <<'USAGE';
730usage: $result = timeit($count, 'code' );        or
731       $result = timeit($count, sub { code } );
732USAGE
733
734sub timeit {
735    my($n, $code) = @_;
736    my($wn, $wc, $wd);
737
738    die usage unless defined $code and
739                     (!ref $code or ref $code eq 'CODE');
740
741    printf STDERR "timeit $n $code\n" if $Debug;
742    my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
743    if ($Do_Cache && exists $Cache{$cache_key} ) {
744	$wn = $Cache{$cache_key};
745    } else {
746	$wn = &runloop($n, ref( $code ) ? sub { } : '' );
747	# Can't let our baseline have any iterations, or they get subtracted
748	# out of the result.
749	$wn->[5] = 0;
750	$Cache{$cache_key} = $wn;
751    }
752
753    $wc = &runloop($n, $code);
754
755    $wd = timediff($wc, $wn);
756    timedebug("timeit: ",$wc);
757    timedebug("      - ",$wn);
758    timedebug("      = ",$wd);
759
760    $wd;
761}
762
763
764my $default_for = 3;
765my $min_for     = 0.1;
766
767
768$_Usage{countit} = <<'USAGE';
769usage: $result = countit($time, 'code' );        or
770       $result = countit($time, sub { code } );
771USAGE
772
773sub countit {
774    my ( $tmax, $code ) = @_;
775
776    die usage unless @_;
777
778    if ( not defined $tmax or $tmax == 0 ) {
779	$tmax = $default_for;
780    } elsif ( $tmax < 0 ) {
781	$tmax = -$tmax;
782    }
783
784    die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
785	if $tmax < $min_for;
786
787    my ($n, $tc);
788
789    # First find the minimum $n that gives a significant timing.
790    my $zeros=0;
791    for ($n = 1; ; $n *= 2 ) {
792	my $t0 = Benchmark->new(0);
793	my $td = timeit($n, $code);
794	my $t1 = Benchmark->new(0);
795	$tc = $td->[1] + $td->[2];
796	if ( $tc <= 0 and $n > 1024 ) {
797	    my $d = timediff($t1, $t0);
798	    # note that $d is the total CPU time taken to call timeit(),
799	    # while $tc is the difference in CPU secs between the empty run
800	    # and the code run. If the code is trivial, its possible
801	    # for $d to get large while $tc is still zero (or slightly
802	    # negative). Bail out once timeit() starts taking more than a
803	    # few seconds without noticeable difference.
804	    if ($d->[1] + $d->[2] > 8
805		|| ++$zeros > 16)
806	    {
807	        die "Timing is consistently zero in estimation loop, cannot benchmark. N=$n\n";
808            }
809	} else {
810	    $zeros = 0;
811	}
812	last if $tc > 0.1;
813    }
814
815    my $nmin = $n;
816
817    # Get $n high enough that we can guess the final $n with some accuracy.
818    my $tpra = 0.1 * $tmax; # Target/time practice.
819    while ( $tc < $tpra ) {
820	# The 5% fudge is to keep us from iterating again all
821	# that often (this speeds overall responsiveness when $tmax is big
822	# and we guess a little low).  This does not noticeably affect
823	# accuracy since we're not counting these times.
824	$n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
825	my $td = timeit($n, $code);
826	my $new_tc = $td->[1] + $td->[2];
827        # Make sure we are making progress.
828        $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
829    }
830
831    # Now, do the 'for real' timing(s), repeating until we exceed
832    # the max.
833    my $ntot  = 0;
834    my $rtot  = 0;
835    my $utot  = 0.0;
836    my $stot  = 0.0;
837    my $cutot = 0.0;
838    my $cstot = 0.0;
839    my $ttot  = 0.0;
840
841    # The 5% fudge is because $n is often a few % low even for routines
842    # with stable times and avoiding extra timeit()s is nice for
843    # accuracy's sake.
844    $n = int( $n * ( 1.05 * $tmax / $tc ) );
845    $zeros=0;
846    while () {
847	my $td = timeit($n, $code);
848	$ntot  += $n;
849	$rtot  += $td->[0];
850	$utot  += $td->[1];
851	$stot  += $td->[2];
852	$cutot += $td->[3];
853	$cstot += $td->[4];
854	$ttot = $utot + $stot;
855	last if $ttot >= $tmax;
856	if ( $ttot <= 0 ) {
857	    ++$zeros > 16
858	        and die "Timing is consistently zero, cannot benchmark. N=$n\n";
859	} else {
860	    $zeros = 0;
861	}
862        $ttot = 0.01 if $ttot < 0.01;
863	my $r = $tmax / $ttot - 1; # Linear approximation.
864	$n = int( $r * $ntot );
865	$n = $nmin if $n < $nmin;
866    }
867
868    return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
869}
870
871# --- Functions implementing high-level time-then-print utilities
872
873sub n_to_for {
874    my $n = shift;
875    return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
876}
877
878$_Usage{timethis} = <<'USAGE';
879usage: $result = timethis($time, 'code' );        or
880       $result = timethis($time, sub { code } );
881USAGE
882
883sub timethis{
884    my($n, $code, $title, $style) = @_;
885    my($t, $forn);
886
887    die usage unless defined $code and
888                     (!ref $code or ref $code eq 'CODE');
889
890    if ( $n > 0 ) {
891	croak "non-integer loopcount $n, stopped" if int($n)<$n;
892	$t = timeit($n, $code);
893	$title = "timethis $n" unless defined $title;
894    } else {
895	my $fort  = n_to_for( $n );
896	$t     = countit( $fort, $code );
897	$title = "timethis for $fort" unless defined $title;
898	$forn  = $t->[-1];
899    }
900    local $| = 1;
901    $style = "" unless defined $style;
902    printf("%10s: ", $title) unless $style eq 'none';
903    print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
904
905    $n = $forn if defined $forn;
906
907    if ($t->elapsed($style) < 0) {
908        # due to clock granularity and variable CPU speed and load,
909        # on quick code with a small number of loops, it's possible for
910        # the empty loop to appear to take longer than the real loop
911        # (e.g. 1 tick versus 0 ticks). This leads to a negative elapsed
912        # time. In this case, floor it at zero, to stop bizarre results.
913        print "            (warning: too few iterations for a reliable count)\n";
914        $t->[$_] = 0 for 1..4;
915    }
916
917    # A conservative warning to spot very silly tests.
918    # Don't assume that your benchmark is ok simply because
919    # you don't get this warning!
920    print "            (warning: too few iterations for a reliable count)\n"
921	if     $n < $Min_Count
922	    || ($t->real < 1 && $n < 1000)
923	    || $t->cpu_a < $Min_CPU;
924    $t;
925}
926
927
928$_Usage{timethese} = <<'USAGE';
929usage: timethese($count, { Name1 => 'code1', ... });        or
930       timethese($count, { Name1 => sub { code1 }, ... });
931USAGE
932
933sub timethese{
934    my($n, $alt, $style) = @_;
935    die usage unless ref $alt eq 'HASH';
936
937    my @names = sort keys %$alt;
938    $style = "" unless defined $style;
939    print "Benchmark: " unless $style eq 'none';
940    if ( $n > 0 ) {
941	croak "non-integer loopcount $n, stopped" if int($n)<$n;
942	print "timing $n iterations of" unless $style eq 'none';
943    } else {
944	print "running" unless $style eq 'none';
945    }
946    print " ", join(', ',@names) unless $style eq 'none';
947    unless ( $n > 0 ) {
948	my $for = n_to_for( $n );
949	print ", each" if $n > 1 && $style ne 'none';
950	print " for at least $for CPU seconds" unless $style eq 'none';
951    }
952    print "...\n" unless $style eq 'none';
953
954    # we could save the results in an array and produce a summary here
955    # sum, min, max, avg etc etc
956    my %results;
957    foreach my $name (@names) {
958        $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
959    }
960
961    return \%results;
962}
963
964
965$_Usage{cmpthese} = <<'USAGE';
966usage: cmpthese($count, { Name1 => 'code1', ... });        or
967       cmpthese($count, { Name1 => sub { code1 }, ... });  or
968       cmpthese($result, $style);
969USAGE
970
971sub cmpthese{
972    my ($results, $style);
973
974    # $count can be a blessed object.
975    if ( ref $_[0] eq 'HASH' ) {
976        ($results, $style) = @_;
977    }
978    else {
979        my($count, $code) = @_[0,1];
980        $style = $_[2] if defined $_[2];
981
982        die usage unless ref $code eq 'HASH';
983
984        $results = timethese($count, $code, ($style || "none"));
985    }
986
987    $style = "" unless defined $style;
988
989    # Flatten in to an array of arrays with the name as the first field
990    my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
991
992    for (@vals) {
993        # recreate the pre-flattened Benchmark object
994        my $tmp_bm = bless [ @{$_}[1..$#$_] ];
995	my $elapsed = $tmp_bm->elapsed($style);
996	# The epsilon fudge here is to prevent div by 0.  Since clock
997	# resolutions are much larger, it's below the noise floor.
998	my $rate = $_->[6]/(($elapsed)+0.000000000000001);
999	$_->[7] = $rate;
1000    }
1001
1002    # Sort by rate
1003    @vals = sort { $a->[7] <=> $b->[7] } @vals;
1004
1005    # If more than half of the rates are greater than one...
1006    my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
1007
1008    my @rows;
1009    my @col_widths;
1010
1011    my @top_row = (
1012        '',
1013	$display_as_rate ? 'Rate' : 's/iter',
1014	map { $_->[0] } @vals
1015    );
1016
1017    push @rows, \@top_row;
1018    @col_widths = map { length( $_ ) } @top_row;
1019
1020    # Build the data rows
1021    # We leave the last column in even though it never has any data.  Perhaps
1022    # it should go away.  Also, perhaps a style for a single column of
1023    # percentages might be nice.
1024    for my $row_val ( @vals ) {
1025	my @row;
1026
1027        # Column 0 = test name
1028	push @row, $row_val->[0];
1029	$col_widths[0] = length( $row_val->[0] )
1030	    if length( $row_val->[0] ) > $col_widths[0];
1031
1032        # Column 1 = performance
1033	my $row_rate = $row_val->[7];
1034
1035	# We assume that we'll never get a 0 rate.
1036	my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
1037
1038	# Only give a few decimal places before switching to sci. notation,
1039	# since the results aren't usually that accurate anyway.
1040	my $format =
1041	   $rate >= 100 ?
1042	       "%0.0f" :
1043	   $rate >= 10 ?
1044	       "%0.1f" :
1045	   $rate >= 1 ?
1046	       "%0.2f" :
1047	   $rate >= 0.1 ?
1048	       "%0.3f" :
1049	       "%0.2e";
1050
1051	$format .= "/s"
1052	    if $display_as_rate;
1053
1054	my $formatted_rate = sprintf( $format, $rate );
1055	push @row, $formatted_rate;
1056	$col_widths[1] = length( $formatted_rate )
1057	    if length( $formatted_rate ) > $col_widths[1];
1058
1059        # Columns 2..N = performance ratios
1060	my $skip_rest = 0;
1061	for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
1062	    my $col_val = $vals[$col_num];
1063	    my $out;
1064	    if ( $skip_rest ) {
1065		$out = '';
1066	    }
1067	    elsif ( $col_val->[0] eq $row_val->[0] ) {
1068		$out = "--";
1069		# $skip_rest = 1;
1070	    }
1071	    else {
1072		my $col_rate = $col_val->[7];
1073		$out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
1074	    }
1075	    push @row, $out;
1076	    $col_widths[$col_num+2] = length( $out )
1077		if length( $out ) > $col_widths[$col_num+2];
1078
1079	    # A little weirdness to set the first column width properly
1080	    $col_widths[$col_num+2] = length( $col_val->[0] )
1081		if length( $col_val->[0] ) > $col_widths[$col_num+2];
1082	}
1083	push @rows, \@row;
1084    }
1085
1086    return \@rows if $style eq "none";
1087
1088    # Equalize column widths in the chart as much as possible without
1089    # exceeding 80 characters.  This does not use or affect cols 0 or 1.
1090    my @sorted_width_refs =
1091       sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
1092    my $max_width = ${$sorted_width_refs[-1]};
1093
1094    my $total = @col_widths - 1 ;
1095    for ( @col_widths ) { $total += $_ }
1096
1097    STRETCHER:
1098    while ( $total < 80 ) {
1099	my $min_width = ${$sorted_width_refs[0]};
1100	last
1101	   if $min_width == $max_width;
1102	for ( @sorted_width_refs ) {
1103	    last
1104		if $$_ > $min_width;
1105	    ++$$_;
1106	    ++$total;
1107	    last STRETCHER
1108		if $total >= 80;
1109	}
1110    }
1111
1112    # Dump the output
1113    my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1114    substr( $format, 1, 0 ) = '-';
1115    for ( @rows ) {
1116	printf $format, @$_;
1117    }
1118
1119    return \@rows ;
1120}
1121
1122
11231;
1124