xref: /openbsd/sys/dev/pci/if_tl.c (revision 0f9891f1)
1 /*	$OpenBSD: if_tl.c,v 1.79 2024/05/24 06:02:57 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_tl.c,v 1.64 2001/02/06 10:11:48 phk Exp $
35  */
36 
37 /*
38  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
39  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
40  * the National Semiconductor DP83840A physical interface and the
41  * Microchip Technology 24Cxx series serial EEPROM.
42  *
43  * Written using the following four documents:
44  *
45  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
46  * National Semiconductor DP83840A data sheet (www.national.com)
47  * Microchip Technology 24C02C data sheet (www.microchip.com)
48  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
49  *
50  * Written by Bill Paul <wpaul@ctr.columbia.edu>
51  * Electrical Engineering Department
52  * Columbia University, New York City
53  */
54 
55 /*
56  * Some notes about the ThunderLAN:
57  *
58  * The ThunderLAN controller is a single chip containing PCI controller
59  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
60  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
61  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
62  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
63  * to act as a complete ethernet interface.
64  *
65  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
66  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
67  * in full or half duplex. Some of the Compaq Deskpro machines use a
68  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
69  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
70  * concert with the ThunderLAN's internal PHY to provide full 10/100
71  * support. This is cheaper than using a standalone external PHY for both
72  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
73  * A serial EEPROM is also attached to the ThunderLAN chip to provide
74  * power-up default register settings and for storing the adapter's
75  * station address. Although not supported by this driver, the ThunderLAN
76  * chip can also be connected to token ring PHYs.
77  *
78  * The ThunderLAN has a set of registers which can be used to issue
79  * commands, acknowledge interrupts, and to manipulate other internal
80  * registers on its DIO bus. The primary registers can be accessed
81  * using either programmed I/O (inb/outb) or via PCI memory mapping,
82  * depending on how the card is configured during the PCI probing
83  * phase. It is even possible to have both PIO and memory mapped
84  * access turned on at the same time.
85  *
86  * Frame reception and transmission with the ThunderLAN chip is done
87  * using frame 'lists.' A list structure looks more or less like this:
88  *
89  * struct tl_frag {
90  *	u_int32_t		fragment_address;
91  *	u_int32_t		fragment_size;
92  * };
93  * struct tl_list {
94  *	u_int32_t		forward_pointer;
95  *	u_int16_t		cstat;
96  *	u_int16_t		frame_size;
97  *	struct tl_frag		fragments[10];
98  * };
99  *
100  * The forward pointer in the list header can be either a 0 or the address
101  * of another list, which allows several lists to be linked together. Each
102  * list contains up to 10 fragment descriptors. This means the chip allows
103  * ethernet frames to be broken up into up to 10 chunks for transfer to
104  * and from the SRAM. Note that the forward pointer and fragment buffer
105  * addresses are physical memory addresses, not virtual. Note also that
106  * a single ethernet frame can not span lists: if the host wants to
107  * transmit a frame and the frame data is split up over more than 10
108  * buffers, the frame has to collapsed before it can be transmitted.
109  *
110  * To receive frames, the driver sets up a number of lists and populates
111  * the fragment descriptors, then it sends an RX GO command to the chip.
112  * When a frame is received, the chip will DMA it into the memory regions
113  * specified by the fragment descriptors and then trigger an RX 'end of
114  * frame interrupt' when done. The driver may choose to use only one
115  * fragment per list; this may result in slightly less efficient use
116  * of memory in exchange for improving performance.
117  *
118  * To transmit frames, the driver again sets up lists and fragment
119  * descriptors, only this time the buffers contain frame data that
120  * is to be DMA'ed into the chip instead of out of it. Once the chip
121  * has transferred the data into its on-board SRAM, it will trigger a
122  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
123  * interrupt when it reaches the end of the list.
124  */
125 
126 /*
127  * Some notes about this driver:
128  *
129  * The ThunderLAN chip provides a couple of different ways to organize
130  * reception, transmission and interrupt handling. The simplest approach
131  * is to use one list each for transmission and reception. In this mode,
132  * the ThunderLAN will generate two interrupts for every received frame
133  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
134  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
135  * performance to have to handle so many interrupts.
136  *
137  * Initially I wanted to create a circular list of receive buffers so
138  * that the ThunderLAN chip would think there was an infinitely long
139  * receive channel and never deliver an RXEOC interrupt. However this
140  * doesn't work correctly under heavy load: while the manual says the
141  * chip will trigger an RXEOF interrupt each time a frame is copied into
142  * memory, you can't count on the chip waiting around for you to acknowledge
143  * the interrupt before it starts trying to DMA the next frame. The result
144  * is that the chip might traverse the entire circular list and then wrap
145  * around before you have a chance to do anything about it. Consequently,
146  * the receive list is terminated (with a 0 in the forward pointer in the
147  * last element). Each time an RXEOF interrupt arrives, the used list
148  * is shifted to the end of the list. This gives the appearance of an
149  * infinitely large RX chain so long as the driver doesn't fall behind
150  * the chip and allow all of the lists to be filled up.
151  *
152  * If all the lists are filled, the adapter will deliver an RX 'end of
153  * channel' interrupt when it hits the 0 forward pointer at the end of
154  * the chain. The RXEOC handler then cleans out the RX chain and resets
155  * the list head pointer in the ch_parm register and restarts the receiver.
156  *
157  * For frame transmission, it is possible to program the ThunderLAN's
158  * transmit interrupt threshold so that the chip can acknowledge multiple
159  * lists with only a single TX EOF interrupt. This allows the driver to
160  * queue several frames in one shot, and only have to handle a total
161  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
162  * are transmitted. Frame transmission is done directly out of the
163  * mbufs passed to the tl_start() routine via the interface send queue.
164  * The driver simply sets up the fragment descriptors in the transmit
165  * lists to point to the mbuf data regions and sends a TX GO command.
166  *
167  * Note that since the RX and TX lists themselves are always used
168  * only by the driver, the are malloc()ed once at driver initialization
169  * time and never free()ed.
170  *
171  * Also, in order to remain as platform independent as possible, this
172  * driver uses memory mapped register access to manipulate the card
173  * as opposed to programmed I/O. This avoids the use of the inb/outb
174  * (and related) instructions which are specific to the i386 platform.
175  *
176  * Using these techniques, this driver achieves very high performance
177  * by minimizing the amount of interrupts generated during large
178  * transfers and by completely avoiding buffer copies. Frame transfer
179  * to and from the ThunderLAN chip is performed entirely by the chip
180  * itself thereby reducing the load on the host CPU.
181  */
182 
183 #include "bpfilter.h"
184 
185 #include <sys/param.h>
186 #include <sys/systm.h>
187 #include <sys/sockio.h>
188 #include <sys/mbuf.h>
189 #include <sys/device.h>
190 #include <sys/timeout.h>
191 
192 #include <net/if.h>
193 
194 #include <netinet/in.h>
195 #include <netinet/if_ether.h>
196 
197 #include <net/if_media.h>
198 
199 #if NBPFILTER > 0
200 #include <net/bpf.h>
201 #endif
202 
203 #include <uvm/uvm_extern.h>              /* for vtophys */
204 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
205 
206 #include <dev/mii/mii.h>
207 #include <dev/mii/miivar.h>
208 
209 #include <dev/pci/pcireg.h>
210 #include <dev/pci/pcivar.h>
211 #include <dev/pci/pcidevs.h>
212 
213 /*
214  * Default to using PIO register access mode to pacify certain
215  * laptop docking stations with built-in ThunderLAN chips that
216  * don't seem to handle memory mapped mode properly.
217  */
218 #define TL_USEIOSPACE
219 
220 #include <dev/pci/if_tlreg.h>
221 #include <dev/mii/tlphyvar.h>
222 
223 const struct tl_products tl_prods[] = {
224 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T },
225 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5 },
226 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_INTNF3P, TLPHY_MEDIA_10_2 },
227 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_INTPL100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
228 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DPNET100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
229 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
230 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2 },
231 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5 },
232 	{ PCI_VENDOR_TI, PCI_PRODUCT_TI_TLAN, 0 },
233 	{ 0, 0, 0 }
234 };
235 
236 int tl_probe(struct device *, void *, void *);
237 void tl_attach(struct device *, struct device *, void *);
238 void tl_wait_up(void *);
239 int tl_intvec_rxeoc(void *, u_int32_t);
240 int tl_intvec_txeoc(void *, u_int32_t);
241 int tl_intvec_txeof(void *, u_int32_t);
242 int tl_intvec_rxeof(void *, u_int32_t);
243 int tl_intvec_adchk(void *, u_int32_t);
244 int tl_intvec_netsts(void *, u_int32_t);
245 
246 int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
247 void tl_stats_update(void *);
248 int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
249 
250 int tl_intr(void *);
251 void tl_start(struct ifnet *);
252 int tl_ioctl(struct ifnet *, u_long, caddr_t);
253 void tl_init(void *);
254 void tl_stop(struct tl_softc *);
255 void tl_watchdog(struct ifnet *);
256 int tl_ifmedia_upd(struct ifnet *);
257 void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
258 
259 u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
260 u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
261 int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
262 
263 void tl_mii_sync(struct tl_softc *);
264 void tl_mii_send(struct tl_softc *, u_int32_t, int);
265 int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
266 int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
267 int tl_miibus_readreg(struct device *, int, int);
268 void tl_miibus_writereg(struct device *, int, int, int);
269 void tl_miibus_statchg(struct device *);
270 
271 void tl_setmode(struct tl_softc *, uint64_t);
272 int tl_calchash(u_int8_t *);
273 void tl_iff(struct tl_softc *);
274 void tl_setfilt(struct tl_softc *, caddr_t, int);
275 void tl_softreset(struct tl_softc *, int);
276 void tl_hardreset(struct device *);
277 int tl_list_rx_init(struct tl_softc *);
278 int tl_list_tx_init(struct tl_softc *);
279 
280 u_int8_t tl_dio_read8(struct tl_softc *, int);
281 u_int16_t tl_dio_read16(struct tl_softc *, int);
282 u_int32_t tl_dio_read32(struct tl_softc *, int);
283 void tl_dio_write8(struct tl_softc *, int, int);
284 void tl_dio_write16(struct tl_softc *, int, int);
285 void tl_dio_write32(struct tl_softc *, int, int);
286 void tl_dio_setbit(struct tl_softc *, int, int);
287 void tl_dio_clrbit(struct tl_softc *, int, int);
288 void tl_dio_setbit16(struct tl_softc *, int, int);
289 void tl_dio_clrbit16(struct tl_softc *, int, int);
290 
291 u_int8_t
tl_dio_read8(struct tl_softc * sc,int reg)292 tl_dio_read8(struct tl_softc *sc, int reg)
293 {
294 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
295 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
296 }
297 
298 u_int16_t
tl_dio_read16(struct tl_softc * sc,int reg)299 tl_dio_read16(struct tl_softc *sc, int reg)
300 {
301 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
302 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
303 }
304 
305 u_int32_t
tl_dio_read32(struct tl_softc * sc,int reg)306 tl_dio_read32(struct tl_softc *sc, int reg)
307 {
308 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
309 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
310 }
311 
312 void
tl_dio_write8(struct tl_softc * sc,int reg,int val)313 tl_dio_write8(struct tl_softc *sc, int reg, int val)
314 {
315 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
316 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
317 }
318 
319 void
tl_dio_write16(struct tl_softc * sc,int reg,int val)320 tl_dio_write16(struct tl_softc *sc, int reg, int val)
321 {
322 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
323 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
324 }
325 
326 void
tl_dio_write32(struct tl_softc * sc,int reg,int val)327 tl_dio_write32(struct tl_softc *sc, int reg, int val)
328 {
329 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
330 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
331 }
332 
333 void
tl_dio_setbit(struct tl_softc * sc,int reg,int bit)334 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
335 {
336 	u_int8_t			f;
337 
338 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
339 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
340 	f |= bit;
341 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
342 }
343 
344 void
tl_dio_clrbit(struct tl_softc * sc,int reg,int bit)345 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
346 {
347 	u_int8_t			f;
348 
349 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
350 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
351 	f &= ~bit;
352 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
353 }
354 
355 void
tl_dio_setbit16(struct tl_softc * sc,int reg,int bit)356 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
357 {
358 	u_int16_t			f;
359 
360 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
361 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
362 	f |= bit;
363 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
364 }
365 
366 void
tl_dio_clrbit16(struct tl_softc * sc,int reg,int bit)367 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
368 {
369 	u_int16_t			f;
370 
371 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
372 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
373 	f &= ~bit;
374 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
375 }
376 
377 /*
378  * Send an instruction or address to the EEPROM, check for ACK.
379  */
380 u_int8_t
tl_eeprom_putbyte(struct tl_softc * sc,int byte)381 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
382 {
383 	int			i, ack = 0;
384 
385 	/*
386 	 * Make sure we're in TX mode.
387 	 */
388 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
389 
390 	/*
391 	 * Feed in each bit and strobe the clock.
392 	 */
393 	for (i = 0x80; i; i >>= 1) {
394 		if (byte & i)
395 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
396 		else
397 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
398 		DELAY(1);
399 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
400 		DELAY(1);
401 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
402 	}
403 
404 	/*
405 	 * Turn off TX mode.
406 	 */
407 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
408 
409 	/*
410 	 * Check for ack.
411 	 */
412 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
413 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
414 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
415 
416 	return(ack);
417 }
418 
419 /*
420  * Read a byte of data stored in the EEPROM at address 'addr.'
421  */
422 u_int8_t
tl_eeprom_getbyte(struct tl_softc * sc,int addr,u_int8_t * dest)423 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
424 {
425 	int			i;
426 	u_int8_t		byte = 0;
427 
428 	tl_dio_write8(sc, TL_NETSIO, 0);
429 
430 	EEPROM_START;
431 
432 	/*
433 	 * Send write control code to EEPROM.
434 	 */
435 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
436 		printf("%s: failed to send write command, status: %x\n",
437 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
438 		return(1);
439 	}
440 
441 	/*
442 	 * Send address of byte we want to read.
443 	 */
444 	if (tl_eeprom_putbyte(sc, addr)) {
445 		printf("%s: failed to send address, status: %x\n",
446 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
447 		return(1);
448 	}
449 
450 	EEPROM_STOP;
451 	EEPROM_START;
452 	/*
453 	 * Send read control code to EEPROM.
454 	 */
455 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
456 		printf("%s: failed to send write command, status: %x\n",
457 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
458 		return(1);
459 	}
460 
461 	/*
462 	 * Start reading bits from EEPROM.
463 	 */
464 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
465 	for (i = 0x80; i; i >>= 1) {
466 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
467 		DELAY(1);
468 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
469 			byte |= i;
470 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
471 		DELAY(1);
472 	}
473 
474 	EEPROM_STOP;
475 
476 	/*
477 	 * No ACK generated for read, so just return byte.
478 	 */
479 
480 	*dest = byte;
481 
482 	return(0);
483 }
484 
485 /*
486  * Read a sequence of bytes from the EEPROM.
487  */
488 int
tl_read_eeprom(struct tl_softc * sc,caddr_t dest,int off,int cnt)489 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
490 {
491 	int			err = 0, i;
492 	u_int8_t		byte = 0;
493 
494 	for (i = 0; i < cnt; i++) {
495 		err = tl_eeprom_getbyte(sc, off + i, &byte);
496 		if (err)
497 			break;
498 		*(dest + i) = byte;
499 	}
500 
501 	return(err ? 1 : 0);
502 }
503 
504 void
tl_mii_sync(struct tl_softc * sc)505 tl_mii_sync(struct tl_softc *sc)
506 {
507 	int			i;
508 
509 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
510 
511 	for (i = 0; i < 32; i++) {
512 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
513 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
514 	}
515 }
516 
517 void
tl_mii_send(struct tl_softc * sc,u_int32_t bits,int cnt)518 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
519 {
520 	int			i;
521 
522 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
523 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
524 		if (bits & i)
525 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
526 		else
527 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
528 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
529 	}
530 }
531 
532 int
tl_mii_readreg(struct tl_softc * sc,struct tl_mii_frame * frame)533 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
534 {
535 	int			i, ack, s;
536 	int			minten = 0;
537 
538 	s = splnet();
539 
540 	tl_mii_sync(sc);
541 
542 	/*
543 	 * Set up frame for RX.
544 	 */
545 	frame->mii_stdelim = TL_MII_STARTDELIM;
546 	frame->mii_opcode = TL_MII_READOP;
547 	frame->mii_turnaround = 0;
548 	frame->mii_data = 0;
549 
550 	/*
551 	 * Turn off MII interrupt by forcing MINTEN low.
552 	 */
553 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
554 	if (minten)
555 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
556 
557 	/*
558  	 * Turn on data xmit.
559 	 */
560 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
561 
562 	/*
563 	 * Send command/address info.
564 	 */
565 	tl_mii_send(sc, frame->mii_stdelim, 2);
566 	tl_mii_send(sc, frame->mii_opcode, 2);
567 	tl_mii_send(sc, frame->mii_phyaddr, 5);
568 	tl_mii_send(sc, frame->mii_regaddr, 5);
569 
570 	/*
571 	 * Turn off xmit.
572 	 */
573 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
574 
575 	/* Idle bit */
576 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
577 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
578 
579 	/* Check for ack */
580 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
581 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
582 
583 	/* Complete the cycle */
584 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
585 
586 	/*
587 	 * Now try reading data bits. If the ack failed, we still
588 	 * need to clock through 16 cycles to keep the PHYs in sync.
589 	 */
590 	if (ack) {
591 		for(i = 0; i < 16; i++) {
592 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
593 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
594 		}
595 		goto fail;
596 	}
597 
598 	for (i = 0x8000; i; i >>= 1) {
599 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
600 		if (!ack) {
601 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
602 				frame->mii_data |= i;
603 		}
604 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
605 	}
606 
607 fail:
608 
609 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
610 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
611 
612 	/* Reenable interrupts */
613 	if (minten)
614 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
615 
616 	splx(s);
617 
618 	if (ack)
619 		return(1);
620 	return(0);
621 }
622 
623 int
tl_mii_writereg(struct tl_softc * sc,struct tl_mii_frame * frame)624 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
625 {
626 	int			s;
627 	int			minten;
628 
629 	tl_mii_sync(sc);
630 
631 	s = splnet();
632 	/*
633 	 * Set up frame for TX.
634 	 */
635 
636 	frame->mii_stdelim = TL_MII_STARTDELIM;
637 	frame->mii_opcode = TL_MII_WRITEOP;
638 	frame->mii_turnaround = TL_MII_TURNAROUND;
639 
640 	/*
641 	 * Turn off MII interrupt by forcing MINTEN low.
642 	 */
643 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
644 	if (minten)
645 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
646 
647 	/*
648  	 * Turn on data output.
649 	 */
650 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
651 
652 	tl_mii_send(sc, frame->mii_stdelim, 2);
653 	tl_mii_send(sc, frame->mii_opcode, 2);
654 	tl_mii_send(sc, frame->mii_phyaddr, 5);
655 	tl_mii_send(sc, frame->mii_regaddr, 5);
656 	tl_mii_send(sc, frame->mii_turnaround, 2);
657 	tl_mii_send(sc, frame->mii_data, 16);
658 
659 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
660 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
661 
662 	/*
663 	 * Turn off xmit.
664 	 */
665 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
666 
667 	/* Reenable interrupts */
668 	if (minten)
669 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
670 
671 	splx(s);
672 
673 	return(0);
674 }
675 
676 int
tl_miibus_readreg(struct device * dev,int phy,int reg)677 tl_miibus_readreg(struct device *dev, int phy, int reg)
678 {
679 	struct tl_softc *sc = (struct tl_softc *)dev;
680 	struct tl_mii_frame	frame;
681 
682 	bzero(&frame, sizeof(frame));
683 
684 	frame.mii_phyaddr = phy;
685 	frame.mii_regaddr = reg;
686 	tl_mii_readreg(sc, &frame);
687 
688 	return(frame.mii_data);
689 }
690 
691 void
tl_miibus_writereg(struct device * dev,int phy,int reg,int data)692 tl_miibus_writereg(struct device *dev, int phy, int reg, int data)
693 {
694 	struct tl_softc *sc = (struct tl_softc *)dev;
695 	struct tl_mii_frame	frame;
696 
697 	bzero(&frame, sizeof(frame));
698 
699 	frame.mii_phyaddr = phy;
700 	frame.mii_regaddr = reg;
701 	frame.mii_data = data;
702 
703 	tl_mii_writereg(sc, &frame);
704 }
705 
706 void
tl_miibus_statchg(struct device * dev)707 tl_miibus_statchg(struct device *dev)
708 {
709 	struct tl_softc *sc = (struct tl_softc *)dev;
710 
711 	if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX)
712 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
713 	else
714 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
715 }
716 
717 /*
718  * Set modes for bitrate devices.
719  */
720 void
tl_setmode(struct tl_softc * sc,uint64_t media)721 tl_setmode(struct tl_softc *sc, uint64_t media)
722 {
723 	if (IFM_SUBTYPE(media) == IFM_10_5)
724 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
725 	if (IFM_SUBTYPE(media) == IFM_10_T) {
726 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
727 		if ((media & IFM_GMASK) == IFM_FDX) {
728 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
729 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
730 		} else {
731 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
732 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
733 		}
734 	}
735 }
736 
737 /*
738  * Calculate the hash of a MAC address for programming the multicast hash
739  * table.  This hash is simply the address split into 6-bit chunks
740  * XOR'd, e.g.
741  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
742  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
743  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
744  * the folded 24-bit value is split into 6-bit portions and XOR'd.
745  */
746 int
tl_calchash(u_int8_t * addr)747 tl_calchash(u_int8_t *addr)
748 {
749 	int			t;
750 
751 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
752 		(addr[2] ^ addr[5]);
753 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
754 }
755 
756 /*
757  * The ThunderLAN has a perfect MAC address filter in addition to
758  * the multicast hash filter. The perfect filter can be programmed
759  * with up to four MAC addresses. The first one is always used to
760  * hold the station address, which leaves us free to use the other
761  * three for multicast addresses.
762  */
763 void
tl_setfilt(struct tl_softc * sc,caddr_t addr,int slot)764 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
765 {
766 	int			i;
767 	u_int16_t		regaddr;
768 
769 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
770 
771 	for (i = 0; i < ETHER_ADDR_LEN; i++)
772 		tl_dio_write8(sc, regaddr + i, *(addr + i));
773 }
774 
775 /*
776  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
777  * linked list. This is fine, except addresses are added from the head
778  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
779  * group to always be in the perfect filter, but as more groups are added,
780  * the 224.0.0.1 entry (which is always added first) gets pushed down
781  * the list and ends up at the tail. So after 3 or 4 multicast groups
782  * are added, the all-hosts entry gets pushed out of the perfect filter
783  * and into the hash table.
784  *
785  * Because the multicast list is a doubly-linked list as opposed to a
786  * circular queue, we don't have the ability to just grab the tail of
787  * the list and traverse it backwards. Instead, we have to traverse
788  * the list once to find the tail, then traverse it again backwards to
789  * update the multicast filter.
790  */
791 void
tl_iff(struct tl_softc * sc)792 tl_iff(struct tl_softc *sc)
793 {
794 	struct ifnet		*ifp = &sc->arpcom.ac_if;
795 	struct arpcom		*ac = &sc->arpcom;
796 	struct ether_multistep step;
797 	struct ether_multi *enm;
798 	u_int32_t		hashes[2];
799 	int			h = 0;
800 
801 	tl_dio_clrbit(sc, TL_NETCMD, (TL_CMD_CAF | TL_CMD_NOBRX));
802 	bzero(hashes, sizeof(hashes));
803 	ifp->if_flags &= ~IFF_ALLMULTI;
804 
805 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
806 		ifp->if_flags |= IFF_ALLMULTI;
807 		if (ifp->if_flags & IFF_PROMISC)
808 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
809 		else
810 			hashes[0] = hashes[1] = 0xffffffff;
811 	} else {
812 		ETHER_FIRST_MULTI(step, ac, enm);
813 		while (enm != NULL) {
814 			h = tl_calchash(enm->enm_addrlo);
815 
816 			if (h < 32)
817 				hashes[0] |= (1 << h);
818 			else
819 				hashes[1] |= (1 << (h - 32));
820 
821 			ETHER_NEXT_MULTI(step, enm);
822 		}
823 	}
824 
825 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
826 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
827 }
828 
829 /*
830  * This routine is recommended by the ThunderLAN manual to insure that
831  * the internal PHY is powered up correctly. It also recommends a one
832  * second pause at the end to 'wait for the clocks to start' but in my
833  * experience this isn't necessary.
834  */
835 void
tl_hardreset(struct device * dev)836 tl_hardreset(struct device *dev)
837 {
838 	struct tl_softc		*sc = (struct tl_softc *)dev;
839 	int			i;
840 	u_int16_t		flags;
841 
842 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
843 
844 	for (i =0 ; i < MII_NPHY; i++)
845 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
846 
847 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
848 	tl_mii_sync(sc);
849 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
850 
851 	DELAY(5000);
852 }
853 
854 void
tl_softreset(struct tl_softc * sc,int internal)855 tl_softreset(struct tl_softc *sc, int internal)
856 {
857         u_int32_t               cmd, dummy, i;
858 
859         /* Assert the adapter reset bit. */
860 	CMD_SET(sc, TL_CMD_ADRST);
861         /* Turn off interrupts */
862 	CMD_SET(sc, TL_CMD_INTSOFF);
863 
864 	/* First, clear the stats registers. */
865 	for (i = 0; i < 5; i++)
866 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
867 
868         /* Clear Areg and Hash registers */
869 	for (i = 0; i < 8; i++)
870 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
871 
872         /*
873 	 * Set up Netconfig register. Enable one channel and
874 	 * one fragment mode.
875 	 */
876 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
877 	if (internal && !sc->tl_bitrate) {
878 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
879 	} else {
880 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
881 	}
882 
883 	/* Handle cards with bitrate devices. */
884 	if (sc->tl_bitrate)
885 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
886 
887 	/*
888 	 * Load adapter irq pacing timer and tx threshold.
889 	 * We make the transmit threshold 1 initially but we may
890 	 * change that later.
891 	 */
892 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
893 	cmd |= TL_CMD_NES;
894 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
895 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
896 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
897 
898         /* Unreset the MII */
899 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
900 
901 	/* Take the adapter out of reset */
902 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
903 
904 	/* Wait for things to settle down a little. */
905 	DELAY(500);
906 }
907 
908 /*
909  * Initialize the transmit lists.
910  */
911 int
tl_list_tx_init(struct tl_softc * sc)912 tl_list_tx_init(struct tl_softc *sc)
913 {
914 	struct tl_chain_data	*cd;
915 	struct tl_list_data	*ld;
916 	int			i;
917 
918 	cd = &sc->tl_cdata;
919 	ld = sc->tl_ldata;
920 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
921 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
922 		if (i == (TL_TX_LIST_CNT - 1))
923 			cd->tl_tx_chain[i].tl_next = NULL;
924 		else
925 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
926 	}
927 
928 	cd->tl_tx_free = &cd->tl_tx_chain[0];
929 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
930 	sc->tl_txeoc = 1;
931 
932 	return(0);
933 }
934 
935 /*
936  * Initialize the RX lists and allocate mbufs for them.
937  */
938 int
tl_list_rx_init(struct tl_softc * sc)939 tl_list_rx_init(struct tl_softc *sc)
940 {
941 	struct tl_chain_data	*cd;
942 	struct tl_list_data	*ld;
943 	int			i;
944 
945 	cd = &sc->tl_cdata;
946 	ld = sc->tl_ldata;
947 
948 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
949 		cd->tl_rx_chain[i].tl_ptr =
950 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
951 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
952 			return(ENOBUFS);
953 		if (i == (TL_RX_LIST_CNT - 1)) {
954 			cd->tl_rx_chain[i].tl_next = NULL;
955 			ld->tl_rx_list[i].tlist_fptr = 0;
956 		} else {
957 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
958 			ld->tl_rx_list[i].tlist_fptr =
959 					VTOPHYS(&ld->tl_rx_list[i + 1]);
960 		}
961 	}
962 
963 	cd->tl_rx_head = &cd->tl_rx_chain[0];
964 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
965 
966 	return(0);
967 }
968 
969 int
tl_newbuf(struct tl_softc * sc,struct tl_chain_onefrag * c)970 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
971 {
972 	struct mbuf		*m_new = NULL;
973 
974 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
975 	if (m_new == NULL) {
976 		return(ENOBUFS);
977 	}
978 
979 	MCLGET(m_new, M_DONTWAIT);
980 	if (!(m_new->m_flags & M_EXT)) {
981 		m_freem(m_new);
982 		return(ENOBUFS);
983 	}
984 
985 #ifdef __alpha__
986 	m_new->m_data += 2;
987 #endif
988 
989 	c->tl_mbuf = m_new;
990 	c->tl_next = NULL;
991 	c->tl_ptr->tlist_frsize = MCLBYTES;
992 	c->tl_ptr->tlist_fptr = 0;
993 	c->tl_ptr->tl_frag.tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
994 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
995 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
996 
997 	return(0);
998 }
999 /*
1000  * Interrupt handler for RX 'end of frame' condition (EOF). This
1001  * tells us that a full ethernet frame has been captured and we need
1002  * to handle it.
1003  *
1004  * Reception is done using 'lists' which consist of a header and a
1005  * series of 10 data count/data address pairs that point to buffers.
1006  * Initially you're supposed to create a list, populate it with pointers
1007  * to buffers, then load the physical address of the list into the
1008  * ch_parm register. The adapter is then supposed to DMA the received
1009  * frame into the buffers for you.
1010  *
1011  * To make things as fast as possible, we have the chip DMA directly
1012  * into mbufs. This saves us from having to do a buffer copy: we can
1013  * just hand the mbufs directly to the network stack. Once the frame
1014  * has been sent on its way, the 'list' structure is assigned a new
1015  * buffer and moved to the end of the RX chain. As long we stay
1016  * ahead of the chip, it will always think it has an endless receive
1017  * channel.
1018  *
1019  * If we happen to fall behind and the chip manages to fill up all of
1020  * the buffers, it will generate an end of channel interrupt and wait
1021  * for us to empty the chain and restart the receiver.
1022  */
1023 int
tl_intvec_rxeof(void * xsc,u_int32_t type)1024 tl_intvec_rxeof(void *xsc, u_int32_t type)
1025 {
1026 	struct tl_softc		*sc;
1027 	int			r = 0, total_len = 0;
1028 	struct ether_header	*eh;
1029 	struct mbuf		*m;
1030 	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
1031 	struct ifnet		*ifp;
1032 	struct tl_chain_onefrag	*cur_rx;
1033 
1034 	sc = xsc;
1035 	ifp = &sc->arpcom.ac_if;
1036 
1037 	while(sc->tl_cdata.tl_rx_head != NULL) {
1038 		cur_rx = sc->tl_cdata.tl_rx_head;
1039 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1040 			break;
1041 		r++;
1042 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1043 		m = cur_rx->tl_mbuf;
1044 		total_len = cur_rx->tl_ptr->tlist_frsize;
1045 
1046 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1047 			ifp->if_ierrors++;
1048 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1049 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1050 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1051 			continue;
1052 		}
1053 
1054 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1055 						VTOPHYS(cur_rx->tl_ptr);
1056 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1057 		sc->tl_cdata.tl_rx_tail = cur_rx;
1058 
1059 		eh = mtod(m, struct ether_header *);
1060 
1061 		/*
1062 		 * Note: when the ThunderLAN chip is in 'capture all
1063 		 * frames' mode, it will receive its own transmissions.
1064 		 * We drop don't need to process our own transmissions,
1065 		 * so we drop them here and continue.
1066 		 */
1067 		/*if (ifp->if_flags & IFF_PROMISC && */
1068 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1069 		 					ETHER_ADDR_LEN)) {
1070 				m_freem(m);
1071 				continue;
1072 		}
1073 
1074 		m->m_pkthdr.len = m->m_len = total_len;
1075 		ml_enqueue(&ml, m);
1076 	}
1077 
1078 	if_input(ifp, &ml);
1079 
1080 	return(r);
1081 }
1082 
1083 /*
1084  * The RX-EOC condition hits when the ch_parm address hasn't been
1085  * initialized or the adapter reached a list with a forward pointer
1086  * of 0 (which indicates the end of the chain). In our case, this means
1087  * the card has hit the end of the receive buffer chain and we need to
1088  * empty out the buffers and shift the pointer back to the beginning again.
1089  */
1090 int
tl_intvec_rxeoc(void * xsc,u_int32_t type)1091 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1092 {
1093 	struct tl_softc		*sc;
1094 	int			r;
1095 	struct tl_chain_data	*cd;
1096 
1097 	sc = xsc;
1098 	cd = &sc->tl_cdata;
1099 
1100 	/* Flush out the receive queue and ack RXEOF interrupts. */
1101 	r = tl_intvec_rxeof(xsc, type);
1102 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1103 	r = 1;
1104 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1105 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1106 	CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(sc->tl_cdata.tl_rx_head->tl_ptr));
1107 	r |= (TL_CMD_GO|TL_CMD_RT);
1108 	return(r);
1109 }
1110 
1111 int
tl_intvec_txeof(void * xsc,u_int32_t type)1112 tl_intvec_txeof(void *xsc, u_int32_t type)
1113 {
1114 	struct tl_softc		*sc;
1115 	int			r = 0;
1116 	struct tl_chain		*cur_tx;
1117 
1118 	sc = xsc;
1119 
1120 	/*
1121 	 * Go through our tx list and free mbufs for those
1122 	 * frames that have been sent.
1123 	 */
1124 	while (sc->tl_cdata.tl_tx_head != NULL) {
1125 		cur_tx = sc->tl_cdata.tl_tx_head;
1126 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1127 			break;
1128 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1129 
1130 		r++;
1131 		m_freem(cur_tx->tl_mbuf);
1132 		cur_tx->tl_mbuf = NULL;
1133 
1134 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1135 		sc->tl_cdata.tl_tx_free = cur_tx;
1136 		if (!cur_tx->tl_ptr->tlist_fptr)
1137 			break;
1138 	}
1139 
1140 	return(r);
1141 }
1142 
1143 /*
1144  * The transmit end of channel interrupt. The adapter triggers this
1145  * interrupt to tell us it hit the end of the current transmit list.
1146  *
1147  * A note about this: it's possible for a condition to arise where
1148  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1149  * You have to avoid this since the chip expects things to go in a
1150  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1151  * When the TXEOF handler is called, it will free all of the transmitted
1152  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1153  * interrupt should be received and acknowledged before any more frames
1154  * are queued for transmission. If tl_statrt() is called after TXEOF
1155  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1156  * it could attempt to issue a transmit command prematurely.
1157  *
1158  * To guard against this, tl_start() will only issue transmit commands
1159  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1160  * can set this flag once tl_start() has cleared it.
1161  */
1162 int
tl_intvec_txeoc(void * xsc,u_int32_t type)1163 tl_intvec_txeoc(void *xsc, u_int32_t type)
1164 {
1165 	struct tl_softc		*sc;
1166 	struct ifnet		*ifp;
1167 	u_int32_t		cmd;
1168 
1169 	sc = xsc;
1170 	ifp = &sc->arpcom.ac_if;
1171 
1172 	/* Clear the timeout timer. */
1173 	ifp->if_timer = 0;
1174 
1175 	if (sc->tl_cdata.tl_tx_head == NULL) {
1176 		ifq_clr_oactive(&ifp->if_snd);
1177 		sc->tl_cdata.tl_tx_tail = NULL;
1178 		sc->tl_txeoc = 1;
1179 	} else {
1180 		sc->tl_txeoc = 0;
1181 		/* First we have to ack the EOC interrupt. */
1182 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1183 		/* Then load the address of the next TX list. */
1184 		CSR_WRITE_4(sc, TL_CH_PARM,
1185 		    VTOPHYS(sc->tl_cdata.tl_tx_head->tl_ptr));
1186 		/* Restart TX channel. */
1187 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1188 		cmd &= ~TL_CMD_RT;
1189 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1190 		CMD_PUT(sc, cmd);
1191 		return(0);
1192 	}
1193 
1194 	return(1);
1195 }
1196 
1197 int
tl_intvec_adchk(void * xsc,u_int32_t type)1198 tl_intvec_adchk(void *xsc, u_int32_t type)
1199 {
1200 	struct tl_softc		*sc;
1201 
1202 	sc = xsc;
1203 
1204 	if (type)
1205 		printf("%s: adapter check: %x\n", sc->sc_dev.dv_xname,
1206 			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1207 
1208 	tl_softreset(sc, 1);
1209 	tl_stop(sc);
1210 	tl_init(sc);
1211 	CMD_SET(sc, TL_CMD_INTSON);
1212 
1213 	return(0);
1214 }
1215 
1216 int
tl_intvec_netsts(void * xsc,u_int32_t type)1217 tl_intvec_netsts(void *xsc, u_int32_t type)
1218 {
1219 	struct tl_softc		*sc;
1220 	u_int16_t		netsts;
1221 
1222 	sc = xsc;
1223 
1224 	netsts = tl_dio_read16(sc, TL_NETSTS);
1225 	tl_dio_write16(sc, TL_NETSTS, netsts);
1226 
1227 	printf("%s: network status: %x\n", sc->sc_dev.dv_xname, netsts);
1228 
1229 	return(1);
1230 }
1231 
1232 int
tl_intr(void * xsc)1233 tl_intr(void *xsc)
1234 {
1235 	struct tl_softc		*sc;
1236 	struct ifnet		*ifp;
1237 	int			r = 0;
1238 	u_int32_t		type = 0;
1239 	u_int16_t		ints = 0;
1240 	u_int8_t		ivec = 0;
1241 
1242 	sc = xsc;
1243 
1244 	/* Disable interrupts */
1245 	ints = CSR_READ_2(sc, TL_HOST_INT);
1246 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1247 	type = (ints << 16) & 0xFFFF0000;
1248 	ivec = (ints & TL_VEC_MASK) >> 5;
1249 	ints = (ints & TL_INT_MASK) >> 2;
1250 
1251 	ifp = &sc->arpcom.ac_if;
1252 
1253 	switch(ints) {
1254 	case (TL_INTR_INVALID):
1255 		/* Re-enable interrupts but don't ack this one. */
1256 		CMD_PUT(sc, type);
1257 		r = 0;
1258 		break;
1259 	case (TL_INTR_TXEOF):
1260 		r = tl_intvec_txeof((void *)sc, type);
1261 		break;
1262 	case (TL_INTR_TXEOC):
1263 		r = tl_intvec_txeoc((void *)sc, type);
1264 		break;
1265 	case (TL_INTR_STATOFLOW):
1266 		tl_stats_update(sc);
1267 		r = 1;
1268 		break;
1269 	case (TL_INTR_RXEOF):
1270 		r = tl_intvec_rxeof((void *)sc, type);
1271 		break;
1272 	case (TL_INTR_DUMMY):
1273 		printf("%s: got a dummy interrupt\n", sc->sc_dev.dv_xname);
1274 		r = 1;
1275 		break;
1276 	case (TL_INTR_ADCHK):
1277 		if (ivec)
1278 			r = tl_intvec_adchk((void *)sc, type);
1279 		else
1280 			r = tl_intvec_netsts((void *)sc, type);
1281 		break;
1282 	case (TL_INTR_RXEOC):
1283 		r = tl_intvec_rxeoc((void *)sc, type);
1284 		break;
1285 	default:
1286 		printf("%s: bogus interrupt type\n", sc->sc_dev.dv_xname);
1287 		break;
1288 	}
1289 
1290 	/* Re-enable interrupts */
1291 	if (r) {
1292 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1293 	}
1294 
1295 	if (!ifq_empty(&ifp->if_snd))
1296 		tl_start(ifp);
1297 
1298 	return r;
1299 }
1300 
1301 void
tl_stats_update(void * xsc)1302 tl_stats_update(void *xsc)
1303 {
1304 	struct tl_softc		*sc;
1305 	struct ifnet		*ifp;
1306 	struct tl_stats		tl_stats;
1307 	u_int32_t		*p;
1308 	int			s;
1309 
1310 	s = splnet();
1311 
1312 	bzero(&tl_stats, sizeof(struct tl_stats));
1313 
1314 	sc = xsc;
1315 	ifp = &sc->arpcom.ac_if;
1316 
1317 	p = (u_int32_t *)&tl_stats;
1318 
1319 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1320 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1321 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1322 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1323 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1324 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1325 
1326 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1327 				tl_stats.tl_tx_multi_collision;
1328 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1329 			    tl_rx_overrun(tl_stats);
1330 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1331 
1332 	if (tl_tx_underrun(tl_stats)) {
1333 		u_int8_t	tx_thresh;
1334 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1335 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1336 			tx_thresh >>= 4;
1337 			tx_thresh++;
1338 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1339 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1340 		}
1341 	}
1342 
1343 	timeout_add_sec(&sc->tl_stats_tmo, 1);
1344 
1345 	if (!sc->tl_bitrate)
1346 		mii_tick(&sc->sc_mii);
1347 
1348 	splx(s);
1349 }
1350 
1351 /*
1352  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1353  * pointers to the fragment pointers.
1354  */
1355 int
tl_encap(struct tl_softc * sc,struct tl_chain * c,struct mbuf * m_head)1356 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1357 {
1358 	int			frag = 0;
1359 	struct tl_frag		*f = NULL;
1360 	int			total_len;
1361 	struct mbuf		*m;
1362 
1363 	/*
1364  	 * Start packing the mbufs in this chain into
1365 	 * the fragment pointers. Stop when we run out
1366  	 * of fragments or hit the end of the mbuf chain.
1367 	 */
1368 	m = m_head;
1369 	total_len = 0;
1370 
1371 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1372 		if (m->m_len != 0) {
1373 			if (frag == TL_MAXFRAGS)
1374 				break;
1375 			total_len+= m->m_len;
1376 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1377 				VTOPHYS(mtod(m, vaddr_t));
1378 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1379 			frag++;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * Handle special cases.
1385 	 * Special case #1: we used up all 10 fragments, but
1386 	 * we have more mbufs left in the chain. Copy the
1387 	 * data into an mbuf cluster. Note that we don't
1388 	 * bother clearing the values in the other fragment
1389 	 * pointers/counters; it wouldn't gain us anything,
1390 	 * and would waste cycles.
1391 	 */
1392 	if (m != NULL) {
1393 		struct mbuf		*m_new = NULL;
1394 
1395 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1396 		if (m_new == NULL)
1397 			return(1);
1398 		if (m_head->m_pkthdr.len > MHLEN) {
1399 			MCLGET(m_new, M_DONTWAIT);
1400 			if (!(m_new->m_flags & M_EXT)) {
1401 				m_freem(m_new);
1402 				return(1);
1403 			}
1404 		}
1405 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1406 					mtod(m_new, caddr_t));
1407 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1408 		m_freem(m_head);
1409 		m_head = m_new;
1410 		f = &c->tl_ptr->tl_frag[0];
1411 		f->tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
1412 		f->tlist_dcnt = total_len = m_new->m_len;
1413 		frag = 1;
1414 	}
1415 
1416 	/*
1417 	 * Special case #2: the frame is smaller than the minimum
1418 	 * frame size. We have to pad it to make the chip happy.
1419 	 */
1420 	if (total_len < TL_MIN_FRAMELEN) {
1421 		f = &c->tl_ptr->tl_frag[frag];
1422 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1423 		f->tlist_dadr = VTOPHYS(&sc->tl_ldata->tl_pad);
1424 		total_len += f->tlist_dcnt;
1425 		frag++;
1426 	}
1427 
1428 	c->tl_mbuf = m_head;
1429 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1430 	c->tl_ptr->tlist_frsize = total_len;
1431 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1432 	c->tl_ptr->tlist_fptr = 0;
1433 
1434 	return(0);
1435 }
1436 
1437 /*
1438  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1439  * to the mbuf data regions directly in the transmit lists. We also save a
1440  * copy of the pointers since the transmit list fragment pointers are
1441  * physical addresses.
1442  */
1443 void
tl_start(struct ifnet * ifp)1444 tl_start(struct ifnet *ifp)
1445 {
1446 	struct tl_softc		*sc;
1447 	struct mbuf		*m_head = NULL;
1448 	u_int32_t		cmd;
1449 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1450 
1451 	sc = ifp->if_softc;
1452 
1453 	/*
1454 	 * Check for an available queue slot. If there are none,
1455 	 * punt.
1456 	 */
1457 	if (sc->tl_cdata.tl_tx_free == NULL) {
1458 		ifq_set_oactive(&ifp->if_snd);
1459 		return;
1460 	}
1461 
1462 	start_tx = sc->tl_cdata.tl_tx_free;
1463 
1464 	while(sc->tl_cdata.tl_tx_free != NULL) {
1465 		m_head = ifq_dequeue(&ifp->if_snd);
1466 		if (m_head == NULL)
1467 			break;
1468 
1469 		/* Pick a chain member off the free list. */
1470 		cur_tx = sc->tl_cdata.tl_tx_free;
1471 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1472 
1473 		cur_tx->tl_next = NULL;
1474 
1475 		/* Pack the data into the list. */
1476 		tl_encap(sc, cur_tx, m_head);
1477 
1478 		/* Chain it together */
1479 		if (prev != NULL) {
1480 			prev->tl_next = cur_tx;
1481 			prev->tl_ptr->tlist_fptr = VTOPHYS(cur_tx->tl_ptr);
1482 		}
1483 		prev = cur_tx;
1484 
1485 		/*
1486 		 * If there's a BPF listener, bounce a copy of this frame
1487 		 * to him.
1488 		 */
1489 #if NBPFILTER > 0
1490 		if (ifp->if_bpf)
1491 			bpf_mtap(ifp->if_bpf, cur_tx->tl_mbuf,
1492 			    BPF_DIRECTION_OUT);
1493 #endif
1494 	}
1495 
1496 	/*
1497 	 * If there are no packets queued, bail.
1498 	 */
1499 	if (cur_tx == NULL)
1500 		return;
1501 
1502 	/*
1503 	 * That's all we can stands, we can't stands no more.
1504 	 * If there are no other transfers pending, then issue the
1505 	 * TX GO command to the adapter to start things moving.
1506 	 * Otherwise, just leave the data in the queue and let
1507 	 * the EOF/EOC interrupt handler send.
1508 	 */
1509 	if (sc->tl_cdata.tl_tx_head == NULL) {
1510 		sc->tl_cdata.tl_tx_head = start_tx;
1511 		sc->tl_cdata.tl_tx_tail = cur_tx;
1512 
1513 		if (sc->tl_txeoc) {
1514 			sc->tl_txeoc = 0;
1515 			CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(start_tx->tl_ptr));
1516 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1517 			cmd &= ~TL_CMD_RT;
1518 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1519 			CMD_PUT(sc, cmd);
1520 		}
1521 	} else {
1522 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1523 		sc->tl_cdata.tl_tx_tail = cur_tx;
1524 	}
1525 
1526 	/*
1527 	 * Set a timeout in case the chip goes out to lunch.
1528 	 */
1529 	ifp->if_timer = 10;
1530 }
1531 
1532 void
tl_init(void * xsc)1533 tl_init(void *xsc)
1534 {
1535 	struct tl_softc		*sc = xsc;
1536 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1537         int			s;
1538 
1539 	s = splnet();
1540 
1541 	/*
1542 	 * Cancel pending I/O.
1543 	 */
1544 	tl_stop(sc);
1545 
1546 	/* Initialize TX FIFO threshold */
1547 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1548 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1549 
1550 	/* Set PCI burst size */
1551 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1552 
1553 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1554 
1555 	/* Init our MAC address */
1556 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1557 
1558 	/* Program promiscuous mode and multicast filters. */
1559 	tl_iff(sc);
1560 
1561 	/* Init circular RX list. */
1562 	if (tl_list_rx_init(sc) == ENOBUFS) {
1563 		printf("%s: initialization failed: no memory for rx buffers\n",
1564 			sc->sc_dev.dv_xname);
1565 		tl_stop(sc);
1566 		splx(s);
1567 		return;
1568 	}
1569 
1570 	/* Init TX pointers. */
1571 	tl_list_tx_init(sc);
1572 
1573 	/* Enable PCI interrupts. */
1574 	CMD_SET(sc, TL_CMD_INTSON);
1575 
1576 	/* Load the address of the rx list */
1577 	CMD_SET(sc, TL_CMD_RT);
1578 	CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(&sc->tl_ldata->tl_rx_list[0]));
1579 
1580 	if (!sc->tl_bitrate)
1581 		mii_mediachg(&sc->sc_mii);
1582 	else
1583 		tl_ifmedia_upd(ifp);
1584 
1585 	/* Send the RX go command */
1586 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1587 
1588 	splx(s);
1589 
1590 	/* Start the stats update counter */
1591 	timeout_set(&sc->tl_stats_tmo, tl_stats_update, sc);
1592 	timeout_add_sec(&sc->tl_stats_tmo, 1);
1593 	timeout_set(&sc->tl_wait_tmo, tl_wait_up, sc);
1594 	timeout_add_sec(&sc->tl_wait_tmo, 2);
1595 }
1596 
1597 /*
1598  * Set media options.
1599  */
1600 int
tl_ifmedia_upd(struct ifnet * ifp)1601 tl_ifmedia_upd(struct ifnet *ifp)
1602 {
1603 	struct tl_softc *sc = ifp->if_softc;
1604 
1605 	if (sc->tl_bitrate)
1606 		tl_setmode(sc, sc->ifmedia.ifm_media);
1607 	else
1608 		mii_mediachg(&sc->sc_mii);
1609 
1610 	return(0);
1611 }
1612 
1613 /*
1614  * Report current media status.
1615  */
1616 void
tl_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1617 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1618 {
1619 	struct tl_softc		*sc;
1620 	struct mii_data		*mii;
1621 
1622 	sc = ifp->if_softc;
1623 	mii = &sc->sc_mii;
1624 
1625 	ifmr->ifm_active = IFM_ETHER;
1626 	if (sc->tl_bitrate) {
1627 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
1628 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
1629 		else
1630 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
1631 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
1632 			ifmr->ifm_active |= IFM_HDX;
1633 		else
1634 			ifmr->ifm_active |= IFM_FDX;
1635 		return;
1636 	} else {
1637 		mii_pollstat(mii);
1638 		ifmr->ifm_active = mii->mii_media_active;
1639 		ifmr->ifm_status = mii->mii_media_status;
1640 	}
1641 }
1642 
1643 int
tl_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1644 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1645 {
1646 	struct tl_softc		*sc = ifp->if_softc;
1647 	struct ifreq		*ifr = (struct ifreq *) data;
1648 	int			s, error = 0;
1649 
1650 	s = splnet();
1651 
1652 	switch(command) {
1653 	case SIOCSIFADDR:
1654 		ifp->if_flags |= IFF_UP;
1655 		if (!(ifp->if_flags & IFF_RUNNING))
1656 			tl_init(sc);
1657 		break;
1658 
1659 	case SIOCSIFFLAGS:
1660 		if (ifp->if_flags & IFF_UP) {
1661 			if (ifp->if_flags & IFF_RUNNING)
1662 				error = ENETRESET;
1663 			else
1664 				tl_init(sc);
1665 		} else {
1666 			if (ifp->if_flags & IFF_RUNNING)
1667 				tl_stop(sc);
1668 		}
1669 		break;
1670 
1671 	case SIOCSIFMEDIA:
1672 	case SIOCGIFMEDIA:
1673 		if (sc->tl_bitrate)
1674 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1675 		else
1676 			error = ifmedia_ioctl(ifp, ifr,
1677 			    &sc->sc_mii.mii_media, command);
1678 		break;
1679 
1680 	default:
1681 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1682 	}
1683 
1684 	if (error == ENETRESET) {
1685 		if (ifp->if_flags & IFF_RUNNING)
1686 			tl_iff(sc);
1687 		error = 0;
1688 	}
1689 
1690 	splx(s);
1691 	return(error);
1692 }
1693 
1694 void
tl_watchdog(struct ifnet * ifp)1695 tl_watchdog(struct ifnet *ifp)
1696 {
1697 	struct tl_softc		*sc;
1698 
1699 	sc = ifp->if_softc;
1700 
1701 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1702 
1703 	ifp->if_oerrors++;
1704 
1705 	tl_softreset(sc, 1);
1706 	tl_init(sc);
1707 }
1708 
1709 /*
1710  * Stop the adapter and free any mbufs allocated to the
1711  * RX and TX lists.
1712  */
1713 void
tl_stop(struct tl_softc * sc)1714 tl_stop(struct tl_softc *sc)
1715 {
1716 	int			i;
1717 	struct ifnet		*ifp;
1718 
1719 	ifp = &sc->arpcom.ac_if;
1720 
1721 	/* Stop the stats updater. */
1722 	timeout_del(&sc->tl_stats_tmo);
1723 	timeout_del(&sc->tl_wait_tmo);
1724 
1725 	/* Stop the transmitter */
1726 	CMD_CLR(sc, TL_CMD_RT);
1727 	CMD_SET(sc, TL_CMD_STOP);
1728 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1729 
1730 	/* Stop the receiver */
1731 	CMD_SET(sc, TL_CMD_RT);
1732 	CMD_SET(sc, TL_CMD_STOP);
1733 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1734 
1735 	/*
1736 	 * Disable host interrupts.
1737 	 */
1738 	CMD_SET(sc, TL_CMD_INTSOFF);
1739 
1740 	/*
1741 	 * Clear list pointer.
1742 	 */
1743 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1744 
1745 	/*
1746 	 * Free the RX lists.
1747 	 */
1748 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1749 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
1750 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
1751 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
1752 		}
1753 	}
1754 	bzero(&sc->tl_ldata->tl_rx_list, sizeof(sc->tl_ldata->tl_rx_list));
1755 
1756 	/*
1757 	 * Free the TX list buffers.
1758 	 */
1759 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1760 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
1761 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
1762 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
1763 		}
1764 	}
1765 	bzero(&sc->tl_ldata->tl_tx_list, sizeof(sc->tl_ldata->tl_tx_list));
1766 
1767 	ifp->if_flags &= ~IFF_RUNNING;
1768 	ifq_clr_oactive(&ifp->if_snd);
1769 }
1770 
1771 int
tl_probe(struct device * parent,void * match,void * aux)1772 tl_probe(struct device *parent, void *match, void *aux)
1773 {
1774 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1775 
1776 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) {
1777 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TI_TLAN)
1778 			return 1;
1779 		return 0;
1780 	}
1781 
1782 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) {
1783 		switch (PCI_PRODUCT(pa->pa_id)) {
1784 		case PCI_PRODUCT_COMPAQ_N100TX:
1785 		case PCI_PRODUCT_COMPAQ_N10T:
1786 		case PCI_PRODUCT_COMPAQ_INTNF3P:
1787 		case PCI_PRODUCT_COMPAQ_DPNET100TX:
1788 		case PCI_PRODUCT_COMPAQ_INTPL100TX:
1789 		case PCI_PRODUCT_COMPAQ_DP4000:
1790 		case PCI_PRODUCT_COMPAQ_N10T2:
1791 		case PCI_PRODUCT_COMPAQ_N10_TX_UTP:
1792 		case PCI_PRODUCT_COMPAQ_NF3P:
1793 		case PCI_PRODUCT_COMPAQ_NF3P_BNC:
1794 			return 1;
1795 		}
1796 		return 0;
1797 	}
1798 
1799 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
1800 		switch (PCI_PRODUCT(pa->pa_id)) {
1801 		case PCI_PRODUCT_OLICOM_OC2183:
1802 		case PCI_PRODUCT_OLICOM_OC2325:
1803 		case PCI_PRODUCT_OLICOM_OC2326:
1804 			return 1;
1805 		}
1806 		return 0;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 void
tl_attach(struct device * parent,struct device * self,void * aux)1813 tl_attach(struct device *parent, struct device *self, void *aux)
1814 {
1815 	struct tl_softc *sc = (struct tl_softc *)self;
1816 	struct pci_attach_args *pa = aux;
1817 	pci_chipset_tag_t pc = pa->pa_pc;
1818 	pci_intr_handle_t ih;
1819 	const char *intrstr = NULL;
1820 	struct ifnet *ifp = &sc->arpcom.ac_if;
1821 	bus_size_t iosize;
1822 	u_int32_t command;
1823 	int i, rseg;
1824 	bus_dma_segment_t seg;
1825 	bus_dmamap_t dmamap;
1826 	caddr_t kva;
1827 
1828 	/*
1829 	 * Map control/status registers.
1830 	 */
1831 
1832 #ifdef TL_USEIOSPACE
1833 	if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1834 	    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
1835 		if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_IO, 0,
1836 		    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
1837 			printf(": can't map i/o space\n");
1838 			return;
1839 		}
1840 	}
1841 #else
1842 	if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
1843 	    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
1844 		if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_MEM, 0,
1845 		    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
1846 			printf(": can't map mem space\n");
1847 			return;
1848 		}
1849 	}
1850 #endif
1851 
1852 	/*
1853 	 * Manual wants the PCI latency timer jacked up to 0xff
1854 	 */
1855 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER);
1856 	command |= 0x0000ff00;
1857 	pci_conf_write(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER, command);
1858 
1859 	/*
1860 	 * Allocate our interrupt.
1861 	 */
1862 	if (pci_intr_map(pa, &ih)) {
1863 		printf(": couldn't map interrupt\n");
1864 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1865 		return;
1866 	}
1867 	intrstr = pci_intr_string(pc, ih);
1868 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, tl_intr, sc,
1869 	    self->dv_xname);
1870 	if (sc->sc_ih == NULL) {
1871 		printf(": could not establish interrupt");
1872 		if (intrstr != NULL)
1873 			printf(" at %s", intrstr);
1874 		printf("\n");
1875 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1876 		return;
1877 	}
1878 	printf(": %s", intrstr);
1879 
1880 	sc->sc_dmat = pa->pa_dmat;
1881 	if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct tl_list_data),
1882 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1883 		printf("%s: can't alloc list\n", sc->sc_dev.dv_xname);
1884 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1885 		return;
1886 	}
1887 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct tl_list_data),
1888 	    &kva, BUS_DMA_NOWAIT)) {
1889 		printf("%s: can't map dma buffers (%zd bytes)\n",
1890 		    sc->sc_dev.dv_xname, sizeof(struct tl_list_data));
1891 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1892 		return;
1893 	}
1894 	if (bus_dmamap_create(sc->sc_dmat, sizeof(struct tl_list_data), 1,
1895 	    sizeof(struct tl_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
1896 		printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
1897 		bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
1898 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1899 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1900 		return;
1901 	}
1902 	if (bus_dmamap_load(sc->sc_dmat, dmamap, kva,
1903 	    sizeof(struct tl_list_data), NULL, BUS_DMA_NOWAIT)) {
1904 		printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
1905 		bus_dmamap_destroy(sc->sc_dmat, dmamap);
1906 		bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
1907 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1908 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1909 		return;
1910 	}
1911 	sc->tl_ldata = (struct tl_list_data *)kva;
1912 
1913 	for (sc->tl_product = tl_prods; sc->tl_product->tp_vend;
1914 	     sc->tl_product++) {
1915 		if (sc->tl_product->tp_vend == PCI_VENDOR(pa->pa_id) &&
1916 		    sc->tl_product->tp_prod == PCI_PRODUCT(pa->pa_id))
1917 			break;
1918 	}
1919 
1920 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ ||
1921 	    PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI)
1922 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1923 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM)
1924 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1925 
1926 	/*
1927 	 * Reset adapter.
1928 	 */
1929 	tl_softreset(sc, 1);
1930 	tl_hardreset(self);
1931 	DELAY(1000000);
1932 	tl_softreset(sc, 1);
1933 
1934 	/*
1935 	 * Get station address from the EEPROM.
1936 	 */
1937 	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1938 	    sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1939 		printf("\n%s: failed to read station address\n",
1940 		    sc->sc_dev.dv_xname);
1941 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1942 		return;
1943 	}
1944 
1945 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
1946 		for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1947 			u_int16_t *p;
1948 
1949 			p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1950 			*p = ntohs(*p);
1951 		}
1952 	}
1953 
1954 	printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
1955 
1956 	ifp = &sc->arpcom.ac_if;
1957 	ifp->if_softc = sc;
1958 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1959 	ifp->if_ioctl = tl_ioctl;
1960 	ifp->if_start = tl_start;
1961 	ifp->if_watchdog = tl_watchdog;
1962 	ifq_init_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1963 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1964 
1965 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1966 
1967 	/*
1968 	 * Reset adapter (again).
1969 	 */
1970 	tl_softreset(sc, 1);
1971 	tl_hardreset(self);
1972 	DELAY(1000000);
1973 	tl_softreset(sc, 1);
1974 
1975 	/*
1976 	 * Do MII setup. If no PHYs are found, then this is a
1977 	 * bitrate ThunderLAN chip that only supports 10baseT
1978 	 * and AUI/BNC.
1979 	 */
1980 	sc->sc_mii.mii_ifp = ifp;
1981 	sc->sc_mii.mii_readreg = tl_miibus_readreg;
1982 	sc->sc_mii.mii_writereg = tl_miibus_writereg;
1983 	sc->sc_mii.mii_statchg = tl_miibus_statchg;
1984 	ifmedia_init(&sc->sc_mii.mii_media, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1985 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
1986 	    0);
1987 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1988 		struct ifmedia *ifm;
1989 		sc->tl_bitrate = 1;
1990 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1991 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1992 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1993 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1994 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1995 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1996 		/* Reset again, this time setting bitrate mode. */
1997 		tl_softreset(sc, 1);
1998 		ifm = &sc->ifmedia;
1999 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
2000 		tl_ifmedia_upd(ifp);
2001 	} else
2002 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2003 
2004 	/*
2005 	 * Attach us everywhere.
2006 	 */
2007 	if_attach(ifp);
2008 	ether_ifattach(ifp);
2009 }
2010 
2011 void
tl_wait_up(void * xsc)2012 tl_wait_up(void *xsc)
2013 {
2014 	struct tl_softc *sc = xsc;
2015 	struct ifnet *ifp = &sc->arpcom.ac_if;
2016 
2017 	ifp->if_flags |= IFF_RUNNING;
2018 	ifq_clr_oactive(&ifp->if_snd);
2019 }
2020 
2021 const struct cfattach tl_ca = {
2022 	sizeof(struct tl_softc), tl_probe, tl_attach
2023 };
2024 
2025 struct cfdriver tl_cd = {
2026 	NULL, "tl", DV_IFNET
2027 };
2028