xref: /openbsd/gnu/usr.bin/gcc/gcc/function.c (revision 34a73b73)
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2    Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3    1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 /* This file handles the generation of rtl code from tree structure
23    at the level of the function as a whole.
24    It creates the rtl expressions for parameters and auto variables
25    and has full responsibility for allocating stack slots.
26 
27    `expand_function_start' is called at the beginning of a function,
28    before the function body is parsed, and `expand_function_end' is
29    called after parsing the body.
30 
31    Call `assign_stack_local' to allocate a stack slot for a local variable.
32    This is usually done during the RTL generation for the function body,
33    but it can also be done in the reload pass when a pseudo-register does
34    not get a hard register.
35 
36    Call `put_var_into_stack' when you learn, belatedly, that a variable
37    previously given a pseudo-register must in fact go in the stack.
38    This function changes the DECL_RTL to be a stack slot instead of a reg
39    then scans all the RTL instructions so far generated to correct them.  */
40 
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "output.h"
55 #include "basic-block.h"
56 #include "toplev.h"
57 #include "hashtab.h"
58 #include "ggc.h"
59 #include "tm_p.h"
60 #include "integrate.h"
61 #include "langhooks.h"
62 #include "protector.h"
63 
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
67 
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
71 
72 /* Some systems use __main in a way incompatible with its use in gcc, in these
73    cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
74    give the same symbol without quotes for an alternative entry point.  You
75    must define both, or neither.  */
76 #ifndef NAME__MAIN
77 #define NAME__MAIN "__main"
78 #endif
79 
80 /* Round a value to the lowest integer less than it that is a multiple of
81    the required alignment.  Avoid using division in case the value is
82    negative.  Assume the alignment is a power of two.  */
83 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
84 
85 /* Similar, but round to the next highest integer that meets the
86    alignment.  */
87 #define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
88 
89 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
90    during rtl generation.  If they are different register numbers, this is
91    always true.  It may also be true if
92    FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
93    generation.  See fix_lexical_addr for details.  */
94 
95 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
96 #define NEED_SEPARATE_AP
97 #endif
98 
99 /* Nonzero if function being compiled doesn't contain any calls
100    (ignoring the prologue and epilogue).  This is set prior to
101    local register allocation and is valid for the remaining
102    compiler passes.  */
103 int current_function_is_leaf;
104 
105 /* Nonzero if function being compiled doesn't contain any instructions
106    that can throw an exception.  This is set prior to final.  */
107 
108 int current_function_nothrow;
109 
110 /* Nonzero if function being compiled doesn't modify the stack pointer
111    (ignoring the prologue and epilogue).  This is only valid after
112    life_analysis has run.  */
113 int current_function_sp_is_unchanging;
114 
115 /* Nonzero if the function being compiled is a leaf function which only
116    uses leaf registers.  This is valid after reload (specifically after
117    sched2) and is useful only if the port defines LEAF_REGISTERS.  */
118 int current_function_uses_only_leaf_regs;
119 
120 /* Nonzero once virtual register instantiation has been done.
121    assign_stack_local uses frame_pointer_rtx when this is nonzero.
122    calls.c:emit_library_call_value_1 uses it to set up
123    post-instantiation libcalls.  */
124 int virtuals_instantiated;
125 
126 /* Nonzero if at least one trampoline has been created.  */
127 int trampolines_created;
128 
129 /* Assign unique numbers to labels generated for profiling, debugging, etc.  */
130 static int funcdef_no;
131 
132 /* These variables hold pointers to functions to create and destroy
133    target specific, per-function data structures.  */
134 struct machine_function * (*init_machine_status) PARAMS ((void));
135 
136 /* The FUNCTION_DECL for an inline function currently being expanded.  */
137 tree inline_function_decl;
138 
139 /* The currently compiled function.  */
140 struct function *cfun = 0;
141 
142 /* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
143 static GTY(()) varray_type prologue;
144 static GTY(()) varray_type epilogue;
145 
146 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
147    in this function.  */
148 static GTY(()) varray_type sibcall_epilogue;
149 
150 /* Current boundary mark for character arrays.  */
151 int temp_boundary_mark = 0;
152 
153 
154 /* In order to evaluate some expressions, such as function calls returning
155    structures in memory, we need to temporarily allocate stack locations.
156    We record each allocated temporary in the following structure.
157 
158    Associated with each temporary slot is a nesting level.  When we pop up
159    one level, all temporaries associated with the previous level are freed.
160    Normally, all temporaries are freed after the execution of the statement
161    in which they were created.  However, if we are inside a ({...}) grouping,
162    the result may be in a temporary and hence must be preserved.  If the
163    result could be in a temporary, we preserve it if we can determine which
164    one it is in.  If we cannot determine which temporary may contain the
165    result, all temporaries are preserved.  A temporary is preserved by
166    pretending it was allocated at the previous nesting level.
167 
168    Automatic variables are also assigned temporary slots, at the nesting
169    level where they are defined.  They are marked a "kept" so that
170    free_temp_slots will not free them.  */
171 
172 struct temp_slot GTY(())
173 {
174   /* Points to next temporary slot.  */
175   struct temp_slot *next;
176   /* The rtx to used to reference the slot.  */
177   rtx slot;
178   /* The rtx used to represent the address if not the address of the
179      slot above.  May be an EXPR_LIST if multiple addresses exist.  */
180   rtx address;
181   /* The alignment (in bits) of the slot.  */
182   unsigned int align;
183   /* The size, in units, of the slot.  */
184   HOST_WIDE_INT size;
185   /* The type of the object in the slot, or zero if it doesn't correspond
186      to a type.  We use this to determine whether a slot can be reused.
187      It can be reused if objects of the type of the new slot will always
188      conflict with objects of the type of the old slot.  */
189   tree type;
190   /* The value of `sequence_rtl_expr' when this temporary is allocated.  */
191   tree rtl_expr;
192   /* Nonzero if this temporary is currently in use.  */
193   char in_use;
194   /* Nonzero if this temporary has its address taken.  */
195   char addr_taken;
196   /* Nesting level at which this slot is being used.  */
197   int level;
198   /* Nonzero if this should survive a call to free_temp_slots.  */
199   int keep;
200   /* The offset of the slot from the frame_pointer, including extra space
201      for alignment.  This info is for combine_temp_slots.  */
202   HOST_WIDE_INT base_offset;
203   /* The size of the slot, including extra space for alignment.  This
204      info is for combine_temp_slots.  */
205   HOST_WIDE_INT full_size;
206   /* Boundary mark of a character array and the others. This info is for propolice */
207   int boundary_mark;
208 };
209 
210 /* This structure is used to record MEMs or pseudos used to replace VAR, any
211    SUBREGs of VAR, and any MEMs containing VAR as an address.  We need to
212    maintain this list in case two operands of an insn were required to match;
213    in that case we must ensure we use the same replacement.  */
214 
215 struct fixup_replacement GTY(())
216 {
217   rtx old;
218   rtx new;
219   struct fixup_replacement *next;
220 };
221 
222 struct insns_for_mem_entry
223 {
224   /* A MEM.  */
225   rtx key;
226   /* These are the INSNs which reference the MEM.  */
227   rtx insns;
228 };
229 
230 /* Forward declarations.  */
231 
232 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
233 					 int, struct function *));
234 static struct temp_slot *find_temp_slot_from_address  PARAMS ((rtx));
235 static void put_reg_into_stack	PARAMS ((struct function *, rtx, tree,
236 					 enum machine_mode, unsigned int,
237 					 int, int, int, htab_t));
238 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
239 					     enum machine_mode,
240 					     htab_t));
241 static void fixup_var_refs	PARAMS ((rtx, enum machine_mode, int, rtx,
242 					 htab_t));
243 static struct fixup_replacement
244   *find_fixup_replacement	PARAMS ((struct fixup_replacement **, rtx));
245 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
246 					  int, int, rtx));
247 static void fixup_var_refs_insns_with_hash
248 				PARAMS ((htab_t, rtx,
249 					 enum machine_mode, int, rtx));
250 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
251 					 int, int, rtx));
252 static void fixup_var_refs_1	PARAMS ((rtx, enum machine_mode, rtx *, rtx,
253 					 struct fixup_replacement **, rtx));
254 static rtx fixup_memory_subreg	PARAMS ((rtx, rtx, enum machine_mode, int));
255 static rtx walk_fixup_memory_subreg  PARAMS ((rtx, rtx, enum machine_mode,
256 					      int));
257 static rtx fixup_stack_1	PARAMS ((rtx, rtx));
258 static void optimize_bit_field	PARAMS ((rtx, rtx, rtx *));
259 static void instantiate_decls	PARAMS ((tree, int));
260 static void instantiate_decls_1	PARAMS ((tree, int));
261 static void instantiate_decl	PARAMS ((rtx, HOST_WIDE_INT, int));
262 static rtx instantiate_new_reg	PARAMS ((rtx, HOST_WIDE_INT *));
263 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
264 static void delete_handlers	PARAMS ((void));
265 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
266 					  struct args_size *));
267 static void pad_below		PARAMS ((struct args_size *, enum machine_mode,
268 					 tree));
269 static rtx round_trampoline_addr PARAMS ((rtx));
270 static rtx adjust_trampoline_addr PARAMS ((rtx));
271 static tree *identify_blocks_1	PARAMS ((rtx, tree *, tree *, tree *));
272 static void reorder_blocks_0	PARAMS ((tree));
273 static void reorder_blocks_1	PARAMS ((rtx, tree, varray_type *));
274 static void reorder_fix_fragments PARAMS ((tree));
275 static tree blocks_nreverse	PARAMS ((tree));
276 static int all_blocks		PARAMS ((tree, tree *));
277 static tree *get_block_vector   PARAMS ((tree, int *));
278 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
279 /* We always define `record_insns' even if its not used so that we
280    can always export `prologue_epilogue_contains'.  */
281 static void record_insns	PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
282 static int contains		PARAMS ((rtx, varray_type));
283 #ifdef HAVE_return
284 static void emit_return_into_block PARAMS ((basic_block, rtx));
285 #endif
286 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
287 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
288 					  htab_t));
289 static void purge_single_hard_subreg_set PARAMS ((rtx));
290 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
291 static rtx keep_stack_depressed PARAMS ((rtx));
292 #endif
293 static int is_addressof		PARAMS ((rtx *, void *));
294 static hashval_t insns_for_mem_hash PARAMS ((const void *));
295 static int insns_for_mem_comp PARAMS ((const void *, const void *));
296 static int insns_for_mem_walk   PARAMS ((rtx *, void *));
297 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
298 static void prepare_function_start PARAMS ((void));
299 static void do_clobber_return_reg PARAMS ((rtx, void *));
300 static void do_use_return_reg PARAMS ((rtx, void *));
301 static void instantiate_virtual_regs_lossage PARAMS ((rtx));
302 
303 /* Pointer to chain of `struct function' for containing functions.  */
304 static GTY(()) struct function *outer_function_chain;
305 
306 /* Given a function decl for a containing function,
307    return the `struct function' for it.  */
308 
309 struct function *
find_function_data(decl)310 find_function_data (decl)
311      tree decl;
312 {
313   struct function *p;
314 
315   for (p = outer_function_chain; p; p = p->outer)
316     if (p->decl == decl)
317       return p;
318 
319   abort ();
320 }
321 
322 /* Save the current context for compilation of a nested function.
323    This is called from language-specific code.  The caller should use
324    the enter_nested langhook to save any language-specific state,
325    since this function knows only about language-independent
326    variables.  */
327 
328 void
push_function_context_to(context)329 push_function_context_to (context)
330      tree context;
331 {
332   struct function *p;
333 
334   if (context)
335     {
336       if (context == current_function_decl)
337 	cfun->contains_functions = 1;
338       else
339 	{
340 	  struct function *containing = find_function_data (context);
341 	  containing->contains_functions = 1;
342 	}
343     }
344 
345   if (cfun == 0)
346     init_dummy_function_start ();
347   p = cfun;
348 
349   p->outer = outer_function_chain;
350   outer_function_chain = p;
351   p->fixup_var_refs_queue = 0;
352 
353   (*lang_hooks.function.enter_nested) (p);
354 
355   cfun = 0;
356 }
357 
358 void
push_function_context()359 push_function_context ()
360 {
361   push_function_context_to (current_function_decl);
362 }
363 
364 /* Restore the last saved context, at the end of a nested function.
365    This function is called from language-specific code.  */
366 
367 void
pop_function_context_from(context)368 pop_function_context_from (context)
369      tree context ATTRIBUTE_UNUSED;
370 {
371   struct function *p = outer_function_chain;
372   struct var_refs_queue *queue;
373 
374   cfun = p;
375   outer_function_chain = p->outer;
376 
377   current_function_decl = p->decl;
378   reg_renumber = 0;
379 
380   restore_emit_status (p);
381 
382   (*lang_hooks.function.leave_nested) (p);
383 
384   /* Finish doing put_var_into_stack for any of our variables which became
385      addressable during the nested function.  If only one entry has to be
386      fixed up, just do that one.  Otherwise, first make a list of MEMs that
387      are not to be unshared.  */
388   if (p->fixup_var_refs_queue == 0)
389     ;
390   else if (p->fixup_var_refs_queue->next == 0)
391     fixup_var_refs (p->fixup_var_refs_queue->modified,
392 		    p->fixup_var_refs_queue->promoted_mode,
393 		    p->fixup_var_refs_queue->unsignedp,
394 		    p->fixup_var_refs_queue->modified, 0);
395   else
396     {
397       rtx list = 0;
398 
399       for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
400 	list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
401 
402       for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
403 	fixup_var_refs (queue->modified, queue->promoted_mode,
404 			queue->unsignedp, list, 0);
405 
406     }
407 
408   p->fixup_var_refs_queue = 0;
409 
410   /* Reset variables that have known state during rtx generation.  */
411   rtx_equal_function_value_matters = 1;
412   virtuals_instantiated = 0;
413   generating_concat_p = 1;
414 }
415 
416 void
pop_function_context()417 pop_function_context ()
418 {
419   pop_function_context_from (current_function_decl);
420 }
421 
422 /* Clear out all parts of the state in F that can safely be discarded
423    after the function has been parsed, but not compiled, to let
424    garbage collection reclaim the memory.  */
425 
426 void
free_after_parsing(f)427 free_after_parsing (f)
428      struct function *f;
429 {
430   /* f->expr->forced_labels is used by code generation.  */
431   /* f->emit->regno_reg_rtx is used by code generation.  */
432   /* f->varasm is used by code generation.  */
433   /* f->eh->eh_return_stub_label is used by code generation.  */
434 
435   (*lang_hooks.function.final) (f);
436   f->stmt = NULL;
437 }
438 
439 /* Clear out all parts of the state in F that can safely be discarded
440    after the function has been compiled, to let garbage collection
441    reclaim the memory.  */
442 
443 void
free_after_compilation(f)444 free_after_compilation (f)
445      struct function *f;
446 {
447   f->eh = NULL;
448   f->expr = NULL;
449   f->emit = NULL;
450   f->varasm = NULL;
451   f->machine = NULL;
452 
453   f->x_temp_slots = NULL;
454   f->arg_offset_rtx = NULL;
455   f->return_rtx = NULL;
456   f->internal_arg_pointer = NULL;
457   f->x_nonlocal_labels = NULL;
458   f->x_nonlocal_goto_handler_slots = NULL;
459   f->x_nonlocal_goto_handler_labels = NULL;
460   f->x_nonlocal_goto_stack_level = NULL;
461   f->x_cleanup_label = NULL;
462   f->x_return_label = NULL;
463   f->computed_goto_common_label = NULL;
464   f->computed_goto_common_reg = NULL;
465   f->x_save_expr_regs = NULL;
466   f->x_stack_slot_list = NULL;
467   f->x_rtl_expr_chain = NULL;
468   f->x_tail_recursion_label = NULL;
469   f->x_tail_recursion_reentry = NULL;
470   f->x_arg_pointer_save_area = NULL;
471   f->x_clobber_return_insn = NULL;
472   f->x_context_display = NULL;
473   f->x_trampoline_list = NULL;
474   f->x_parm_birth_insn = NULL;
475   f->x_last_parm_insn = NULL;
476   f->x_parm_reg_stack_loc = NULL;
477   f->fixup_var_refs_queue = NULL;
478   f->original_arg_vector = NULL;
479   f->original_decl_initial = NULL;
480   f->inl_last_parm_insn = NULL;
481   f->epilogue_delay_list = NULL;
482 }
483 
484 /* Allocate fixed slots in the stack frame of the current function.  */
485 
486 /* Return size needed for stack frame based on slots so far allocated in
487    function F.
488    This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
489    the caller may have to do that.  */
490 
491 HOST_WIDE_INT
get_func_frame_size(f)492 get_func_frame_size (f)
493      struct function *f;
494 {
495 #ifdef FRAME_GROWS_DOWNWARD
496   return -f->x_frame_offset;
497 #else
498   return f->x_frame_offset;
499 #endif
500 }
501 
502 /* Return size needed for stack frame based on slots so far allocated.
503    This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
504    the caller may have to do that.  */
505 HOST_WIDE_INT
get_frame_size()506 get_frame_size ()
507 {
508   return get_func_frame_size (cfun);
509 }
510 
511 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
512    with machine mode MODE.
513 
514    ALIGN controls the amount of alignment for the address of the slot:
515    0 means according to MODE,
516    -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
517    -2 means use BITS_PER_UNIT,
518    positive specifies alignment boundary in bits.
519 
520    We do not round to stack_boundary here.
521 
522    FUNCTION specifies the function to allocate in.  */
523 
524 static rtx
assign_stack_local_1(mode,size,align,function)525 assign_stack_local_1 (mode, size, align, function)
526      enum machine_mode mode;
527      HOST_WIDE_INT size;
528      int align;
529      struct function *function;
530 {
531   rtx x, addr;
532   int bigend_correction = 0;
533   int alignment;
534   int frame_off, frame_alignment, frame_phase;
535 
536   if (align == 0)
537     {
538       tree type;
539 
540       if (mode == BLKmode)
541 	alignment = BIGGEST_ALIGNMENT;
542       else
543 	alignment = GET_MODE_ALIGNMENT (mode);
544 
545       /* Allow the target to (possibly) increase the alignment of this
546 	 stack slot.  */
547       type = (*lang_hooks.types.type_for_mode) (mode, 0);
548       if (type)
549 	alignment = LOCAL_ALIGNMENT (type, alignment);
550 
551       alignment /= BITS_PER_UNIT;
552     }
553   else if (align == -1)
554     {
555       alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
556       size = CEIL_ROUND (size, alignment);
557     }
558   else if (align == -2)
559     alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
560   else
561     alignment = align / BITS_PER_UNIT;
562 
563 #ifdef FRAME_GROWS_DOWNWARD
564   function->x_frame_offset -= size;
565 #endif
566 
567   /* Ignore alignment we can't do with expected alignment of the boundary.  */
568   if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
569     alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
570 
571   if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
572     function->stack_alignment_needed = alignment * BITS_PER_UNIT;
573 
574   /* Calculate how many bytes the start of local variables is off from
575      stack alignment.  */
576   frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
577   frame_off = STARTING_FRAME_OFFSET % frame_alignment;
578   frame_phase = frame_off ? frame_alignment - frame_off : 0;
579 
580   /* Round frame offset to that alignment.
581      We must be careful here, since FRAME_OFFSET might be negative and
582      division with a negative dividend isn't as well defined as we might
583      like.  So we instead assume that ALIGNMENT is a power of two and
584      use logical operations which are unambiguous.  */
585 #ifdef FRAME_GROWS_DOWNWARD
586   function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
587 #else
588   function->x_frame_offset = CEIL_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
589 #endif
590 
591   /* On a big-endian machine, if we are allocating more space than we will use,
592      use the least significant bytes of those that are allocated.  */
593   if (BYTES_BIG_ENDIAN && mode != BLKmode)
594     bigend_correction = size - GET_MODE_SIZE (mode);
595 
596   /* If we have already instantiated virtual registers, return the actual
597      address relative to the frame pointer.  */
598   if (function == cfun && virtuals_instantiated)
599     addr = plus_constant (frame_pointer_rtx,
600 			  (frame_offset + bigend_correction
601 			   + STARTING_FRAME_OFFSET));
602   else
603     addr = plus_constant (virtual_stack_vars_rtx,
604 			  function->x_frame_offset + bigend_correction);
605 
606 #ifndef FRAME_GROWS_DOWNWARD
607   function->x_frame_offset += size;
608 #endif
609 
610   x = gen_rtx_MEM (mode, addr);
611 
612   function->x_stack_slot_list
613     = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 
615   return x;
616 }
617 
618 /* Wrapper around assign_stack_local_1;  assign a local stack slot for the
619    current function.  */
620 
621 rtx
assign_stack_local(mode,size,align)622 assign_stack_local (mode, size, align)
623      enum machine_mode mode;
624      HOST_WIDE_INT size;
625      int align;
626 {
627   return assign_stack_local_1 (mode, size, align, cfun);
628 }
629 
630 /* Allocate a temporary stack slot and record it for possible later
631    reuse.
632 
633    MODE is the machine mode to be given to the returned rtx.
634 
635    SIZE is the size in units of the space required.  We do no rounding here
636    since assign_stack_local will do any required rounding.
637 
638    KEEP is 1 if this slot is to be retained after a call to
639    free_temp_slots.  Automatic variables for a block are allocated
640    with this flag.  KEEP is 2 if we allocate a longer term temporary,
641    whose lifetime is controlled by CLEANUP_POINT_EXPRs.  KEEP is 3
642    if we are to allocate something at an inner level to be treated as
643    a variable in the block (e.g., a SAVE_EXPR).
644    KEEP is 5 if we allocate a place to return structure.
645 
646    TYPE is the type that will be used for the stack slot.  */
647 
648 rtx
assign_stack_temp_for_type(mode,size,keep,type)649 assign_stack_temp_for_type (mode, size, keep, type)
650      enum machine_mode mode;
651      HOST_WIDE_INT size;
652      int keep;
653      tree type;
654 {
655   unsigned int align;
656   struct temp_slot *p, *best_p = 0;
657   rtx slot;
658   int char_array = (flag_propolice_protection
659 		    && keep == 1 && search_string_def (type));
660 
661   /* If SIZE is -1 it means that somebody tried to allocate a temporary
662      of a variable size.  */
663   if (size == -1)
664     abort ();
665 
666   if (mode == BLKmode)
667     align = BIGGEST_ALIGNMENT;
668   else
669     align = GET_MODE_ALIGNMENT (mode);
670 
671   if (! type)
672     type = (*lang_hooks.types.type_for_mode) (mode, 0);
673 
674   if (type)
675     align = LOCAL_ALIGNMENT (type, align);
676 
677   /* Try to find an available, already-allocated temporary of the proper
678      mode which meets the size and alignment requirements.  Choose the
679      smallest one with the closest alignment.  */
680   for (p = temp_slots; p; p = p->next)
681     if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
682 	&& ! p->in_use
683 	&& objects_must_conflict_p (p->type, type)
684 	&& (best_p == 0 || best_p->size > p->size
685 	    || (best_p->size == p->size && best_p->align > p->align))
686 	&& (! char_array || p->boundary_mark != 0))
687       {
688 	if (p->align == align && p->size == size)
689 	  {
690 	    best_p = 0;
691 	    break;
692 	  }
693 	best_p = p;
694       }
695 
696   /* Make our best, if any, the one to use.  */
697   if (best_p)
698     {
699       /* If there are enough aligned bytes left over, make them into a new
700 	 temp_slot so that the extra bytes don't get wasted.  Do this only
701 	 for BLKmode slots, so that we can be sure of the alignment.  */
702       if (GET_MODE (best_p->slot) == BLKmode)
703 	{
704 	  int alignment = best_p->align / BITS_PER_UNIT;
705 	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
706 
707 	  if (best_p->size - rounded_size >= alignment)
708 	    {
709 	      p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
710 	      p->in_use = p->addr_taken = 0;
711 	      p->size = best_p->size - rounded_size;
712 	      p->base_offset = best_p->base_offset + rounded_size;
713 	      p->full_size = best_p->full_size - rounded_size;
714 	      p->slot = gen_rtx_MEM (BLKmode,
715 				     plus_constant (XEXP (best_p->slot, 0),
716 						    rounded_size));
717 	      p->align = best_p->align;
718 	      p->address = 0;
719 	      p->rtl_expr = 0;
720 	      p->type = best_p->type;
721 	      p->boundary_mark = best_p->boundary_mark;
722 	      p->next = temp_slots;
723 	      temp_slots = p;
724 
725 	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
726 						   stack_slot_list);
727 
728 	      best_p->size = rounded_size;
729 	      best_p->full_size = rounded_size;
730 	    }
731 	}
732 
733       p = best_p;
734     }
735 
736   /* If we still didn't find one, make a new temporary.  */
737   if (p == 0)
738     {
739       HOST_WIDE_INT frame_offset_old = frame_offset;
740 
741       p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
742 
743       /* We are passing an explicit alignment request to assign_stack_local.
744 	 One side effect of that is assign_stack_local will not round SIZE
745 	 to ensure the frame offset remains suitably aligned.
746 
747 	 So for requests which depended on the rounding of SIZE, we go ahead
748 	 and round it now.  We also make sure ALIGNMENT is at least
749 	 BIGGEST_ALIGNMENT.  */
750       if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
751 	abort ();
752       p->slot = assign_stack_local (mode,
753 				    (mode == BLKmode
754 				     ? CEIL_ROUND (size, align / BITS_PER_UNIT)
755 				     : size),
756 				    align);
757 
758       p->align = align;
759 
760       /* The following slot size computation is necessary because we don't
761 	 know the actual size of the temporary slot until assign_stack_local
762 	 has performed all the frame alignment and size rounding for the
763 	 requested temporary.  Note that extra space added for alignment
764 	 can be either above or below this stack slot depending on which
765 	 way the frame grows.  We include the extra space if and only if it
766 	 is above this slot.  */
767 #ifdef FRAME_GROWS_DOWNWARD
768       p->size = frame_offset_old - frame_offset;
769 #else
770       p->size = size;
771 #endif
772 
773       /* Now define the fields used by combine_temp_slots.  */
774 #ifdef FRAME_GROWS_DOWNWARD
775       p->base_offset = frame_offset;
776       p->full_size = frame_offset_old - frame_offset;
777 #else
778       p->base_offset = frame_offset_old;
779       p->full_size = frame_offset - frame_offset_old;
780 #endif
781       p->address = 0;
782       p->boundary_mark = char_array?++temp_boundary_mark:0;
783       p->next = temp_slots;
784       temp_slots = p;
785     }
786 
787   p->in_use = 1;
788   p->addr_taken = 0;
789   p->rtl_expr = seq_rtl_expr;
790   p->type = type;
791 
792   if (keep == 2)
793     {
794       p->level = target_temp_slot_level;
795       p->keep = 1;
796     }
797   else if (keep == 3)
798     {
799       p->level = var_temp_slot_level;
800       p->keep = 0;
801     }
802   else
803     {
804       p->level = temp_slot_level;
805       p->keep = keep;
806     }
807 
808 
809   /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
810   slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
811   stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
812 
813   /* If we know the alias set for the memory that will be used, use
814      it.  If there's no TYPE, then we don't know anything about the
815      alias set for the memory.  */
816   set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
817   set_mem_align (slot, align);
818 
819   /* If a type is specified, set the relevant flags.  */
820   if (type != 0)
821     {
822       RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
823 				 && TYPE_READONLY (type));
824       MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
825       MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
826     }
827 
828   return slot;
829 }
830 
831 /* Allocate a temporary stack slot and record it for possible later
832    reuse.  First three arguments are same as in preceding function.  */
833 
834 rtx
assign_stack_temp(mode,size,keep)835 assign_stack_temp (mode, size, keep)
836      enum machine_mode mode;
837      HOST_WIDE_INT size;
838      int keep;
839 {
840   return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
841 }
842 
843 /* Assign a temporary.
844    If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
845    and so that should be used in error messages.  In either case, we
846    allocate of the given type.
847    KEEP is as for assign_stack_temp.
848    MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
849    it is 0 if a register is OK.
850    DONT_PROMOTE is 1 if we should not promote values in register
851    to wider modes.  */
852 
853 rtx
assign_temp(type_or_decl,keep,memory_required,dont_promote)854 assign_temp (type_or_decl, keep, memory_required, dont_promote)
855      tree type_or_decl;
856      int keep;
857      int memory_required;
858      int dont_promote ATTRIBUTE_UNUSED;
859 {
860   tree type, decl;
861   enum machine_mode mode;
862 #ifndef PROMOTE_FOR_CALL_ONLY
863   int unsignedp;
864 #endif
865 
866   if (DECL_P (type_or_decl))
867     decl = type_or_decl, type = TREE_TYPE (decl);
868   else
869     decl = NULL, type = type_or_decl;
870 
871   mode = TYPE_MODE (type);
872 #ifndef PROMOTE_FOR_CALL_ONLY
873   unsignedp = TREE_UNSIGNED (type);
874 #endif
875 
876   if (mode == BLKmode || memory_required)
877     {
878       HOST_WIDE_INT size = int_size_in_bytes (type);
879       rtx tmp;
880 
881       /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
882 	 problems with allocating the stack space.  */
883       if (size == 0)
884 	size = 1;
885 
886       /* Unfortunately, we don't yet know how to allocate variable-sized
887 	 temporaries.  However, sometimes we have a fixed upper limit on
888 	 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
889 	 instead.  This is the case for Chill variable-sized strings.  */
890       if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
891 	  && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
892 	  && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
893 	size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
894 
895       /* The size of the temporary may be too large to fit into an integer.  */
896       /* ??? Not sure this should happen except for user silliness, so limit
897 	 this to things that aren't compiler-generated temporaries.  The
898 	 rest of the time we'll abort in assign_stack_temp_for_type.  */
899       if (decl && size == -1
900 	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
901 	{
902 	  error_with_decl (decl, "size of variable `%s' is too large");
903 	  size = 1;
904 	}
905 
906       tmp = assign_stack_temp_for_type (mode, size, keep, type);
907       return tmp;
908     }
909 
910 #ifndef PROMOTE_FOR_CALL_ONLY
911   if (! dont_promote)
912     mode = promote_mode (type, mode, &unsignedp, 0);
913 #endif
914 
915   return gen_reg_rtx (mode);
916 }
917 
918 /* Combine temporary stack slots which are adjacent on the stack.
919 
920    This allows for better use of already allocated stack space.  This is only
921    done for BLKmode slots because we can be sure that we won't have alignment
922    problems in this case.  */
923 
924 void
combine_temp_slots()925 combine_temp_slots ()
926 {
927   struct temp_slot *p, *q;
928   struct temp_slot *prev_p, *prev_q;
929   int num_slots;
930 
931   /* We can't combine slots, because the information about which slot
932      is in which alias set will be lost.  */
933   if (flag_strict_aliasing)
934     return;
935 
936   /* If there are a lot of temp slots, don't do anything unless
937      high levels of optimization.  */
938   if (! flag_expensive_optimizations)
939     for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
940       if (num_slots > 100 || (num_slots > 10 && optimize == 0))
941 	return;
942 
943   for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
944     {
945       int delete_p = 0;
946 
947       if (! p->in_use && GET_MODE (p->slot) == BLKmode)
948 	for (q = p->next, prev_q = p; q; q = prev_q->next)
949 	  {
950 	    int delete_q = 0;
951 	    if (! q->in_use && GET_MODE (q->slot) == BLKmode)
952 	      {
953 		if (p->base_offset + p->full_size == q->base_offset &&
954 		    p->boundary_mark == q->boundary_mark)
955 		  {
956 		    /* Q comes after P; combine Q into P.  */
957 		    p->size += q->size;
958 		    p->full_size += q->full_size;
959 		    delete_q = 1;
960 		  }
961 		else if (q->base_offset + q->full_size == p->base_offset &&
962 			 p->boundary_mark == q->boundary_mark)
963 		  {
964 		    /* P comes after Q; combine P into Q.  */
965 		    q->size += p->size;
966 		    q->full_size += p->full_size;
967 		    delete_p = 1;
968 		    break;
969 		  }
970 	      }
971 	    /* Either delete Q or advance past it.  */
972 	    if (delete_q)
973 	      prev_q->next = q->next;
974 	    else
975 	      prev_q = q;
976 	  }
977       /* Either delete P or advance past it.  */
978       if (delete_p)
979 	{
980 	  if (prev_p)
981 	    prev_p->next = p->next;
982 	  else
983 	    temp_slots = p->next;
984 	}
985       else
986 	prev_p = p;
987     }
988 }
989 
990 /* Find the temp slot corresponding to the object at address X.  */
991 
992 static struct temp_slot *
find_temp_slot_from_address(x)993 find_temp_slot_from_address (x)
994      rtx x;
995 {
996   struct temp_slot *p;
997   rtx next;
998 
999   for (p = temp_slots; p; p = p->next)
1000     {
1001       if (! p->in_use)
1002 	continue;
1003 
1004       else if (XEXP (p->slot, 0) == x
1005 	       || p->address == x
1006 	       || (GET_CODE (x) == PLUS
1007 		   && XEXP (x, 0) == virtual_stack_vars_rtx
1008 		   && GET_CODE (XEXP (x, 1)) == CONST_INT
1009 		   && INTVAL (XEXP (x, 1)) >= p->base_offset
1010 		   && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1011 	return p;
1012 
1013       else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1014 	for (next = p->address; next; next = XEXP (next, 1))
1015 	  if (XEXP (next, 0) == x)
1016 	    return p;
1017     }
1018 
1019   /* If we have a sum involving a register, see if it points to a temp
1020      slot.  */
1021   if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1022       && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1023     return p;
1024   else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1025 	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1026     return p;
1027 
1028   return 0;
1029 }
1030 
1031 /* Indicate that NEW is an alternate way of referring to the temp slot
1032    that previously was known by OLD.  */
1033 
1034 void
update_temp_slot_address(old,new)1035 update_temp_slot_address (old, new)
1036      rtx old, new;
1037 {
1038   struct temp_slot *p;
1039 
1040   if (rtx_equal_p (old, new))
1041     return;
1042 
1043   p = find_temp_slot_from_address (old);
1044 
1045   /* If we didn't find one, see if both OLD is a PLUS.  If so, and NEW
1046      is a register, see if one operand of the PLUS is a temporary
1047      location.  If so, NEW points into it.  Otherwise, if both OLD and
1048      NEW are a PLUS and if there is a register in common between them.
1049      If so, try a recursive call on those values.  */
1050   if (p == 0)
1051     {
1052       if (GET_CODE (old) != PLUS)
1053 	return;
1054 
1055       if (GET_CODE (new) == REG)
1056 	{
1057 	  update_temp_slot_address (XEXP (old, 0), new);
1058 	  update_temp_slot_address (XEXP (old, 1), new);
1059 	  return;
1060 	}
1061       else if (GET_CODE (new) != PLUS)
1062 	return;
1063 
1064       if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1065 	update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1066       else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1067 	update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1068       else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1069 	update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1070       else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1071 	update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1072 
1073       return;
1074     }
1075 
1076   /* Otherwise add an alias for the temp's address.  */
1077   else if (p->address == 0)
1078     p->address = new;
1079   else
1080     {
1081       if (GET_CODE (p->address) != EXPR_LIST)
1082 	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1083 
1084       p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1085     }
1086 }
1087 
1088 /* If X could be a reference to a temporary slot, mark the fact that its
1089    address was taken.  */
1090 
1091 void
mark_temp_addr_taken(x)1092 mark_temp_addr_taken (x)
1093      rtx x;
1094 {
1095   struct temp_slot *p;
1096 
1097   if (x == 0)
1098     return;
1099 
1100   /* If X is not in memory or is at a constant address, it cannot be in
1101      a temporary slot.  */
1102   if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1103     return;
1104 
1105   p = find_temp_slot_from_address (XEXP (x, 0));
1106   if (p != 0)
1107     p->addr_taken = 1;
1108 }
1109 
1110 /* If X could be a reference to a temporary slot, mark that slot as
1111    belonging to the to one level higher than the current level.  If X
1112    matched one of our slots, just mark that one.  Otherwise, we can't
1113    easily predict which it is, so upgrade all of them.  Kept slots
1114    need not be touched.
1115 
1116    This is called when an ({...}) construct occurs and a statement
1117    returns a value in memory.  */
1118 
1119 void
preserve_temp_slots(x)1120 preserve_temp_slots (x)
1121      rtx x;
1122 {
1123   struct temp_slot *p = 0;
1124 
1125   /* If there is no result, we still might have some objects whose address
1126      were taken, so we need to make sure they stay around.  */
1127   if (x == 0)
1128     {
1129       for (p = temp_slots; p; p = p->next)
1130 	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1131 	  p->level--;
1132 
1133       return;
1134     }
1135 
1136   /* If X is a register that is being used as a pointer, see if we have
1137      a temporary slot we know it points to.  To be consistent with
1138      the code below, we really should preserve all non-kept slots
1139      if we can't find a match, but that seems to be much too costly.  */
1140   if (GET_CODE (x) == REG && REG_POINTER (x))
1141     p = find_temp_slot_from_address (x);
1142 
1143   /* If X is not in memory or is at a constant address, it cannot be in
1144      a temporary slot, but it can contain something whose address was
1145      taken.  */
1146   if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1147     {
1148       for (p = temp_slots; p; p = p->next)
1149 	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1150 	  p->level--;
1151 
1152       return;
1153     }
1154 
1155   /* First see if we can find a match.  */
1156   if (p == 0)
1157     p = find_temp_slot_from_address (XEXP (x, 0));
1158 
1159   if (p != 0)
1160     {
1161       /* Move everything at our level whose address was taken to our new
1162 	 level in case we used its address.  */
1163       struct temp_slot *q;
1164 
1165       if (p->level == temp_slot_level)
1166 	{
1167 	  for (q = temp_slots; q; q = q->next)
1168 	    if (q != p && q->addr_taken && q->level == p->level)
1169 	      q->level--;
1170 
1171 	  p->level--;
1172 	  p->addr_taken = 0;
1173 	}
1174       return;
1175     }
1176 
1177   /* Otherwise, preserve all non-kept slots at this level.  */
1178   for (p = temp_slots; p; p = p->next)
1179     if (p->in_use && p->level == temp_slot_level && ! p->keep)
1180       p->level--;
1181 }
1182 
1183 /* X is the result of an RTL_EXPR.  If it is a temporary slot associated
1184    with that RTL_EXPR, promote it into a temporary slot at the present
1185    level so it will not be freed when we free slots made in the
1186    RTL_EXPR.  */
1187 
1188 void
preserve_rtl_expr_result(x)1189 preserve_rtl_expr_result (x)
1190      rtx x;
1191 {
1192   struct temp_slot *p;
1193 
1194   /* If X is not in memory or is at a constant address, it cannot be in
1195      a temporary slot.  */
1196   if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1197     return;
1198 
1199   /* If we can find a match, move it to our level unless it is already at
1200      an upper level.  */
1201   p = find_temp_slot_from_address (XEXP (x, 0));
1202   if (p != 0)
1203     {
1204       p->level = MIN (p->level, temp_slot_level);
1205       p->rtl_expr = 0;
1206     }
1207 
1208   return;
1209 }
1210 
1211 /* Free all temporaries used so far.  This is normally called at the end
1212    of generating code for a statement.  Don't free any temporaries
1213    currently in use for an RTL_EXPR that hasn't yet been emitted.
1214    We could eventually do better than this since it can be reused while
1215    generating the same RTL_EXPR, but this is complex and probably not
1216    worthwhile.  */
1217 
1218 void
free_temp_slots()1219 free_temp_slots ()
1220 {
1221   struct temp_slot *p;
1222 
1223   for (p = temp_slots; p; p = p->next)
1224     if (p->in_use && p->level == temp_slot_level && ! p->keep
1225 	&& p->rtl_expr == 0)
1226       p->in_use = 0;
1227 
1228   combine_temp_slots ();
1229 }
1230 
1231 /* Free all temporary slots used in T, an RTL_EXPR node.  */
1232 
1233 void
free_temps_for_rtl_expr(t)1234 free_temps_for_rtl_expr (t)
1235      tree t;
1236 {
1237   struct temp_slot *p;
1238 
1239   for (p = temp_slots; p; p = p->next)
1240     if (p->rtl_expr == t)
1241       {
1242 	/* If this slot is below the current TEMP_SLOT_LEVEL, then it
1243 	   needs to be preserved.  This can happen if a temporary in
1244 	   the RTL_EXPR was addressed; preserve_temp_slots will move
1245 	   the temporary into a higher level.  */
1246 	if (temp_slot_level <= p->level)
1247 	  p->in_use = 0;
1248 	else
1249 	  p->rtl_expr = NULL_TREE;
1250       }
1251 
1252   combine_temp_slots ();
1253 }
1254 
1255 /* Mark all temporaries ever allocated in this function as not suitable
1256    for reuse until the current level is exited.  */
1257 
1258 void
mark_all_temps_used()1259 mark_all_temps_used ()
1260 {
1261   struct temp_slot *p;
1262 
1263   for (p = temp_slots; p; p = p->next)
1264     {
1265       p->in_use = p->keep = 1;
1266       p->level = MIN (p->level, temp_slot_level);
1267     }
1268 }
1269 
1270 /* Push deeper into the nesting level for stack temporaries.  */
1271 
1272 void
push_temp_slots()1273 push_temp_slots ()
1274 {
1275   temp_slot_level++;
1276 }
1277 
1278 /* Likewise, but save the new level as the place to allocate variables
1279    for blocks.  */
1280 
1281 #if 0
1282 void
1283 push_temp_slots_for_block ()
1284 {
1285   push_temp_slots ();
1286 
1287   var_temp_slot_level = temp_slot_level;
1288 }
1289 
1290 /* Likewise, but save the new level as the place to allocate temporaries
1291    for TARGET_EXPRs.  */
1292 
1293 void
1294 push_temp_slots_for_target ()
1295 {
1296   push_temp_slots ();
1297 
1298   target_temp_slot_level = temp_slot_level;
1299 }
1300 
1301 /* Set and get the value of target_temp_slot_level.  The only
1302    permitted use of these functions is to save and restore this value.  */
1303 
1304 int
1305 get_target_temp_slot_level ()
1306 {
1307   return target_temp_slot_level;
1308 }
1309 
1310 void
1311 set_target_temp_slot_level (level)
1312      int level;
1313 {
1314   target_temp_slot_level = level;
1315 }
1316 #endif
1317 
1318 /* Pop a temporary nesting level.  All slots in use in the current level
1319    are freed.  */
1320 
1321 void
pop_temp_slots()1322 pop_temp_slots ()
1323 {
1324   struct temp_slot *p;
1325 
1326   for (p = temp_slots; p; p = p->next)
1327     if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1328       p->in_use = 0;
1329 
1330   combine_temp_slots ();
1331 
1332   temp_slot_level--;
1333 }
1334 
1335 /* Initialize temporary slots.  */
1336 
1337 void
init_temp_slots()1338 init_temp_slots ()
1339 {
1340   /* We have not allocated any temporaries yet.  */
1341   temp_slots = 0;
1342   temp_slot_level = 0;
1343   var_temp_slot_level = 0;
1344   target_temp_slot_level = 0;
1345 }
1346 
1347 /* Retroactively move an auto variable from a register to a stack
1348    slot.  This is done when an address-reference to the variable is
1349    seen.  If RESCAN is true, all previously emitted instructions are
1350    examined and modified to handle the fact that DECL is now
1351    addressable.  */
1352 
1353 void
put_var_into_stack(decl,rescan)1354 put_var_into_stack (decl, rescan)
1355      tree decl;
1356      int rescan;
1357 {
1358   rtx reg;
1359   enum machine_mode promoted_mode, decl_mode;
1360   struct function *function = 0;
1361   tree context;
1362   int can_use_addressof_p;
1363   int volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1364   int used_p = (TREE_USED (decl)
1365 	       || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1366 
1367   context = decl_function_context (decl);
1368 
1369   /* Get the current rtl used for this object and its original mode.  */
1370   reg = (TREE_CODE (decl) == SAVE_EXPR
1371 	 ? SAVE_EXPR_RTL (decl)
1372 	 : DECL_RTL_IF_SET (decl));
1373 
1374   /* No need to do anything if decl has no rtx yet
1375      since in that case caller is setting TREE_ADDRESSABLE
1376      and a stack slot will be assigned when the rtl is made.  */
1377   if (reg == 0)
1378     return;
1379 
1380   /* Get the declared mode for this object.  */
1381   decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1382 	       : DECL_MODE (decl));
1383   /* Get the mode it's actually stored in.  */
1384   promoted_mode = GET_MODE (reg);
1385 
1386   /* If this variable comes from an outer function, find that
1387      function's saved context.  Don't use find_function_data here,
1388      because it might not be in any active function.
1389      FIXME: Is that really supposed to happen?
1390      It does in ObjC at least.  */
1391   if (context != current_function_decl && context != inline_function_decl)
1392     for (function = outer_function_chain; function; function = function->outer)
1393       if (function->decl == context)
1394 	break;
1395 
1396   /* If this is a variable-sized object or a structure passed by invisible
1397      reference, with a pseudo to address it, put that pseudo into the stack
1398      if the var is non-local.  */
1399   if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1400       && GET_CODE (reg) == MEM
1401       && GET_CODE (XEXP (reg, 0)) == REG
1402       && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1403     {
1404       reg = XEXP (reg, 0);
1405       decl_mode = promoted_mode = GET_MODE (reg);
1406     }
1407 
1408   /* If this variable lives in the current function and we don't need to put it
1409      in the stack for the sake of setjmp or the non-locality, try to keep it in
1410      a register until we know we actually need the address.  */
1411   can_use_addressof_p
1412     = (function == 0
1413        && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1414        && optimize > 0
1415        /* FIXME make it work for promoted modes too */
1416        && decl_mode == promoted_mode
1417 #ifdef NON_SAVING_SETJMP
1418        && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1419 #endif
1420        );
1421 
1422   /* If we can't use ADDRESSOF, make sure we see through one we already
1423      generated.  */
1424   if (! can_use_addressof_p
1425       && GET_CODE (reg) == MEM
1426       && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1427     reg = XEXP (XEXP (reg, 0), 0);
1428 
1429   /* Now we should have a value that resides in one or more pseudo regs.  */
1430 
1431   if (GET_CODE (reg) == REG)
1432     {
1433       if (can_use_addressof_p)
1434 	gen_mem_addressof (reg, decl, rescan);
1435       else
1436 	put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode,
1437 			    0, volatile_p, used_p, 0, 0);
1438     }
1439   else if (GET_CODE (reg) == CONCAT)
1440     {
1441       /* A CONCAT contains two pseudos; put them both in the stack.
1442 	 We do it so they end up consecutive.
1443 	 We fixup references to the parts only after we fixup references
1444 	 to the whole CONCAT, lest we do double fixups for the latter
1445 	 references.  */
1446       enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1447       tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1448       rtx lopart = XEXP (reg, 0);
1449       rtx hipart = XEXP (reg, 1);
1450 #ifdef FRAME_GROWS_DOWNWARD
1451       /* Since part 0 should have a lower address, do it second.  */
1452       put_reg_into_stack (function, hipart, part_type, part_mode,
1453 			  0, volatile_p, 0, 0, 0);
1454       put_reg_into_stack (function, lopart, part_type, part_mode,
1455 			  0, volatile_p, 0, 1, 0);
1456 #else
1457       put_reg_into_stack (function, lopart, part_type, part_mode,
1458 			  0, volatile_p, 0, 0, 0);
1459       put_reg_into_stack (function, hipart, part_type, part_mode,
1460 			  0, volatile_p, 0, 1, 0);
1461 #endif
1462 
1463       /* Change the CONCAT into a combined MEM for both parts.  */
1464       PUT_CODE (reg, MEM);
1465       MEM_ATTRS (reg) = 0;
1466 
1467       /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1468          already computed alias sets.  Here we want to re-generate.  */
1469       if (DECL_P (decl))
1470 	SET_DECL_RTL (decl, NULL);
1471       set_mem_attributes (reg, decl, 1);
1472       if (DECL_P (decl))
1473 	SET_DECL_RTL (decl, reg);
1474 
1475       /* The two parts are in memory order already.
1476 	 Use the lower parts address as ours.  */
1477       XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1478       /* Prevent sharing of rtl that might lose.  */
1479       if (GET_CODE (XEXP (reg, 0)) == PLUS)
1480 	XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1481       if (used_p && rescan)
1482 	{
1483 	  schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1484 				   promoted_mode, 0);
1485 	  schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1486 	  schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1487 	}
1488     }
1489   else
1490     return;
1491 }
1492 
1493 /* Subroutine of put_var_into_stack.  This puts a single pseudo reg REG
1494    into the stack frame of FUNCTION (0 means the current function).
1495    TYPE is the user-level data type of the value hold in the register.
1496    DECL_MODE is the machine mode of the user-level data type.
1497    ORIGINAL_REGNO must be set if the real regno is not visible in REG.
1498    VOLATILE_P is true if this is for a "volatile" decl.
1499    USED_P is true if this reg might have already been used in an insn.
1500    CONSECUTIVE_P is true if the stack slot assigned to reg must be
1501    consecutive with the previous stack slot.  */
1502 
1503 static void
put_reg_into_stack(function,reg,type,decl_mode,original_regno,volatile_p,used_p,consecutive_p,ht)1504 put_reg_into_stack (function, reg, type, decl_mode, original_regno,
1505 		    volatile_p, used_p, consecutive_p, ht)
1506      struct function *function;
1507      rtx reg;
1508      tree type;
1509      enum machine_mode decl_mode;
1510      unsigned int original_regno;
1511      int volatile_p, used_p, consecutive_p;
1512      htab_t ht;
1513 {
1514   struct function *func = function ? function : cfun;
1515   enum machine_mode mode = GET_MODE (reg);
1516   unsigned int regno = original_regno;
1517   rtx new = 0;
1518 
1519   if (regno == 0)
1520     regno = REGNO (reg);
1521 
1522   if (regno < func->x_max_parm_reg)
1523     {
1524       if (!func->x_parm_reg_stack_loc)
1525 	abort ();
1526       new = func->x_parm_reg_stack_loc[regno];
1527     }
1528 
1529   if (new == 0)
1530     new = function ?
1531 	assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode),
1532 			      consecutive_p ? -2 : 0, func):
1533 	assign_stack_local_for_pseudo_reg (decl_mode, GET_MODE_SIZE (decl_mode),
1534 					   consecutive_p ? -2 : 0);
1535 
1536   PUT_CODE (reg, MEM);
1537   PUT_MODE (reg, decl_mode);
1538   XEXP (reg, 0) = XEXP (new, 0);
1539   MEM_ATTRS (reg) = 0;
1540   /* `volatil' bit means one thing for MEMs, another entirely for REGs.  */
1541   MEM_VOLATILE_P (reg) = volatile_p;
1542 
1543   /* If this is a memory ref that contains aggregate components,
1544      mark it as such for cse and loop optimize.  If we are reusing a
1545      previously generated stack slot, then we need to copy the bit in
1546      case it was set for other reasons.  For instance, it is set for
1547      __builtin_va_alist.  */
1548   if (type)
1549     {
1550       MEM_SET_IN_STRUCT_P (reg,
1551 			   AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1552       set_mem_alias_set (reg, get_alias_set (type));
1553     }
1554 
1555   if (used_p)
1556     schedule_fixup_var_refs (function, reg, type, mode, ht);
1557 }
1558 
1559 /* Make sure that all refs to the variable, previously made
1560    when it was a register, are fixed up to be valid again.
1561    See function above for meaning of arguments.  */
1562 
1563 static void
schedule_fixup_var_refs(function,reg,type,promoted_mode,ht)1564 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1565      struct function *function;
1566      rtx reg;
1567      tree type;
1568      enum machine_mode promoted_mode;
1569      htab_t ht;
1570 {
1571   int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1572 
1573   if (function != 0)
1574     {
1575       struct var_refs_queue *temp;
1576 
1577       temp
1578 	= (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1579       temp->modified = reg;
1580       temp->promoted_mode = promoted_mode;
1581       temp->unsignedp = unsigned_p;
1582       temp->next = function->fixup_var_refs_queue;
1583       function->fixup_var_refs_queue = temp;
1584     }
1585   else
1586     /* Variable is local; fix it up now.  */
1587     fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1588 }
1589 
1590 static void
fixup_var_refs(var,promoted_mode,unsignedp,may_share,ht)1591 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1592      rtx var;
1593      enum machine_mode promoted_mode;
1594      int unsignedp;
1595      htab_t ht;
1596      rtx may_share;
1597 {
1598   tree pending;
1599   rtx first_insn = get_insns ();
1600   struct sequence_stack *stack = seq_stack;
1601   tree rtl_exps = rtl_expr_chain;
1602 
1603   /* If there's a hash table, it must record all uses of VAR.  */
1604   if (ht)
1605     {
1606       if (stack != 0)
1607 	abort ();
1608       fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1609 				      may_share);
1610       return;
1611     }
1612 
1613   fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1614 			stack == 0, may_share);
1615 
1616   /* Scan all pending sequences too.  */
1617   for (; stack; stack = stack->next)
1618     {
1619       push_to_full_sequence (stack->first, stack->last);
1620       fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1621 			    stack->next != 0, may_share);
1622       /* Update remembered end of sequence
1623 	 in case we added an insn at the end.  */
1624       stack->last = get_last_insn ();
1625       end_sequence ();
1626     }
1627 
1628   /* Scan all waiting RTL_EXPRs too.  */
1629   for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1630     {
1631       rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1632       if (seq != const0_rtx && seq != 0)
1633 	{
1634 	  push_to_sequence (seq);
1635 	  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1636 				may_share);
1637 	  end_sequence ();
1638 	}
1639     }
1640 }
1641 
1642 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1643    some part of an insn.  Return a struct fixup_replacement whose OLD
1644    value is equal to X.  Allocate a new structure if no such entry exists.  */
1645 
1646 static struct fixup_replacement *
find_fixup_replacement(replacements,x)1647 find_fixup_replacement (replacements, x)
1648      struct fixup_replacement **replacements;
1649      rtx x;
1650 {
1651   struct fixup_replacement *p;
1652 
1653   /* See if we have already replaced this.  */
1654   for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1655     ;
1656 
1657   if (p == 0)
1658     {
1659       p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1660       p->old = x;
1661       p->new = 0;
1662       p->next = *replacements;
1663       *replacements = p;
1664     }
1665 
1666   return p;
1667 }
1668 
1669 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1670    up.  TOPLEVEL is nonzero if this chain is the main chain of insns
1671    for the current function.  MAY_SHARE is either a MEM that is not
1672    to be unshared or a list of them.  */
1673 
1674 static void
fixup_var_refs_insns(insn,var,promoted_mode,unsignedp,toplevel,may_share)1675 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1676      rtx insn;
1677      rtx var;
1678      enum machine_mode promoted_mode;
1679      int unsignedp;
1680      int toplevel;
1681      rtx may_share;
1682 {
1683   while (insn)
1684     {
1685       /* fixup_var_refs_insn might modify insn, so save its next
1686          pointer now.  */
1687       rtx next = NEXT_INSN (insn);
1688 
1689       /* CALL_PLACEHOLDERs are special; we have to switch into each of
1690 	 the three sequences they (potentially) contain, and process
1691 	 them recursively.  The CALL_INSN itself is not interesting.  */
1692 
1693       if (GET_CODE (insn) == CALL_INSN
1694 	  && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1695 	{
1696 	  int i;
1697 
1698 	  /* Look at the Normal call, sibling call and tail recursion
1699 	     sequences attached to the CALL_PLACEHOLDER.  */
1700 	  for (i = 0; i < 3; i++)
1701 	    {
1702 	      rtx seq = XEXP (PATTERN (insn), i);
1703 	      if (seq)
1704 		{
1705 		  push_to_sequence (seq);
1706 		  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1707 					may_share);
1708 		  XEXP (PATTERN (insn), i) = get_insns ();
1709 		  end_sequence ();
1710 		}
1711 	    }
1712 	}
1713 
1714       else if (INSN_P (insn))
1715 	fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1716 			     may_share);
1717 
1718       insn = next;
1719     }
1720 }
1721 
1722 /* Look up the insns which reference VAR in HT and fix them up.  Other
1723    arguments are the same as fixup_var_refs_insns.
1724 
1725    N.B. No need for special processing of CALL_PLACEHOLDERs here,
1726    because the hash table will point straight to the interesting insn
1727    (inside the CALL_PLACEHOLDER).  */
1728 
1729 static void
fixup_var_refs_insns_with_hash(ht,var,promoted_mode,unsignedp,may_share)1730 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1731      htab_t ht;
1732      rtx var;
1733      enum machine_mode promoted_mode;
1734      int unsignedp;
1735      rtx may_share;
1736 {
1737   struct insns_for_mem_entry tmp;
1738   struct insns_for_mem_entry *ime;
1739   rtx insn_list;
1740 
1741   tmp.key = var;
1742   ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1743   for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1744     if (INSN_P (XEXP (insn_list, 0)) && !INSN_DELETED_P (XEXP (insn_list, 0)))
1745       fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1746 			   unsignedp, 1, may_share);
1747 }
1748 
1749 
1750 /* Per-insn processing by fixup_var_refs_insns(_with_hash).  INSN is
1751    the insn under examination, VAR is the variable to fix up
1752    references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1753    TOPLEVEL is nonzero if this is the main insn chain for this
1754    function.  */
1755 
1756 static void
fixup_var_refs_insn(insn,var,promoted_mode,unsignedp,toplevel,no_share)1757 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1758      rtx insn;
1759      rtx var;
1760      enum machine_mode promoted_mode;
1761      int unsignedp;
1762      int toplevel;
1763      rtx no_share;
1764 {
1765   rtx call_dest = 0;
1766   rtx set, prev, prev_set;
1767   rtx note;
1768 
1769   /* Remember the notes in case we delete the insn.  */
1770   note = REG_NOTES (insn);
1771 
1772   /* If this is a CLOBBER of VAR, delete it.
1773 
1774      If it has a REG_LIBCALL note, delete the REG_LIBCALL
1775      and REG_RETVAL notes too.  */
1776   if (GET_CODE (PATTERN (insn)) == CLOBBER
1777       && (XEXP (PATTERN (insn), 0) == var
1778 	  || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1779 	      && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1780 		  || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1781     {
1782       if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1783 	/* The REG_LIBCALL note will go away since we are going to
1784 	   turn INSN into a NOTE, so just delete the
1785 	   corresponding REG_RETVAL note.  */
1786 	remove_note (XEXP (note, 0),
1787 		     find_reg_note (XEXP (note, 0), REG_RETVAL,
1788 				    NULL_RTX));
1789 
1790       delete_insn (insn);
1791     }
1792 
1793   /* The insn to load VAR from a home in the arglist
1794      is now a no-op.  When we see it, just delete it.
1795      Similarly if this is storing VAR from a register from which
1796      it was loaded in the previous insn.  This will occur
1797      when an ADDRESSOF was made for an arglist slot.  */
1798   else if (toplevel
1799 	   && (set = single_set (insn)) != 0
1800 	   && SET_DEST (set) == var
1801 	   /* If this represents the result of an insn group,
1802 	      don't delete the insn.  */
1803 	   && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1804 	   && (rtx_equal_p (SET_SRC (set), var)
1805 	       || (GET_CODE (SET_SRC (set)) == REG
1806 		   && (prev = prev_nonnote_insn (insn)) != 0
1807 		   && (prev_set = single_set (prev)) != 0
1808 		   && SET_DEST (prev_set) == SET_SRC (set)
1809 		   && rtx_equal_p (SET_SRC (prev_set), var))))
1810     {
1811       delete_insn (insn);
1812     }
1813   else
1814     {
1815       struct fixup_replacement *replacements = 0;
1816       rtx next_insn = NEXT_INSN (insn);
1817 
1818       if (SMALL_REGISTER_CLASSES)
1819 	{
1820 	  /* If the insn that copies the results of a CALL_INSN
1821 	     into a pseudo now references VAR, we have to use an
1822 	     intermediate pseudo since we want the life of the
1823 	     return value register to be only a single insn.
1824 
1825 	     If we don't use an intermediate pseudo, such things as
1826 	     address computations to make the address of VAR valid
1827 	     if it is not can be placed between the CALL_INSN and INSN.
1828 
1829 	     To make sure this doesn't happen, we record the destination
1830 	     of the CALL_INSN and see if the next insn uses both that
1831 	     and VAR.  */
1832 
1833 	  if (call_dest != 0 && GET_CODE (insn) == INSN
1834 	      && reg_mentioned_p (var, PATTERN (insn))
1835 	      && reg_mentioned_p (call_dest, PATTERN (insn)))
1836 	    {
1837 	      rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1838 
1839 	      emit_insn_before (gen_move_insn (temp, call_dest), insn);
1840 
1841 	      PATTERN (insn) = replace_rtx (PATTERN (insn),
1842 					    call_dest, temp);
1843 	    }
1844 
1845 	  if (GET_CODE (insn) == CALL_INSN
1846 	      && GET_CODE (PATTERN (insn)) == SET)
1847 	    call_dest = SET_DEST (PATTERN (insn));
1848 	  else if (GET_CODE (insn) == CALL_INSN
1849 		   && GET_CODE (PATTERN (insn)) == PARALLEL
1850 		   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1851 	    call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1852 	  else
1853 	    call_dest = 0;
1854 	}
1855 
1856       /* See if we have to do anything to INSN now that VAR is in
1857 	 memory.  If it needs to be loaded into a pseudo, use a single
1858 	 pseudo for the entire insn in case there is a MATCH_DUP
1859 	 between two operands.  We pass a pointer to the head of
1860 	 a list of struct fixup_replacements.  If fixup_var_refs_1
1861 	 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1862 	 it will record them in this list.
1863 
1864 	 If it allocated a pseudo for any replacement, we copy into
1865 	 it here.  */
1866 
1867       fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1868 			&replacements, no_share);
1869 
1870       /* If this is last_parm_insn, and any instructions were output
1871 	 after it to fix it up, then we must set last_parm_insn to
1872 	 the last such instruction emitted.  */
1873       if (insn == last_parm_insn)
1874 	last_parm_insn = PREV_INSN (next_insn);
1875 
1876       while (replacements)
1877 	{
1878 	  struct fixup_replacement *next;
1879 
1880 	  if (GET_CODE (replacements->new) == REG)
1881 	    {
1882 	      rtx insert_before;
1883 	      rtx seq;
1884 
1885 	      /* OLD might be a (subreg (mem)).  */
1886 	      if (GET_CODE (replacements->old) == SUBREG)
1887 		replacements->old
1888 		  = fixup_memory_subreg (replacements->old, insn,
1889 					 promoted_mode, 0);
1890 	      else
1891 		replacements->old
1892 		  = fixup_stack_1 (replacements->old, insn);
1893 
1894 	      insert_before = insn;
1895 
1896 	      /* If we are changing the mode, do a conversion.
1897 		 This might be wasteful, but combine.c will
1898 		 eliminate much of the waste.  */
1899 
1900 	      if (GET_MODE (replacements->new)
1901 		  != GET_MODE (replacements->old))
1902 		{
1903 		  start_sequence ();
1904 		  convert_move (replacements->new,
1905 				replacements->old, unsignedp);
1906 		  seq = get_insns ();
1907 		  end_sequence ();
1908 		}
1909 	      else
1910 		seq = gen_move_insn (replacements->new,
1911 				     replacements->old);
1912 
1913 	      emit_insn_before (seq, insert_before);
1914 	    }
1915 
1916 	  next = replacements->next;
1917 	  free (replacements);
1918 	  replacements = next;
1919 	}
1920     }
1921 
1922   /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1923      But don't touch other insns referred to by reg-notes;
1924      we will get them elsewhere.  */
1925   while (note)
1926     {
1927       if (GET_CODE (note) != INSN_LIST)
1928 	XEXP (note, 0)
1929 	  = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1930 				      promoted_mode, 1);
1931       note = XEXP (note, 1);
1932     }
1933 }
1934 
1935 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1936    See if the rtx expression at *LOC in INSN needs to be changed.
1937 
1938    REPLACEMENTS is a pointer to a list head that starts out zero, but may
1939    contain a list of original rtx's and replacements. If we find that we need
1940    to modify this insn by replacing a memory reference with a pseudo or by
1941    making a new MEM to implement a SUBREG, we consult that list to see if
1942    we have already chosen a replacement. If none has already been allocated,
1943    we allocate it and update the list.  fixup_var_refs_insn will copy VAR
1944    or the SUBREG, as appropriate, to the pseudo.  */
1945 
1946 static void
fixup_var_refs_1(var,promoted_mode,loc,insn,replacements,no_share)1947 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1948      rtx var;
1949      enum machine_mode promoted_mode;
1950      rtx *loc;
1951      rtx insn;
1952      struct fixup_replacement **replacements;
1953      rtx no_share;
1954 {
1955   int i;
1956   rtx x = *loc;
1957   RTX_CODE code = GET_CODE (x);
1958   const char *fmt;
1959   rtx tem, tem1;
1960   struct fixup_replacement *replacement;
1961 
1962   switch (code)
1963     {
1964     case ADDRESSOF:
1965       if (XEXP (x, 0) == var)
1966 	{
1967 	  /* Prevent sharing of rtl that might lose.  */
1968 	  rtx sub = copy_rtx (XEXP (var, 0));
1969 
1970 	  if (! validate_change (insn, loc, sub, 0))
1971 	    {
1972 	      rtx y = gen_reg_rtx (GET_MODE (sub));
1973 	      rtx seq, new_insn;
1974 
1975 	      /* We should be able to replace with a register or all is lost.
1976 		 Note that we can't use validate_change to verify this, since
1977 		 we're not caring for replacing all dups simultaneously.  */
1978 	      if (! validate_replace_rtx (*loc, y, insn))
1979 		abort ();
1980 
1981 	      /* Careful!  First try to recognize a direct move of the
1982 		 value, mimicking how things are done in gen_reload wrt
1983 		 PLUS.  Consider what happens when insn is a conditional
1984 		 move instruction and addsi3 clobbers flags.  */
1985 
1986 	      start_sequence ();
1987 	      new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1988 	      seq = get_insns ();
1989 	      end_sequence ();
1990 
1991 	      if (recog_memoized (new_insn) < 0)
1992 		{
1993 		  /* That failed.  Fall back on force_operand and hope.  */
1994 
1995 		  start_sequence ();
1996 		  sub = force_operand (sub, y);
1997 		  if (sub != y)
1998 		    emit_insn (gen_move_insn (y, sub));
1999 		  seq = get_insns ();
2000 		  end_sequence ();
2001 		}
2002 
2003 #ifdef HAVE_cc0
2004 	      /* Don't separate setter from user.  */
2005 	      if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
2006 		insn = PREV_INSN (insn);
2007 #endif
2008 
2009 	      emit_insn_before (seq, insn);
2010 	    }
2011 	}
2012       return;
2013 
2014     case MEM:
2015       if (var == x)
2016 	{
2017 	  /* If we already have a replacement, use it.  Otherwise,
2018 	     try to fix up this address in case it is invalid.  */
2019 
2020 	  replacement = find_fixup_replacement (replacements, var);
2021 	  if (replacement->new)
2022 	    {
2023 	      *loc = replacement->new;
2024 	      return;
2025 	    }
2026 
2027 	  *loc = replacement->new = x = fixup_stack_1 (x, insn);
2028 
2029 	  /* Unless we are forcing memory to register or we changed the mode,
2030 	     we can leave things the way they are if the insn is valid.  */
2031 
2032 	  INSN_CODE (insn) = -1;
2033 	  if (! flag_force_mem && GET_MODE (x) == promoted_mode
2034 	      && recog_memoized (insn) >= 0)
2035 	    return;
2036 
2037 	  *loc = replacement->new = gen_reg_rtx (promoted_mode);
2038 	  return;
2039 	}
2040 
2041       /* If X contains VAR, we need to unshare it here so that we update
2042 	 each occurrence separately.  But all identical MEMs in one insn
2043 	 must be replaced with the same rtx because of the possibility of
2044 	 MATCH_DUPs.  */
2045 
2046       if (reg_mentioned_p (var, x))
2047 	{
2048 	  replacement = find_fixup_replacement (replacements, x);
2049 	  if (replacement->new == 0)
2050 	    replacement->new = copy_most_rtx (x, no_share);
2051 
2052 	  *loc = x = replacement->new;
2053 	  code = GET_CODE (x);
2054 	}
2055       break;
2056 
2057     case REG:
2058     case CC0:
2059     case PC:
2060     case CONST_INT:
2061     case CONST:
2062     case SYMBOL_REF:
2063     case LABEL_REF:
2064     case CONST_DOUBLE:
2065     case CONST_VECTOR:
2066       return;
2067 
2068     case SIGN_EXTRACT:
2069     case ZERO_EXTRACT:
2070       /* Note that in some cases those types of expressions are altered
2071 	 by optimize_bit_field, and do not survive to get here.  */
2072       if (XEXP (x, 0) == var
2073 	  || (GET_CODE (XEXP (x, 0)) == SUBREG
2074 	      && SUBREG_REG (XEXP (x, 0)) == var))
2075 	{
2076 	  /* Get TEM as a valid MEM in the mode presently in the insn.
2077 
2078 	     We don't worry about the possibility of MATCH_DUP here; it
2079 	     is highly unlikely and would be tricky to handle.  */
2080 
2081 	  tem = XEXP (x, 0);
2082 	  if (GET_CODE (tem) == SUBREG)
2083 	    {
2084 	      if (GET_MODE_BITSIZE (GET_MODE (tem))
2085 		  > GET_MODE_BITSIZE (GET_MODE (var)))
2086 		{
2087 		  replacement = find_fixup_replacement (replacements, var);
2088 		  if (replacement->new == 0)
2089 		    replacement->new = gen_reg_rtx (GET_MODE (var));
2090 		  SUBREG_REG (tem) = replacement->new;
2091 
2092 		  /* The following code works only if we have a MEM, so we
2093 		     need to handle the subreg here.  We directly substitute
2094 		     it assuming that a subreg must be OK here.  We already
2095 		     scheduled a replacement to copy the mem into the
2096 		     subreg.  */
2097 		  XEXP (x, 0) = tem;
2098 		  return;
2099 		}
2100 	      else
2101 		tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2102 	    }
2103 	  else
2104 	    tem = fixup_stack_1 (tem, insn);
2105 
2106 	  /* Unless we want to load from memory, get TEM into the proper mode
2107 	     for an extract from memory.  This can only be done if the
2108 	     extract is at a constant position and length.  */
2109 
2110 	  if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2111 	      && GET_CODE (XEXP (x, 2)) == CONST_INT
2112 	      && ! mode_dependent_address_p (XEXP (tem, 0))
2113 	      && ! MEM_VOLATILE_P (tem))
2114 	    {
2115 	      enum machine_mode wanted_mode = VOIDmode;
2116 	      enum machine_mode is_mode = GET_MODE (tem);
2117 	      HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2118 
2119 	      if (GET_CODE (x) == ZERO_EXTRACT)
2120 		{
2121 		  enum machine_mode new_mode
2122 		    = mode_for_extraction (EP_extzv, 1);
2123 		  if (new_mode != MAX_MACHINE_MODE)
2124 		    wanted_mode = new_mode;
2125 		}
2126 	      else if (GET_CODE (x) == SIGN_EXTRACT)
2127 		{
2128 		  enum machine_mode new_mode
2129 		    = mode_for_extraction (EP_extv, 1);
2130 		  if (new_mode != MAX_MACHINE_MODE)
2131 		    wanted_mode = new_mode;
2132 		}
2133 
2134 	      /* If we have a narrower mode, we can do something.  */
2135 	      if (wanted_mode != VOIDmode
2136 		  && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2137 		{
2138 		  HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2139 		  rtx old_pos = XEXP (x, 2);
2140 		  rtx newmem;
2141 
2142 		  /* If the bytes and bits are counted differently, we
2143 		     must adjust the offset.  */
2144 		  if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2145 		    offset = (GET_MODE_SIZE (is_mode)
2146 			      - GET_MODE_SIZE (wanted_mode) - offset);
2147 
2148 		  pos %= GET_MODE_BITSIZE (wanted_mode);
2149 
2150 		  newmem = adjust_address_nv (tem, wanted_mode, offset);
2151 
2152 		  /* Make the change and see if the insn remains valid.  */
2153 		  INSN_CODE (insn) = -1;
2154 		  XEXP (x, 0) = newmem;
2155 		  XEXP (x, 2) = GEN_INT (pos);
2156 
2157 		  if (recog_memoized (insn) >= 0)
2158 		    return;
2159 
2160 		  /* Otherwise, restore old position.  XEXP (x, 0) will be
2161 		     restored later.  */
2162 		  XEXP (x, 2) = old_pos;
2163 		}
2164 	    }
2165 
2166 	  /* If we get here, the bitfield extract insn can't accept a memory
2167 	     reference.  Copy the input into a register.  */
2168 
2169 	  tem1 = gen_reg_rtx (GET_MODE (tem));
2170 	  emit_insn_before (gen_move_insn (tem1, tem), insn);
2171 	  XEXP (x, 0) = tem1;
2172 	  return;
2173 	}
2174       break;
2175 
2176     case SUBREG:
2177       if (SUBREG_REG (x) == var)
2178 	{
2179 	  /* If this is a special SUBREG made because VAR was promoted
2180 	     from a wider mode, replace it with VAR and call ourself
2181 	     recursively, this time saying that the object previously
2182 	     had its current mode (by virtue of the SUBREG).  */
2183 
2184 	  if (SUBREG_PROMOTED_VAR_P (x))
2185 	    {
2186 	      *loc = var;
2187 	      fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2188 				no_share);
2189 	      return;
2190 	    }
2191 
2192 	  /* If this SUBREG makes VAR wider, it has become a paradoxical
2193 	     SUBREG with VAR in memory, but these aren't allowed at this
2194 	     stage of the compilation.  So load VAR into a pseudo and take
2195 	     a SUBREG of that pseudo.  */
2196 	  if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2197 	    {
2198 	      replacement = find_fixup_replacement (replacements, var);
2199 	      if (replacement->new == 0)
2200 		replacement->new = gen_reg_rtx (promoted_mode);
2201 	      SUBREG_REG (x) = replacement->new;
2202 	      return;
2203 	    }
2204 
2205 	  /* See if we have already found a replacement for this SUBREG.
2206 	     If so, use it.  Otherwise, make a MEM and see if the insn
2207 	     is recognized.  If not, or if we should force MEM into a register,
2208 	     make a pseudo for this SUBREG.  */
2209 	  replacement = find_fixup_replacement (replacements, x);
2210 	  if (replacement->new)
2211 	    {
2212 	      enum machine_mode mode = GET_MODE (x);
2213 	      *loc = replacement->new;
2214 
2215 	      /* Careful!  We may have just replaced a SUBREG by a MEM, which
2216 		 means that the insn may have become invalid again.  We can't
2217 		 in this case make a new replacement since we already have one
2218 		 and we must deal with MATCH_DUPs.  */
2219 	      if (GET_CODE (replacement->new) == MEM)
2220 		{
2221 		  INSN_CODE (insn) = -1;
2222 		  if (recog_memoized (insn) >= 0)
2223 		    return;
2224 
2225 		  fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
2226 				    insn, replacements, no_share);
2227 		}
2228 
2229 	      return;
2230 	    }
2231 
2232 	  replacement->new = *loc = fixup_memory_subreg (x, insn,
2233 							 promoted_mode, 0);
2234 
2235 	  INSN_CODE (insn) = -1;
2236 	  if (! flag_force_mem && recog_memoized (insn) >= 0)
2237 	    return;
2238 
2239 	  *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2240 	  return;
2241 	}
2242       break;
2243 
2244     case SET:
2245       /* First do special simplification of bit-field references.  */
2246       if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2247 	  || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2248 	optimize_bit_field (x, insn, 0);
2249       if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2250 	  || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2251 	optimize_bit_field (x, insn, 0);
2252 
2253       /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2254 	 into a register and then store it back out.  */
2255       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2256 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2257 	  && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2258 	  && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2259 	      > GET_MODE_SIZE (GET_MODE (var))))
2260 	{
2261 	  replacement = find_fixup_replacement (replacements, var);
2262 	  if (replacement->new == 0)
2263 	    replacement->new = gen_reg_rtx (GET_MODE (var));
2264 
2265 	  SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2266 	  emit_insn_after (gen_move_insn (var, replacement->new), insn);
2267 	}
2268 
2269       /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2270 	 insn into a pseudo and store the low part of the pseudo into VAR.  */
2271       if (GET_CODE (SET_DEST (x)) == SUBREG
2272 	  && SUBREG_REG (SET_DEST (x)) == var
2273 	  && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2274 	      > GET_MODE_SIZE (GET_MODE (var))))
2275 	{
2276 	  SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2277 	  emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2278 							    tem)),
2279 			   insn);
2280 	  break;
2281 	}
2282 
2283       {
2284 	rtx dest = SET_DEST (x);
2285 	rtx src = SET_SRC (x);
2286 	rtx outerdest = dest;
2287 
2288 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2289 	       || GET_CODE (dest) == SIGN_EXTRACT
2290 	       || GET_CODE (dest) == ZERO_EXTRACT)
2291 	  dest = XEXP (dest, 0);
2292 
2293 	if (GET_CODE (src) == SUBREG)
2294 	  src = SUBREG_REG (src);
2295 
2296 	/* If VAR does not appear at the top level of the SET
2297 	   just scan the lower levels of the tree.  */
2298 
2299 	if (src != var && dest != var)
2300 	  break;
2301 
2302 	/* We will need to rerecognize this insn.  */
2303 	INSN_CODE (insn) = -1;
2304 
2305 	if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2306 	    && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2307 	  {
2308 	    /* Since this case will return, ensure we fixup all the
2309 	       operands here.  */
2310 	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2311 			      insn, replacements, no_share);
2312 	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2313 			      insn, replacements, no_share);
2314 	    fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2315 			      insn, replacements, no_share);
2316 
2317 	    tem = XEXP (outerdest, 0);
2318 
2319 	    /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2320 	       that may appear inside a ZERO_EXTRACT.
2321 	       This was legitimate when the MEM was a REG.  */
2322 	    if (GET_CODE (tem) == SUBREG
2323 		&& SUBREG_REG (tem) == var)
2324 	      tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2325 	    else
2326 	      tem = fixup_stack_1 (tem, insn);
2327 
2328 	    if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2329 		&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2330 		&& ! mode_dependent_address_p (XEXP (tem, 0))
2331 		&& ! MEM_VOLATILE_P (tem))
2332 	      {
2333 		enum machine_mode wanted_mode;
2334 		enum machine_mode is_mode = GET_MODE (tem);
2335 		HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2336 
2337 		wanted_mode = mode_for_extraction (EP_insv, 0);
2338 
2339 		/* If we have a narrower mode, we can do something.  */
2340 		if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2341 		  {
2342 		    HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2343 		    rtx old_pos = XEXP (outerdest, 2);
2344 		    rtx newmem;
2345 
2346 		    if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2347 		      offset = (GET_MODE_SIZE (is_mode)
2348 				- GET_MODE_SIZE (wanted_mode) - offset);
2349 
2350 		    pos %= GET_MODE_BITSIZE (wanted_mode);
2351 
2352 		    newmem = adjust_address_nv (tem, wanted_mode, offset);
2353 
2354 		    /* Make the change and see if the insn remains valid.  */
2355 		    INSN_CODE (insn) = -1;
2356 		    XEXP (outerdest, 0) = newmem;
2357 		    XEXP (outerdest, 2) = GEN_INT (pos);
2358 
2359 		    if (recog_memoized (insn) >= 0)
2360 		      return;
2361 
2362 		    /* Otherwise, restore old position.  XEXP (x, 0) will be
2363 		       restored later.  */
2364 		    XEXP (outerdest, 2) = old_pos;
2365 		  }
2366 	      }
2367 
2368 	    /* If we get here, the bit-field store doesn't allow memory
2369 	       or isn't located at a constant position.  Load the value into
2370 	       a register, do the store, and put it back into memory.  */
2371 
2372 	    tem1 = gen_reg_rtx (GET_MODE (tem));
2373 	    emit_insn_before (gen_move_insn (tem1, tem), insn);
2374 	    emit_insn_after (gen_move_insn (tem, tem1), insn);
2375 	    XEXP (outerdest, 0) = tem1;
2376 	    return;
2377 	  }
2378 
2379 	/* STRICT_LOW_PART is a no-op on memory references
2380 	   and it can cause combinations to be unrecognizable,
2381 	   so eliminate it.  */
2382 
2383 	if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2384 	  SET_DEST (x) = XEXP (SET_DEST (x), 0);
2385 
2386 	/* A valid insn to copy VAR into or out of a register
2387 	   must be left alone, to avoid an infinite loop here.
2388 	   If the reference to VAR is by a subreg, fix that up,
2389 	   since SUBREG is not valid for a memref.
2390 	   Also fix up the address of the stack slot.
2391 
2392 	   Note that we must not try to recognize the insn until
2393 	   after we know that we have valid addresses and no
2394 	   (subreg (mem ...) ...) constructs, since these interfere
2395 	   with determining the validity of the insn.  */
2396 
2397 	if ((SET_SRC (x) == var
2398 	     || (GET_CODE (SET_SRC (x)) == SUBREG
2399 		 && SUBREG_REG (SET_SRC (x)) == var))
2400 	    && (GET_CODE (SET_DEST (x)) == REG
2401 		|| (GET_CODE (SET_DEST (x)) == SUBREG
2402 		    && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2403 	    && GET_MODE (var) == promoted_mode
2404 	    && x == single_set (insn))
2405 	  {
2406 	    rtx pat, last;
2407 
2408 	    if (GET_CODE (SET_SRC (x)) == SUBREG
2409 		&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2410 		    > GET_MODE_SIZE (GET_MODE (var))))
2411 	      {
2412 		/* This (subreg VAR) is now a paradoxical subreg.  We need
2413 		   to replace VAR instead of the subreg.  */
2414 		replacement = find_fixup_replacement (replacements, var);
2415 		if (replacement->new == NULL_RTX)
2416 		  replacement->new = gen_reg_rtx (GET_MODE (var));
2417 		SUBREG_REG (SET_SRC (x)) = replacement->new;
2418 	      }
2419 	    else
2420 	      {
2421 		replacement = find_fixup_replacement (replacements, SET_SRC (x));
2422 		if (replacement->new)
2423 		  SET_SRC (x) = replacement->new;
2424 		else if (GET_CODE (SET_SRC (x)) == SUBREG)
2425 		  SET_SRC (x) = replacement->new
2426 		    = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2427 					   0);
2428 		else
2429 		  SET_SRC (x) = replacement->new
2430 		    = fixup_stack_1 (SET_SRC (x), insn);
2431 	      }
2432 
2433 	    if (recog_memoized (insn) >= 0)
2434 	      return;
2435 
2436 	    /* INSN is not valid, but we know that we want to
2437 	       copy SET_SRC (x) to SET_DEST (x) in some way.  So
2438 	       we generate the move and see whether it requires more
2439 	       than one insn.  If it does, we emit those insns and
2440 	       delete INSN.  Otherwise, we can just replace the pattern
2441 	       of INSN; we have already verified above that INSN has
2442 	       no other function that to do X.  */
2443 
2444 	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2445 	    if (NEXT_INSN (pat) != NULL_RTX)
2446 	      {
2447 		last = emit_insn_before (pat, insn);
2448 
2449 		/* INSN might have REG_RETVAL or other important notes, so
2450 		   we need to store the pattern of the last insn in the
2451 		   sequence into INSN similarly to the normal case.  LAST
2452 		   should not have REG_NOTES, but we allow them if INSN has
2453 		   no REG_NOTES.  */
2454 		if (REG_NOTES (last) && REG_NOTES (insn))
2455 		  abort ();
2456 		if (REG_NOTES (last))
2457 		  REG_NOTES (insn) = REG_NOTES (last);
2458 		PATTERN (insn) = PATTERN (last);
2459 
2460 		delete_insn (last);
2461 	      }
2462 	    else
2463 	      PATTERN (insn) = PATTERN (pat);
2464 
2465 	    return;
2466 	  }
2467 
2468 	if ((SET_DEST (x) == var
2469 	     || (GET_CODE (SET_DEST (x)) == SUBREG
2470 		 && SUBREG_REG (SET_DEST (x)) == var))
2471 	    && (GET_CODE (SET_SRC (x)) == REG
2472 		|| (GET_CODE (SET_SRC (x)) == SUBREG
2473 		    && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2474 	    && GET_MODE (var) == promoted_mode
2475 	    && x == single_set (insn))
2476 	  {
2477 	    rtx pat, last;
2478 
2479 	    if (GET_CODE (SET_DEST (x)) == SUBREG)
2480 	      SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2481 						  promoted_mode, 0);
2482 	    else
2483 	      SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2484 
2485 	    if (recog_memoized (insn) >= 0)
2486 	      return;
2487 
2488 	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2489 	    if (NEXT_INSN (pat) != NULL_RTX)
2490 	      {
2491 		last = emit_insn_before (pat, insn);
2492 
2493 		/* INSN might have REG_RETVAL or other important notes, so
2494 		   we need to store the pattern of the last insn in the
2495 		   sequence into INSN similarly to the normal case.  LAST
2496 		   should not have REG_NOTES, but we allow them if INSN has
2497 		   no REG_NOTES.  */
2498 		if (REG_NOTES (last) && REG_NOTES (insn))
2499 		  abort ();
2500 		if (REG_NOTES (last))
2501 		  REG_NOTES (insn) = REG_NOTES (last);
2502 		PATTERN (insn) = PATTERN (last);
2503 
2504 		delete_insn (last);
2505 	      }
2506 	    else
2507 	      PATTERN (insn) = PATTERN (pat);
2508 
2509 	    return;
2510 	  }
2511 
2512 	/* Otherwise, storing into VAR must be handled specially
2513 	   by storing into a temporary and copying that into VAR
2514 	   with a new insn after this one.  Note that this case
2515 	   will be used when storing into a promoted scalar since
2516 	   the insn will now have different modes on the input
2517 	   and output and hence will be invalid (except for the case
2518 	   of setting it to a constant, which does not need any
2519 	   change if it is valid).  We generate extra code in that case,
2520 	   but combine.c will eliminate it.  */
2521 
2522 	if (dest == var)
2523 	  {
2524 	    rtx temp;
2525 	    rtx fixeddest = SET_DEST (x);
2526 	    enum machine_mode temp_mode;
2527 
2528 	    /* STRICT_LOW_PART can be discarded, around a MEM.  */
2529 	    if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2530 	      fixeddest = XEXP (fixeddest, 0);
2531 	    /* Convert (SUBREG (MEM)) to a MEM in a changed mode.  */
2532 	    if (GET_CODE (fixeddest) == SUBREG)
2533 	      {
2534 		fixeddest = fixup_memory_subreg (fixeddest, insn,
2535 						 promoted_mode, 0);
2536 		temp_mode = GET_MODE (fixeddest);
2537 	      }
2538 	    else
2539 	      {
2540 		fixeddest = fixup_stack_1 (fixeddest, insn);
2541 		temp_mode = promoted_mode;
2542 	      }
2543 
2544 	    temp = gen_reg_rtx (temp_mode);
2545 
2546 	    emit_insn_after (gen_move_insn (fixeddest,
2547 					    gen_lowpart (GET_MODE (fixeddest),
2548 							 temp)),
2549 			     insn);
2550 
2551 	    SET_DEST (x) = temp;
2552 	  }
2553       }
2554 
2555     default:
2556       break;
2557     }
2558 
2559   /* Nothing special about this RTX; fix its operands.  */
2560 
2561   fmt = GET_RTX_FORMAT (code);
2562   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563     {
2564       if (fmt[i] == 'e')
2565 	fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2566 			  no_share);
2567       else if (fmt[i] == 'E')
2568 	{
2569 	  int j;
2570 	  for (j = 0; j < XVECLEN (x, i); j++)
2571 	    fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2572 			      insn, replacements, no_share);
2573 	}
2574     }
2575 }
2576 
2577 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2578    The REG  was placed on the stack, so X now has the form (SUBREG:m1
2579    (MEM:m2 ...)).
2580 
2581    Return an rtx (MEM:m1 newaddr) which is equivalent.  If any insns
2582    must be emitted to compute NEWADDR, put them before INSN.
2583 
2584    UNCRITICAL nonzero means accept paradoxical subregs.
2585    This is used for subregs found inside REG_NOTES.  */
2586 
2587 static rtx
fixup_memory_subreg(x,insn,promoted_mode,uncritical)2588 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2589      rtx x;
2590      rtx insn;
2591      enum machine_mode promoted_mode;
2592      int uncritical;
2593 {
2594   int offset;
2595   rtx mem = SUBREG_REG (x);
2596   rtx addr = XEXP (mem, 0);
2597   enum machine_mode mode = GET_MODE (x);
2598   rtx result, seq;
2599 
2600   /* Paradoxical SUBREGs are usually invalid during RTL generation.  */
2601   if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2602     abort ();
2603 
2604   offset = SUBREG_BYTE (x);
2605   if (BYTES_BIG_ENDIAN)
2606     /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2607        the offset so that it points to the right location within the
2608        MEM.  */
2609     offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2610 
2611   if (!flag_force_addr
2612       && memory_address_p (mode, plus_constant (addr, offset)))
2613     /* Shortcut if no insns need be emitted.  */
2614     return adjust_address (mem, mode, offset);
2615 
2616   start_sequence ();
2617   result = adjust_address (mem, mode, offset);
2618   seq = get_insns ();
2619   end_sequence ();
2620 
2621   emit_insn_before (seq, insn);
2622   return result;
2623 }
2624 
2625 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2626    Replace subexpressions of X in place.
2627    If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2628    Otherwise return X, with its contents possibly altered.
2629 
2630    INSN, PROMOTED_MODE and UNCRITICAL are as for
2631    fixup_memory_subreg.  */
2632 
2633 static rtx
walk_fixup_memory_subreg(x,insn,promoted_mode,uncritical)2634 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2635      rtx x;
2636      rtx insn;
2637      enum machine_mode promoted_mode;
2638      int uncritical;
2639 {
2640   enum rtx_code code;
2641   const char *fmt;
2642   int i;
2643 
2644   if (x == 0)
2645     return 0;
2646 
2647   code = GET_CODE (x);
2648 
2649   if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2650     return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2651 
2652   /* Nothing special about this RTX; fix its operands.  */
2653 
2654   fmt = GET_RTX_FORMAT (code);
2655   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2656     {
2657       if (fmt[i] == 'e')
2658 	XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2659 						promoted_mode, uncritical);
2660       else if (fmt[i] == 'E')
2661 	{
2662 	  int j;
2663 	  for (j = 0; j < XVECLEN (x, i); j++)
2664 	    XVECEXP (x, i, j)
2665 	      = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2666 					  promoted_mode, uncritical);
2667 	}
2668     }
2669   return x;
2670 }
2671 
2672 /* For each memory ref within X, if it refers to a stack slot
2673    with an out of range displacement, put the address in a temp register
2674    (emitting new insns before INSN to load these registers)
2675    and alter the memory ref to use that register.
2676    Replace each such MEM rtx with a copy, to avoid clobberage.  */
2677 
2678 static rtx
fixup_stack_1(x,insn)2679 fixup_stack_1 (x, insn)
2680      rtx x;
2681      rtx insn;
2682 {
2683   int i;
2684   RTX_CODE code = GET_CODE (x);
2685   const char *fmt;
2686 
2687   if (code == MEM)
2688     {
2689       rtx ad = XEXP (x, 0);
2690       /* If we have address of a stack slot but it's not valid
2691 	 (displacement is too large), compute the sum in a register.  */
2692       if (GET_CODE (ad) == PLUS
2693 	  && GET_CODE (XEXP (ad, 0)) == REG
2694 	  && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2695 	       && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2696 	      || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2698 	      || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2699 #endif
2700 	      || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2701 	      || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2702 	      || XEXP (ad, 0) == current_function_internal_arg_pointer)
2703 	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2704 	{
2705 	  rtx temp, seq;
2706 	  if (memory_address_p (GET_MODE (x), ad))
2707 	    return x;
2708 
2709 	  start_sequence ();
2710 	  temp = copy_to_reg (ad);
2711 	  seq = get_insns ();
2712 	  end_sequence ();
2713 	  emit_insn_before (seq, insn);
2714 	  return replace_equiv_address (x, temp);
2715 	}
2716       return x;
2717     }
2718 
2719   fmt = GET_RTX_FORMAT (code);
2720   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2721     {
2722       if (fmt[i] == 'e')
2723 	XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2724       else if (fmt[i] == 'E')
2725 	{
2726 	  int j;
2727 	  for (j = 0; j < XVECLEN (x, i); j++)
2728 	    XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2729 	}
2730     }
2731   return x;
2732 }
2733 
2734 /* Optimization: a bit-field instruction whose field
2735    happens to be a byte or halfword in memory
2736    can be changed to a move instruction.
2737 
2738    We call here when INSN is an insn to examine or store into a bit-field.
2739    BODY is the SET-rtx to be altered.
2740 
2741    EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2742    (Currently this is called only from function.c, and EQUIV_MEM
2743    is always 0.)  */
2744 
2745 static void
optimize_bit_field(body,insn,equiv_mem)2746 optimize_bit_field (body, insn, equiv_mem)
2747      rtx body;
2748      rtx insn;
2749      rtx *equiv_mem;
2750 {
2751   rtx bitfield;
2752   int destflag;
2753   rtx seq = 0;
2754   enum machine_mode mode;
2755 
2756   if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2757       || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2758     bitfield = SET_DEST (body), destflag = 1;
2759   else
2760     bitfield = SET_SRC (body), destflag = 0;
2761 
2762   /* First check that the field being stored has constant size and position
2763      and is in fact a byte or halfword suitably aligned.  */
2764 
2765   if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2766       && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2767       && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2768 	  != BLKmode)
2769       && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2770     {
2771       rtx memref = 0;
2772 
2773       /* Now check that the containing word is memory, not a register,
2774 	 and that it is safe to change the machine mode.  */
2775 
2776       if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2777 	memref = XEXP (bitfield, 0);
2778       else if (GET_CODE (XEXP (bitfield, 0)) == REG
2779 	       && equiv_mem != 0)
2780 	memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2781       else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2782 	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2783 	memref = SUBREG_REG (XEXP (bitfield, 0));
2784       else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2785 	       && equiv_mem != 0
2786 	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2787 	memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2788 
2789       if (memref
2790 	  && ! mode_dependent_address_p (XEXP (memref, 0))
2791 	  && ! MEM_VOLATILE_P (memref))
2792 	{
2793 	  /* Now adjust the address, first for any subreg'ing
2794 	     that we are now getting rid of,
2795 	     and then for which byte of the word is wanted.  */
2796 
2797 	  HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2798 	  rtx insns;
2799 
2800 	  /* Adjust OFFSET to count bits from low-address byte.  */
2801 	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2802 	    offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2803 		      - offset - INTVAL (XEXP (bitfield, 1)));
2804 
2805 	  /* Adjust OFFSET to count bytes from low-address byte.  */
2806 	  offset /= BITS_PER_UNIT;
2807 	  if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2808 	    {
2809 	      offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2810 			 / UNITS_PER_WORD) * UNITS_PER_WORD;
2811 	      if (BYTES_BIG_ENDIAN)
2812 		offset -= (MIN (UNITS_PER_WORD,
2813 				GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2814 			   - MIN (UNITS_PER_WORD,
2815 				  GET_MODE_SIZE (GET_MODE (memref))));
2816 	    }
2817 
2818 	  start_sequence ();
2819 	  memref = adjust_address (memref, mode, offset);
2820 	  insns = get_insns ();
2821 	  end_sequence ();
2822 	  emit_insn_before (insns, insn);
2823 
2824 	  /* Store this memory reference where
2825 	     we found the bit field reference.  */
2826 
2827 	  if (destflag)
2828 	    {
2829 	      validate_change (insn, &SET_DEST (body), memref, 1);
2830 	      if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2831 		{
2832 		  rtx src = SET_SRC (body);
2833 		  while (GET_CODE (src) == SUBREG
2834 			 && SUBREG_BYTE (src) == 0)
2835 		    src = SUBREG_REG (src);
2836 		  if (GET_MODE (src) != GET_MODE (memref))
2837 		    src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2838 		  validate_change (insn, &SET_SRC (body), src, 1);
2839 		}
2840 	      else if (GET_MODE (SET_SRC (body)) != VOIDmode
2841 		       && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2842 		/* This shouldn't happen because anything that didn't have
2843 		   one of these modes should have got converted explicitly
2844 		   and then referenced through a subreg.
2845 		   This is so because the original bit-field was
2846 		   handled by agg_mode and so its tree structure had
2847 		   the same mode that memref now has.  */
2848 		abort ();
2849 	    }
2850 	  else
2851 	    {
2852 	      rtx dest = SET_DEST (body);
2853 
2854 	      while (GET_CODE (dest) == SUBREG
2855 		     && SUBREG_BYTE (dest) == 0
2856 		     && (GET_MODE_CLASS (GET_MODE (dest))
2857 			 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2858 		     && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2859 			 <= UNITS_PER_WORD))
2860 		dest = SUBREG_REG (dest);
2861 
2862 	      validate_change (insn, &SET_DEST (body), dest, 1);
2863 
2864 	      if (GET_MODE (dest) == GET_MODE (memref))
2865 		validate_change (insn, &SET_SRC (body), memref, 1);
2866 	      else
2867 		{
2868 		  /* Convert the mem ref to the destination mode.  */
2869 		  rtx newreg = gen_reg_rtx (GET_MODE (dest));
2870 
2871 		  start_sequence ();
2872 		  convert_move (newreg, memref,
2873 				GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2874 		  seq = get_insns ();
2875 		  end_sequence ();
2876 
2877 		  validate_change (insn, &SET_SRC (body), newreg, 1);
2878 		}
2879 	    }
2880 
2881 	  /* See if we can convert this extraction or insertion into
2882 	     a simple move insn.  We might not be able to do so if this
2883 	     was, for example, part of a PARALLEL.
2884 
2885 	     If we succeed, write out any needed conversions.  If we fail,
2886 	     it is hard to guess why we failed, so don't do anything
2887 	     special; just let the optimization be suppressed.  */
2888 
2889 	  if (apply_change_group () && seq)
2890 	    emit_insn_before (seq, insn);
2891 	}
2892     }
2893 }
2894 
2895 /* These routines are responsible for converting virtual register references
2896    to the actual hard register references once RTL generation is complete.
2897 
2898    The following four variables are used for communication between the
2899    routines.  They contain the offsets of the virtual registers from their
2900    respective hard registers.  */
2901 
2902 static int in_arg_offset;
2903 static int var_offset;
2904 static int dynamic_offset;
2905 static int out_arg_offset;
2906 static int cfa_offset;
2907 
2908 /* In most machines, the stack pointer register is equivalent to the bottom
2909    of the stack.  */
2910 
2911 #ifndef STACK_POINTER_OFFSET
2912 #define STACK_POINTER_OFFSET	0
2913 #endif
2914 
2915 /* If not defined, pick an appropriate default for the offset of dynamically
2916    allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2917    REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */
2918 
2919 #ifndef STACK_DYNAMIC_OFFSET
2920 
2921 /* The bottom of the stack points to the actual arguments.  If
2922    REG_PARM_STACK_SPACE is defined, this includes the space for the register
2923    parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
2924    stack space for register parameters is not pushed by the caller, but
2925    rather part of the fixed stack areas and hence not included in
2926    `current_function_outgoing_args_size'.  Nevertheless, we must allow
2927    for it when allocating stack dynamic objects.  */
2928 
2929 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2930 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
2931 ((ACCUMULATE_OUTGOING_ARGS						      \
2932   ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2933  + (STACK_POINTER_OFFSET))						      \
2934 
2935 #else
2936 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
2937 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0)	      \
2938  + (STACK_POINTER_OFFSET))
2939 #endif
2940 #endif
2941 
2942 /* On most machines, the CFA coincides with the first incoming parm.  */
2943 
2944 #ifndef ARG_POINTER_CFA_OFFSET
2945 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2946 #endif
2947 
2948 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2949    had its address taken.  DECL is the decl or SAVE_EXPR for the
2950    object stored in the register, for later use if we do need to force
2951    REG into the stack.  REG is overwritten by the MEM like in
2952    put_reg_into_stack.  RESCAN is true if previously emitted
2953    instructions must be rescanned and modified now that the REG has
2954    been transformed.  */
2955 
2956 rtx
gen_mem_addressof(reg,decl,rescan)2957 gen_mem_addressof (reg, decl, rescan)
2958      rtx reg;
2959      tree decl;
2960      int rescan;
2961 {
2962   rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2963 			     REGNO (reg), decl);
2964 
2965   /* Calculate this before we start messing with decl's RTL.  */
2966   HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2967 
2968   /* If the original REG was a user-variable, then so is the REG whose
2969      address is being taken.  Likewise for unchanging.  */
2970   REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2971   RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2972 
2973   PUT_CODE (reg, MEM);
2974   MEM_ATTRS (reg) = 0;
2975   XEXP (reg, 0) = r;
2976 
2977   if (decl)
2978     {
2979       tree type = TREE_TYPE (decl);
2980       enum machine_mode decl_mode
2981 	= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2982       rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2983 		      : DECL_RTL_IF_SET (decl));
2984 
2985       PUT_MODE (reg, decl_mode);
2986 
2987       /* Clear DECL_RTL momentarily so functions below will work
2988 	 properly, then set it again.  */
2989       if (DECL_P (decl) && decl_rtl == reg)
2990 	SET_DECL_RTL (decl, 0);
2991 
2992       set_mem_attributes (reg, decl, 1);
2993       set_mem_alias_set (reg, set);
2994 
2995       if (DECL_P (decl) && decl_rtl == reg)
2996 	SET_DECL_RTL (decl, reg);
2997 
2998       if (rescan
2999 	  && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
3000 	fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
3001     }
3002   else if (rescan)
3003     fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
3004 
3005   return reg;
3006 }
3007 
3008 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack.  */
3009 
3010 void
flush_addressof(decl)3011 flush_addressof (decl)
3012      tree decl;
3013 {
3014   if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
3015       && DECL_RTL (decl) != 0
3016       && GET_CODE (DECL_RTL (decl)) == MEM
3017       && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
3018       && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
3019     put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
3020 }
3021 
3022 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack.  */
3023 
3024 static void
put_addressof_into_stack(r,ht)3025 put_addressof_into_stack (r, ht)
3026      rtx r;
3027      htab_t ht;
3028 {
3029   tree decl, type;
3030   int volatile_p, used_p;
3031 
3032   rtx reg = XEXP (r, 0);
3033 
3034   if (GET_CODE (reg) != REG)
3035     abort ();
3036 
3037   decl = ADDRESSOF_DECL (r);
3038   if (decl)
3039     {
3040       type = TREE_TYPE (decl);
3041       volatile_p = (TREE_CODE (decl) != SAVE_EXPR
3042 		    && TREE_THIS_VOLATILE (decl));
3043       used_p = (TREE_USED (decl)
3044 		|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
3045     }
3046   else
3047     {
3048       type = NULL_TREE;
3049       volatile_p = 0;
3050       used_p = 1;
3051     }
3052 
3053   put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r),
3054 		      volatile_p, used_p, 0, ht);
3055 }
3056 
3057 /* List of replacements made below in purge_addressof_1 when creating
3058    bitfield insertions.  */
3059 static rtx purge_bitfield_addressof_replacements;
3060 
3061 /* List of replacements made below in purge_addressof_1 for patterns
3062    (MEM (ADDRESSOF (REG ...))).  The key of the list entry is the
3063    corresponding (ADDRESSOF (REG ...)) and value is a substitution for
3064    the all pattern.  List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
3065    enough in complex cases, e.g. when some field values can be
3066    extracted by usage MEM with narrower mode.  */
3067 static rtx purge_addressof_replacements;
3068 
3069 /* Helper function for purge_addressof.  See if the rtx expression at *LOC
3070    in INSN needs to be changed.  If FORCE, always put any ADDRESSOFs into
3071    the stack.  If the function returns FALSE then the replacement could not
3072    be made.  */
3073 
3074 static bool
purge_addressof_1(loc,insn,force,store,ht)3075 purge_addressof_1 (loc, insn, force, store, ht)
3076      rtx *loc;
3077      rtx insn;
3078      int force, store;
3079      htab_t ht;
3080 {
3081   rtx x;
3082   RTX_CODE code;
3083   int i, j;
3084   const char *fmt;
3085   bool result = true;
3086 
3087   /* Re-start here to avoid recursion in common cases.  */
3088  restart:
3089 
3090   x = *loc;
3091   if (x == 0)
3092     return true;
3093 
3094   code = GET_CODE (x);
3095 
3096   /* If we don't return in any of the cases below, we will recurse inside
3097      the RTX, which will normally result in any ADDRESSOF being forced into
3098      memory.  */
3099   if (code == SET)
3100     {
3101       result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3102       result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3103       return result;
3104     }
3105   else if (code == ADDRESSOF)
3106     {
3107       rtx sub, insns;
3108 
3109       if (GET_CODE (XEXP (x, 0)) != MEM)
3110 	put_addressof_into_stack (x, ht);
3111 
3112       /* We must create a copy of the rtx because it was created by
3113 	 overwriting a REG rtx which is always shared.  */
3114       sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3115       if (validate_change (insn, loc, sub, 0)
3116 	  || validate_replace_rtx (x, sub, insn))
3117 	return true;
3118 
3119       start_sequence ();
3120       sub = force_operand (sub, NULL_RTX);
3121       if (! validate_change (insn, loc, sub, 0)
3122 	  && ! validate_replace_rtx (x, sub, insn))
3123 	abort ();
3124 
3125       insns = get_insns ();
3126       end_sequence ();
3127       emit_insn_before (insns, insn);
3128       return true;
3129     }
3130 
3131   else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3132     {
3133       rtx sub = XEXP (XEXP (x, 0), 0);
3134 
3135       if (GET_CODE (sub) == MEM)
3136 	sub = adjust_address_nv (sub, GET_MODE (x), 0);
3137       else if (GET_CODE (sub) == REG
3138 	       && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3139 	;
3140       else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3141 	{
3142 	  int size_x, size_sub;
3143 
3144 	  if (!insn)
3145 	    {
3146 	      /* When processing REG_NOTES look at the list of
3147 		 replacements done on the insn to find the register that X
3148 		 was replaced by.  */
3149 	      rtx tem;
3150 
3151 	      for (tem = purge_bitfield_addressof_replacements;
3152 		   tem != NULL_RTX;
3153 		   tem = XEXP (XEXP (tem, 1), 1))
3154 		if (rtx_equal_p (x, XEXP (tem, 0)))
3155 		  {
3156 		    *loc = XEXP (XEXP (tem, 1), 0);
3157 		    return true;
3158 		  }
3159 
3160 	      /* See comment for purge_addressof_replacements.  */
3161 	      for (tem = purge_addressof_replacements;
3162 		   tem != NULL_RTX;
3163 		   tem = XEXP (XEXP (tem, 1), 1))
3164 		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3165 		  {
3166 		    rtx z = XEXP (XEXP (tem, 1), 0);
3167 
3168 		    if (GET_MODE (x) == GET_MODE (z)
3169 			|| (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3170 			    && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3171 		      abort ();
3172 
3173 		    /* It can happen that the note may speak of things
3174 		       in a wider (or just different) mode than the
3175 		       code did.  This is especially true of
3176 		       REG_RETVAL.  */
3177 
3178 		    if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3179 		      z = SUBREG_REG (z);
3180 
3181 		    if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3182 			&& (GET_MODE_SIZE (GET_MODE (x))
3183 			    > GET_MODE_SIZE (GET_MODE (z))))
3184 		      {
3185 			/* This can occur as a result in invalid
3186 			   pointer casts, e.g. float f; ...
3187 			   *(long long int *)&f.
3188 			   ??? We could emit a warning here, but
3189 			   without a line number that wouldn't be
3190 			   very helpful.  */
3191 			z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3192 		      }
3193 		    else
3194 		      z = gen_lowpart (GET_MODE (x), z);
3195 
3196 		    *loc = z;
3197 		    return true;
3198 		  }
3199 
3200 	      /* Sometimes we may not be able to find the replacement.  For
3201 		 example when the original insn was a MEM in a wider mode,
3202 		 and the note is part of a sign extension of a narrowed
3203 		 version of that MEM.  Gcc testcase compile/990829-1.c can
3204 		 generate an example of this situation.  Rather than complain
3205 		 we return false, which will prompt our caller to remove the
3206 		 offending note.  */
3207 	      return false;
3208 	    }
3209 
3210 	  size_x = GET_MODE_BITSIZE (GET_MODE (x));
3211 	  size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3212 
3213 	  /* Do not frob unchanging MEMs.  If a later reference forces the
3214 	     pseudo to the stack, we can wind up with multiple writes to
3215 	     an unchanging memory, which is invalid.  */
3216 	  if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3217 	    ;
3218 
3219 	  /* Don't even consider working with paradoxical subregs,
3220 	     or the moral equivalent seen here.  */
3221 	  else if (size_x <= size_sub
3222 	           && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3223 	    {
3224 	      /* Do a bitfield insertion to mirror what would happen
3225 		 in memory.  */
3226 
3227 	      rtx val, seq;
3228 
3229 	      if (store)
3230 		{
3231 		  rtx p = PREV_INSN (insn);
3232 
3233 		  start_sequence ();
3234 		  val = gen_reg_rtx (GET_MODE (x));
3235 		  if (! validate_change (insn, loc, val, 0))
3236 		    {
3237 		      /* Discard the current sequence and put the
3238 			 ADDRESSOF on stack.  */
3239 		      end_sequence ();
3240 		      goto give_up;
3241 		    }
3242 		  seq = get_insns ();
3243 		  end_sequence ();
3244 		  emit_insn_before (seq, insn);
3245 		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3246 					 insn, ht);
3247 
3248 		  start_sequence ();
3249 		  store_bit_field (sub, size_x, 0, GET_MODE (x),
3250 				   val, GET_MODE_SIZE (GET_MODE (sub)));
3251 
3252 		  /* Make sure to unshare any shared rtl that store_bit_field
3253 		     might have created.  */
3254 		  unshare_all_rtl_again (get_insns ());
3255 
3256 		  seq = get_insns ();
3257 		  end_sequence ();
3258 		  p = emit_insn_after (seq, insn);
3259 		  if (NEXT_INSN (insn))
3260 		    compute_insns_for_mem (NEXT_INSN (insn),
3261 					   p ? NEXT_INSN (p) : NULL_RTX,
3262 					   ht);
3263 		}
3264 	      else
3265 		{
3266 		  rtx p = PREV_INSN (insn);
3267 
3268 		  start_sequence ();
3269 		  val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3270 					   GET_MODE (x), GET_MODE (x),
3271 					   GET_MODE_SIZE (GET_MODE (sub)));
3272 
3273 		  if (! validate_change (insn, loc, val, 0))
3274 		    {
3275 		      /* Discard the current sequence and put the
3276 			 ADDRESSOF on stack.  */
3277 		      end_sequence ();
3278 		      goto give_up;
3279 		    }
3280 
3281 		  seq = get_insns ();
3282 		  end_sequence ();
3283 		  emit_insn_before (seq, insn);
3284 		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3285 					 insn, ht);
3286 		}
3287 
3288 	      /* Remember the replacement so that the same one can be done
3289 		 on the REG_NOTES.  */
3290 	      purge_bitfield_addressof_replacements
3291 		= gen_rtx_EXPR_LIST (VOIDmode, x,
3292 				     gen_rtx_EXPR_LIST
3293 				     (VOIDmode, val,
3294 				      purge_bitfield_addressof_replacements));
3295 
3296 	      /* We replaced with a reg -- all done.  */
3297 	      return true;
3298 	    }
3299 	}
3300 
3301       else if (validate_change (insn, loc, sub, 0))
3302 	{
3303 	  /* Remember the replacement so that the same one can be done
3304 	     on the REG_NOTES.  */
3305 	  if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3306 	    {
3307 	      rtx tem;
3308 
3309 	      for (tem = purge_addressof_replacements;
3310 		   tem != NULL_RTX;
3311 		   tem = XEXP (XEXP (tem, 1), 1))
3312 		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3313 		  {
3314 		    XEXP (XEXP (tem, 1), 0) = sub;
3315 		    return true;
3316 		  }
3317 	      purge_addressof_replacements
3318 		= gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3319 			   gen_rtx_EXPR_LIST (VOIDmode, sub,
3320 					      purge_addressof_replacements));
3321 	      return true;
3322 	    }
3323 	  goto restart;
3324 	}
3325     }
3326 
3327  give_up:
3328   /* Scan all subexpressions.  */
3329   fmt = GET_RTX_FORMAT (code);
3330   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3331     {
3332       if (*fmt == 'e')
3333 	result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3334       else if (*fmt == 'E')
3335 	for (j = 0; j < XVECLEN (x, i); j++)
3336 	  result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3337     }
3338 
3339   return result;
3340 }
3341 
3342 /* Return a hash value for K, a REG.  */
3343 
3344 static hashval_t
insns_for_mem_hash(k)3345 insns_for_mem_hash (k)
3346      const void * k;
3347 {
3348   /* Use the address of the key for the hash value.  */
3349   struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3350   return htab_hash_pointer (m->key);
3351 }
3352 
3353 /* Return nonzero if K1 and K2 (two REGs) are the same.  */
3354 
3355 static int
insns_for_mem_comp(k1,k2)3356 insns_for_mem_comp (k1, k2)
3357      const void * k1;
3358      const void * k2;
3359 {
3360   struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3361   struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3362   return m1->key == m2->key;
3363 }
3364 
3365 struct insns_for_mem_walk_info
3366 {
3367   /* The hash table that we are using to record which INSNs use which
3368      MEMs.  */
3369   htab_t ht;
3370 
3371   /* The INSN we are currently processing.  */
3372   rtx insn;
3373 
3374   /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3375      to find the insns that use the REGs in the ADDRESSOFs.  */
3376   int pass;
3377 };
3378 
3379 /* Called from compute_insns_for_mem via for_each_rtx.  If R is a REG
3380    that might be used in an ADDRESSOF expression, record this INSN in
3381    the hash table given by DATA (which is really a pointer to an
3382    insns_for_mem_walk_info structure).  */
3383 
3384 static int
insns_for_mem_walk(r,data)3385 insns_for_mem_walk (r, data)
3386      rtx *r;
3387      void *data;
3388 {
3389   struct insns_for_mem_walk_info *ifmwi
3390     = (struct insns_for_mem_walk_info *) data;
3391   struct insns_for_mem_entry tmp;
3392   tmp.insns = NULL_RTX;
3393 
3394   if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3395       && GET_CODE (XEXP (*r, 0)) == REG)
3396     {
3397       PTR *e;
3398       tmp.key = XEXP (*r, 0);
3399       e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3400       if (*e == NULL)
3401 	{
3402 	  *e = ggc_alloc (sizeof (tmp));
3403 	  memcpy (*e, &tmp, sizeof (tmp));
3404 	}
3405     }
3406   else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3407     {
3408       struct insns_for_mem_entry *ifme;
3409       tmp.key = *r;
3410       ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3411 
3412       /* If we have not already recorded this INSN, do so now.  Since
3413 	 we process the INSNs in order, we know that if we have
3414 	 recorded it it must be at the front of the list.  */
3415       if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3416 	ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3417 					 ifme->insns);
3418     }
3419 
3420   return 0;
3421 }
3422 
3423 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3424    which REGs in HT.  */
3425 
3426 static void
compute_insns_for_mem(insns,last_insn,ht)3427 compute_insns_for_mem (insns, last_insn, ht)
3428      rtx insns;
3429      rtx last_insn;
3430      htab_t ht;
3431 {
3432   rtx insn;
3433   struct insns_for_mem_walk_info ifmwi;
3434   ifmwi.ht = ht;
3435 
3436   for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3437     for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3438       if (INSN_P (insn))
3439 	{
3440 	  ifmwi.insn = insn;
3441 	  for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3442 	}
3443 }
3444 
3445 /* Helper function for purge_addressof called through for_each_rtx.
3446    Returns true iff the rtl is an ADDRESSOF.  */
3447 
3448 static int
is_addressof(rtl,data)3449 is_addressof (rtl, data)
3450      rtx *rtl;
3451      void *data ATTRIBUTE_UNUSED;
3452 {
3453   return GET_CODE (*rtl) == ADDRESSOF;
3454 }
3455 
3456 /* Eliminate all occurrences of ADDRESSOF from INSNS.  Elide any remaining
3457    (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3458    stack.  */
3459 
3460 void
purge_addressof(insns)3461 purge_addressof (insns)
3462      rtx insns;
3463 {
3464   rtx insn;
3465   htab_t ht;
3466 
3467   /* When we actually purge ADDRESSOFs, we turn REGs into MEMs.  That
3468      requires a fixup pass over the instruction stream to correct
3469      INSNs that depended on the REG being a REG, and not a MEM.  But,
3470      these fixup passes are slow.  Furthermore, most MEMs are not
3471      mentioned in very many instructions.  So, we speed up the process
3472      by pre-calculating which REGs occur in which INSNs; that allows
3473      us to perform the fixup passes much more quickly.  */
3474   ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3475   compute_insns_for_mem (insns, NULL_RTX, ht);
3476 
3477   for (insn = insns; insn; insn = NEXT_INSN (insn))
3478     if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3479 	|| GET_CODE (insn) == CALL_INSN)
3480       {
3481 	if (! purge_addressof_1 (&PATTERN (insn), insn,
3482 				 asm_noperands (PATTERN (insn)) > 0, 0, ht))
3483 	  /* If we could not replace the ADDRESSOFs in the insn,
3484 	     something is wrong.  */
3485 	  abort ();
3486 
3487 	if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, ht))
3488 	  {
3489 	    /* If we could not replace the ADDRESSOFs in the insn's notes,
3490 	       we can just remove the offending notes instead.  */
3491 	    rtx note;
3492 
3493 	    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3494 	      {
3495 		/* If we find a REG_RETVAL note then the insn is a libcall.
3496 		   Such insns must have REG_EQUAL notes as well, in order
3497 		   for later passes of the compiler to work.  So it is not
3498 		   safe to delete the notes here, and instead we abort.  */
3499 		if (REG_NOTE_KIND (note) == REG_RETVAL)
3500 		  abort ();
3501 		if (for_each_rtx (&note, is_addressof, NULL))
3502 		  remove_note (insn, note);
3503 	      }
3504 	  }
3505       }
3506 
3507   /* Clean up.  */
3508   purge_bitfield_addressof_replacements = 0;
3509   purge_addressof_replacements = 0;
3510 
3511   /* REGs are shared.  purge_addressof will destructively replace a REG
3512      with a MEM, which creates shared MEMs.
3513 
3514      Unfortunately, the children of put_reg_into_stack assume that MEMs
3515      referring to the same stack slot are shared (fixup_var_refs and
3516      the associated hash table code).
3517 
3518      So, we have to do another unsharing pass after we have flushed any
3519      REGs that had their address taken into the stack.
3520 
3521      It may be worth tracking whether or not we converted any REGs into
3522      MEMs to avoid this overhead when it is not needed.  */
3523   unshare_all_rtl_again (get_insns ());
3524 }
3525 
3526 /* Convert a SET of a hard subreg to a set of the appropriate hard
3527    register.  A subroutine of purge_hard_subreg_sets.  */
3528 
3529 static void
purge_single_hard_subreg_set(pattern)3530 purge_single_hard_subreg_set (pattern)
3531      rtx pattern;
3532 {
3533   rtx reg = SET_DEST (pattern);
3534   enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3535   int offset = 0;
3536 
3537   if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3538       && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3539     {
3540       offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3541 				    GET_MODE (SUBREG_REG (reg)),
3542 				    SUBREG_BYTE (reg),
3543 				    GET_MODE (reg));
3544       reg = SUBREG_REG (reg);
3545     }
3546 
3547 
3548   if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3549     {
3550       reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3551       SET_DEST (pattern) = reg;
3552     }
3553 }
3554 
3555 /* Eliminate all occurrences of SETs of hard subregs from INSNS.  The
3556    only such SETs that we expect to see are those left in because
3557    integrate can't handle sets of parts of a return value register.
3558 
3559    We don't use alter_subreg because we only want to eliminate subregs
3560    of hard registers.  */
3561 
3562 void
purge_hard_subreg_sets(insn)3563 purge_hard_subreg_sets (insn)
3564      rtx insn;
3565 {
3566   for (; insn; insn = NEXT_INSN (insn))
3567     {
3568       if (INSN_P (insn))
3569 	{
3570 	  rtx pattern = PATTERN (insn);
3571 	  switch (GET_CODE (pattern))
3572 	    {
3573 	    case SET:
3574 	      if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3575 		purge_single_hard_subreg_set (pattern);
3576 	      break;
3577 	    case PARALLEL:
3578 	      {
3579 		int j;
3580 		for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3581 		  {
3582 		    rtx inner_pattern = XVECEXP (pattern, 0, j);
3583 		    if (GET_CODE (inner_pattern) == SET
3584 			&& GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3585 		      purge_single_hard_subreg_set (inner_pattern);
3586 		  }
3587 	      }
3588 	      break;
3589 	    default:
3590 	      break;
3591 	    }
3592 	}
3593     }
3594 }
3595 
3596 /* Pass through the INSNS of function FNDECL and convert virtual register
3597    references to hard register references.  */
3598 
3599 void
instantiate_virtual_regs(fndecl,insns)3600 instantiate_virtual_regs (fndecl, insns)
3601      tree fndecl;
3602      rtx insns;
3603 {
3604   rtx insn;
3605   unsigned int i;
3606 
3607   /* Compute the offsets to use for this function.  */
3608   in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3609   var_offset = STARTING_FRAME_OFFSET;
3610   dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3611   out_arg_offset = STACK_POINTER_OFFSET;
3612   cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3613 
3614   /* Scan all variables and parameters of this function.  For each that is
3615      in memory, instantiate all virtual registers if the result is a valid
3616      address.  If not, we do it later.  That will handle most uses of virtual
3617      regs on many machines.  */
3618   instantiate_decls (fndecl, 1);
3619 
3620   /* Initialize recognition, indicating that volatile is OK.  */
3621   init_recog ();
3622 
3623   /* Scan through all the insns, instantiating every virtual register still
3624      present.  */
3625   for (insn = insns; insn; insn = NEXT_INSN (insn))
3626     if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3627 	|| GET_CODE (insn) == CALL_INSN)
3628       {
3629 	instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3630 	if (INSN_DELETED_P (insn))
3631 	  continue;
3632 	instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3633 	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
3634 	if (GET_CODE (insn) == CALL_INSN)
3635 	  instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3636 				      NULL_RTX, 0);
3637 
3638 	/* Past this point all ASM statements should match.  Verify that
3639 	   to avoid failures later in the compilation process.  */
3640         if (asm_noperands (PATTERN (insn)) >= 0
3641 	    && ! check_asm_operands (PATTERN (insn)))
3642           instantiate_virtual_regs_lossage (insn);
3643       }
3644 
3645   /* Instantiate the stack slots for the parm registers, for later use in
3646      addressof elimination.  */
3647   for (i = 0; i < max_parm_reg; ++i)
3648     if (parm_reg_stack_loc[i])
3649       instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3650 
3651   /* Now instantiate the remaining register equivalences for debugging info.
3652      These will not be valid addresses.  */
3653   instantiate_decls (fndecl, 0);
3654 
3655   /* Indicate that, from now on, assign_stack_local should use
3656      frame_pointer_rtx.  */
3657   virtuals_instantiated = 1;
3658 }
3659 
3660 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3661    all virtual registers in their DECL_RTL's.
3662 
3663    If VALID_ONLY, do this only if the resulting address is still valid.
3664    Otherwise, always do it.  */
3665 
3666 static void
instantiate_decls(fndecl,valid_only)3667 instantiate_decls (fndecl, valid_only)
3668      tree fndecl;
3669      int valid_only;
3670 {
3671   tree decl;
3672 
3673   /* Process all parameters of the function.  */
3674   for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3675     {
3676       HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3677       HOST_WIDE_INT size_rtl;
3678 
3679       instantiate_decl (DECL_RTL (decl), size, valid_only);
3680 
3681       /* If the parameter was promoted, then the incoming RTL mode may be
3682 	 larger than the declared type size.  We must use the larger of
3683 	 the two sizes.  */
3684       size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3685       size = MAX (size_rtl, size);
3686       instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3687     }
3688 
3689   /* Now process all variables defined in the function or its subblocks.  */
3690   instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3691 }
3692 
3693 /* Subroutine of instantiate_decls: Process all decls in the given
3694    BLOCK node and all its subblocks.  */
3695 
3696 static void
instantiate_decls_1(let,valid_only)3697 instantiate_decls_1 (let, valid_only)
3698      tree let;
3699      int valid_only;
3700 {
3701   tree t;
3702 
3703   for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3704     if (DECL_RTL_SET_P (t))
3705       instantiate_decl (DECL_RTL (t),
3706 			int_size_in_bytes (TREE_TYPE (t)),
3707 			valid_only);
3708 
3709   /* Process all subblocks.  */
3710   for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3711     instantiate_decls_1 (t, valid_only);
3712 }
3713 
3714 /* Subroutine of the preceding procedures: Given RTL representing a
3715    decl and the size of the object, do any instantiation required.
3716 
3717    If VALID_ONLY is nonzero, it means that the RTL should only be
3718    changed if the new address is valid.  */
3719 
3720 static void
instantiate_decl(x,size,valid_only)3721 instantiate_decl (x, size, valid_only)
3722      rtx x;
3723      HOST_WIDE_INT size;
3724      int valid_only;
3725 {
3726   enum machine_mode mode;
3727   rtx addr;
3728 
3729   /* If this is not a MEM, no need to do anything.  Similarly if the
3730      address is a constant or a register that is not a virtual register.  */
3731 
3732   if (x == 0 || GET_CODE (x) != MEM)
3733     return;
3734 
3735   addr = XEXP (x, 0);
3736   if (CONSTANT_P (addr)
3737       || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3738       || (GET_CODE (addr) == REG
3739 	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3740 	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3741     return;
3742 
3743   /* If we should only do this if the address is valid, copy the address.
3744      We need to do this so we can undo any changes that might make the
3745      address invalid.  This copy is unfortunate, but probably can't be
3746      avoided.  */
3747 
3748   if (valid_only)
3749     addr = copy_rtx (addr);
3750 
3751   instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3752 
3753   if (valid_only && size >= 0)
3754     {
3755       unsigned HOST_WIDE_INT decl_size = size;
3756 
3757       /* Now verify that the resulting address is valid for every integer or
3758 	 floating-point mode up to and including SIZE bytes long.  We do this
3759 	 since the object might be accessed in any mode and frame addresses
3760 	 are shared.  */
3761 
3762       for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3763 	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3764 	   mode = GET_MODE_WIDER_MODE (mode))
3765 	if (! memory_address_p (mode, addr))
3766 	  return;
3767 
3768       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3769 	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3770 	   mode = GET_MODE_WIDER_MODE (mode))
3771 	if (! memory_address_p (mode, addr))
3772 	  return;
3773     }
3774 
3775   /* Put back the address now that we have updated it and we either know
3776      it is valid or we don't care whether it is valid.  */
3777 
3778   XEXP (x, 0) = addr;
3779 }
3780 
3781 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3782    is a virtual register, return the equivalent hard register and set the
3783    offset indirectly through the pointer.  Otherwise, return 0.  */
3784 
3785 static rtx
instantiate_new_reg(x,poffset)3786 instantiate_new_reg (x, poffset)
3787      rtx x;
3788      HOST_WIDE_INT *poffset;
3789 {
3790   rtx new;
3791   HOST_WIDE_INT offset;
3792 
3793   if (x == virtual_incoming_args_rtx)
3794     new = arg_pointer_rtx, offset = in_arg_offset;
3795   else if (x == virtual_stack_vars_rtx)
3796     new = frame_pointer_rtx, offset = var_offset;
3797   else if (x == virtual_stack_dynamic_rtx)
3798     new = stack_pointer_rtx, offset = dynamic_offset;
3799   else if (x == virtual_outgoing_args_rtx)
3800     new = stack_pointer_rtx, offset = out_arg_offset;
3801   else if (x == virtual_cfa_rtx)
3802     new = arg_pointer_rtx, offset = cfa_offset;
3803   else
3804     return 0;
3805 
3806   *poffset = offset;
3807   return new;
3808 }
3809 
3810 
3811 /* Called when instantiate_virtual_regs has failed to update the instruction.
3812    Usually this means that non-matching instruction has been emit, however for
3813    asm statements it may be the problem in the constraints.  */
3814 static void
instantiate_virtual_regs_lossage(insn)3815 instantiate_virtual_regs_lossage (insn)
3816      rtx insn;
3817 {
3818   if (asm_noperands (PATTERN (insn)) >= 0)
3819     {
3820       error_for_asm (insn, "impossible constraint in `asm'");
3821       delete_insn (insn);
3822     }
3823   else
3824     abort ();
3825 }
3826 /* Given a pointer to a piece of rtx and an optional pointer to the
3827    containing object, instantiate any virtual registers present in it.
3828 
3829    If EXTRA_INSNS, we always do the replacement and generate
3830    any extra insns before OBJECT.  If it zero, we do nothing if replacement
3831    is not valid.
3832 
3833    Return 1 if we either had nothing to do or if we were able to do the
3834    needed replacement.  Return 0 otherwise; we only return zero if
3835    EXTRA_INSNS is zero.
3836 
3837    We first try some simple transformations to avoid the creation of extra
3838    pseudos.  */
3839 
3840 static int
instantiate_virtual_regs_1(loc,object,extra_insns)3841 instantiate_virtual_regs_1 (loc, object, extra_insns)
3842      rtx *loc;
3843      rtx object;
3844      int extra_insns;
3845 {
3846   rtx x;
3847   RTX_CODE code;
3848   rtx new = 0;
3849   HOST_WIDE_INT offset = 0;
3850   rtx temp;
3851   rtx seq;
3852   int i, j;
3853   const char *fmt;
3854 
3855   /* Re-start here to avoid recursion in common cases.  */
3856  restart:
3857 
3858   x = *loc;
3859   if (x == 0)
3860     return 1;
3861 
3862   /* We may have detected and deleted invalid asm statements.  */
3863   if (object && INSN_P (object) && INSN_DELETED_P (object))
3864     return 1;
3865 
3866   code = GET_CODE (x);
3867 
3868   /* Check for some special cases.  */
3869   switch (code)
3870     {
3871     case CONST_INT:
3872     case CONST_DOUBLE:
3873     case CONST_VECTOR:
3874     case CONST:
3875     case SYMBOL_REF:
3876     case CODE_LABEL:
3877     case PC:
3878     case CC0:
3879     case ASM_INPUT:
3880     case ADDR_VEC:
3881     case ADDR_DIFF_VEC:
3882     case RETURN:
3883       return 1;
3884 
3885     case SET:
3886       /* We are allowed to set the virtual registers.  This means that
3887 	 the actual register should receive the source minus the
3888 	 appropriate offset.  This is used, for example, in the handling
3889 	 of non-local gotos.  */
3890       if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3891 	{
3892 	  rtx src = SET_SRC (x);
3893 
3894 	  /* We are setting the register, not using it, so the relevant
3895 	     offset is the negative of the offset to use were we using
3896 	     the register.  */
3897 	  offset = - offset;
3898 	  instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3899 
3900 	  /* The only valid sources here are PLUS or REG.  Just do
3901 	     the simplest possible thing to handle them.  */
3902 	  if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3903 	    {
3904 	      instantiate_virtual_regs_lossage (object);
3905 	      return 1;
3906 	    }
3907 
3908 	  start_sequence ();
3909 	  if (GET_CODE (src) != REG)
3910 	    temp = force_operand (src, NULL_RTX);
3911 	  else
3912 	    temp = src;
3913 	  temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3914 	  seq = get_insns ();
3915 	  end_sequence ();
3916 
3917 	  emit_insn_before (seq, object);
3918 	  SET_DEST (x) = new;
3919 
3920 	  if (! validate_change (object, &SET_SRC (x), temp, 0)
3921 	      || ! extra_insns)
3922 	    instantiate_virtual_regs_lossage (object);
3923 
3924 	  return 1;
3925 	}
3926 
3927       instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3928       loc = &SET_SRC (x);
3929       goto restart;
3930 
3931     case PLUS:
3932       /* Handle special case of virtual register plus constant.  */
3933       if (CONSTANT_P (XEXP (x, 1)))
3934 	{
3935 	  rtx old, new_offset;
3936 
3937 	  /* Check for (plus (plus VIRT foo) (const_int)) first.  */
3938 	  if (GET_CODE (XEXP (x, 0)) == PLUS)
3939 	    {
3940 	      if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3941 		{
3942 		  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3943 					      extra_insns);
3944 		  new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3945 		}
3946 	      else
3947 		{
3948 		  loc = &XEXP (x, 0);
3949 		  goto restart;
3950 		}
3951 	    }
3952 
3953 #ifdef POINTERS_EXTEND_UNSIGNED
3954 	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3955 	     we can commute the PLUS and SUBREG because pointers into the
3956 	     frame are well-behaved.  */
3957 	  else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3958 		   && GET_CODE (XEXP (x, 1)) == CONST_INT
3959 		   && 0 != (new
3960 			    = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3961 						   &offset))
3962 		   && validate_change (object, loc,
3963 				       plus_constant (gen_lowpart (ptr_mode,
3964 								   new),
3965 						      offset
3966 						      + INTVAL (XEXP (x, 1))),
3967 				       0))
3968 		return 1;
3969 #endif
3970 	  else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3971 	    {
3972 	      /* We know the second operand is a constant.  Unless the
3973 		 first operand is a REG (which has been already checked),
3974 		 it needs to be checked.  */
3975 	      if (GET_CODE (XEXP (x, 0)) != REG)
3976 		{
3977 		  loc = &XEXP (x, 0);
3978 		  goto restart;
3979 		}
3980 	      return 1;
3981 	    }
3982 
3983 	  new_offset = plus_constant (XEXP (x, 1), offset);
3984 
3985 	  /* If the new constant is zero, try to replace the sum with just
3986 	     the register.  */
3987 	  if (new_offset == const0_rtx
3988 	      && validate_change (object, loc, new, 0))
3989 	    return 1;
3990 
3991 	  /* Next try to replace the register and new offset.
3992 	     There are two changes to validate here and we can't assume that
3993 	     in the case of old offset equals new just changing the register
3994 	     will yield a valid insn.  In the interests of a little efficiency,
3995 	     however, we only call validate change once (we don't queue up the
3996 	     changes and then call apply_change_group).  */
3997 
3998 	  old = XEXP (x, 0);
3999 	  if (offset == 0
4000 	      ? ! validate_change (object, &XEXP (x, 0), new, 0)
4001 	      : (XEXP (x, 0) = new,
4002 		 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
4003 	    {
4004 	      if (! extra_insns)
4005 		{
4006 		  XEXP (x, 0) = old;
4007 		  return 0;
4008 		}
4009 
4010 	      /* Otherwise copy the new constant into a register and replace
4011 		 constant with that register.  */
4012 	      temp = gen_reg_rtx (Pmode);
4013 	      XEXP (x, 0) = new;
4014 	      if (validate_change (object, &XEXP (x, 1), temp, 0)
4015 		  && ! flag_propolice_protection)
4016 		emit_insn_before (gen_move_insn (temp, new_offset), object);
4017 	      else
4018 		{
4019 		  /* If that didn't work, replace this expression with a
4020 		     register containing the sum.  */
4021 
4022 		  XEXP (x, 0) = old;
4023 		  new = gen_rtx_PLUS (Pmode, new, new_offset);
4024 
4025 		  start_sequence ();
4026 		  temp = force_operand (new, NULL_RTX);
4027 		  seq = get_insns ();
4028 		  end_sequence ();
4029 
4030 		  emit_insn_before (seq, object);
4031 		  if (! validate_change (object, loc, temp, 0)
4032 		      && ! validate_replace_rtx (x, temp, object))
4033 		    {
4034 		      instantiate_virtual_regs_lossage (object);
4035 		      return 1;
4036 		    }
4037 		}
4038 	    }
4039 
4040 	  return 1;
4041 	}
4042 
4043       /* Fall through to generic two-operand expression case.  */
4044     case EXPR_LIST:
4045     case CALL:
4046     case COMPARE:
4047     case MINUS:
4048     case MULT:
4049     case DIV:      case UDIV:
4050     case MOD:      case UMOD:
4051     case AND:      case IOR:      case XOR:
4052     case ROTATERT: case ROTATE:
4053     case ASHIFTRT: case LSHIFTRT: case ASHIFT:
4054     case NE:       case EQ:
4055     case GE:       case GT:       case GEU:    case GTU:
4056     case LE:       case LT:       case LEU:    case LTU:
4057       if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
4058 	instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
4059       loc = &XEXP (x, 0);
4060       goto restart;
4061 
4062     case MEM:
4063       /* Most cases of MEM that convert to valid addresses have already been
4064 	 handled by our scan of decls.  The only special handling we
4065 	 need here is to make a copy of the rtx to ensure it isn't being
4066 	 shared if we have to change it to a pseudo.
4067 
4068 	 If the rtx is a simple reference to an address via a virtual register,
4069 	 it can potentially be shared.  In such cases, first try to make it
4070 	 a valid address, which can also be shared.  Otherwise, copy it and
4071 	 proceed normally.
4072 
4073 	 First check for common cases that need no processing.  These are
4074 	 usually due to instantiation already being done on a previous instance
4075 	 of a shared rtx.  */
4076 
4077       temp = XEXP (x, 0);
4078       if (CONSTANT_ADDRESS_P (temp)
4079 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4080 	  || temp == arg_pointer_rtx
4081 #endif
4082 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4083 	  || temp == hard_frame_pointer_rtx
4084 #endif
4085 	  || temp == frame_pointer_rtx)
4086 	return 1;
4087 
4088       if (GET_CODE (temp) == PLUS
4089 	  && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4090 	  && (XEXP (temp, 0) == frame_pointer_rtx
4091 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4092 	      || XEXP (temp, 0) == hard_frame_pointer_rtx
4093 #endif
4094 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4095 	      || XEXP (temp, 0) == arg_pointer_rtx
4096 #endif
4097 	      ))
4098 	return 1;
4099 
4100       if (temp == virtual_stack_vars_rtx
4101 	  || temp == virtual_incoming_args_rtx
4102 	  || (GET_CODE (temp) == PLUS
4103 	      && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4104 	      && (XEXP (temp, 0) == virtual_stack_vars_rtx
4105 		  || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4106 	{
4107 	  /* This MEM may be shared.  If the substitution can be done without
4108 	     the need to generate new pseudos, we want to do it in place
4109 	     so all copies of the shared rtx benefit.  The call below will
4110 	     only make substitutions if the resulting address is still
4111 	     valid.
4112 
4113 	     Note that we cannot pass X as the object in the recursive call
4114 	     since the insn being processed may not allow all valid
4115 	     addresses.  However, if we were not passed on object, we can
4116 	     only modify X without copying it if X will have a valid
4117 	     address.
4118 
4119 	     ??? Also note that this can still lose if OBJECT is an insn that
4120 	     has less restrictions on an address that some other insn.
4121 	     In that case, we will modify the shared address.  This case
4122 	     doesn't seem very likely, though.  One case where this could
4123 	     happen is in the case of a USE or CLOBBER reference, but we
4124 	     take care of that below.  */
4125 
4126 	  if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4127 					  object ? object : x, 0))
4128 	    return 1;
4129 
4130 	  /* Otherwise make a copy and process that copy.  We copy the entire
4131 	     RTL expression since it might be a PLUS which could also be
4132 	     shared.  */
4133 	  *loc = x = copy_rtx (x);
4134 	}
4135 
4136       /* Fall through to generic unary operation case.  */
4137     case PREFETCH:
4138     case SUBREG:
4139     case STRICT_LOW_PART:
4140     case NEG:          case NOT:
4141     case PRE_DEC:      case PRE_INC:      case POST_DEC:    case POST_INC:
4142     case SIGN_EXTEND:  case ZERO_EXTEND:
4143     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4144     case FLOAT:        case FIX:
4145     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4146     case ABS:
4147     case SQRT:
4148     case FFS:
4149       /* These case either have just one operand or we know that we need not
4150 	 check the rest of the operands.  */
4151       loc = &XEXP (x, 0);
4152       goto restart;
4153 
4154     case USE:
4155     case CLOBBER:
4156       /* If the operand is a MEM, see if the change is a valid MEM.  If not,
4157 	 go ahead and make the invalid one, but do it to a copy.  For a REG,
4158 	 just make the recursive call, since there's no chance of a problem.  */
4159 
4160       if ((GET_CODE (XEXP (x, 0)) == MEM
4161 	   && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4162 					  0))
4163 	  || (GET_CODE (XEXP (x, 0)) == REG
4164 	      && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4165 	return 1;
4166 
4167       XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4168       loc = &XEXP (x, 0);
4169       goto restart;
4170 
4171     case REG:
4172       /* Try to replace with a PLUS.  If that doesn't work, compute the sum
4173 	 in front of this insn and substitute the temporary.  */
4174       if ((new = instantiate_new_reg (x, &offset)) != 0)
4175 	{
4176 	  temp = plus_constant (new, offset);
4177 	  if (!validate_change (object, loc, temp, 0))
4178 	    {
4179 	      if (! extra_insns)
4180 		return 0;
4181 
4182 	      start_sequence ();
4183 	      temp = force_operand (temp, NULL_RTX);
4184 	      seq = get_insns ();
4185 	      end_sequence ();
4186 
4187 	      emit_insn_before (seq, object);
4188 	      if (! validate_change (object, loc, temp, 0)
4189 		  && ! validate_replace_rtx (x, temp, object))
4190 	        instantiate_virtual_regs_lossage (object);
4191 	    }
4192 	}
4193 
4194       return 1;
4195 
4196     case ADDRESSOF:
4197       if (GET_CODE (XEXP (x, 0)) == REG)
4198 	return 1;
4199 
4200       else if (GET_CODE (XEXP (x, 0)) == MEM)
4201 	{
4202 	  /* If we have a (addressof (mem ..)), do any instantiation inside
4203 	     since we know we'll be making the inside valid when we finally
4204 	     remove the ADDRESSOF.  */
4205 	  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4206 	  return 1;
4207 	}
4208       break;
4209 
4210     default:
4211       break;
4212     }
4213 
4214   /* Scan all subexpressions.  */
4215   fmt = GET_RTX_FORMAT (code);
4216   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4217     if (*fmt == 'e')
4218       {
4219 	if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4220 	  return 0;
4221       }
4222     else if (*fmt == 'E')
4223       for (j = 0; j < XVECLEN (x, i); j++)
4224 	if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4225 					  extra_insns))
4226 	  return 0;
4227 
4228   return 1;
4229 }
4230 
4231 /* Optimization: assuming this function does not receive nonlocal gotos,
4232    delete the handlers for such, as well as the insns to establish
4233    and disestablish them.  */
4234 
4235 static void
delete_handlers()4236 delete_handlers ()
4237 {
4238   rtx insn;
4239   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4240     {
4241       /* Delete the handler by turning off the flag that would
4242 	 prevent jump_optimize from deleting it.
4243 	 Also permit deletion of the nonlocal labels themselves
4244 	 if nothing local refers to them.  */
4245       if (GET_CODE (insn) == CODE_LABEL)
4246 	{
4247 	  tree t, last_t;
4248 
4249 	  LABEL_PRESERVE_P (insn) = 0;
4250 
4251 	  /* Remove it from the nonlocal_label list, to avoid confusing
4252 	     flow.  */
4253 	  for (t = nonlocal_labels, last_t = 0; t;
4254 	       last_t = t, t = TREE_CHAIN (t))
4255 	    if (DECL_RTL (TREE_VALUE (t)) == insn)
4256 	      break;
4257 	  if (t)
4258 	    {
4259 	      if (! last_t)
4260 		nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4261 	      else
4262 		TREE_CHAIN (last_t) = TREE_CHAIN (t);
4263 	    }
4264 	}
4265       if (GET_CODE (insn) == INSN)
4266 	{
4267 	  int can_delete = 0;
4268 	  rtx t;
4269 	  for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4270 	    if (reg_mentioned_p (t, PATTERN (insn)))
4271 	      {
4272 		can_delete = 1;
4273 		break;
4274 	      }
4275 	  if (can_delete
4276 	      || (nonlocal_goto_stack_level != 0
4277 		  && reg_mentioned_p (nonlocal_goto_stack_level,
4278 				      PATTERN (insn))))
4279 	    delete_related_insns (insn);
4280 	}
4281     }
4282 }
4283 
4284 int
max_parm_reg_num()4285 max_parm_reg_num ()
4286 {
4287   return max_parm_reg;
4288 }
4289 
4290 /* Return the first insn following those generated by `assign_parms'.  */
4291 
4292 rtx
get_first_nonparm_insn()4293 get_first_nonparm_insn ()
4294 {
4295   if (last_parm_insn)
4296     return NEXT_INSN (last_parm_insn);
4297   return get_insns ();
4298 }
4299 
4300 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4301    Crash if there is none.  */
4302 
4303 rtx
get_first_block_beg()4304 get_first_block_beg ()
4305 {
4306   rtx searcher;
4307   rtx insn = get_first_nonparm_insn ();
4308 
4309   for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4310     if (GET_CODE (searcher) == NOTE
4311 	&& NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4312       return searcher;
4313 
4314   abort ();	/* Invalid call to this function.  (See comments above.)  */
4315   return NULL_RTX;
4316 }
4317 
4318 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4319    This means a type for which function calls must pass an address to the
4320    function or get an address back from the function.
4321    EXP may be a type node or an expression (whose type is tested).  */
4322 
4323 int
aggregate_value_p(exp)4324 aggregate_value_p (exp)
4325      tree exp;
4326 {
4327   int i, regno, nregs;
4328   rtx reg;
4329 
4330   tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4331 
4332   if (TREE_CODE (type) == VOID_TYPE)
4333     return 0;
4334   if (RETURN_IN_MEMORY (type))
4335     return 1;
4336   /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4337      and thus can't be returned in registers.  */
4338   if (TREE_ADDRESSABLE (type))
4339     return 1;
4340   if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4341     return 1;
4342   /* Make sure we have suitable call-clobbered regs to return
4343      the value in; if not, we must return it in memory.  */
4344   reg = hard_function_value (type, 0, 0);
4345 
4346   /* If we have something other than a REG (e.g. a PARALLEL), then assume
4347      it is OK.  */
4348   if (GET_CODE (reg) != REG)
4349     return 0;
4350 
4351   regno = REGNO (reg);
4352   nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4353   for (i = 0; i < nregs; i++)
4354     if (! call_used_regs[regno + i])
4355       return 1;
4356   return 0;
4357 }
4358 
4359 /* Assign RTL expressions to the function's parameters.
4360    This may involve copying them into registers and using
4361    those registers as the RTL for them.  */
4362 
4363 void
assign_parms(fndecl)4364 assign_parms (fndecl)
4365      tree fndecl;
4366 {
4367   tree parm;
4368   rtx entry_parm = 0;
4369   rtx stack_parm = 0;
4370   CUMULATIVE_ARGS args_so_far;
4371   enum machine_mode promoted_mode, passed_mode;
4372   enum machine_mode nominal_mode, promoted_nominal_mode;
4373   int unsignedp;
4374   /* Total space needed so far for args on the stack,
4375      given as a constant and a tree-expression.  */
4376   struct args_size stack_args_size;
4377   tree fntype = TREE_TYPE (fndecl);
4378   tree fnargs = DECL_ARGUMENTS (fndecl);
4379   /* This is used for the arg pointer when referring to stack args.  */
4380   rtx internal_arg_pointer;
4381   /* This is a dummy PARM_DECL that we used for the function result if
4382      the function returns a structure.  */
4383   tree function_result_decl = 0;
4384 #ifdef SETUP_INCOMING_VARARGS
4385   int varargs_setup = 0;
4386 #endif
4387   rtx conversion_insns = 0;
4388   struct args_size alignment_pad;
4389 
4390   /* Nonzero if function takes extra anonymous args.
4391      This means the last named arg must be on the stack
4392      right before the anonymous ones.  */
4393   int stdarg
4394     = (TYPE_ARG_TYPES (fntype) != 0
4395        && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4396 	   != void_type_node));
4397 
4398   current_function_stdarg = stdarg;
4399 
4400   /* If the reg that the virtual arg pointer will be translated into is
4401      not a fixed reg or is the stack pointer, make a copy of the virtual
4402      arg pointer, and address parms via the copy.  The frame pointer is
4403      considered fixed even though it is not marked as such.
4404 
4405      The second time through, simply use ap to avoid generating rtx.  */
4406 
4407   if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4408        || ! (fixed_regs[ARG_POINTER_REGNUM]
4409 	     || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4410     internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4411   else
4412     internal_arg_pointer = virtual_incoming_args_rtx;
4413   current_function_internal_arg_pointer = internal_arg_pointer;
4414 
4415   stack_args_size.constant = 0;
4416   stack_args_size.var = 0;
4417 
4418   /* If struct value address is treated as the first argument, make it so.  */
4419   if (aggregate_value_p (DECL_RESULT (fndecl))
4420       && ! current_function_returns_pcc_struct
4421       && struct_value_incoming_rtx == 0)
4422     {
4423       tree type = build_pointer_type (TREE_TYPE (fntype));
4424 
4425       function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4426 
4427       DECL_ARG_TYPE (function_result_decl) = type;
4428       TREE_CHAIN (function_result_decl) = fnargs;
4429       fnargs = function_result_decl;
4430     }
4431 
4432   max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4433   parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4434 
4435 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4436   INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4437 #else
4438   INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4439 #endif
4440 
4441   /* We haven't yet found an argument that we must push and pretend the
4442      caller did.  */
4443   current_function_pretend_args_size = 0;
4444 
4445   for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4446     {
4447       struct args_size stack_offset;
4448       struct args_size arg_size;
4449       int passed_pointer = 0;
4450       int did_conversion = 0;
4451       tree passed_type = DECL_ARG_TYPE (parm);
4452       tree nominal_type = TREE_TYPE (parm);
4453       int pretend_named;
4454       int last_named = 0, named_arg;
4455 
4456       /* Set LAST_NAMED if this is last named arg before last
4457 	 anonymous args.  */
4458       if (stdarg)
4459 	{
4460 	  tree tem;
4461 
4462 	  for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4463 	    if (DECL_NAME (tem))
4464 	      break;
4465 
4466 	  if (tem == 0)
4467 	    last_named = 1;
4468 	}
4469       /* Set NAMED_ARG if this arg should be treated as a named arg.  For
4470 	 most machines, if this is a varargs/stdarg function, then we treat
4471 	 the last named arg as if it were anonymous too.  */
4472       named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4473 
4474       if (TREE_TYPE (parm) == error_mark_node
4475 	  /* This can happen after weird syntax errors
4476 	     or if an enum type is defined among the parms.  */
4477 	  || TREE_CODE (parm) != PARM_DECL
4478 	  || passed_type == NULL)
4479 	{
4480 	  SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4481 	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4482 	  TREE_USED (parm) = 1;
4483 	  continue;
4484 	}
4485 
4486       /* Find mode of arg as it is passed, and mode of arg
4487 	 as it should be during execution of this function.  */
4488       passed_mode = TYPE_MODE (passed_type);
4489       nominal_mode = TYPE_MODE (nominal_type);
4490 
4491       /* If the parm's mode is VOID, its value doesn't matter,
4492 	 and avoid the usual things like emit_move_insn that could crash.  */
4493       if (nominal_mode == VOIDmode)
4494 	{
4495 	  SET_DECL_RTL (parm, const0_rtx);
4496 	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4497 	  continue;
4498 	}
4499 
4500       /* If the parm is to be passed as a transparent union, use the
4501 	 type of the first field for the tests below.  We have already
4502 	 verified that the modes are the same.  */
4503       if (DECL_TRANSPARENT_UNION (parm)
4504 	  || (TREE_CODE (passed_type) == UNION_TYPE
4505 	      && TYPE_TRANSPARENT_UNION (passed_type)))
4506 	passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4507 
4508       /* See if this arg was passed by invisible reference.  It is if
4509 	 it is an object whose size depends on the contents of the
4510 	 object itself or if the machine requires these objects be passed
4511 	 that way.  */
4512 
4513       if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4514 	   && contains_placeholder_p (TYPE_SIZE (passed_type)))
4515 	  || TREE_ADDRESSABLE (passed_type)
4516 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4517 	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4518 					      passed_type, named_arg)
4519 #endif
4520 	  )
4521 	{
4522 	  passed_type = nominal_type = build_pointer_type (passed_type);
4523 	  passed_pointer = 1;
4524 	  passed_mode = nominal_mode = Pmode;
4525 	}
4526       /* See if the frontend wants to pass this by invisible reference.  */
4527       else if (passed_type != nominal_type
4528 	       && POINTER_TYPE_P (passed_type)
4529 	       && TREE_TYPE (passed_type) == nominal_type)
4530 	{
4531 	  nominal_type = passed_type;
4532 	  passed_pointer = 1;
4533 	  passed_mode = nominal_mode = Pmode;
4534 	}
4535 
4536       promoted_mode = passed_mode;
4537 
4538 #ifdef PROMOTE_FUNCTION_ARGS
4539       /* Compute the mode in which the arg is actually extended to.  */
4540       unsignedp = TREE_UNSIGNED (passed_type);
4541       promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4542 #endif
4543 
4544       /* Let machine desc say which reg (if any) the parm arrives in.
4545 	 0 means it arrives on the stack.  */
4546 #ifdef FUNCTION_INCOMING_ARG
4547       entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4548 					  passed_type, named_arg);
4549 #else
4550       entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4551 				 passed_type, named_arg);
4552 #endif
4553 
4554       if (entry_parm == 0)
4555 	promoted_mode = passed_mode;
4556 
4557 #ifdef SETUP_INCOMING_VARARGS
4558       /* If this is the last named parameter, do any required setup for
4559 	 varargs or stdargs.  We need to know about the case of this being an
4560 	 addressable type, in which case we skip the registers it
4561 	 would have arrived in.
4562 
4563 	 For stdargs, LAST_NAMED will be set for two parameters, the one that
4564 	 is actually the last named, and the dummy parameter.  We only
4565 	 want to do this action once.
4566 
4567 	 Also, indicate when RTL generation is to be suppressed.  */
4568       if (last_named && !varargs_setup)
4569 	{
4570 	  SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4571 				  current_function_pretend_args_size, 0);
4572 	  varargs_setup = 1;
4573 	}
4574 #endif
4575 
4576       /* Determine parm's home in the stack,
4577 	 in case it arrives in the stack or we should pretend it did.
4578 
4579 	 Compute the stack position and rtx where the argument arrives
4580 	 and its size.
4581 
4582 	 There is one complexity here:  If this was a parameter that would
4583 	 have been passed in registers, but wasn't only because it is
4584 	 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4585 	 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4586 	 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4587 	 0 as it was the previous time.  */
4588 
4589       pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4590       locate_and_pad_parm (promoted_mode, passed_type,
4591 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4592 			   1,
4593 #else
4594 #ifdef FUNCTION_INCOMING_ARG
4595 			   FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4596 						  passed_type,
4597 						  pretend_named) != 0,
4598 #else
4599 			   FUNCTION_ARG (args_so_far, promoted_mode,
4600 					 passed_type,
4601 					 pretend_named) != 0,
4602 #endif
4603 #endif
4604 			   fndecl, &stack_args_size, &stack_offset, &arg_size,
4605 			   &alignment_pad);
4606 
4607       {
4608 	rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4609 
4610 	if (offset_rtx == const0_rtx)
4611 	  stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4612 	else
4613 	  stack_parm = gen_rtx_MEM (promoted_mode,
4614 				    gen_rtx_PLUS (Pmode,
4615 						  internal_arg_pointer,
4616 						  offset_rtx));
4617 
4618 	set_mem_attributes (stack_parm, parm, 1);
4619       }
4620 
4621       /* If this parameter was passed both in registers and in the stack,
4622 	 use the copy on the stack.  */
4623       if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4624 	entry_parm = 0;
4625 
4626 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4627       /* If this parm was passed part in regs and part in memory,
4628 	 pretend it arrived entirely in memory
4629 	 by pushing the register-part onto the stack.
4630 
4631 	 In the special case of a DImode or DFmode that is split,
4632 	 we could put it together in a pseudoreg directly,
4633 	 but for now that's not worth bothering with.  */
4634 
4635       if (entry_parm)
4636 	{
4637 	  int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4638 						  passed_type, named_arg);
4639 
4640 	  if (nregs > 0)
4641 	    {
4642 #if defined (REG_PARM_STACK_SPACE) && !defined (MAYBE_REG_PARM_STACK_SPACE)
4643 	      /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4644 		 split parameters was allocated by our caller, so we
4645 		 won't be pushing it in the prolog.  */
4646 	      if (REG_PARM_STACK_SPACE (fndecl) == 0)
4647 #endif
4648 	      current_function_pretend_args_size
4649 		= (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4650 		   / (PARM_BOUNDARY / BITS_PER_UNIT)
4651 		   * (PARM_BOUNDARY / BITS_PER_UNIT));
4652 
4653 	      /* Handle calls that pass values in multiple non-contiguous
4654 		 locations.  The Irix 6 ABI has examples of this.  */
4655 	      if (GET_CODE (entry_parm) == PARALLEL)
4656 		emit_group_store (validize_mem (stack_parm), entry_parm,
4657 				  int_size_in_bytes (TREE_TYPE (parm)));
4658 
4659 	      else
4660 		move_block_from_reg (REGNO (entry_parm),
4661 				     validize_mem (stack_parm), nregs,
4662 				     int_size_in_bytes (TREE_TYPE (parm)));
4663 
4664 	      entry_parm = stack_parm;
4665 	    }
4666 	}
4667 #endif
4668 
4669       /* If we didn't decide this parm came in a register,
4670 	 by default it came on the stack.  */
4671       if (entry_parm == 0)
4672 	entry_parm = stack_parm;
4673 
4674       /* Record permanently how this parm was passed.  */
4675       DECL_INCOMING_RTL (parm) = entry_parm;
4676 
4677       /* If there is actually space on the stack for this parm,
4678 	 count it in stack_args_size; otherwise set stack_parm to 0
4679 	 to indicate there is no preallocated stack slot for the parm.  */
4680 
4681       if (entry_parm == stack_parm
4682 	  || (GET_CODE (entry_parm) == PARALLEL
4683 	      && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4684 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4685 	  /* On some machines, even if a parm value arrives in a register
4686 	     there is still an (uninitialized) stack slot allocated for it.
4687 
4688 	     ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4689 	     whether this parameter already has a stack slot allocated,
4690 	     because an arg block exists only if current_function_args_size
4691 	     is larger than some threshold, and we haven't calculated that
4692 	     yet.  So, for now, we just assume that stack slots never exist
4693 	     in this case.  */
4694 	  || REG_PARM_STACK_SPACE (fndecl) > 0
4695 #endif
4696 	  )
4697 	{
4698 	  stack_args_size.constant += arg_size.constant;
4699 	  if (arg_size.var)
4700 	    ADD_PARM_SIZE (stack_args_size, arg_size.var);
4701 	}
4702       else
4703 	/* No stack slot was pushed for this parm.  */
4704 	stack_parm = 0;
4705 
4706       /* Update info on where next arg arrives in registers.  */
4707 
4708       FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4709 			    passed_type, named_arg);
4710 
4711       /* If we can't trust the parm stack slot to be aligned enough
4712 	 for its ultimate type, don't use that slot after entry.
4713 	 We'll make another stack slot, if we need one.  */
4714       {
4715 	unsigned int thisparm_boundary
4716 	  = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4717 
4718 	if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4719 	  stack_parm = 0;
4720       }
4721 
4722       /* If parm was passed in memory, and we need to convert it on entry,
4723 	 don't store it back in that same slot.  */
4724       if (entry_parm != 0
4725 	  && nominal_mode != BLKmode && nominal_mode != passed_mode)
4726 	stack_parm = 0;
4727 
4728       /* When an argument is passed in multiple locations, we can't
4729 	 make use of this information, but we can save some copying if
4730 	 the whole argument is passed in a single register.  */
4731       if (GET_CODE (entry_parm) == PARALLEL
4732 	  && nominal_mode != BLKmode && passed_mode != BLKmode)
4733 	{
4734 	  int i, len = XVECLEN (entry_parm, 0);
4735 
4736 	  for (i = 0; i < len; i++)
4737 	    if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4738 		&& GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4739 		&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4740 		    == passed_mode)
4741 		&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4742 	      {
4743 		entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4744 		DECL_INCOMING_RTL (parm) = entry_parm;
4745 		break;
4746 	      }
4747 	}
4748 
4749       /* ENTRY_PARM is an RTX for the parameter as it arrives,
4750 	 in the mode in which it arrives.
4751 	 STACK_PARM is an RTX for a stack slot where the parameter can live
4752 	 during the function (in case we want to put it there).
4753 	 STACK_PARM is 0 if no stack slot was pushed for it.
4754 
4755 	 Now output code if necessary to convert ENTRY_PARM to
4756 	 the type in which this function declares it,
4757 	 and store that result in an appropriate place,
4758 	 which may be a pseudo reg, may be STACK_PARM,
4759 	 or may be a local stack slot if STACK_PARM is 0.
4760 
4761 	 Set DECL_RTL to that place.  */
4762 
4763       if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4764 	{
4765 	  /* If a BLKmode arrives in registers, copy it to a stack slot.
4766 	     Handle calls that pass values in multiple non-contiguous
4767 	     locations.  The Irix 6 ABI has examples of this.  */
4768 	  if (GET_CODE (entry_parm) == REG
4769 	      || GET_CODE (entry_parm) == PARALLEL)
4770 	    {
4771 	      int size_stored
4772 		= CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4773 			      UNITS_PER_WORD);
4774 
4775 	      /* Note that we will be storing an integral number of words.
4776 		 So we have to be careful to ensure that we allocate an
4777 		 integral number of words.  We do this below in the
4778 		 assign_stack_local if space was not allocated in the argument
4779 		 list.  If it was, this will not work if PARM_BOUNDARY is not
4780 		 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
4781 		 if it becomes a problem.  */
4782 
4783 	      if (stack_parm == 0)
4784 		{
4785 		  stack_parm
4786 		    = assign_stack_local (GET_MODE (entry_parm),
4787 					  size_stored, 0);
4788 		  set_mem_attributes (stack_parm, parm, 1);
4789 		}
4790 
4791 	      else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4792 		abort ();
4793 
4794 	      /* Handle calls that pass values in multiple non-contiguous
4795 		 locations.  The Irix 6 ABI has examples of this.  */
4796 	      if (GET_CODE (entry_parm) == PARALLEL)
4797 		emit_group_store (validize_mem (stack_parm), entry_parm,
4798 				  int_size_in_bytes (TREE_TYPE (parm)));
4799 	      else
4800 		move_block_from_reg (REGNO (entry_parm),
4801 				     validize_mem (stack_parm),
4802 				     size_stored / UNITS_PER_WORD,
4803 				     int_size_in_bytes (TREE_TYPE (parm)));
4804 	    }
4805 	  SET_DECL_RTL (parm, stack_parm);
4806 	}
4807       else if (! ((! optimize
4808 		   && ! DECL_REGISTER (parm))
4809 		  || TREE_SIDE_EFFECTS (parm)
4810 		  /* If -ffloat-store specified, don't put explicit
4811 		     float variables into registers.  */
4812 		  || (flag_float_store
4813 		      && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4814 	       /* Always assign pseudo to structure return or item passed
4815 		  by invisible reference.  */
4816 	       || passed_pointer || parm == function_result_decl)
4817 	{
4818 	  /* Store the parm in a pseudoregister during the function, but we
4819 	     may need to do it in a wider mode.  */
4820 
4821 	  rtx parmreg;
4822 	  unsigned int regno, regnoi = 0, regnor = 0;
4823 
4824 	  unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4825 
4826 	  promoted_nominal_mode
4827 	    = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4828 
4829 	  parmreg = gen_reg_rtx (promoted_nominal_mode);
4830 	  mark_user_reg (parmreg);
4831 
4832 	  /* If this was an item that we received a pointer to, set DECL_RTL
4833 	     appropriately.  */
4834 	  if (passed_pointer)
4835 	    {
4836 	      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4837 				   parmreg);
4838 	      set_mem_attributes (x, parm, 1);
4839 	      SET_DECL_RTL (parm, x);
4840 	    }
4841 	  else
4842 	    {
4843 	      SET_DECL_RTL (parm, parmreg);
4844 	      maybe_set_unchanging (DECL_RTL (parm), parm);
4845 	    }
4846 
4847 	  /* Copy the value into the register.  */
4848 	  if (nominal_mode != passed_mode
4849 	      || promoted_nominal_mode != promoted_mode)
4850 	    {
4851 	      int save_tree_used;
4852 	      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4853 		 mode, by the caller.  We now have to convert it to
4854 		 NOMINAL_MODE, if different.  However, PARMREG may be in
4855 		 a different mode than NOMINAL_MODE if it is being stored
4856 		 promoted.
4857 
4858 		 If ENTRY_PARM is a hard register, it might be in a register
4859 		 not valid for operating in its mode (e.g., an odd-numbered
4860 		 register for a DFmode).  In that case, moves are the only
4861 		 thing valid, so we can't do a convert from there.  This
4862 		 occurs when the calling sequence allow such misaligned
4863 		 usages.
4864 
4865 		 In addition, the conversion may involve a call, which could
4866 		 clobber parameters which haven't been copied to pseudo
4867 		 registers yet.  Therefore, we must first copy the parm to
4868 		 a pseudo reg here, and save the conversion until after all
4869 		 parameters have been moved.  */
4870 
4871 	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4872 
4873 	      emit_move_insn (tempreg, validize_mem (entry_parm));
4874 
4875 	      push_to_sequence (conversion_insns);
4876 	      tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4877 
4878 	      if (GET_CODE (tempreg) == SUBREG
4879 		  && GET_MODE (tempreg) == nominal_mode
4880 		  && GET_CODE (SUBREG_REG (tempreg)) == REG
4881 		  && nominal_mode == passed_mode
4882 		  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4883 		  && GET_MODE_SIZE (GET_MODE (tempreg))
4884 		     < GET_MODE_SIZE (GET_MODE (entry_parm)))
4885 		{
4886 		  /* The argument is already sign/zero extended, so note it
4887 		     into the subreg.  */
4888 		  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4889 		  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4890 		}
4891 
4892 	      /* TREE_USED gets set erroneously during expand_assignment.  */
4893 	      save_tree_used = TREE_USED (parm);
4894 	      expand_assignment (parm,
4895 				 make_tree (nominal_type, tempreg), 0, 0);
4896 	      TREE_USED (parm) = save_tree_used;
4897 	      conversion_insns = get_insns ();
4898 	      did_conversion = 1;
4899 	      end_sequence ();
4900 	    }
4901 	  else
4902 	    emit_move_insn (parmreg, validize_mem (entry_parm));
4903 
4904 	  /* If we were passed a pointer but the actual value
4905 	     can safely live in a register, put it in one.  */
4906 	  if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4907 	      /* If by-reference argument was promoted, demote it.  */
4908 	      && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4909 		  || ! ((! optimize
4910 			 && ! DECL_REGISTER (parm))
4911 			|| TREE_SIDE_EFFECTS (parm)
4912 			/* If -ffloat-store specified, don't put explicit
4913 			   float variables into registers.  */
4914 			|| (flag_float_store
4915 			    && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4916 	    {
4917 	      /* We can't use nominal_mode, because it will have been set to
4918 		 Pmode above.  We must use the actual mode of the parm.  */
4919 	      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4920 	      mark_user_reg (parmreg);
4921 	      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4922 		{
4923 		  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4924 		  int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4925 		  push_to_sequence (conversion_insns);
4926 		  emit_move_insn (tempreg, DECL_RTL (parm));
4927 		  SET_DECL_RTL (parm,
4928 				convert_to_mode (GET_MODE (parmreg),
4929 						 tempreg,
4930 						 unsigned_p));
4931 		  emit_move_insn (parmreg, DECL_RTL (parm));
4932 		  conversion_insns = get_insns();
4933 		  did_conversion = 1;
4934 		  end_sequence ();
4935 		}
4936 	      else
4937 		emit_move_insn (parmreg, DECL_RTL (parm));
4938 	      SET_DECL_RTL (parm, parmreg);
4939 	      /* STACK_PARM is the pointer, not the parm, and PARMREG is
4940 		 now the parm.  */
4941 	      stack_parm = 0;
4942 	    }
4943 #ifdef FUNCTION_ARG_CALLEE_COPIES
4944 	  /* If we are passed an arg by reference and it is our responsibility
4945 	     to make a copy, do it now.
4946 	     PASSED_TYPE and PASSED mode now refer to the pointer, not the
4947 	     original argument, so we must recreate them in the call to
4948 	     FUNCTION_ARG_CALLEE_COPIES.  */
4949 	  /* ??? Later add code to handle the case that if the argument isn't
4950 	     modified, don't do the copy.  */
4951 
4952 	  else if (passed_pointer
4953 		   && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4954 						  TYPE_MODE (DECL_ARG_TYPE (parm)),
4955 						  DECL_ARG_TYPE (parm),
4956 						  named_arg)
4957 		   && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4958 	    {
4959 	      rtx copy;
4960 	      tree type = DECL_ARG_TYPE (parm);
4961 
4962 	      /* This sequence may involve a library call perhaps clobbering
4963 		 registers that haven't been copied to pseudos yet.  */
4964 
4965 	      push_to_sequence (conversion_insns);
4966 
4967 	      if (!COMPLETE_TYPE_P (type)
4968 		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4969 		/* This is a variable sized object.  */
4970 		copy = gen_rtx_MEM (BLKmode,
4971 				    allocate_dynamic_stack_space
4972 				    (expr_size (parm), NULL_RTX,
4973 				     TYPE_ALIGN (type)));
4974 	      else
4975 		copy = assign_stack_temp (TYPE_MODE (type),
4976 					  int_size_in_bytes (type), 1);
4977 	      set_mem_attributes (copy, parm, 1);
4978 
4979 	      store_expr (parm, copy, 0);
4980 	      emit_move_insn (parmreg, XEXP (copy, 0));
4981 	      conversion_insns = get_insns ();
4982 	      did_conversion = 1;
4983 	      end_sequence ();
4984 	    }
4985 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4986 
4987 	  /* In any case, record the parm's desired stack location
4988 	     in case we later discover it must live in the stack.
4989 
4990 	     If it is a COMPLEX value, store the stack location for both
4991 	     halves.  */
4992 
4993 	  if (GET_CODE (parmreg) == CONCAT)
4994 	    regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4995 	  else
4996 	    regno = REGNO (parmreg);
4997 
4998 	  if (regno >= max_parm_reg)
4999 	    {
5000 	      rtx *new;
5001 	      int old_max_parm_reg = max_parm_reg;
5002 
5003 	      /* It's slow to expand this one register at a time,
5004 		 but it's also rare and we need max_parm_reg to be
5005 		 precisely correct.  */
5006 	      max_parm_reg = regno + 1;
5007 	      new = (rtx *) ggc_realloc (parm_reg_stack_loc,
5008 				      max_parm_reg * sizeof (rtx));
5009 	      memset ((char *) (new + old_max_parm_reg), 0,
5010 		     (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5011 	      parm_reg_stack_loc = new;
5012 	    }
5013 
5014 	  if (GET_CODE (parmreg) == CONCAT)
5015 	    {
5016 	      enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5017 
5018 	      regnor = REGNO (gen_realpart (submode, parmreg));
5019 	      regnoi = REGNO (gen_imagpart (submode, parmreg));
5020 
5021 	      if (stack_parm != 0)
5022 		{
5023 		  parm_reg_stack_loc[regnor]
5024 		    = gen_realpart (submode, stack_parm);
5025 		  parm_reg_stack_loc[regnoi]
5026 		    = gen_imagpart (submode, stack_parm);
5027 		}
5028 	      else
5029 		{
5030 		  parm_reg_stack_loc[regnor] = 0;
5031 		  parm_reg_stack_loc[regnoi] = 0;
5032 		}
5033 	    }
5034 	  else
5035 	    parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5036 
5037 	  /* Mark the register as eliminable if we did no conversion
5038 	     and it was copied from memory at a fixed offset,
5039 	     and the arg pointer was not copied to a pseudo-reg.
5040 	     If the arg pointer is a pseudo reg or the offset formed
5041 	     an invalid address, such memory-equivalences
5042 	     as we make here would screw up life analysis for it.  */
5043 	  if (nominal_mode == passed_mode
5044 	      && ! did_conversion
5045 	      && stack_parm != 0
5046 	      && GET_CODE (stack_parm) == MEM
5047 	      && stack_offset.var == 0
5048 	      && reg_mentioned_p (virtual_incoming_args_rtx,
5049 				  XEXP (stack_parm, 0)))
5050 	    {
5051 	      rtx linsn = get_last_insn ();
5052 	      rtx sinsn, set;
5053 
5054 	      /* Mark complex types separately.  */
5055 	      if (GET_CODE (parmreg) == CONCAT)
5056 		/* Scan backwards for the set of the real and
5057 		   imaginary parts.  */
5058 		for (sinsn = linsn; sinsn != 0;
5059 		     sinsn = prev_nonnote_insn (sinsn))
5060 		  {
5061 		    set = single_set (sinsn);
5062 		    if (set != 0
5063 			&& SET_DEST (set) == regno_reg_rtx [regnoi])
5064 		      REG_NOTES (sinsn)
5065 			= gen_rtx_EXPR_LIST (REG_EQUIV,
5066 					     parm_reg_stack_loc[regnoi],
5067 					     REG_NOTES (sinsn));
5068 		    else if (set != 0
5069 			     && SET_DEST (set) == regno_reg_rtx [regnor])
5070 		      REG_NOTES (sinsn)
5071 			= gen_rtx_EXPR_LIST (REG_EQUIV,
5072 					     parm_reg_stack_loc[regnor],
5073 					     REG_NOTES (sinsn));
5074 		  }
5075 	      else if ((set = single_set (linsn)) != 0
5076 		       && SET_DEST (set) == parmreg)
5077 		REG_NOTES (linsn)
5078 		  = gen_rtx_EXPR_LIST (REG_EQUIV,
5079 				       stack_parm, REG_NOTES (linsn));
5080 	    }
5081 
5082 	  /* For pointer data type, suggest pointer register.  */
5083 	  if (POINTER_TYPE_P (TREE_TYPE (parm)))
5084 	    mark_reg_pointer (parmreg,
5085 			      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5086 
5087 	  /* If something wants our address, try to use ADDRESSOF.  */
5088 	  if (TREE_ADDRESSABLE (parm))
5089 	    {
5090 	      /* If we end up putting something into the stack,
5091 		 fixup_var_refs_insns will need to make a pass over
5092 		 all the instructions.  It looks through the pending
5093 		 sequences -- but it can't see the ones in the
5094 		 CONVERSION_INSNS, if they're not on the sequence
5095 		 stack.  So, we go back to that sequence, just so that
5096 		 the fixups will happen.  */
5097 	      push_to_sequence (conversion_insns);
5098 	      put_var_into_stack (parm, /*rescan=*/true);
5099 	      conversion_insns = get_insns ();
5100 	      end_sequence ();
5101 	    }
5102 	}
5103       else
5104 	{
5105 	  /* Value must be stored in the stack slot STACK_PARM
5106 	     during function execution.  */
5107 
5108 	  if (promoted_mode != nominal_mode)
5109 	    {
5110 	      /* Conversion is required.  */
5111 	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5112 
5113 	      emit_move_insn (tempreg, validize_mem (entry_parm));
5114 
5115 	      push_to_sequence (conversion_insns);
5116 	      entry_parm = convert_to_mode (nominal_mode, tempreg,
5117 					    TREE_UNSIGNED (TREE_TYPE (parm)));
5118 	      if (stack_parm)
5119 		/* ??? This may need a big-endian conversion on sparc64.  */
5120 		stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5121 
5122 	      conversion_insns = get_insns ();
5123 	      did_conversion = 1;
5124 	      end_sequence ();
5125 	    }
5126 
5127 	  if (entry_parm != stack_parm)
5128 	    {
5129 	      if (stack_parm == 0)
5130 		{
5131 		  stack_parm
5132 		    = assign_stack_local (GET_MODE (entry_parm),
5133 					  GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5134 		  set_mem_attributes (stack_parm, parm, 1);
5135 		}
5136 
5137 	      if (promoted_mode != nominal_mode)
5138 		{
5139 		  push_to_sequence (conversion_insns);
5140 		  emit_move_insn (validize_mem (stack_parm),
5141 				  validize_mem (entry_parm));
5142 		  conversion_insns = get_insns ();
5143 		  end_sequence ();
5144 		}
5145 	      else
5146 		emit_move_insn (validize_mem (stack_parm),
5147 				validize_mem (entry_parm));
5148 	    }
5149 
5150 	  SET_DECL_RTL (parm, stack_parm);
5151 	}
5152 
5153       /* If this "parameter" was the place where we are receiving the
5154 	 function's incoming structure pointer, set up the result.  */
5155       if (parm == function_result_decl)
5156 	{
5157 	  tree result = DECL_RESULT (fndecl);
5158 	  rtx addr = DECL_RTL (parm);
5159 	  rtx x;
5160 
5161 #ifdef POINTERS_EXTEND_UNSIGNED
5162 	  if (GET_MODE (addr) != Pmode)
5163 	    addr = convert_memory_address (Pmode, addr);
5164 #endif
5165 
5166 	  x = gen_rtx_MEM (DECL_MODE (result), addr);
5167 	  set_mem_attributes (x, result, 1);
5168 	  SET_DECL_RTL (result, x);
5169 	}
5170 
5171       if (GET_CODE (DECL_RTL (parm)) == REG)
5172 	REGNO_DECL (REGNO (DECL_RTL (parm))) = parm;
5173       else if (GET_CODE (DECL_RTL (parm)) == CONCAT)
5174 	{
5175 	  REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 0))) = parm;
5176 	  REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 1))) = parm;
5177 	}
5178 
5179     }
5180 
5181   /* Output all parameter conversion instructions (possibly including calls)
5182      now that all parameters have been copied out of hard registers.  */
5183   emit_insn (conversion_insns);
5184 
5185   last_parm_insn = get_last_insn ();
5186 
5187   current_function_args_size = stack_args_size.constant;
5188 
5189   /* Adjust function incoming argument size for alignment and
5190      minimum length.  */
5191 
5192 #ifdef REG_PARM_STACK_SPACE
5193 #ifndef MAYBE_REG_PARM_STACK_SPACE
5194   current_function_args_size = MAX (current_function_args_size,
5195 				    REG_PARM_STACK_SPACE (fndecl));
5196 #endif
5197 #endif
5198 
5199 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5200 
5201   current_function_args_size
5202     = ((current_function_args_size + STACK_BYTES - 1)
5203        / STACK_BYTES) * STACK_BYTES;
5204 
5205 #ifdef ARGS_GROW_DOWNWARD
5206   current_function_arg_offset_rtx
5207     = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5208        : expand_expr (size_diffop (stack_args_size.var,
5209 				   size_int (-stack_args_size.constant)),
5210 		      NULL_RTX, VOIDmode, 0));
5211 #else
5212   current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5213 #endif
5214 
5215   /* See how many bytes, if any, of its args a function should try to pop
5216      on return.  */
5217 
5218   current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5219 						 current_function_args_size);
5220 
5221   /* For stdarg.h function, save info about
5222      regs and stack space used by the named args.  */
5223 
5224   current_function_args_info = args_so_far;
5225 
5226   /* Set the rtx used for the function return value.  Put this in its
5227      own variable so any optimizers that need this information don't have
5228      to include tree.h.  Do this here so it gets done when an inlined
5229      function gets output.  */
5230 
5231   current_function_return_rtx
5232     = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5233        ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5234 
5235   /* If scalar return value was computed in a pseudo-reg, or was a named
5236      return value that got dumped to the stack, copy that to the hard
5237      return register.  */
5238   if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5239     {
5240       tree decl_result = DECL_RESULT (fndecl);
5241       rtx decl_rtl = DECL_RTL (decl_result);
5242 
5243       if (REG_P (decl_rtl)
5244 	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5245 	  : DECL_REGISTER (decl_result))
5246 	{
5247 	  rtx real_decl_rtl;
5248 
5249 #ifdef FUNCTION_OUTGOING_VALUE
5250 	  real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5251 						   fndecl);
5252 #else
5253 	  real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5254 					  fndecl);
5255 #endif
5256 	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5257 	  /* The delay slot scheduler assumes that current_function_return_rtx
5258 	     holds the hard register containing the return value, not a
5259 	     temporary pseudo.  */
5260 	  current_function_return_rtx = real_decl_rtl;
5261 	}
5262     }
5263 }
5264 
5265 /* Indicate whether REGNO is an incoming argument to the current function
5266    that was promoted to a wider mode.  If so, return the RTX for the
5267    register (to get its mode).  PMODE and PUNSIGNEDP are set to the mode
5268    that REGNO is promoted from and whether the promotion was signed or
5269    unsigned.  */
5270 
5271 #ifdef PROMOTE_FUNCTION_ARGS
5272 
5273 rtx
promoted_input_arg(regno,pmode,punsignedp)5274 promoted_input_arg (regno, pmode, punsignedp)
5275      unsigned int regno;
5276      enum machine_mode *pmode;
5277      int *punsignedp;
5278 {
5279   tree arg;
5280 
5281   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5282        arg = TREE_CHAIN (arg))
5283     if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5284 	&& REGNO (DECL_INCOMING_RTL (arg)) == regno
5285 	&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5286       {
5287 	enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5288 	int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5289 
5290 	mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5291 	if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5292 	    && mode != DECL_MODE (arg))
5293 	  {
5294 	    *pmode = DECL_MODE (arg);
5295 	    *punsignedp = unsignedp;
5296 	    return DECL_INCOMING_RTL (arg);
5297 	  }
5298       }
5299 
5300   return 0;
5301 }
5302 
5303 #endif
5304 
5305 /* Compute the size and offset from the start of the stacked arguments for a
5306    parm passed in mode PASSED_MODE and with type TYPE.
5307 
5308    INITIAL_OFFSET_PTR points to the current offset into the stacked
5309    arguments.
5310 
5311    The starting offset and size for this parm are returned in *OFFSET_PTR
5312    and *ARG_SIZE_PTR, respectively.
5313 
5314    IN_REGS is nonzero if the argument will be passed in registers.  It will
5315    never be set if REG_PARM_STACK_SPACE is not defined.
5316 
5317    FNDECL is the function in which the argument was defined.
5318 
5319    There are two types of rounding that are done.  The first, controlled by
5320    FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5321    list to be aligned to the specific boundary (in bits).  This rounding
5322    affects the initial and starting offsets, but not the argument size.
5323 
5324    The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5325    optionally rounds the size of the parm to PARM_BOUNDARY.  The
5326    initial offset is not affected by this rounding, while the size always
5327    is and the starting offset may be.  */
5328 
5329 /*  offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5330     initial_offset_ptr is positive because locate_and_pad_parm's
5331     callers pass in the total size of args so far as
5332     initial_offset_ptr. arg_size_ptr is always positive.  */
5333 
5334 void
locate_and_pad_parm(passed_mode,type,in_regs,fndecl,initial_offset_ptr,offset_ptr,arg_size_ptr,alignment_pad)5335 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5336 		     initial_offset_ptr, offset_ptr, arg_size_ptr,
5337 		     alignment_pad)
5338      enum machine_mode passed_mode;
5339      tree type;
5340      int in_regs ATTRIBUTE_UNUSED;
5341      tree fndecl ATTRIBUTE_UNUSED;
5342      struct args_size *initial_offset_ptr;
5343      struct args_size *offset_ptr;
5344      struct args_size *arg_size_ptr;
5345      struct args_size *alignment_pad;
5346 
5347 {
5348   tree sizetree
5349     = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5350   enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5351   int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5352 #ifdef ARGS_GROW_DOWNWARD
5353   tree s2 = sizetree;
5354 #endif
5355 
5356 #ifdef REG_PARM_STACK_SPACE
5357   /* If we have found a stack parm before we reach the end of the
5358      area reserved for registers, skip that area.  */
5359   if (! in_regs)
5360     {
5361       int reg_parm_stack_space = 0;
5362 
5363 #ifdef MAYBE_REG_PARM_STACK_SPACE
5364       reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5365 #else
5366       reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5367 #endif
5368       if (reg_parm_stack_space > 0)
5369 	{
5370 	  if (initial_offset_ptr->var)
5371 	    {
5372 	      initial_offset_ptr->var
5373 		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5374 			      ssize_int (reg_parm_stack_space));
5375 	      initial_offset_ptr->constant = 0;
5376 	    }
5377 	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
5378 	    initial_offset_ptr->constant = reg_parm_stack_space;
5379 	}
5380     }
5381 #endif /* REG_PARM_STACK_SPACE */
5382 
5383   arg_size_ptr->var = 0;
5384   arg_size_ptr->constant = 0;
5385   alignment_pad->var = 0;
5386   alignment_pad->constant = 0;
5387 
5388 #ifdef ARGS_GROW_DOWNWARD
5389   if (initial_offset_ptr->var)
5390     {
5391       offset_ptr->constant = 0;
5392       offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5393 				    initial_offset_ptr->var);
5394     }
5395   else
5396     {
5397       offset_ptr->constant = -initial_offset_ptr->constant;
5398       offset_ptr->var = 0;
5399     }
5400 
5401   if (where_pad != none
5402       && (!host_integerp (sizetree, 1)
5403 	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5404     s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5405   SUB_PARM_SIZE (*offset_ptr, s2);
5406 
5407   if (!in_regs
5408 #ifdef REG_PARM_STACK_SPACE
5409       || REG_PARM_STACK_SPACE (fndecl) > 0
5410 #endif
5411      )
5412     pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5413 
5414   if (initial_offset_ptr->var)
5415     arg_size_ptr->var = size_binop (MINUS_EXPR,
5416 				    size_binop (MINUS_EXPR,
5417 						ssize_int (0),
5418 						initial_offset_ptr->var),
5419 				    offset_ptr->var);
5420 
5421   else
5422     arg_size_ptr->constant = (-initial_offset_ptr->constant
5423 			      - offset_ptr->constant);
5424 
5425   /* Pad_below needs the pre-rounded size to know how much to pad below.
5426      We only pad parameters which are not in registers as they have their
5427      padding done elsewhere.  */
5428   if (where_pad == downward
5429       && !in_regs)
5430     pad_below (offset_ptr, passed_mode, sizetree);
5431 
5432 #else /* !ARGS_GROW_DOWNWARD */
5433   if (!in_regs
5434 #ifdef REG_PARM_STACK_SPACE
5435       || REG_PARM_STACK_SPACE (fndecl) > 0
5436 #endif
5437       )
5438     pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5439   *offset_ptr = *initial_offset_ptr;
5440 
5441 #ifdef PUSH_ROUNDING
5442   if (passed_mode != BLKmode)
5443     sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5444 #endif
5445 
5446   /* Pad_below needs the pre-rounded size to know how much to pad below
5447      so this must be done before rounding up.  */
5448   if (where_pad == downward
5449     /* However, BLKmode args passed in regs have their padding done elsewhere.
5450        The stack slot must be able to hold the entire register.  */
5451       && !(in_regs && passed_mode == BLKmode))
5452     pad_below (offset_ptr, passed_mode, sizetree);
5453 
5454   if (where_pad != none
5455       && (!host_integerp (sizetree, 1)
5456 	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5457     sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5458 
5459   ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5460 #endif /* ARGS_GROW_DOWNWARD */
5461 }
5462 
5463 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5464    BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */
5465 
5466 static void
pad_to_arg_alignment(offset_ptr,boundary,alignment_pad)5467 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5468      struct args_size *offset_ptr;
5469      int boundary;
5470      struct args_size *alignment_pad;
5471 {
5472   tree save_var = NULL_TREE;
5473   HOST_WIDE_INT save_constant = 0;
5474 
5475   int boundary_in_bytes = boundary / BITS_PER_UNIT;
5476 
5477   if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5478     {
5479       save_var = offset_ptr->var;
5480       save_constant = offset_ptr->constant;
5481     }
5482 
5483   alignment_pad->var = NULL_TREE;
5484   alignment_pad->constant = 0;
5485 
5486   if (boundary > BITS_PER_UNIT)
5487     {
5488       if (offset_ptr->var)
5489 	{
5490 	  offset_ptr->var =
5491 #ifdef ARGS_GROW_DOWNWARD
5492 	    round_down
5493 #else
5494 	    round_up
5495 #endif
5496 	      (ARGS_SIZE_TREE (*offset_ptr),
5497 	       boundary / BITS_PER_UNIT);
5498 	  offset_ptr->constant = 0; /*?*/
5499 	  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5500 	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5501 					     save_var);
5502 	}
5503       else
5504 	{
5505 	  offset_ptr->constant =
5506 #ifdef ARGS_GROW_DOWNWARD
5507 	    FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5508 #else
5509 	    CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5510 #endif
5511 	    if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5512 	      alignment_pad->constant = offset_ptr->constant - save_constant;
5513 	}
5514     }
5515 }
5516 
5517 static void
pad_below(offset_ptr,passed_mode,sizetree)5518 pad_below (offset_ptr, passed_mode, sizetree)
5519      struct args_size *offset_ptr;
5520      enum machine_mode passed_mode;
5521      tree sizetree;
5522 {
5523   if (passed_mode != BLKmode)
5524     {
5525       if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5526 	offset_ptr->constant
5527 	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5528 	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5529 	      - GET_MODE_SIZE (passed_mode));
5530     }
5531   else
5532     {
5533       if (TREE_CODE (sizetree) != INTEGER_CST
5534 	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5535 	{
5536 	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
5537 	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5538 	  /* Add it in.  */
5539 	  ADD_PARM_SIZE (*offset_ptr, s2);
5540 	  SUB_PARM_SIZE (*offset_ptr, sizetree);
5541 	}
5542     }
5543 }
5544 
5545 /* Walk the tree of blocks describing the binding levels within a function
5546    and warn about uninitialized variables.
5547    This is done after calling flow_analysis and before global_alloc
5548    clobbers the pseudo-regs to hard regs.  */
5549 
5550 void
uninitialized_vars_warning(block)5551 uninitialized_vars_warning (block)
5552      tree block;
5553 {
5554   tree decl, sub;
5555   for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5556     {
5557       if (warn_uninitialized
5558 	  && TREE_CODE (decl) == VAR_DECL
5559 	  /* These warnings are unreliable for and aggregates
5560 	     because assigning the fields one by one can fail to convince
5561 	     flow.c that the entire aggregate was initialized.
5562 	     Unions are troublesome because members may be shorter.  */
5563 	  && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5564 	  && DECL_RTL (decl) != 0
5565 	  && GET_CODE (DECL_RTL (decl)) == REG
5566 	  /* Global optimizations can make it difficult to determine if a
5567 	     particular variable has been initialized.  However, a VAR_DECL
5568 	     with a nonzero DECL_INITIAL had an initializer, so do not
5569 	     claim it is potentially uninitialized.
5570 
5571 	     We do not care about the actual value in DECL_INITIAL, so we do
5572 	     not worry that it may be a dangling pointer.  */
5573 	  && DECL_INITIAL (decl) == NULL_TREE
5574 	  && regno_uninitialized (REGNO (DECL_RTL (decl))))
5575 	warning_with_decl (decl,
5576 			   "`%s' might be used uninitialized in this function");
5577       if (extra_warnings
5578 	  && TREE_CODE (decl) == VAR_DECL
5579 	  && DECL_RTL (decl) != 0
5580 	  && GET_CODE (DECL_RTL (decl)) == REG
5581 	  && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5582 	warning_with_decl (decl,
5583 			   "variable `%s' might be clobbered by `longjmp' or `vfork'");
5584     }
5585   for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5586     uninitialized_vars_warning (sub);
5587 }
5588 
5589 /* Do the appropriate part of uninitialized_vars_warning
5590    but for arguments instead of local variables.  */
5591 
5592 void
setjmp_args_warning()5593 setjmp_args_warning ()
5594 {
5595   tree decl;
5596   for (decl = DECL_ARGUMENTS (current_function_decl);
5597        decl; decl = TREE_CHAIN (decl))
5598     if (DECL_RTL (decl) != 0
5599 	&& GET_CODE (DECL_RTL (decl)) == REG
5600 	&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5601       warning_with_decl (decl,
5602 			 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5603 }
5604 
5605 /* If this function call setjmp, put all vars into the stack
5606    unless they were declared `register'.  */
5607 
5608 void
setjmp_protect(block)5609 setjmp_protect (block)
5610      tree block;
5611 {
5612   tree decl, sub;
5613   for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5614     if ((TREE_CODE (decl) == VAR_DECL
5615 	 || TREE_CODE (decl) == PARM_DECL)
5616 	&& DECL_RTL (decl) != 0
5617 	&& (GET_CODE (DECL_RTL (decl)) == REG
5618 	    || (GET_CODE (DECL_RTL (decl)) == MEM
5619 		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5620 	/* If this variable came from an inline function, it must be
5621 	   that its life doesn't overlap the setjmp.  If there was a
5622 	   setjmp in the function, it would already be in memory.  We
5623 	   must exclude such variable because their DECL_RTL might be
5624 	   set to strange things such as virtual_stack_vars_rtx.  */
5625 	&& ! DECL_FROM_INLINE (decl)
5626 	&& (
5627 #ifdef NON_SAVING_SETJMP
5628 	    /* If longjmp doesn't restore the registers,
5629 	       don't put anything in them.  */
5630 	    NON_SAVING_SETJMP
5631 	    ||
5632 #endif
5633 	    ! DECL_REGISTER (decl)))
5634       put_var_into_stack (decl, /*rescan=*/true);
5635   for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5636     setjmp_protect (sub);
5637 }
5638 
5639 /* Like the previous function, but for args instead of local variables.  */
5640 
5641 void
setjmp_protect_args()5642 setjmp_protect_args ()
5643 {
5644   tree decl;
5645   for (decl = DECL_ARGUMENTS (current_function_decl);
5646        decl; decl = TREE_CHAIN (decl))
5647     if ((TREE_CODE (decl) == VAR_DECL
5648 	 || TREE_CODE (decl) == PARM_DECL)
5649 	&& DECL_RTL (decl) != 0
5650 	&& (GET_CODE (DECL_RTL (decl)) == REG
5651 	    || (GET_CODE (DECL_RTL (decl)) == MEM
5652 		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5653 	&& (
5654 	    /* If longjmp doesn't restore the registers,
5655 	       don't put anything in them.  */
5656 #ifdef NON_SAVING_SETJMP
5657 	    NON_SAVING_SETJMP
5658 	    ||
5659 #endif
5660 	    ! DECL_REGISTER (decl)))
5661       put_var_into_stack (decl, /*rescan=*/true);
5662 }
5663 
5664 /* Return the context-pointer register corresponding to DECL,
5665    or 0 if it does not need one.  */
5666 
5667 rtx
lookup_static_chain(decl)5668 lookup_static_chain (decl)
5669      tree decl;
5670 {
5671   tree context = decl_function_context (decl);
5672   tree link;
5673 
5674   if (context == 0
5675       || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5676     return 0;
5677 
5678   /* We treat inline_function_decl as an alias for the current function
5679      because that is the inline function whose vars, types, etc.
5680      are being merged into the current function.
5681      See expand_inline_function.  */
5682   if (context == current_function_decl || context == inline_function_decl)
5683     return virtual_stack_vars_rtx;
5684 
5685   for (link = context_display; link; link = TREE_CHAIN (link))
5686     if (TREE_PURPOSE (link) == context)
5687       return RTL_EXPR_RTL (TREE_VALUE (link));
5688 
5689   abort ();
5690 }
5691 
5692 /* Convert a stack slot address ADDR for variable VAR
5693    (from a containing function)
5694    into an address valid in this function (using a static chain).  */
5695 
5696 rtx
fix_lexical_addr(addr,var)5697 fix_lexical_addr (addr, var)
5698      rtx addr;
5699      tree var;
5700 {
5701   rtx basereg;
5702   HOST_WIDE_INT displacement;
5703   tree context = decl_function_context (var);
5704   struct function *fp;
5705   rtx base = 0;
5706 
5707   /* If this is the present function, we need not do anything.  */
5708   if (context == current_function_decl || context == inline_function_decl)
5709     return addr;
5710 
5711   fp = find_function_data (context);
5712 
5713   if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5714     addr = XEXP (XEXP (addr, 0), 0);
5715 
5716   /* Decode given address as base reg plus displacement.  */
5717   if (GET_CODE (addr) == REG)
5718     basereg = addr, displacement = 0;
5719   else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5720     basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5721   else
5722     abort ();
5723 
5724   /* We accept vars reached via the containing function's
5725      incoming arg pointer and via its stack variables pointer.  */
5726   if (basereg == fp->internal_arg_pointer)
5727     {
5728       /* If reached via arg pointer, get the arg pointer value
5729 	 out of that function's stack frame.
5730 
5731 	 There are two cases:  If a separate ap is needed, allocate a
5732 	 slot in the outer function for it and dereference it that way.
5733 	 This is correct even if the real ap is actually a pseudo.
5734 	 Otherwise, just adjust the offset from the frame pointer to
5735 	 compensate.  */
5736 
5737 #ifdef NEED_SEPARATE_AP
5738       rtx addr;
5739 
5740       addr = get_arg_pointer_save_area (fp);
5741       addr = fix_lexical_addr (XEXP (addr, 0), var);
5742       addr = memory_address (Pmode, addr);
5743 
5744       base = gen_rtx_MEM (Pmode, addr);
5745       set_mem_alias_set (base, get_frame_alias_set ());
5746       base = copy_to_reg (base);
5747 #else
5748       displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5749       base = lookup_static_chain (var);
5750 #endif
5751     }
5752 
5753   else if (basereg == virtual_stack_vars_rtx)
5754     {
5755       /* This is the same code as lookup_static_chain, duplicated here to
5756 	 avoid an extra call to decl_function_context.  */
5757       tree link;
5758 
5759       for (link = context_display; link; link = TREE_CHAIN (link))
5760 	if (TREE_PURPOSE (link) == context)
5761 	  {
5762 	    base = RTL_EXPR_RTL (TREE_VALUE (link));
5763 	    break;
5764 	  }
5765     }
5766 
5767   if (base == 0)
5768     abort ();
5769 
5770   /* Use same offset, relative to appropriate static chain or argument
5771      pointer.  */
5772   return plus_constant (base, displacement);
5773 }
5774 
5775 /* Return the address of the trampoline for entering nested fn FUNCTION.
5776    If necessary, allocate a trampoline (in the stack frame)
5777    and emit rtl to initialize its contents (at entry to this function).  */
5778 
5779 rtx
trampoline_address(function)5780 trampoline_address (function)
5781      tree function;
5782 {
5783   tree link;
5784   tree rtlexp;
5785   rtx tramp;
5786   struct function *fp;
5787   tree fn_context;
5788 
5789   /* Find an existing trampoline and return it.  */
5790   for (link = trampoline_list; link; link = TREE_CHAIN (link))
5791     if (TREE_PURPOSE (link) == function)
5792       return
5793 	adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5794 
5795   for (fp = outer_function_chain; fp; fp = fp->outer)
5796     for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5797       if (TREE_PURPOSE (link) == function)
5798 	{
5799 	  tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5800 				    function);
5801 	  return adjust_trampoline_addr (tramp);
5802 	}
5803 
5804   /* None exists; we must make one.  */
5805 
5806   /* Find the `struct function' for the function containing FUNCTION.  */
5807   fp = 0;
5808   fn_context = decl_function_context (function);
5809   if (fn_context != current_function_decl
5810       && fn_context != inline_function_decl)
5811     fp = find_function_data (fn_context);
5812 
5813   /* Allocate run-time space for this trampoline
5814      (usually in the defining function's stack frame).  */
5815 #ifdef ALLOCATE_TRAMPOLINE
5816   tramp = ALLOCATE_TRAMPOLINE (fp);
5817 #else
5818   /* If rounding needed, allocate extra space
5819      to ensure we have TRAMPOLINE_SIZE bytes left after rounding up.  */
5820 #define TRAMPOLINE_REAL_SIZE \
5821   (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5822   tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5823 				fp ? fp : cfun);
5824 #endif
5825 
5826   /* Record the trampoline for reuse and note it for later initialization
5827      by expand_function_end.  */
5828   if (fp != 0)
5829     {
5830       rtlexp = make_node (RTL_EXPR);
5831       RTL_EXPR_RTL (rtlexp) = tramp;
5832       fp->x_trampoline_list = tree_cons (function, rtlexp,
5833 					 fp->x_trampoline_list);
5834     }
5835   else
5836     {
5837       /* Make the RTL_EXPR node temporary, not momentary, so that the
5838 	 trampoline_list doesn't become garbage.  */
5839       rtlexp = make_node (RTL_EXPR);
5840 
5841       RTL_EXPR_RTL (rtlexp) = tramp;
5842       trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5843     }
5844 
5845   tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5846   return adjust_trampoline_addr (tramp);
5847 }
5848 
5849 /* Given a trampoline address,
5850    round it to multiple of TRAMPOLINE_ALIGNMENT.  */
5851 
5852 static rtx
round_trampoline_addr(tramp)5853 round_trampoline_addr (tramp)
5854      rtx tramp;
5855 {
5856   /* Round address up to desired boundary.  */
5857   rtx temp = gen_reg_rtx (Pmode);
5858   rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5859   rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5860 
5861   temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
5862 			       temp, 0, OPTAB_LIB_WIDEN);
5863   tramp = expand_simple_binop (Pmode, AND, temp, mask,
5864 			       temp, 0, OPTAB_LIB_WIDEN);
5865 
5866   return tramp;
5867 }
5868 
5869 /* Given a trampoline address, round it then apply any
5870    platform-specific adjustments so that the result can be used for a
5871    function call .  */
5872 
5873 static rtx
adjust_trampoline_addr(tramp)5874 adjust_trampoline_addr (tramp)
5875      rtx tramp;
5876 {
5877   tramp = round_trampoline_addr (tramp);
5878 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5879   TRAMPOLINE_ADJUST_ADDRESS (tramp);
5880 #endif
5881   return tramp;
5882 }
5883 
5884 /* Put all this function's BLOCK nodes including those that are chained
5885    onto the first block into a vector, and return it.
5886    Also store in each NOTE for the beginning or end of a block
5887    the index of that block in the vector.
5888    The arguments are BLOCK, the chain of top-level blocks of the function,
5889    and INSNS, the insn chain of the function.  */
5890 
5891 void
identify_blocks()5892 identify_blocks ()
5893 {
5894   int n_blocks;
5895   tree *block_vector, *last_block_vector;
5896   tree *block_stack;
5897   tree block = DECL_INITIAL (current_function_decl);
5898 
5899   if (block == 0)
5900     return;
5901 
5902   /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5903      depth-first order.  */
5904   block_vector = get_block_vector (block, &n_blocks);
5905   block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5906 
5907   last_block_vector = identify_blocks_1 (get_insns (),
5908 					 block_vector + 1,
5909 					 block_vector + n_blocks,
5910 					 block_stack);
5911 
5912   /* If we didn't use all of the subblocks, we've misplaced block notes.  */
5913   /* ??? This appears to happen all the time.  Latent bugs elsewhere?  */
5914   if (0 && last_block_vector != block_vector + n_blocks)
5915     abort ();
5916 
5917   free (block_vector);
5918   free (block_stack);
5919 }
5920 
5921 /* Subroutine of identify_blocks.  Do the block substitution on the
5922    insn chain beginning with INSNS.  Recurse for CALL_PLACEHOLDER chains.
5923 
5924    BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5925    BLOCK_VECTOR is incremented for each block seen.  */
5926 
5927 static tree *
identify_blocks_1(insns,block_vector,end_block_vector,orig_block_stack)5928 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5929      rtx insns;
5930      tree *block_vector;
5931      tree *end_block_vector;
5932      tree *orig_block_stack;
5933 {
5934   rtx insn;
5935   tree *block_stack = orig_block_stack;
5936 
5937   for (insn = insns; insn; insn = NEXT_INSN (insn))
5938     {
5939       if (GET_CODE (insn) == NOTE)
5940 	{
5941 	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5942 	    {
5943 	      tree b;
5944 
5945 	      /* If there are more block notes than BLOCKs, something
5946 		 is badly wrong.  */
5947 	      if (block_vector == end_block_vector)
5948 		abort ();
5949 
5950 	      b = *block_vector++;
5951 	      NOTE_BLOCK (insn) = b;
5952 	      *block_stack++ = b;
5953 	    }
5954 	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5955 	    {
5956 	      /* If there are more NOTE_INSN_BLOCK_ENDs than
5957 		 NOTE_INSN_BLOCK_BEGs, something is badly wrong.  */
5958 	      if (block_stack == orig_block_stack)
5959 		abort ();
5960 
5961 	      NOTE_BLOCK (insn) = *--block_stack;
5962 	    }
5963 	}
5964       else if (GET_CODE (insn) == CALL_INSN
5965 	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5966 	{
5967 	  rtx cp = PATTERN (insn);
5968 
5969 	  block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5970 					    end_block_vector, block_stack);
5971 	  if (XEXP (cp, 1))
5972 	    block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5973 					      end_block_vector, block_stack);
5974 	  if (XEXP (cp, 2))
5975 	    block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5976 					      end_block_vector, block_stack);
5977 	}
5978     }
5979 
5980   /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5981      something is badly wrong.  */
5982   if (block_stack != orig_block_stack)
5983     abort ();
5984 
5985   return block_vector;
5986 }
5987 
5988 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5989    and create duplicate blocks.  */
5990 /* ??? Need an option to either create block fragments or to create
5991    abstract origin duplicates of a source block.  It really depends
5992    on what optimization has been performed.  */
5993 
5994 void
reorder_blocks()5995 reorder_blocks ()
5996 {
5997   tree block = DECL_INITIAL (current_function_decl);
5998   varray_type block_stack;
5999 
6000   if (block == NULL_TREE)
6001     return;
6002 
6003   VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6004 
6005   /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
6006   reorder_blocks_0 (block);
6007 
6008   /* Prune the old trees away, so that they don't get in the way.  */
6009   BLOCK_SUBBLOCKS (block) = NULL_TREE;
6010   BLOCK_CHAIN (block) = NULL_TREE;
6011 
6012   /* Recreate the block tree from the note nesting.  */
6013   reorder_blocks_1 (get_insns (), block, &block_stack);
6014   BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6015 
6016   /* Remove deleted blocks from the block fragment chains.  */
6017   reorder_fix_fragments (block);
6018 }
6019 
6020 /* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
6021 
6022 static void
reorder_blocks_0(block)6023 reorder_blocks_0 (block)
6024      tree block;
6025 {
6026   while (block)
6027     {
6028       TREE_ASM_WRITTEN (block) = 0;
6029       reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6030       block = BLOCK_CHAIN (block);
6031     }
6032 }
6033 
6034 static void
reorder_blocks_1(insns,current_block,p_block_stack)6035 reorder_blocks_1 (insns, current_block, p_block_stack)
6036      rtx insns;
6037      tree current_block;
6038      varray_type *p_block_stack;
6039 {
6040   rtx insn;
6041 
6042   for (insn = insns; insn; insn = NEXT_INSN (insn))
6043     {
6044       if (GET_CODE (insn) == NOTE)
6045 	{
6046 	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6047 	    {
6048 	      tree block = NOTE_BLOCK (insn);
6049 
6050 	      /* If we have seen this block before, that means it now
6051 		 spans multiple address regions.  Create a new fragment.  */
6052 	      if (TREE_ASM_WRITTEN (block))
6053 		{
6054 		  tree new_block = copy_node (block);
6055 		  tree origin;
6056 
6057 		  origin = (BLOCK_FRAGMENT_ORIGIN (block)
6058 			    ? BLOCK_FRAGMENT_ORIGIN (block)
6059 			    : block);
6060 		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6061 		  BLOCK_FRAGMENT_CHAIN (new_block)
6062 		    = BLOCK_FRAGMENT_CHAIN (origin);
6063 		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6064 
6065 		  NOTE_BLOCK (insn) = new_block;
6066 		  block = new_block;
6067 		}
6068 
6069 	      BLOCK_SUBBLOCKS (block) = 0;
6070 	      TREE_ASM_WRITTEN (block) = 1;
6071 	      BLOCK_SUPERCONTEXT (block) = current_block;
6072 	      BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6073 	      BLOCK_SUBBLOCKS (current_block) = block;
6074 	      current_block = block;
6075 	      VARRAY_PUSH_TREE (*p_block_stack, block);
6076 	    }
6077 	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6078 	    {
6079 	      NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6080 	      VARRAY_POP (*p_block_stack);
6081 	      BLOCK_SUBBLOCKS (current_block)
6082 		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6083 	      current_block = BLOCK_SUPERCONTEXT (current_block);
6084 	    }
6085 	}
6086       else if (GET_CODE (insn) == CALL_INSN
6087 	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6088 	{
6089 	  rtx cp = PATTERN (insn);
6090 	  reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6091 	  if (XEXP (cp, 1))
6092 	    reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6093 	  if (XEXP (cp, 2))
6094 	    reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6095 	}
6096     }
6097 }
6098 
6099 /* Rationalize BLOCK_FRAGMENT_ORIGIN.  If an origin block no longer
6100    appears in the block tree, select one of the fragments to become
6101    the new origin block.  */
6102 
6103 static void
reorder_fix_fragments(block)6104 reorder_fix_fragments (block)
6105      tree block;
6106 {
6107   while (block)
6108     {
6109       tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6110       tree new_origin = NULL_TREE;
6111 
6112       if (dup_origin)
6113 	{
6114 	  if (! TREE_ASM_WRITTEN (dup_origin))
6115 	    {
6116 	      new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6117 
6118 	      /* Find the first of the remaining fragments.  There must
6119 		 be at least one -- the current block.  */
6120 	      while (! TREE_ASM_WRITTEN (new_origin))
6121 		new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6122 	      BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6123 	    }
6124 	}
6125       else if (! dup_origin)
6126 	new_origin = block;
6127 
6128       /* Re-root the rest of the fragments to the new origin.  In the
6129 	 case that DUP_ORIGIN was null, that means BLOCK was the origin
6130 	 of a chain of fragments and we want to remove those fragments
6131 	 that didn't make it to the output.  */
6132       if (new_origin)
6133 	{
6134 	  tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6135 	  tree chain = *pp;
6136 
6137 	  while (chain)
6138 	    {
6139 	      if (TREE_ASM_WRITTEN (chain))
6140 		{
6141 		  BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6142 		  *pp = chain;
6143 		  pp = &BLOCK_FRAGMENT_CHAIN (chain);
6144 		}
6145 	      chain = BLOCK_FRAGMENT_CHAIN (chain);
6146 	    }
6147 	  *pp = NULL_TREE;
6148 	}
6149 
6150       reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6151       block = BLOCK_CHAIN (block);
6152     }
6153 }
6154 
6155 /* Reverse the order of elements in the chain T of blocks,
6156    and return the new head of the chain (old last element).  */
6157 
6158 static tree
blocks_nreverse(t)6159 blocks_nreverse (t)
6160      tree t;
6161 {
6162   tree prev = 0, decl, next;
6163   for (decl = t; decl; decl = next)
6164     {
6165       next = BLOCK_CHAIN (decl);
6166       BLOCK_CHAIN (decl) = prev;
6167       prev = decl;
6168     }
6169   return prev;
6170 }
6171 
6172 /* Count the subblocks of the list starting with BLOCK.  If VECTOR is
6173    non-NULL, list them all into VECTOR, in a depth-first preorder
6174    traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
6175    blocks.  */
6176 
6177 static int
all_blocks(block,vector)6178 all_blocks (block, vector)
6179      tree block;
6180      tree *vector;
6181 {
6182   int n_blocks = 0;
6183 
6184   while (block)
6185     {
6186       TREE_ASM_WRITTEN (block) = 0;
6187 
6188       /* Record this block.  */
6189       if (vector)
6190 	vector[n_blocks] = block;
6191 
6192       ++n_blocks;
6193 
6194       /* Record the subblocks, and their subblocks...  */
6195       n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6196 			      vector ? vector + n_blocks : 0);
6197       block = BLOCK_CHAIN (block);
6198     }
6199 
6200   return n_blocks;
6201 }
6202 
6203 /* Return a vector containing all the blocks rooted at BLOCK.  The
6204    number of elements in the vector is stored in N_BLOCKS_P.  The
6205    vector is dynamically allocated; it is the caller's responsibility
6206    to call `free' on the pointer returned.  */
6207 
6208 static tree *
get_block_vector(block,n_blocks_p)6209 get_block_vector (block, n_blocks_p)
6210      tree block;
6211      int *n_blocks_p;
6212 {
6213   tree *block_vector;
6214 
6215   *n_blocks_p = all_blocks (block, NULL);
6216   block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6217   all_blocks (block, block_vector);
6218 
6219   return block_vector;
6220 }
6221 
6222 static int next_block_index = 2;
6223 
6224 /* Set BLOCK_NUMBER for all the blocks in FN.  */
6225 
6226 void
number_blocks(fn)6227 number_blocks (fn)
6228      tree fn;
6229 {
6230   int i;
6231   int n_blocks;
6232   tree *block_vector;
6233 
6234   /* For SDB and XCOFF debugging output, we start numbering the blocks
6235      from 1 within each function, rather than keeping a running
6236      count.  */
6237 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6238   if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6239     next_block_index = 1;
6240 #endif
6241 
6242   block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6243 
6244   /* The top-level BLOCK isn't numbered at all.  */
6245   for (i = 1; i < n_blocks; ++i)
6246     /* We number the blocks from two.  */
6247     BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6248 
6249   free (block_vector);
6250 
6251   return;
6252 }
6253 
6254 /* If VAR is present in a subblock of BLOCK, return the subblock.  */
6255 
6256 tree
debug_find_var_in_block_tree(var,block)6257 debug_find_var_in_block_tree (var, block)
6258      tree var;
6259      tree block;
6260 {
6261   tree t;
6262 
6263   for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6264     if (t == var)
6265       return block;
6266 
6267   for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6268     {
6269       tree ret = debug_find_var_in_block_tree (var, t);
6270       if (ret)
6271 	return ret;
6272     }
6273 
6274   return NULL_TREE;
6275 }
6276 
6277 /* Allocate a function structure and reset its contents to the defaults.  */
6278 
6279 static void
prepare_function_start()6280 prepare_function_start ()
6281 {
6282   cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6283 
6284   init_stmt_for_function ();
6285   init_eh_for_function ();
6286 
6287   cse_not_expected = ! optimize;
6288 
6289   /* Caller save not needed yet.  */
6290   caller_save_needed = 0;
6291 
6292   /* No stack slots have been made yet.  */
6293   stack_slot_list = 0;
6294 
6295   current_function_has_nonlocal_label = 0;
6296   current_function_has_nonlocal_goto = 0;
6297 
6298   /* There is no stack slot for handling nonlocal gotos.  */
6299   nonlocal_goto_handler_slots = 0;
6300   nonlocal_goto_stack_level = 0;
6301 
6302   /* No labels have been declared for nonlocal use.  */
6303   nonlocal_labels = 0;
6304   nonlocal_goto_handler_labels = 0;
6305 
6306   /* No function calls so far in this function.  */
6307   function_call_count = 0;
6308 
6309   /* No parm regs have been allocated.
6310      (This is important for output_inline_function.)  */
6311   max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6312 
6313   /* Initialize the RTL mechanism.  */
6314   init_emit ();
6315 
6316   /* Initialize the queue of pending postincrement and postdecrements,
6317      and some other info in expr.c.  */
6318   init_expr ();
6319 
6320   /* We haven't done register allocation yet.  */
6321   reg_renumber = 0;
6322 
6323   init_varasm_status (cfun);
6324 
6325   /* Clear out data used for inlining.  */
6326   cfun->inlinable = 0;
6327   cfun->original_decl_initial = 0;
6328   cfun->original_arg_vector = 0;
6329 
6330   cfun->stack_alignment_needed = STACK_BOUNDARY;
6331   cfun->preferred_stack_boundary = STACK_BOUNDARY;
6332 
6333   /* Set if a call to setjmp is seen.  */
6334   current_function_calls_setjmp = 0;
6335 
6336   /* Set if a call to longjmp is seen.  */
6337   current_function_calls_longjmp = 0;
6338 
6339   current_function_calls_alloca = 0;
6340   current_function_contains_functions = 0;
6341   current_function_is_leaf = 0;
6342   current_function_nothrow = 0;
6343   current_function_sp_is_unchanging = 0;
6344   current_function_uses_only_leaf_regs = 0;
6345   current_function_has_computed_jump = 0;
6346   current_function_is_thunk = 0;
6347 
6348   current_function_returns_pcc_struct = 0;
6349   current_function_returns_struct = 0;
6350   current_function_epilogue_delay_list = 0;
6351   current_function_uses_const_pool = 0;
6352   current_function_uses_pic_offset_table = 0;
6353   current_function_cannot_inline = 0;
6354 
6355   /* We have not yet needed to make a label to jump to for tail-recursion.  */
6356   tail_recursion_label = 0;
6357 
6358   /* We haven't had a need to make a save area for ap yet.  */
6359   arg_pointer_save_area = 0;
6360 
6361   /* No stack slots allocated yet.  */
6362   frame_offset = 0;
6363 
6364   /* No SAVE_EXPRs in this function yet.  */
6365   save_expr_regs = 0;
6366 
6367   /* No RTL_EXPRs in this function yet.  */
6368   rtl_expr_chain = 0;
6369 
6370   /* Set up to allocate temporaries.  */
6371   init_temp_slots ();
6372 
6373   /* Indicate that we need to distinguish between the return value of the
6374      present function and the return value of a function being called.  */
6375   rtx_equal_function_value_matters = 1;
6376 
6377   /* Indicate that we have not instantiated virtual registers yet.  */
6378   virtuals_instantiated = 0;
6379 
6380   /* Indicate that we want CONCATs now.  */
6381   generating_concat_p = 1;
6382 
6383   /* Indicate we have no need of a frame pointer yet.  */
6384   frame_pointer_needed = 0;
6385 
6386   /* By default assume not stdarg.  */
6387   current_function_stdarg = 0;
6388 
6389   /* We haven't made any trampolines for this function yet.  */
6390   trampoline_list = 0;
6391 
6392   init_pending_stack_adjust ();
6393   inhibit_defer_pop = 0;
6394 
6395   current_function_outgoing_args_size = 0;
6396 
6397   current_function_funcdef_no = funcdef_no++;
6398 
6399   cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6400 
6401   cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6402 
6403   cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6404 
6405   cfun->max_jumptable_ents = 0;
6406 
6407   (*lang_hooks.function.init) (cfun);
6408   if (init_machine_status)
6409     cfun->machine = (*init_machine_status) ();
6410 }
6411 
6412 /* Initialize the rtl expansion mechanism so that we can do simple things
6413    like generate sequences.  This is used to provide a context during global
6414    initialization of some passes.  */
6415 void
init_dummy_function_start()6416 init_dummy_function_start ()
6417 {
6418   prepare_function_start ();
6419 }
6420 
6421 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6422    and initialize static variables for generating RTL for the statements
6423    of the function.  */
6424 
6425 void
init_function_start(subr,filename,line)6426 init_function_start (subr, filename, line)
6427      tree subr;
6428      const char *filename;
6429      int line;
6430 {
6431   prepare_function_start ();
6432 
6433   current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6434   cfun->decl = subr;
6435 
6436   /* Nonzero if this is a nested function that uses a static chain.  */
6437 
6438   current_function_needs_context
6439     = (decl_function_context (current_function_decl) != 0
6440        && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6441 
6442   /* Within function body, compute a type's size as soon it is laid out.  */
6443   immediate_size_expand++;
6444 
6445   /* Prevent ever trying to delete the first instruction of a function.
6446      Also tell final how to output a linenum before the function prologue.
6447      Note linenums could be missing, e.g. when compiling a Java .class file.  */
6448   if (line > 0)
6449     emit_line_note (filename, line);
6450 
6451   /* Make sure first insn is a note even if we don't want linenums.
6452      This makes sure the first insn will never be deleted.
6453      Also, final expects a note to appear there.  */
6454   emit_note (NULL, NOTE_INSN_DELETED);
6455 
6456   /* Set flags used by final.c.  */
6457   if (aggregate_value_p (DECL_RESULT (subr)))
6458     {
6459 #ifdef PCC_STATIC_STRUCT_RETURN
6460       current_function_returns_pcc_struct = 1;
6461 #endif
6462       current_function_returns_struct = 1;
6463     }
6464 
6465   /* Warn if this value is an aggregate type,
6466      regardless of which calling convention we are using for it.  */
6467   if (warn_aggregate_return
6468       && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6469     warning ("function returns an aggregate");
6470 
6471   current_function_returns_pointer
6472     = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6473 }
6474 
6475 /* Make sure all values used by the optimization passes have sane
6476    defaults.  */
6477 void
init_function_for_compilation()6478 init_function_for_compilation ()
6479 {
6480   reg_renumber = 0;
6481 
6482   /* No prologue/epilogue insns yet.  */
6483   VARRAY_GROW (prologue, 0);
6484   VARRAY_GROW (epilogue, 0);
6485   VARRAY_GROW (sibcall_epilogue, 0);
6486 }
6487 
6488 /* Expand a call to __main at the beginning of a possible main function.  */
6489 
6490 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6491 #undef HAS_INIT_SECTION
6492 #define HAS_INIT_SECTION
6493 #endif
6494 
6495 void
expand_main_function()6496 expand_main_function ()
6497 {
6498 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6499   if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6500     {
6501       int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6502       rtx tmp, seq;
6503 
6504       start_sequence ();
6505       /* Forcibly align the stack.  */
6506 #ifdef STACK_GROWS_DOWNWARD
6507       tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6508 				 stack_pointer_rtx, 1, OPTAB_WIDEN);
6509 #else
6510       tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6511 				 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6512       tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6513 				 stack_pointer_rtx, 1, OPTAB_WIDEN);
6514 #endif
6515       if (tmp != stack_pointer_rtx)
6516 	emit_move_insn (stack_pointer_rtx, tmp);
6517 
6518       /* Enlist allocate_dynamic_stack_space to pick up the pieces.  */
6519       tmp = force_reg (Pmode, const0_rtx);
6520       allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6521       seq = get_insns ();
6522       end_sequence ();
6523 
6524       for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6525 	if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6526 	  break;
6527       if (tmp)
6528 	emit_insn_before (seq, tmp);
6529       else
6530 	emit_insn (seq);
6531     }
6532 #endif
6533 
6534 #ifndef HAS_INIT_SECTION
6535   emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
6536 		     VOIDmode, 0);
6537 #endif
6538 }
6539 
6540 /* The PENDING_SIZES represent the sizes of variable-sized types.
6541    Create RTL for the various sizes now (using temporary variables),
6542    so that we can refer to the sizes from the RTL we are generating
6543    for the current function.  The PENDING_SIZES are a TREE_LIST.  The
6544    TREE_VALUE of each node is a SAVE_EXPR.  */
6545 
6546 void
expand_pending_sizes(pending_sizes)6547 expand_pending_sizes (pending_sizes)
6548      tree pending_sizes;
6549 {
6550   tree tem;
6551 
6552   /* Evaluate now the sizes of any types declared among the arguments.  */
6553   for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6554     {
6555       expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6556       /* Flush the queue in case this parameter declaration has
6557 	 side-effects.  */
6558       emit_queue ();
6559     }
6560 }
6561 
6562 /* Start the RTL for a new function, and set variables used for
6563    emitting RTL.
6564    SUBR is the FUNCTION_DECL node.
6565    PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6566    the function's parameters, which must be run at any return statement.  */
6567 
6568 void
expand_function_start(subr,parms_have_cleanups)6569 expand_function_start (subr, parms_have_cleanups)
6570      tree subr;
6571      int parms_have_cleanups;
6572 {
6573   tree tem;
6574   rtx last_ptr = NULL_RTX;
6575 
6576   /* Make sure volatile mem refs aren't considered
6577      valid operands of arithmetic insns.  */
6578   init_recog_no_volatile ();
6579 
6580   current_function_instrument_entry_exit
6581     = (flag_instrument_function_entry_exit
6582        && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6583 
6584   current_function_profile
6585     = (profile_flag
6586        && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6587 
6588   current_function_limit_stack
6589     = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6590 
6591   /* If function gets a static chain arg, store it in the stack frame.
6592      Do this first, so it gets the first stack slot offset.  */
6593   if (current_function_needs_context)
6594     {
6595       last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6596 
6597       /* Delay copying static chain if it is not a register to avoid
6598 	 conflicts with regs used for parameters.  */
6599       if (! SMALL_REGISTER_CLASSES
6600 	  || GET_CODE (static_chain_incoming_rtx) == REG)
6601 	emit_move_insn (last_ptr, static_chain_incoming_rtx);
6602     }
6603 
6604   /* If the parameters of this function need cleaning up, get a label
6605      for the beginning of the code which executes those cleanups.  This must
6606      be done before doing anything with return_label.  */
6607   if (parms_have_cleanups)
6608     cleanup_label = gen_label_rtx ();
6609   else
6610     cleanup_label = 0;
6611 
6612   /* Make the label for return statements to jump to.  Do not special
6613      case machines with special return instructions -- they will be
6614      handled later during jump, ifcvt, or epilogue creation.  */
6615   return_label = gen_label_rtx ();
6616 
6617   /* Initialize rtx used to return the value.  */
6618   /* Do this before assign_parms so that we copy the struct value address
6619      before any library calls that assign parms might generate.  */
6620 
6621   /* Decide whether to return the value in memory or in a register.  */
6622   if (aggregate_value_p (DECL_RESULT (subr)))
6623     {
6624       /* Returning something that won't go in a register.  */
6625       rtx value_address = 0;
6626 
6627 #ifdef PCC_STATIC_STRUCT_RETURN
6628       if (current_function_returns_pcc_struct)
6629 	{
6630 	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6631 	  value_address = assemble_static_space (size);
6632 	}
6633       else
6634 #endif
6635 	{
6636 	  /* Expect to be passed the address of a place to store the value.
6637 	     If it is passed as an argument, assign_parms will take care of
6638 	     it.  */
6639 	  if (struct_value_incoming_rtx)
6640 	    {
6641 	      value_address = gen_reg_rtx (Pmode);
6642 	      emit_move_insn (value_address, struct_value_incoming_rtx);
6643 	    }
6644 	}
6645       if (value_address)
6646 	{
6647 	  rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6648 	  set_mem_attributes (x, DECL_RESULT (subr), 1);
6649 	  SET_DECL_RTL (DECL_RESULT (subr), x);
6650 	}
6651     }
6652   else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6653     /* If return mode is void, this decl rtl should not be used.  */
6654     SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6655   else
6656     {
6657       /* Compute the return values into a pseudo reg, which we will copy
6658 	 into the true return register after the cleanups are done.  */
6659 
6660       /* In order to figure out what mode to use for the pseudo, we
6661 	 figure out what the mode of the eventual return register will
6662 	 actually be, and use that.  */
6663       rtx hard_reg
6664 	= hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6665 			       subr, 1);
6666 
6667       /* Structures that are returned in registers are not aggregate_value_p,
6668 	 so we may see a PARALLEL or a REG.  */
6669       if (REG_P (hard_reg))
6670 	SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6671       else if (GET_CODE (hard_reg) == PARALLEL)
6672 	SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6673       else
6674 	abort ();
6675 
6676       /* Set DECL_REGISTER flag so that expand_function_end will copy the
6677 	 result to the real return register(s).  */
6678       DECL_REGISTER (DECL_RESULT (subr)) = 1;
6679     }
6680 
6681   /* Initialize rtx for parameters and local variables.
6682      In some cases this requires emitting insns.  */
6683 
6684   assign_parms (subr);
6685 
6686   /* Copy the static chain now if it wasn't a register.  The delay is to
6687      avoid conflicts with the parameter passing registers.  */
6688 
6689   if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6690     if (GET_CODE (static_chain_incoming_rtx) != REG)
6691       emit_move_insn (last_ptr, static_chain_incoming_rtx);
6692 
6693   /* The following was moved from init_function_start.
6694      The move is supposed to make sdb output more accurate.  */
6695   /* Indicate the beginning of the function body,
6696      as opposed to parm setup.  */
6697   emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6698 
6699   if (GET_CODE (get_last_insn ()) != NOTE)
6700     emit_note (NULL, NOTE_INSN_DELETED);
6701   parm_birth_insn = get_last_insn ();
6702 
6703   context_display = 0;
6704   if (current_function_needs_context)
6705     {
6706       /* Fetch static chain values for containing functions.  */
6707       tem = decl_function_context (current_function_decl);
6708       /* Copy the static chain pointer into a pseudo.  If we have
6709 	 small register classes, copy the value from memory if
6710 	 static_chain_incoming_rtx is a REG.  */
6711       if (tem)
6712 	{
6713 	  /* If the static chain originally came in a register, put it back
6714 	     there, then move it out in the next insn.  The reason for
6715 	     this peculiar code is to satisfy function integration.  */
6716 	  if (SMALL_REGISTER_CLASSES
6717 	      && GET_CODE (static_chain_incoming_rtx) == REG)
6718 	    emit_move_insn (static_chain_incoming_rtx, last_ptr);
6719 	  last_ptr = copy_to_reg (static_chain_incoming_rtx);
6720 	}
6721 
6722       while (tem)
6723 	{
6724 	  tree rtlexp = make_node (RTL_EXPR);
6725 
6726 	  RTL_EXPR_RTL (rtlexp) = last_ptr;
6727 	  context_display = tree_cons (tem, rtlexp, context_display);
6728 	  tem = decl_function_context (tem);
6729 	  if (tem == 0)
6730 	    break;
6731 	  /* Chain thru stack frames, assuming pointer to next lexical frame
6732 	     is found at the place we always store it.  */
6733 #ifdef FRAME_GROWS_DOWNWARD
6734 	  last_ptr = plus_constant (last_ptr,
6735 				    -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6736 #endif
6737 	  last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6738 	  set_mem_alias_set (last_ptr, get_frame_alias_set ());
6739 	  last_ptr = copy_to_reg (last_ptr);
6740 
6741 	  /* If we are not optimizing, ensure that we know that this
6742 	     piece of context is live over the entire function.  */
6743 	  if (! optimize)
6744 	    save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6745 						save_expr_regs);
6746 	}
6747     }
6748 
6749   if (current_function_instrument_entry_exit)
6750     {
6751       rtx fun = DECL_RTL (current_function_decl);
6752       if (GET_CODE (fun) == MEM)
6753 	fun = XEXP (fun, 0);
6754       else
6755 	abort ();
6756       emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6757 			 2, fun, Pmode,
6758 			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6759 						     0,
6760 						     hard_frame_pointer_rtx),
6761 			 Pmode);
6762     }
6763 
6764   if (current_function_profile)
6765     {
6766 #ifdef PROFILE_HOOK
6767       PROFILE_HOOK (current_function_funcdef_no);
6768 #endif
6769     }
6770 
6771   /* After the display initializations is where the tail-recursion label
6772      should go, if we end up needing one.   Ensure we have a NOTE here
6773      since some things (like trampolines) get placed before this.  */
6774   tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6775 
6776   /* Evaluate now the sizes of any types declared among the arguments.  */
6777   expand_pending_sizes (nreverse (get_pending_sizes ()));
6778 
6779   /* Make sure there is a line number after the function entry setup code.  */
6780   force_next_line_note ();
6781 }
6782 
6783 /* Undo the effects of init_dummy_function_start.  */
6784 void
expand_dummy_function_end()6785 expand_dummy_function_end ()
6786 {
6787   /* End any sequences that failed to be closed due to syntax errors.  */
6788   while (in_sequence_p ())
6789     end_sequence ();
6790 
6791   /* Outside function body, can't compute type's actual size
6792      until next function's body starts.  */
6793 
6794   free_after_parsing (cfun);
6795   free_after_compilation (cfun);
6796   cfun = 0;
6797 }
6798 
6799 /* Call DOIT for each hard register used as a return value from
6800    the current function.  */
6801 
6802 void
6803 diddle_return_value (doit, arg)
6804      void (*doit) PARAMS ((rtx, void *));
6805      void *arg;
6806 {
6807   rtx outgoing = current_function_return_rtx;
6808 
6809   if (! outgoing)
6810     return;
6811 
6812   if (GET_CODE (outgoing) == REG)
6813     (*doit) (outgoing, arg);
6814   else if (GET_CODE (outgoing) == PARALLEL)
6815     {
6816       int i;
6817 
6818       for (i = 0; i < XVECLEN (outgoing, 0); i++)
6819 	{
6820 	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6821 
6822 	  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6823 	    (*doit) (x, arg);
6824 	}
6825     }
6826 }
6827 
6828 static void
do_clobber_return_reg(reg,arg)6829 do_clobber_return_reg (reg, arg)
6830      rtx reg;
6831      void *arg ATTRIBUTE_UNUSED;
6832 {
6833   emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6834 }
6835 
6836 void
clobber_return_register()6837 clobber_return_register ()
6838 {
6839   diddle_return_value (do_clobber_return_reg, NULL);
6840 
6841   /* In case we do use pseudo to return value, clobber it too.  */
6842   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6843     {
6844       tree decl_result = DECL_RESULT (current_function_decl);
6845       rtx decl_rtl = DECL_RTL (decl_result);
6846       if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6847 	{
6848 	  do_clobber_return_reg (decl_rtl, NULL);
6849 	}
6850     }
6851 }
6852 
6853 static void
do_use_return_reg(reg,arg)6854 do_use_return_reg (reg, arg)
6855      rtx reg;
6856      void *arg ATTRIBUTE_UNUSED;
6857 {
6858   emit_insn (gen_rtx_USE (VOIDmode, reg));
6859 }
6860 
6861 void
use_return_register()6862 use_return_register ()
6863 {
6864   diddle_return_value (do_use_return_reg, NULL);
6865 }
6866 
6867 static GTY(()) rtx initial_trampoline;
6868 
6869 /* Generate RTL for the end of the current function.
6870    FILENAME and LINE are the current position in the source file.
6871 
6872    It is up to language-specific callers to do cleanups for parameters--
6873    or else, supply 1 for END_BINDINGS and we will call expand_end_bindings.  */
6874 
6875 void
expand_function_end(filename,line,end_bindings)6876 expand_function_end (filename, line, end_bindings)
6877      const char *filename;
6878      int line;
6879      int end_bindings;
6880 {
6881   tree link;
6882   rtx clobber_after;
6883 
6884   finish_expr_for_function ();
6885 
6886   /* If arg_pointer_save_area was referenced only from a nested
6887      function, we will not have initialized it yet.  Do that now.  */
6888   if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6889     get_arg_pointer_save_area (cfun);
6890 
6891 #ifdef NON_SAVING_SETJMP
6892   /* Don't put any variables in registers if we call setjmp
6893      on a machine that fails to restore the registers.  */
6894   if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6895     {
6896       if (DECL_INITIAL (current_function_decl) != error_mark_node)
6897 	setjmp_protect (DECL_INITIAL (current_function_decl));
6898 
6899       setjmp_protect_args ();
6900     }
6901 #endif
6902 
6903   /* Initialize any trampolines required by this function.  */
6904   for (link = trampoline_list; link; link = TREE_CHAIN (link))
6905     {
6906       tree function = TREE_PURPOSE (link);
6907       rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6908       rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6909 #ifdef TRAMPOLINE_TEMPLATE
6910       rtx blktramp;
6911 #endif
6912       rtx seq;
6913 
6914 #ifdef TRAMPOLINE_TEMPLATE
6915       /* First make sure this compilation has a template for
6916 	 initializing trampolines.  */
6917       if (initial_trampoline == 0)
6918 	{
6919 	  initial_trampoline
6920 	    = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6921 	  set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6922 	}
6923 #endif
6924 
6925       /* Generate insns to initialize the trampoline.  */
6926       start_sequence ();
6927       tramp = round_trampoline_addr (XEXP (tramp, 0));
6928 #ifdef TRAMPOLINE_TEMPLATE
6929       blktramp = replace_equiv_address (initial_trampoline, tramp);
6930       emit_block_move (blktramp, initial_trampoline,
6931 		       GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6932 #endif
6933       trampolines_created = 1;
6934       INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6935       seq = get_insns ();
6936       end_sequence ();
6937 
6938       /* Put those insns at entry to the containing function (this one).  */
6939       emit_insn_before (seq, tail_recursion_reentry);
6940     }
6941 
6942   /* If we are doing stack checking and this function makes calls,
6943      do a stack probe at the start of the function to ensure we have enough
6944      space for another stack frame.  */
6945   if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6946     {
6947       rtx insn, seq;
6948 
6949       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6950 	if (GET_CODE (insn) == CALL_INSN)
6951 	  {
6952 	    start_sequence ();
6953 	    probe_stack_range (STACK_CHECK_PROTECT,
6954 			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6955 	    seq = get_insns ();
6956 	    end_sequence ();
6957 	    emit_insn_before (seq, tail_recursion_reentry);
6958 	    break;
6959 	  }
6960     }
6961 
6962   /* Warn about unused parms if extra warnings were specified.  */
6963   /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6964      warning.  WARN_UNUSED_PARAMETER is negative when set by
6965      -Wunused.  */
6966   if (warn_unused_parameter > 0
6967       || (warn_unused_parameter < 0 && extra_warnings))
6968     {
6969       tree decl;
6970 
6971       for (decl = DECL_ARGUMENTS (current_function_decl);
6972 	   decl; decl = TREE_CHAIN (decl))
6973 	if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6974 	    && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6975 	  warning_with_decl (decl, "unused parameter `%s'");
6976     }
6977 
6978   /* Delete handlers for nonlocal gotos if nothing uses them.  */
6979   if (nonlocal_goto_handler_slots != 0
6980       && ! current_function_has_nonlocal_label)
6981     delete_handlers ();
6982 
6983   /* End any sequences that failed to be closed due to syntax errors.  */
6984   while (in_sequence_p ())
6985     end_sequence ();
6986 
6987   /* Outside function body, can't compute type's actual size
6988      until next function's body starts.  */
6989   immediate_size_expand--;
6990 
6991   clear_pending_stack_adjust ();
6992   do_pending_stack_adjust ();
6993 
6994   /* ???  This is a kludge.  We want to ensure that instructions that
6995      may trap are not moved into the epilogue by scheduling, because
6996      we don't always emit unwind information for the epilogue.
6997      However, not all machine descriptions define a blockage insn, so
6998      emit an ASM_INPUT to act as one.  */
6999   if (flag_non_call_exceptions)
7000     emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
7001 
7002   /* Mark the end of the function body.
7003      If control reaches this insn, the function can drop through
7004      without returning a value.  */
7005   emit_note (NULL, NOTE_INSN_FUNCTION_END);
7006 
7007   /* Must mark the last line number note in the function, so that the test
7008      coverage code can avoid counting the last line twice.  This just tells
7009      the code to ignore the immediately following line note, since there
7010      already exists a copy of this note somewhere above.  This line number
7011      note is still needed for debugging though, so we can't delete it.  */
7012   if (flag_test_coverage)
7013     emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
7014 
7015   /* Output a linenumber for the end of the function.
7016      SDB depends on this.  */
7017   emit_line_note_force (filename, line);
7018 
7019   /* Before the return label (if any), clobber the return
7020      registers so that they are not propagated live to the rest of
7021      the function.  This can only happen with functions that drop
7022      through; if there had been a return statement, there would
7023      have either been a return rtx, or a jump to the return label.
7024 
7025      We delay actual code generation after the current_function_value_rtx
7026      is computed.  */
7027   clobber_after = get_last_insn ();
7028 
7029   /* Output the label for the actual return from the function,
7030      if one is expected.  This happens either because a function epilogue
7031      is used instead of a return instruction, or because a return was done
7032      with a goto in order to run local cleanups, or because of pcc-style
7033      structure returning.  */
7034   if (return_label)
7035     emit_label (return_label);
7036 
7037   /* C++ uses this.  */
7038   if (end_bindings)
7039     expand_end_bindings (0, 0, 0);
7040 
7041   if (current_function_instrument_entry_exit)
7042     {
7043       rtx fun = DECL_RTL (current_function_decl);
7044       if (GET_CODE (fun) == MEM)
7045 	fun = XEXP (fun, 0);
7046       else
7047 	abort ();
7048       emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
7049 			 2, fun, Pmode,
7050 			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
7051 						     0,
7052 						     hard_frame_pointer_rtx),
7053 			 Pmode);
7054     }
7055 
7056   /* Let except.c know where it should emit the call to unregister
7057      the function context for sjlj exceptions.  */
7058   if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
7059     sjlj_emit_function_exit_after (get_last_insn ());
7060 
7061   /* If we had calls to alloca, and this machine needs
7062      an accurate stack pointer to exit the function,
7063      insert some code to save and restore the stack pointer.  */
7064 #ifdef EXIT_IGNORE_STACK
7065   if (! EXIT_IGNORE_STACK)
7066 #endif
7067     if (current_function_calls_alloca)
7068       {
7069 	rtx tem = 0;
7070 
7071 	emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7072 	emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7073       }
7074 
7075   /* If scalar return value was computed in a pseudo-reg, or was a named
7076      return value that got dumped to the stack, copy that to the hard
7077      return register.  */
7078   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7079     {
7080       tree decl_result = DECL_RESULT (current_function_decl);
7081       rtx decl_rtl = DECL_RTL (decl_result);
7082 
7083       if (REG_P (decl_rtl)
7084 	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7085 	  : DECL_REGISTER (decl_result))
7086 	{
7087 	  rtx real_decl_rtl = current_function_return_rtx;
7088 
7089 	  /* This should be set in assign_parms.  */
7090 	  if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7091 	    abort ();
7092 
7093 	  /* If this is a BLKmode structure being returned in registers,
7094 	     then use the mode computed in expand_return.  Note that if
7095 	     decl_rtl is memory, then its mode may have been changed,
7096 	     but that current_function_return_rtx has not.  */
7097 	  if (GET_MODE (real_decl_rtl) == BLKmode)
7098 	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7099 
7100 	  /* If a named return value dumped decl_return to memory, then
7101 	     we may need to re-do the PROMOTE_MODE signed/unsigned
7102 	     extension.  */
7103 	  if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7104 	    {
7105 	      int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7106 
7107 #ifdef PROMOTE_FUNCTION_RETURN
7108 	      promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7109 			    &unsignedp, 1);
7110 #endif
7111 
7112 	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
7113 	    }
7114 	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
7115 	    {
7116 	      /* If expand_function_start has created a PARALLEL for decl_rtl,
7117 		 move the result to the real return registers.  Otherwise, do
7118 		 a group load from decl_rtl for a named return.  */
7119 	      if (GET_CODE (decl_rtl) == PARALLEL)
7120 		emit_group_move (real_decl_rtl, decl_rtl);
7121 	      else
7122 		emit_group_load (real_decl_rtl, decl_rtl,
7123 				 int_size_in_bytes (TREE_TYPE (decl_result)));
7124 	    }
7125 	  else
7126 	    emit_move_insn (real_decl_rtl, decl_rtl);
7127 	}
7128     }
7129 
7130   /* If returning a structure, arrange to return the address of the value
7131      in a place where debuggers expect to find it.
7132 
7133      If returning a structure PCC style,
7134      the caller also depends on this value.
7135      And current_function_returns_pcc_struct is not necessarily set.  */
7136   if (current_function_returns_struct
7137       || current_function_returns_pcc_struct)
7138     {
7139       rtx value_address
7140 	= XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7141       tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7142 #ifdef FUNCTION_OUTGOING_VALUE
7143       rtx outgoing
7144 	= FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7145 				   current_function_decl);
7146 #else
7147       rtx outgoing
7148 	= FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7149 #endif
7150 
7151       /* Mark this as a function return value so integrate will delete the
7152 	 assignment and USE below when inlining this function.  */
7153       REG_FUNCTION_VALUE_P (outgoing) = 1;
7154 
7155 #ifdef POINTERS_EXTEND_UNSIGNED
7156       /* The address may be ptr_mode and OUTGOING may be Pmode.  */
7157       if (GET_MODE (outgoing) != GET_MODE (value_address))
7158 	value_address = convert_memory_address (GET_MODE (outgoing),
7159 						value_address);
7160 #endif
7161 
7162       emit_move_insn (outgoing, value_address);
7163 
7164       /* Show return register used to hold result (in this case the address
7165 	 of the result.  */
7166       current_function_return_rtx = outgoing;
7167     }
7168 
7169   /* If this is an implementation of throw, do what's necessary to
7170      communicate between __builtin_eh_return and the epilogue.  */
7171   expand_eh_return ();
7172 
7173   /* Emit the actual code to clobber return register.  */
7174   {
7175     rtx seq, after;
7176 
7177     start_sequence ();
7178     clobber_return_register ();
7179     seq = get_insns ();
7180     end_sequence ();
7181 
7182     after = emit_insn_after (seq, clobber_after);
7183 
7184     if (clobber_after != after)
7185       cfun->x_clobber_return_insn = after;
7186   }
7187 
7188   /* ??? This should no longer be necessary since stupid is no longer with
7189      us, but there are some parts of the compiler (eg reload_combine, and
7190      sh mach_dep_reorg) that still try and compute their own lifetime info
7191      instead of using the general framework.  */
7192   use_return_register ();
7193 
7194   /* Fix up any gotos that jumped out to the outermost
7195      binding level of the function.
7196      Must follow emitting RETURN_LABEL.  */
7197 
7198   /* If you have any cleanups to do at this point,
7199      and they need to create temporary variables,
7200      then you will lose.  */
7201   expand_fixups (get_insns ());
7202 }
7203 
7204 rtx
get_arg_pointer_save_area(f)7205 get_arg_pointer_save_area (f)
7206      struct function *f;
7207 {
7208   rtx ret = f->x_arg_pointer_save_area;
7209 
7210   if (! ret)
7211     {
7212       ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7213       f->x_arg_pointer_save_area = ret;
7214     }
7215 
7216   if (f == cfun && ! f->arg_pointer_save_area_init)
7217     {
7218       rtx seq;
7219 
7220       /* Save the arg pointer at the beginning of the function.  The
7221 	 generated stack slot may not be a valid memory address, so we
7222 	 have to check it and fix it if necessary.  */
7223       start_sequence ();
7224       emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7225       seq = get_insns ();
7226       end_sequence ();
7227 
7228       push_topmost_sequence ();
7229       emit_insn_after (seq, get_insns ());
7230       pop_topmost_sequence ();
7231     }
7232 
7233   return ret;
7234 }
7235 
7236 /* Extend a vector that records the INSN_UIDs of INSNS
7237    (a list of one or more insns).  */
7238 
7239 static void
record_insns(insns,vecp)7240 record_insns (insns, vecp)
7241      rtx insns;
7242      varray_type *vecp;
7243 {
7244   int i, len;
7245   rtx tmp;
7246 
7247   tmp = insns;
7248   len = 0;
7249   while (tmp != NULL_RTX)
7250     {
7251       len++;
7252       tmp = NEXT_INSN (tmp);
7253     }
7254 
7255   i = VARRAY_SIZE (*vecp);
7256   VARRAY_GROW (*vecp, i + len);
7257   tmp = insns;
7258   while (tmp != NULL_RTX)
7259     {
7260       VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7261       i++;
7262       tmp = NEXT_INSN (tmp);
7263     }
7264 }
7265 
7266 /* Determine how many INSN_UIDs in VEC are part of INSN.  Because we can
7267    be running after reorg, SEQUENCE rtl is possible.  */
7268 
7269 static int
contains(insn,vec)7270 contains (insn, vec)
7271      rtx insn;
7272      varray_type vec;
7273 {
7274   int i, j;
7275 
7276   if (GET_CODE (insn) == INSN
7277       && GET_CODE (PATTERN (insn)) == SEQUENCE)
7278     {
7279       int count = 0;
7280       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7281 	for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7282 	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7283 	    count++;
7284       return count;
7285     }
7286   else
7287     {
7288       for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7289 	if (INSN_UID (insn) == VARRAY_INT (vec, j))
7290 	  return 1;
7291     }
7292   return 0;
7293 }
7294 
7295 int
prologue_epilogue_contains(insn)7296 prologue_epilogue_contains (insn)
7297      rtx insn;
7298 {
7299   if (contains (insn, prologue))
7300     return 1;
7301   if (contains (insn, epilogue))
7302     return 1;
7303   return 0;
7304 }
7305 
7306 int
sibcall_epilogue_contains(insn)7307 sibcall_epilogue_contains (insn)
7308      rtx insn;
7309 {
7310   if (sibcall_epilogue)
7311     return contains (insn, sibcall_epilogue);
7312   return 0;
7313 }
7314 
7315 #ifdef HAVE_return
7316 /* Insert gen_return at the end of block BB.  This also means updating
7317    block_for_insn appropriately.  */
7318 
7319 static void
emit_return_into_block(bb,line_note)7320 emit_return_into_block (bb, line_note)
7321      basic_block bb;
7322      rtx line_note;
7323 {
7324   rtx p, end;
7325 
7326   p = NEXT_INSN (bb->end);
7327   end = emit_jump_insn_after (gen_return (), bb->end);
7328   if (line_note)
7329     emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7330 			  NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7331 }
7332 #endif /* HAVE_return */
7333 
7334 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7335 
7336 /* These functions convert the epilogue into a variant that does not modify the
7337    stack pointer.  This is used in cases where a function returns an object
7338    whose size is not known until it is computed.  The called function leaves the
7339    object on the stack, leaves the stack depressed, and returns a pointer to
7340    the object.
7341 
7342    What we need to do is track all modifications and references to the stack
7343    pointer, deleting the modifications and changing the references to point to
7344    the location the stack pointer would have pointed to had the modifications
7345    taken place.
7346 
7347    These functions need to be portable so we need to make as few assumptions
7348    about the epilogue as we can.  However, the epilogue basically contains
7349    three things: instructions to reset the stack pointer, instructions to
7350    reload registers, possibly including the frame pointer, and an
7351    instruction to return to the caller.
7352 
7353    If we can't be sure of what a relevant epilogue insn is doing, we abort.
7354    We also make no attempt to validate the insns we make since if they are
7355    invalid, we probably can't do anything valid.  The intent is that these
7356    routines get "smarter" as more and more machines start to use them and
7357    they try operating on different epilogues.
7358 
7359    We use the following structure to track what the part of the epilogue that
7360    we've already processed has done.  We keep two copies of the SP equivalence,
7361    one for use during the insn we are processing and one for use in the next
7362    insn.  The difference is because one part of a PARALLEL may adjust SP
7363    and the other may use it.  */
7364 
7365 struct epi_info
7366 {
7367   rtx sp_equiv_reg;		/* REG that SP is set from, perhaps SP.  */
7368   HOST_WIDE_INT sp_offset;	/* Offset from SP_EQUIV_REG of present SP.  */
7369   rtx new_sp_equiv_reg;		/* REG to be used at end of insn.  */
7370   HOST_WIDE_INT new_sp_offset;	/* Offset to be used at end of insn.  */
7371   rtx equiv_reg_src;		/* If nonzero, the value that SP_EQUIV_REG
7372 				   should be set to once we no longer need
7373 				   its value.  */
7374 };
7375 
7376 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7377 static void emit_equiv_load PARAMS ((struct epi_info *));
7378 
7379 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7380    no modifications to the stack pointer.  Return the new list of insns.  */
7381 
7382 static rtx
keep_stack_depressed(insns)7383 keep_stack_depressed (insns)
7384      rtx insns;
7385 {
7386   int j;
7387   struct epi_info info;
7388   rtx insn, next;
7389 
7390   /* If the epilogue is just a single instruction, it ust be OK as is.  */
7391 
7392   if (NEXT_INSN (insns) == NULL_RTX)
7393     return insns;
7394 
7395   /* Otherwise, start a sequence, initialize the information we have, and
7396      process all the insns we were given.  */
7397   start_sequence ();
7398 
7399   info.sp_equiv_reg = stack_pointer_rtx;
7400   info.sp_offset = 0;
7401   info.equiv_reg_src = 0;
7402 
7403   insn = insns;
7404   next = NULL_RTX;
7405   while (insn != NULL_RTX)
7406     {
7407       next = NEXT_INSN (insn);
7408 
7409       if (!INSN_P (insn))
7410 	{
7411 	  add_insn (insn);
7412 	  insn = next;
7413 	  continue;
7414 	}
7415 
7416       /* If this insn references the register that SP is equivalent to and
7417 	 we have a pending load to that register, we must force out the load
7418 	 first and then indicate we no longer know what SP's equivalent is.  */
7419       if (info.equiv_reg_src != 0
7420 	  && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7421 	{
7422 	  emit_equiv_load (&info);
7423 	  info.sp_equiv_reg = 0;
7424 	}
7425 
7426       info.new_sp_equiv_reg = info.sp_equiv_reg;
7427       info.new_sp_offset = info.sp_offset;
7428 
7429       /* If this is a (RETURN) and the return address is on the stack,
7430 	 update the address and change to an indirect jump.  */
7431       if (GET_CODE (PATTERN (insn)) == RETURN
7432 	  || (GET_CODE (PATTERN (insn)) == PARALLEL
7433 	      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7434 	{
7435 	  rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7436 	  rtx base = 0;
7437 	  HOST_WIDE_INT offset = 0;
7438 	  rtx jump_insn, jump_set;
7439 
7440 	  /* If the return address is in a register, we can emit the insn
7441 	     unchanged.  Otherwise, it must be a MEM and we see what the
7442 	     base register and offset are.  In any case, we have to emit any
7443 	     pending load to the equivalent reg of SP, if any.  */
7444 	  if (GET_CODE (retaddr) == REG)
7445 	    {
7446 	      emit_equiv_load (&info);
7447 	      add_insn (insn);
7448 	      insn = next;
7449 	      continue;
7450 	    }
7451 	  else if (GET_CODE (retaddr) == MEM
7452 		   && GET_CODE (XEXP (retaddr, 0)) == REG)
7453 	    base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7454 	  else if (GET_CODE (retaddr) == MEM
7455 		   && GET_CODE (XEXP (retaddr, 0)) == PLUS
7456 		   && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7457 		   && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7458 	    {
7459 	      base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7460 	      offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7461 	    }
7462 	  else
7463 	    abort ();
7464 
7465 	  /* If the base of the location containing the return pointer
7466 	     is SP, we must update it with the replacement address.  Otherwise,
7467 	     just build the necessary MEM.  */
7468 	  retaddr = plus_constant (base, offset);
7469 	  if (base == stack_pointer_rtx)
7470 	    retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7471 					    plus_constant (info.sp_equiv_reg,
7472 							   info.sp_offset));
7473 
7474 	  retaddr = gen_rtx_MEM (Pmode, retaddr);
7475 
7476 	  /* If there is a pending load to the equivalent register for SP
7477 	     and we reference that register, we must load our address into
7478 	     a scratch register and then do that load.  */
7479 	  if (info.equiv_reg_src
7480 	      && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7481 	    {
7482 	      unsigned int regno;
7483 	      rtx reg;
7484 
7485 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7486 		if (HARD_REGNO_MODE_OK (regno, Pmode)
7487 		    && !fixed_regs[regno]
7488 		    && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7489 		    && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7490 					 regno)
7491 		    && !refers_to_regno_p (regno,
7492 					   regno + HARD_REGNO_NREGS (regno,
7493 								     Pmode),
7494 					   info.equiv_reg_src, NULL))
7495 		  break;
7496 
7497 	      if (regno == FIRST_PSEUDO_REGISTER)
7498 		abort ();
7499 
7500 	      reg = gen_rtx_REG (Pmode, regno);
7501 	      emit_move_insn (reg, retaddr);
7502 	      retaddr = reg;
7503 	    }
7504 
7505 	  emit_equiv_load (&info);
7506 	  jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7507 
7508 	  /* Show the SET in the above insn is a RETURN.  */
7509 	  jump_set = single_set (jump_insn);
7510 	  if (jump_set == 0)
7511 	    abort ();
7512 	  else
7513 	    SET_IS_RETURN_P (jump_set) = 1;
7514 	}
7515 
7516       /* If SP is not mentioned in the pattern and its equivalent register, if
7517 	 any, is not modified, just emit it.  Otherwise, if neither is set,
7518 	 replace the reference to SP and emit the insn.  If none of those are
7519 	 true, handle each SET individually.  */
7520       else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7521 	       && (info.sp_equiv_reg == stack_pointer_rtx
7522 		   || !reg_set_p (info.sp_equiv_reg, insn)))
7523 	add_insn (insn);
7524       else if (! reg_set_p (stack_pointer_rtx, insn)
7525 	       && (info.sp_equiv_reg == stack_pointer_rtx
7526 		   || !reg_set_p (info.sp_equiv_reg, insn)))
7527 	{
7528 	  if (! validate_replace_rtx (stack_pointer_rtx,
7529 				      plus_constant (info.sp_equiv_reg,
7530 						     info.sp_offset),
7531 				      insn))
7532 	    abort ();
7533 
7534 	  add_insn (insn);
7535 	}
7536       else if (GET_CODE (PATTERN (insn)) == SET)
7537 	handle_epilogue_set (PATTERN (insn), &info);
7538       else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7539 	{
7540 	  for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7541 	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7542 	      handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7543 	}
7544       else
7545 	add_insn (insn);
7546 
7547       info.sp_equiv_reg = info.new_sp_equiv_reg;
7548       info.sp_offset = info.new_sp_offset;
7549 
7550       insn = next;
7551     }
7552 
7553   insns = get_insns ();
7554   end_sequence ();
7555   return insns;
7556 }
7557 
7558 /* SET is a SET from an insn in the epilogue.  P is a pointer to the epi_info
7559    structure that contains information about what we've seen so far.  We
7560    process this SET by either updating that data or by emitting one or
7561    more insns.  */
7562 
7563 static void
handle_epilogue_set(set,p)7564 handle_epilogue_set (set, p)
7565      rtx set;
7566      struct epi_info *p;
7567 {
7568   /* First handle the case where we are setting SP.  Record what it is being
7569      set from.  If unknown, abort.  */
7570   if (reg_set_p (stack_pointer_rtx, set))
7571     {
7572       if (SET_DEST (set) != stack_pointer_rtx)
7573 	abort ();
7574 
7575       if (GET_CODE (SET_SRC (set)) == PLUS
7576 	  && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7577 	{
7578 	  p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7579 	  p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7580 	}
7581       else
7582 	p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7583 
7584       /* If we are adjusting SP, we adjust from the old data.  */
7585       if (p->new_sp_equiv_reg == stack_pointer_rtx)
7586 	{
7587 	  p->new_sp_equiv_reg = p->sp_equiv_reg;
7588 	  p->new_sp_offset += p->sp_offset;
7589 	}
7590 
7591       if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7592 	abort ();
7593 
7594       return;
7595     }
7596 
7597   /* Next handle the case where we are setting SP's equivalent register.
7598      If we already have a value to set it to, abort.  We could update, but
7599      there seems little point in handling that case.  Note that we have
7600      to allow for the case where we are setting the register set in
7601      the previous part of a PARALLEL inside a single insn.  But use the
7602      old offset for any updates within this insn.  */
7603   else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7604     {
7605       if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7606 	  || p->equiv_reg_src != 0)
7607 	abort ();
7608       else
7609 	p->equiv_reg_src
7610 	  = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7611 				  plus_constant (p->sp_equiv_reg,
7612 						 p->sp_offset));
7613     }
7614 
7615   /* Otherwise, replace any references to SP in the insn to its new value
7616      and emit the insn.  */
7617   else
7618     {
7619       SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7620 					    plus_constant (p->sp_equiv_reg,
7621 							   p->sp_offset));
7622       SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7623 					     plus_constant (p->sp_equiv_reg,
7624 							    p->sp_offset));
7625       emit_insn (set);
7626     }
7627 }
7628 
7629 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed.  */
7630 
7631 static void
emit_equiv_load(p)7632 emit_equiv_load (p)
7633      struct epi_info *p;
7634 {
7635   if (p->equiv_reg_src != 0)
7636     emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7637 
7638   p->equiv_reg_src = 0;
7639 }
7640 #endif
7641 
7642 /* Generate the prologue and epilogue RTL if the machine supports it.  Thread
7643    this into place with notes indicating where the prologue ends and where
7644    the epilogue begins.  Update the basic block information when possible.  */
7645 
7646 void
thread_prologue_and_epilogue_insns(f)7647 thread_prologue_and_epilogue_insns (f)
7648      rtx f ATTRIBUTE_UNUSED;
7649 {
7650   int inserted = 0;
7651   edge e;
7652 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7653   rtx seq;
7654 #endif
7655 #ifdef HAVE_prologue
7656   rtx prologue_end = NULL_RTX;
7657 #endif
7658 #if defined (HAVE_epilogue) || defined(HAVE_return)
7659   rtx epilogue_end = NULL_RTX;
7660 #endif
7661 
7662 #ifdef HAVE_prologue
7663   if (HAVE_prologue)
7664     {
7665       start_sequence ();
7666       seq = gen_prologue ();
7667       emit_insn (seq);
7668 
7669       /* Retain a map of the prologue insns.  */
7670       record_insns (seq, &prologue);
7671       prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7672 
7673       seq = get_insns ();
7674       end_sequence ();
7675 
7676       /* Can't deal with multiple successors of the entry block
7677          at the moment.  Function should always have at least one
7678          entry point.  */
7679       if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7680 	abort ();
7681 
7682       insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7683       inserted = 1;
7684     }
7685 #endif
7686 
7687   /* If the exit block has no non-fake predecessors, we don't need
7688      an epilogue.  */
7689   for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7690     if ((e->flags & EDGE_FAKE) == 0)
7691       break;
7692   if (e == NULL)
7693     goto epilogue_done;
7694 
7695 #ifdef HAVE_return
7696   if (optimize && HAVE_return)
7697     {
7698       /* If we're allowed to generate a simple return instruction,
7699 	 then by definition we don't need a full epilogue.  Examine
7700 	 the block that falls through to EXIT.   If it does not
7701 	 contain any code, examine its predecessors and try to
7702 	 emit (conditional) return instructions.  */
7703 
7704       basic_block last;
7705       edge e_next;
7706       rtx label;
7707 
7708       for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7709 	if (e->flags & EDGE_FALLTHRU)
7710 	  break;
7711       if (e == NULL)
7712 	goto epilogue_done;
7713       last = e->src;
7714 
7715       /* Verify that there are no active instructions in the last block.  */
7716       label = last->end;
7717       while (label && GET_CODE (label) != CODE_LABEL)
7718 	{
7719 	  if (active_insn_p (label))
7720 	    break;
7721 	  label = PREV_INSN (label);
7722 	}
7723 
7724       if (last->head == label && GET_CODE (label) == CODE_LABEL)
7725 	{
7726 	  rtx epilogue_line_note = NULL_RTX;
7727 
7728 	  /* Locate the line number associated with the closing brace,
7729 	     if we can find one.  */
7730 	  for (seq = get_last_insn ();
7731 	       seq && ! active_insn_p (seq);
7732 	       seq = PREV_INSN (seq))
7733 	    if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7734 	      {
7735 		epilogue_line_note = seq;
7736 		break;
7737 	      }
7738 
7739 	  for (e = last->pred; e; e = e_next)
7740 	    {
7741 	      basic_block bb = e->src;
7742 	      rtx jump;
7743 
7744 	      e_next = e->pred_next;
7745 	      if (bb == ENTRY_BLOCK_PTR)
7746 		continue;
7747 
7748 	      jump = bb->end;
7749 	      if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7750 		continue;
7751 
7752 	      /* If we have an unconditional jump, we can replace that
7753 		 with a simple return instruction.  */
7754 	      if (simplejump_p (jump))
7755 		{
7756 		  emit_return_into_block (bb, epilogue_line_note);
7757 		  delete_insn (jump);
7758 		}
7759 
7760 	      /* If we have a conditional jump, we can try to replace
7761 		 that with a conditional return instruction.  */
7762 	      else if (condjump_p (jump))
7763 		{
7764 		  if (! redirect_jump (jump, 0, 0))
7765 		    continue;
7766 
7767 		  /* If this block has only one successor, it both jumps
7768 		     and falls through to the fallthru block, so we can't
7769 		     delete the edge.  */
7770 		  if (bb->succ->succ_next == NULL)
7771 		    continue;
7772 		}
7773 	      else
7774 		continue;
7775 
7776 	      /* Fix up the CFG for the successful change we just made.  */
7777 	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
7778 	    }
7779 
7780 	  /* Emit a return insn for the exit fallthru block.  Whether
7781 	     this is still reachable will be determined later.  */
7782 
7783 	  emit_barrier_after (last->end);
7784 	  emit_return_into_block (last, epilogue_line_note);
7785 	  epilogue_end = last->end;
7786 	  last->succ->flags &= ~EDGE_FALLTHRU;
7787 	  goto epilogue_done;
7788 	}
7789     }
7790 #endif
7791 #ifdef HAVE_epilogue
7792   if (HAVE_epilogue)
7793     {
7794       /* Find the edge that falls through to EXIT.  Other edges may exist
7795 	 due to RETURN instructions, but those don't need epilogues.
7796 	 There really shouldn't be a mixture -- either all should have
7797 	 been converted or none, however...  */
7798 
7799       for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7800 	if (e->flags & EDGE_FALLTHRU)
7801 	  break;
7802       if (e == NULL)
7803 	goto epilogue_done;
7804 
7805       start_sequence ();
7806       epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7807 
7808       seq = gen_epilogue ();
7809 
7810 #ifdef INCOMING_RETURN_ADDR_RTX
7811       /* If this function returns with the stack depressed and we can support
7812 	 it, massage the epilogue to actually do that.  */
7813       if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7814 	  && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7815 	seq = keep_stack_depressed (seq);
7816 #endif
7817 
7818       emit_jump_insn (seq);
7819 
7820       /* Retain a map of the epilogue insns.  */
7821       record_insns (seq, &epilogue);
7822 
7823       seq = get_insns ();
7824       end_sequence ();
7825 
7826       insert_insn_on_edge (seq, e);
7827       inserted = 1;
7828     }
7829 #endif
7830 epilogue_done:
7831 
7832   if (inserted)
7833     commit_edge_insertions ();
7834 
7835 #ifdef HAVE_sibcall_epilogue
7836   /* Emit sibling epilogues before any sibling call sites.  */
7837   for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7838     {
7839       basic_block bb = e->src;
7840       rtx insn = bb->end;
7841       rtx i;
7842       rtx newinsn;
7843 
7844       if (GET_CODE (insn) != CALL_INSN
7845 	  || ! SIBLING_CALL_P (insn))
7846 	continue;
7847 
7848       start_sequence ();
7849       emit_insn (gen_sibcall_epilogue ());
7850       seq = get_insns ();
7851       end_sequence ();
7852 
7853       /* Retain a map of the epilogue insns.  Used in life analysis to
7854 	 avoid getting rid of sibcall epilogue insns.  Do this before we
7855 	 actually emit the sequence.  */
7856       record_insns (seq, &sibcall_epilogue);
7857 
7858       i = PREV_INSN (insn);
7859       newinsn = emit_insn_before (seq, insn);
7860     }
7861 #endif
7862 
7863 #ifdef HAVE_prologue
7864   if (prologue_end)
7865     {
7866       rtx insn, prev;
7867 
7868       /* GDB handles `break f' by setting a breakpoint on the first
7869 	 line note after the prologue.  Which means (1) that if
7870 	 there are line number notes before where we inserted the
7871 	 prologue we should move them, and (2) we should generate a
7872 	 note before the end of the first basic block, if there isn't
7873 	 one already there.
7874 
7875 	 ??? This behavior is completely broken when dealing with
7876 	 multiple entry functions.  We simply place the note always
7877 	 into first basic block and let alternate entry points
7878 	 to be missed.
7879        */
7880 
7881       for (insn = prologue_end; insn; insn = prev)
7882 	{
7883 	  prev = PREV_INSN (insn);
7884 	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7885 	    {
7886 	      /* Note that we cannot reorder the first insn in the
7887 		 chain, since rest_of_compilation relies on that
7888 		 remaining constant.  */
7889 	      if (prev == NULL)
7890 		break;
7891 	      reorder_insns (insn, insn, prologue_end);
7892 	    }
7893 	}
7894 
7895       /* Find the last line number note in the first block.  */
7896       for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7897 	   insn != prologue_end && insn;
7898 	   insn = PREV_INSN (insn))
7899 	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7900 	  break;
7901 
7902       /* If we didn't find one, make a copy of the first line number
7903 	 we run across.  */
7904       if (! insn)
7905 	{
7906 	  for (insn = next_active_insn (prologue_end);
7907 	       insn;
7908 	       insn = PREV_INSN (insn))
7909 	    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7910 	      {
7911 		emit_line_note_after (NOTE_SOURCE_FILE (insn),
7912 				      NOTE_LINE_NUMBER (insn),
7913 				      prologue_end);
7914 		break;
7915 	      }
7916 	}
7917     }
7918 #endif
7919 #ifdef HAVE_epilogue
7920   if (epilogue_end)
7921     {
7922       rtx insn, next;
7923 
7924       /* Similarly, move any line notes that appear after the epilogue.
7925          There is no need, however, to be quite so anal about the existence
7926 	 of such a note.  */
7927       for (insn = epilogue_end; insn; insn = next)
7928 	{
7929 	  next = NEXT_INSN (insn);
7930 	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7931 	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7932 	}
7933     }
7934 #endif
7935 }
7936 
7937 /* Reposition the prologue-end and epilogue-begin notes after instruction
7938    scheduling and delayed branch scheduling.  */
7939 
7940 void
reposition_prologue_and_epilogue_notes(f)7941 reposition_prologue_and_epilogue_notes (f)
7942      rtx f ATTRIBUTE_UNUSED;
7943 {
7944 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7945   rtx insn, last, note;
7946   int len;
7947 
7948   if ((len = VARRAY_SIZE (prologue)) > 0)
7949     {
7950       last = 0, note = 0;
7951 
7952       /* Scan from the beginning until we reach the last prologue insn.
7953 	 We apparently can't depend on basic_block_{head,end} after
7954 	 reorg has run.  */
7955       for (insn = f; insn; insn = NEXT_INSN (insn))
7956 	{
7957 	  if (GET_CODE (insn) == NOTE)
7958 	    {
7959 	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7960 		note = insn;
7961 	    }
7962 	  else if (contains (insn, prologue))
7963 	    {
7964 	      last = insn;
7965 	      if (--len == 0)
7966 		break;
7967 	    }
7968 	}
7969 
7970       if (last)
7971 	{
7972 	  rtx next;
7973 
7974 	  /* Find the prologue-end note if we haven't already, and
7975 	     move it to just after the last prologue insn.  */
7976 	  if (note == 0)
7977 	    {
7978 	      for (note = last; (note = NEXT_INSN (note));)
7979 		if (GET_CODE (note) == NOTE
7980 		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7981 		  break;
7982 	    }
7983 
7984 	  next = NEXT_INSN (note);
7985 
7986 	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
7987 	  if (GET_CODE (last) == CODE_LABEL)
7988 	    last = NEXT_INSN (last);
7989 	  reorder_insns (note, note, last);
7990 	}
7991     }
7992 
7993   if ((len = VARRAY_SIZE (epilogue)) > 0)
7994     {
7995       last = 0, note = 0;
7996 
7997       /* Scan from the end until we reach the first epilogue insn.
7998 	 We apparently can't depend on basic_block_{head,end} after
7999 	 reorg has run.  */
8000       for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8001 	{
8002 	  if (GET_CODE (insn) == NOTE)
8003 	    {
8004 	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
8005 		note = insn;
8006 	    }
8007 	  else if (contains (insn, epilogue))
8008 	    {
8009 	      last = insn;
8010 	      if (--len == 0)
8011 		break;
8012 	    }
8013 	}
8014 
8015       if (last)
8016 	{
8017 	  /* Find the epilogue-begin note if we haven't already, and
8018 	     move it to just before the first epilogue insn.  */
8019 	  if (note == 0)
8020 	    {
8021 	      for (note = insn; (note = PREV_INSN (note));)
8022 		if (GET_CODE (note) == NOTE
8023 		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
8024 		  break;
8025 	    }
8026 
8027 	  if (PREV_INSN (last) != note)
8028 	    reorder_insns (note, note, PREV_INSN (last));
8029 	}
8030     }
8031 #endif /* HAVE_prologue or HAVE_epilogue */
8032 }
8033 
8034 /* Called once, at initialization, to initialize function.c.  */
8035 
8036 void
init_function_once()8037 init_function_once ()
8038 {
8039   VARRAY_INT_INIT (prologue, 0, "prologue");
8040   VARRAY_INT_INIT (epilogue, 0, "epilogue");
8041   VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8042 }
8043 
8044 #include "gt-function.h"
8045