xref: /netbsd/sys/kern/subr_time.c (revision d731d091)
1 /*	$NetBSD: subr_time.c,v 1.38 2023/07/08 20:02:10 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
32  *	@(#)kern_time.c 8.4 (Berkeley) 5/26/95
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.38 2023/07/08 20:02:10 riastradh Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/kauth.h>
42 #include <sys/lwp.h>
43 #include <sys/timex.h>
44 #include <sys/time.h>
45 #include <sys/timetc.h>
46 #include <sys/intr.h>
47 
48 /*
49  * Compute number of hz until specified time.  Used to compute second
50  * argument to callout_reset() from an absolute time.
51  */
52 int
tvhzto(const struct timeval * tvp)53 tvhzto(const struct timeval *tvp)
54 {
55 	struct timeval now, tv;
56 
57 	tv = *tvp;	/* Don't modify original tvp. */
58 	getmicrotime(&now);
59 	timersub(&tv, &now, &tv);
60 	return tvtohz(&tv);
61 }
62 
63 /*
64  * Compute number of ticks in the specified amount of time.
65  */
66 int
tvtohz(const struct timeval * tv)67 tvtohz(const struct timeval *tv)
68 {
69 	unsigned long ticks;
70 	long sec, usec;
71 
72 	/*
73 	 * If the number of usecs in the whole seconds part of the time
74 	 * difference fits in a long, then the total number of usecs will
75 	 * fit in an unsigned long.  Compute the total and convert it to
76 	 * ticks, rounding up and adding 1 to allow for the current tick
77 	 * to expire.  Rounding also depends on unsigned long arithmetic
78 	 * to avoid overflow.
79 	 *
80 	 * Otherwise, if the number of ticks in the whole seconds part of
81 	 * the time difference fits in a long, then convert the parts to
82 	 * ticks separately and add, using similar rounding methods and
83 	 * overflow avoidance.  This method would work in the previous
84 	 * case, but it is slightly slower and assumes that hz is integral.
85 	 *
86 	 * Otherwise, round the time difference down to the maximum
87 	 * representable value.
88 	 *
89 	 * If ints are 32-bit, then the maximum value for any timeout in
90 	 * 10ms ticks is 248 days.
91 	 */
92 	sec = tv->tv_sec;
93 	usec = tv->tv_usec;
94 
95 	KASSERT(usec >= 0);
96 	KASSERT(usec < 1000000);
97 
98 	/* catch overflows in conversion time_t->int */
99 	if (tv->tv_sec > INT_MAX)
100 		return INT_MAX;
101 	if (tv->tv_sec < 0)
102 		return 0;
103 
104 	if (sec < 0 || (sec == 0 && usec == 0)) {
105 		/*
106 		 * Would expire now or in the past.  Return 0 ticks.
107 		 * This is different from the legacy tvhzto() interface,
108 		 * and callers need to check for it.
109 		 */
110 		ticks = 0;
111 	} else if (sec <= (LONG_MAX / 1000000))
112 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
113 		    / tick) + 1;
114 	else if (sec <= (LONG_MAX / hz))
115 		ticks = (sec * hz) +
116 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
117 	else
118 		ticks = LONG_MAX;
119 
120 	if (ticks > INT_MAX)
121 		ticks = INT_MAX;
122 
123 	return ((int)ticks);
124 }
125 
126 int
tshzto(const struct timespec * tsp)127 tshzto(const struct timespec *tsp)
128 {
129 	struct timespec now, ts;
130 
131 	ts = *tsp;	/* Don't modify original tsp. */
132 	getnanotime(&now);
133 	timespecsub(&ts, &now, &ts);
134 	return tstohz(&ts);
135 }
136 
137 int
tshztoup(const struct timespec * tsp)138 tshztoup(const struct timespec *tsp)
139 {
140 	struct timespec now, ts;
141 
142 	ts = *tsp;	/* Don't modify original tsp. */
143 	getnanouptime(&now);
144 	timespecsub(&ts, &now, &ts);
145 	return tstohz(&ts);
146 }
147 
148 /*
149  * Compute number of ticks in the specified amount of time.
150  */
151 int
tstohz(const struct timespec * ts)152 tstohz(const struct timespec *ts)
153 {
154 	struct timeval tv;
155 
156 	/*
157 	 * usec has great enough resolution for hz, so convert to a
158 	 * timeval and use tvtohz() above.
159 	 */
160 	TIMESPEC_TO_TIMEVAL(&tv, ts);
161 	return tvtohz(&tv);
162 }
163 
164 /*
165  * Check that a proposed value to load into the .it_value or
166  * .it_interval part of an interval timer is acceptable, and
167  * fix it to have at least minimal value (i.e. if it is less
168  * than the resolution of the clock, round it up.). We don't
169  * timeout the 0,0 value because this means to disable the
170  * timer or the interval.
171  */
172 int
itimerfix(struct timeval * tv)173 itimerfix(struct timeval *tv)
174 {
175 
176 	if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
177 		return EINVAL;
178 	if (tv->tv_sec < 0)
179 		return ETIMEDOUT;
180 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
181 		tv->tv_usec = tick;
182 	return 0;
183 }
184 
185 int
itimespecfix(struct timespec * ts)186 itimespecfix(struct timespec *ts)
187 {
188 
189 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
190 		return EINVAL;
191 	if (ts->tv_sec < 0)
192 		return ETIMEDOUT;
193 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
194 		ts->tv_nsec = tick * 1000;
195 	return 0;
196 }
197 
198 int
inittimeleft(struct timespec * ts,struct timespec * sleepts)199 inittimeleft(struct timespec *ts, struct timespec *sleepts)
200 {
201 
202 	if (itimespecfix(ts)) {
203 		return -1;
204 	}
205 	KASSERT(ts->tv_sec >= 0);
206 	getnanouptime(sleepts);
207 	return 0;
208 }
209 
210 int
gettimeleft(struct timespec * ts,struct timespec * sleepts)211 gettimeleft(struct timespec *ts, struct timespec *sleepts)
212 {
213 	struct timespec now, sleptts;
214 
215 	KASSERT(ts->tv_sec >= 0);
216 
217 	/*
218 	 * Reduce ts by elapsed time based on monotonic time scale.
219 	 */
220 	getnanouptime(&now);
221 	KASSERT(timespeccmp(sleepts, &now, <=));
222 	timespecsub(&now, sleepts, &sleptts);
223 	*sleepts = now;
224 
225 	if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
226 		timespecclear(ts);
227 		return 0;
228 	}
229 	timespecsub(ts, &sleptts, ts);
230 
231 	return tstohz(ts);
232 }
233 
234 void
clock_timeleft(clockid_t clockid,struct timespec * ts,struct timespec * sleepts)235 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
236 {
237 	struct timespec sleptts;
238 
239 	clock_gettime1(clockid, &sleptts);
240 	timespecadd(ts, sleepts, ts);
241 	timespecsub(ts, &sleptts, ts);
242 	*sleepts = sleptts;
243 }
244 
245 int
clock_gettime1(clockid_t clock_id,struct timespec * ts)246 clock_gettime1(clockid_t clock_id, struct timespec *ts)
247 {
248 	int error;
249 	struct proc *p;
250 
251 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
252 	if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
253 		pid_t pid = clock_id & CPUCLOCK_ID_MASK;
254 		struct timeval cputime;
255 
256 		mutex_enter(&proc_lock);
257 		p = pid == 0 ? curproc : proc_find(pid);
258 		if (p == NULL) {
259 			mutex_exit(&proc_lock);
260 			return ESRCH;
261 		}
262 		mutex_enter(p->p_lock);
263 		calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
264 		    &cputime);
265 		mutex_exit(p->p_lock);
266 		mutex_exit(&proc_lock);
267 
268 		// XXX: Perhaps create a special kauth type
269 		error = kauth_authorize_process(kauth_cred_get(),
270 		    KAUTH_PROCESS_PTRACE, p,
271 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
272 		if (error)
273 			return error;
274 
275 		TIMEVAL_TO_TIMESPEC(&cputime, ts);
276 		return 0;
277 	} else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
278 		struct lwp *l;
279 		lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
280 		struct bintime tm = {0, 0};
281 
282 		p = curproc;
283 		mutex_enter(p->p_lock);
284 		l = lid == 0 ? curlwp : lwp_find(p, lid);
285 		if (l == NULL) {
286 			mutex_exit(p->p_lock);
287 			return ESRCH;
288 		}
289 		addrulwp(l, &tm);
290 		mutex_exit(p->p_lock);
291 
292 		bintime2timespec(&tm, ts);
293 		return 0;
294 	}
295 
296 	switch (clock_id) {
297 	case CLOCK_REALTIME:
298 		nanotime(ts);
299 		break;
300 	case CLOCK_MONOTONIC:
301 		nanouptime(ts);
302 		break;
303 	default:
304 		return EINVAL;
305 	}
306 
307 	return 0;
308 }
309 
310 /*
311  * Calculate delta and convert from struct timespec to the ticks.
312  */
313 int
ts2timo(clockid_t clock_id,int flags,struct timespec * ts,int * timo,struct timespec * start)314 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
315     int *timo, struct timespec *start)
316 {
317 	int error;
318 	struct timespec tsd;
319 
320 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
321 		return EINVAL;
322 
323 	if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
324 		error = clock_gettime1(clock_id, &tsd);
325 		if (error != 0)
326 			return error;
327 		if (start != NULL)
328 			*start = tsd;
329 	}
330 
331 	if ((flags & TIMER_ABSTIME) != 0) {
332 		if (!timespecsubok(ts, &tsd))
333 			return EINVAL;
334 		timespecsub(ts, &tsd, ts);
335 	}
336 
337 	error = itimespecfix(ts);
338 	if (error != 0)
339 		return error;
340 
341 	if (ts->tv_sec == 0 && ts->tv_nsec == 0)
342 		return ETIMEDOUT;
343 
344 	*timo = tstohz(ts);
345 	KASSERT(*timo > 0);
346 
347 	return 0;
348 }
349 
350 bool
timespecaddok(const struct timespec * tsp,const struct timespec * usp)351 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
352 {
353 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
354 	time_t a = tsp->tv_sec;
355 	time_t b = usp->tv_sec;
356 	bool carry;
357 
358 	/*
359 	 * Caller is responsible for guaranteeing valid timespec
360 	 * inputs.  Any user-controlled inputs must be validated or
361 	 * adjusted.
362 	 */
363 	KASSERT(tsp->tv_nsec >= 0);
364 	KASSERT(usp->tv_nsec >= 0);
365 	KASSERT(tsp->tv_nsec < 1000000000L);
366 	KASSERT(usp->tv_nsec < 1000000000L);
367 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
368 
369 	/*
370 	 * Fail if a + b + carry overflows TIME_MAX, or if a + b
371 	 * overflows TIME_MIN because timespecadd adds the carry after
372 	 * computing a + b.
373 	 *
374 	 * Break it into two mutually exclusive and exhaustive cases:
375 	 * I. a >= 0
376 	 * II. a < 0
377 	 */
378 	carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
379 	if (a >= 0) {
380 		/*
381 		 * Case I: a >= 0.  If b < 0, then b + 1 <= 0, so
382 		 *
383 		 *	a + b + 1 <= a + 0 <= TIME_MAX,
384 		 *
385 		 * and
386 		 *
387 		 *	a + b >= 0 + b = b >= TIME_MIN,
388 		 *
389 		 * so this can't overflow.
390 		 *
391 		 * If b >= 0, then a + b + carry >= a + b >= 0, so
392 		 * negative results and thus results below TIME_MIN are
393 		 * impossible; we need only avoid
394 		 *
395 		 *	a + b + carry > TIME_MAX,
396 		 *
397 		 * which we will do by rejecting if
398 		 *
399 		 *	b > TIME_MAX - a - carry,
400 		 *
401 		 * which in turn is incidentally always false if b < 0
402 		 * so we don't need extra logic to discriminate on the
403 		 * b >= 0 and b < 0 cases.
404 		 *
405 		 * Since 0 <= a <= TIME_MAX, we know
406 		 *
407 		 *	0 <= TIME_MAX - a <= TIME_MAX,
408 		 *
409 		 * and hence
410 		 *
411 		 *	-1 <= TIME_MAX - a - 1 < TIME_MAX.
412 		 *
413 		 * So we can compute TIME_MAX - a - carry (i.e., either
414 		 * TIME_MAX - a or TIME_MAX - a - 1) safely without
415 		 * overflow.
416 		 */
417 		if (b > TIME_MAX - a - carry)
418 			return false;
419 	} else {
420 		/*
421 		 * Case II: a < 0.  If b >= 0, then since a + 1 <= 0,
422 		 * we have
423 		 *
424 		 *	a + b + 1 <= b <= TIME_MAX,
425 		 *
426 		 * and
427 		 *
428 		 *	a + b >= a >= TIME_MIN,
429 		 *
430 		 * so this can't overflow.
431 		 *
432 		 * If b < 0, then the intermediate a + b is negative
433 		 * and the outcome a + b + 1 is nonpositive, so we need
434 		 * only avoid
435 		 *
436 		 *	a + b < TIME_MIN,
437 		 *
438 		 * which we will do by rejecting if
439 		 *
440 		 *	a < TIME_MIN - b.
441 		 *
442 		 * (Reminder: The carry is added afterward in
443 		 * timespecadd, so to avoid overflow it is not enough
444 		 * to merely reject a + b + carry < TIME_MIN.)
445 		 *
446 		 * It is safe to compute the difference TIME_MIN - b
447 		 * because b is negative, so the result lies in
448 		 * (TIME_MIN, 0].
449 		 */
450 		if (b < 0 && a < TIME_MIN - b)
451 			return false;
452 	}
453 
454 	return true;
455 }
456 
457 bool
timespecsubok(const struct timespec * tsp,const struct timespec * usp)458 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
459 {
460 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
461 	time_t a = tsp->tv_sec, b = usp->tv_sec;
462 	bool borrow;
463 
464 	/*
465 	 * Caller is responsible for guaranteeing valid timespec
466 	 * inputs.  Any user-controlled inputs must be validated or
467 	 * adjusted.
468 	 */
469 	KASSERT(tsp->tv_nsec >= 0);
470 	KASSERT(usp->tv_nsec >= 0);
471 	KASSERT(tsp->tv_nsec < 1000000000L);
472 	KASSERT(usp->tv_nsec < 1000000000L);
473 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
474 
475 	/*
476 	 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
477 	 * overflows TIME_MAX because timespecsub subtracts the borrow
478 	 * after computing a - b.
479 	 *
480 	 * Break it into two mutually exclusive and exhaustive cases:
481 	 * I. a < 0
482 	 * II. a >= 0
483 	 */
484 	borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
485 	if (a < 0) {
486 		/*
487 		 * Case I: a < 0.  If b < 0, then -b - 1 >= 0, so
488 		 *
489 		 *	a - b - 1 >= a + 0 >= TIME_MIN,
490 		 *
491 		 * and, since a <= -1, provided that TIME_MIN <=
492 		 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
493 		 * fact, equality holds, under the assumption of
494 		 * two's-complement arithmetic),
495 		 *
496 		 *	a - b <= -1 - b = -b - 1 <= TIME_MAX,
497 		 *
498 		 * so this can't overflow.
499 		 */
500 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
501 
502 		/*
503 		 * If b >= 0, then a - b - borrow <= a - b < 0, so
504 		 * positive results and thus results above TIME_MAX are
505 		 * impossible; we need only avoid
506 		 *
507 		 *	a - b - borrow < TIME_MIN,
508 		 *
509 		 * which we will do by rejecting if
510 		 *
511 		 *	a < TIME_MIN + b + borrow.
512 		 *
513 		 * The right-hand side is safe to evaluate for any
514 		 * values of b and borrow as long as TIME_MIN +
515 		 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
516 		 * (Note: If time_t were unsigned, this would fail!)
517 		 *
518 		 * Note: Unlike Case I in timespecaddok, this criterion
519 		 * does not work for b < 0, nor can the roles of a and
520 		 * b in the inequality be reversed (e.g., -b < TIME_MIN
521 		 * - a + borrow) without extra cases like checking for
522 		 * b = TEST_MIN.
523 		 */
524 		CTASSERT(TIME_MIN < -1);
525 		if (b >= 0 && a < TIME_MIN + b + borrow)
526 			return false;
527 	} else {
528 		/*
529 		 * Case II: a >= 0.  If b >= 0, then
530 		 *
531 		 *	a - b <= a <= TIME_MAX,
532 		 *
533 		 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
534 		 * equality holds, under the assumption of
535 		 * two's-complement arithmetic)
536 		 *
537 		 *	a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
538 		 *
539 		 * so this can't overflow.
540 		 */
541 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
542 
543 		/*
544 		 * If b < 0, then a - b >= a >= 0, so negative results
545 		 * and thus results below TIME_MIN are impossible; we
546 		 * need only avoid
547 		 *
548 		 *	a - b > TIME_MAX,
549 		 *
550 		 * which we will do by rejecting if
551 		 *
552 		 *	a > TIME_MAX + b.
553 		 *
554 		 * (Reminder: The borrow is subtracted afterward in
555 		 * timespecsub, so to avoid overflow it is not enough
556 		 * to merely reject a - b - borrow > TIME_MAX.)
557 		 *
558 		 * It is safe to compute the sum TIME_MAX + b because b
559 		 * is negative, so the result lies in [0, TIME_MAX).
560 		 */
561 		if (b < 0 && a > TIME_MAX + b)
562 			return false;
563 	}
564 
565 	return true;
566 }
567