1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #ifdef __NetBSD__
34 #include <sys/types.h>
35 #include <uvm/uvm_extern.h>
36 #include <uvm/uvm_object.h>
37 #endif
38 
39 #include <drm/ttm/ttm_module.h>
40 #include <drm/ttm/ttm_bo_driver.h>
41 #include <drm/ttm/ttm_placement.h>
42 #include <linux/jiffies.h>
43 #include <linux/slab.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/file.h>
47 #include <linux/module.h>
48 #include <linux/atomic.h>
49 #include <linux/printk.h>
50 #include <linux/export.h>
51 
52 #define TTM_ASSERT_LOCKED(param)
53 #define TTM_DEBUG(fmt, arg...)	do {} while (0)
54 #define TTM_BO_HASH_ORDER 13
55 
56 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
57 #ifndef __NetBSD__
58 static void ttm_bo_global_kobj_release(struct kobject *kobj);
59 #endif
60 
61 #ifndef __NetBSD__		/* XXX sysfs */
62 static struct attribute ttm_bo_count = {
63 	.name = "bo_count",
64 	.mode = S_IRUGO
65 };
66 #endif
67 
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)68 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
69 {
70 	int i;
71 
72 	for (i = 0; i <= TTM_PL_PRIV5; i++)
73 		if (flags & (1 << i)) {
74 			*mem_type = i;
75 			return 0;
76 		}
77 	return -EINVAL;
78 }
79 
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
81 {
82 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83 
84 	pr_err("    has_type: %d\n", man->has_type);
85 	pr_err("    use_type: %d\n", man->use_type);
86 	pr_err("    flags: 0x%08X\n", man->flags);
87 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
88 	pr_err("    size: %"PRIu64"\n", man->size);
89 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
90 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
91 	if (mem_type != TTM_PL_SYSTEM)
92 		(*man->func->debug)(man, TTM_PFX);
93 }
94 
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96 					struct ttm_placement *placement)
97 {
98 	int i, ret, mem_type;
99 
100 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
101 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
102 	       bo->mem.size >> 20);
103 	for (i = 0; i < placement->num_placement; i++) {
104 		ret = ttm_mem_type_from_flags(placement->placement[i],
105 						&mem_type);
106 		if (ret)
107 			return;
108 		pr_err("  placement[%d]=0x%08X (%d)\n",
109 		       i, placement->placement[i], mem_type);
110 		ttm_mem_type_debug(bo->bdev, mem_type);
111 	}
112 }
113 
114 #ifndef __NetBSD__		/* XXX sysfs */
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)115 static ssize_t ttm_bo_global_show(struct kobject *kobj,
116 				  struct attribute *attr,
117 				  char *buffer)
118 {
119 	struct ttm_bo_global *glob =
120 		container_of(kobj, struct ttm_bo_global, kobj);
121 
122 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
123 			(unsigned long) atomic_read(&glob->bo_count));
124 }
125 
126 static struct attribute *ttm_bo_global_attrs[] = {
127 	&ttm_bo_count,
128 	NULL
129 };
130 
131 static const struct sysfs_ops ttm_bo_global_ops = {
132 	.show = &ttm_bo_global_show
133 };
134 
135 static struct kobj_type ttm_bo_glob_kobj_type  = {
136 	.release = &ttm_bo_global_kobj_release,
137 	.sysfs_ops = &ttm_bo_global_ops,
138 	.default_attrs = ttm_bo_global_attrs
139 };
140 #endif	/* __NetBSD__ */
141 
142 
ttm_bo_type_flags(unsigned type)143 static inline uint32_t ttm_bo_type_flags(unsigned type)
144 {
145 	return 1 << (type);
146 }
147 
ttm_bo_release_list(struct kref * list_kref)148 static void ttm_bo_release_list(struct kref *list_kref)
149 {
150 	struct ttm_buffer_object *bo =
151 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
152 	struct ttm_bo_device *bdev = bo->bdev;
153 	size_t acc_size = bo->acc_size;
154 
155 	BUG_ON(kref_referenced_p(&bo->list_kref));
156 	BUG_ON(kref_referenced_p(&bo->kref));
157 	BUG_ON(atomic_read(&bo->cpu_writers));
158 	BUG_ON(bo->sync_obj != NULL);
159 	BUG_ON(bo->mem.mm_node != NULL);
160 	BUG_ON(!list_empty(&bo->lru));
161 	BUG_ON(!list_empty(&bo->ddestroy));
162 
163 	if (bo->ttm)
164 		ttm_tt_destroy(bo->ttm);
165 	atomic_dec(&bo->glob->bo_count);
166 	if (bo->resv == &bo->ttm_resv)
167 		reservation_object_fini(&bo->ttm_resv);
168 #ifdef __NetBSD__
169 	linux_mutex_destroy(&bo->wu_mutex);
170 #else
171 	mutex_destroy(&bo->wu_mutex);
172 #endif
173 	if (bo->destroy)
174 		bo->destroy(bo);
175 	else {
176 		kfree(bo);
177 	}
178 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
179 }
180 
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)181 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
182 {
183 	struct ttm_bo_device *bdev = bo->bdev;
184 	struct ttm_mem_type_manager *man;
185 
186 	lockdep_assert_held(&bo->resv->lock.base);
187 
188 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
189 
190 		BUG_ON(!list_empty(&bo->lru));
191 
192 		man = &bdev->man[bo->mem.mem_type];
193 		list_add_tail(&bo->lru, &man->lru);
194 		kref_get(&bo->list_kref);
195 
196 		if (bo->ttm != NULL) {
197 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
198 			kref_get(&bo->list_kref);
199 		}
200 	}
201 }
202 EXPORT_SYMBOL(ttm_bo_add_to_lru);
203 
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)204 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
205 {
206 	int put_count = 0;
207 
208 	if (!list_empty(&bo->swap)) {
209 		list_del_init(&bo->swap);
210 		++put_count;
211 	}
212 	if (!list_empty(&bo->lru)) {
213 		list_del_init(&bo->lru);
214 		++put_count;
215 	}
216 
217 	/*
218 	 * TODO: Add a driver hook to delete from
219 	 * driver-specific LRU's here.
220 	 */
221 
222 	return put_count;
223 }
224 
ttm_bo_ref_bug(struct kref * list_kref)225 static void ttm_bo_ref_bug(struct kref *list_kref)
226 {
227 	BUG();
228 }
229 
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)230 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
231 			 bool never_free)
232 {
233 	kref_sub(&bo->list_kref, count,
234 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
235 }
236 
ttm_bo_del_sub_from_lru(struct ttm_buffer_object * bo)237 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
238 {
239 	int put_count;
240 
241 	spin_lock(&bo->glob->lru_lock);
242 	put_count = ttm_bo_del_from_lru(bo);
243 	spin_unlock(&bo->glob->lru_lock);
244 	ttm_bo_list_ref_sub(bo, put_count, true);
245 }
246 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
247 
248 /*
249  * Call bo->mutex locked.
250  */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)251 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
252 {
253 	struct ttm_bo_device *bdev = bo->bdev;
254 	struct ttm_bo_global *glob = bo->glob;
255 	int ret = 0;
256 	uint32_t page_flags = 0;
257 
258 	TTM_ASSERT_LOCKED(&bo->mutex);
259 	bo->ttm = NULL;
260 
261 	if (bdev->need_dma32)
262 		page_flags |= TTM_PAGE_FLAG_DMA32;
263 
264 	switch (bo->type) {
265 	case ttm_bo_type_device:
266 		if (zero_alloc)
267 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
268 	case ttm_bo_type_kernel:
269 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
270 						      page_flags, glob->dummy_read_page);
271 		if (unlikely(bo->ttm == NULL))
272 			ret = -ENOMEM;
273 		break;
274 	case ttm_bo_type_sg:
275 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
276 						      page_flags | TTM_PAGE_FLAG_SG,
277 						      glob->dummy_read_page);
278 		if (unlikely(bo->ttm == NULL)) {
279 			ret = -ENOMEM;
280 			break;
281 		}
282 		bo->ttm->sg = bo->sg;
283 		break;
284 	default:
285 		pr_err("Illegal buffer object type\n");
286 		ret = -EINVAL;
287 		break;
288 	}
289 
290 #ifdef __NetBSD__
291 	if (ret)
292 		return ret;
293 
294 	/*
295 	 * XXX This is gross.  We ought to do it the other way around:
296 	 * set the uao to have the main uvm object's lock.  However,
297 	 * uvm_obj_setlock is not safe on uvm_aobjs.
298 	 */
299 	mutex_obj_hold(bo->ttm->swap_storage->vmobjlock);
300 	uvm_obj_setlock(&bo->uvmobj, bo->ttm->swap_storage->vmobjlock);
301 	return 0;
302 #else
303 	return ret;
304 #endif
305 }
306 
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_gpu)307 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
308 				  struct ttm_mem_reg *mem,
309 				  bool evict, bool interruptible,
310 				  bool no_wait_gpu)
311 {
312 	struct ttm_bo_device *bdev = bo->bdev;
313 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
314 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
315 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
316 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
317 	int ret = 0;
318 
319 	if (old_is_pci || new_is_pci ||
320 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
321 		ret = ttm_mem_io_lock(old_man, true);
322 		if (unlikely(ret != 0))
323 			goto out_err;
324 		ttm_bo_unmap_virtual_locked(bo);
325 		ttm_mem_io_unlock(old_man);
326 	}
327 
328 	/*
329 	 * Create and bind a ttm if required.
330 	 */
331 
332 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
333 		if (bo->ttm == NULL) {
334 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
335 			ret = ttm_bo_add_ttm(bo, zero);
336 			if (ret)
337 				goto out_err;
338 		}
339 
340 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
341 		if (ret)
342 			goto out_err;
343 
344 		if (mem->mem_type != TTM_PL_SYSTEM) {
345 			ret = ttm_tt_bind(bo->ttm, mem);
346 			if (ret)
347 				goto out_err;
348 		}
349 
350 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
351 			if (bdev->driver->move_notify)
352 				bdev->driver->move_notify(bo, mem);
353 			bo->mem = *mem;
354 			mem->mm_node = NULL;
355 			goto moved;
356 		}
357 	}
358 
359 	if (bdev->driver->move_notify)
360 		bdev->driver->move_notify(bo, mem);
361 
362 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
363 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
364 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
365 	else if (bdev->driver->move)
366 		ret = bdev->driver->move(bo, evict, interruptible,
367 					 no_wait_gpu, mem);
368 	else
369 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
370 
371 	if (ret) {
372 		if (bdev->driver->move_notify) {
373 			struct ttm_mem_reg tmp_mem = *mem;
374 			*mem = bo->mem;
375 			bo->mem = tmp_mem;
376 			bdev->driver->move_notify(bo, mem);
377 			bo->mem = *mem;
378 			*mem = tmp_mem;
379 		}
380 
381 		goto out_err;
382 	}
383 
384 moved:
385 	if (bo->evicted) {
386 		if (bdev->driver->invalidate_caches) {
387 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
388 			if (ret)
389 				pr_err("Can not flush read caches\n");
390 		}
391 		bo->evicted = false;
392 	}
393 
394 	if (bo->mem.mm_node) {
395 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
396 		    bdev->man[bo->mem.mem_type].gpu_offset;
397 		bo->cur_placement = bo->mem.placement;
398 	} else
399 		bo->offset = 0;
400 
401 	return 0;
402 
403 out_err:
404 	new_man = &bdev->man[bo->mem.mem_type];
405 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
406 		ttm_tt_unbind(bo->ttm);
407 		ttm_tt_destroy(bo->ttm);
408 		bo->ttm = NULL;
409 	}
410 
411 	return ret;
412 }
413 
414 /**
415  * Call bo::reserved.
416  * Will release GPU memory type usage on destruction.
417  * This is the place to put in driver specific hooks to release
418  * driver private resources.
419  * Will release the bo::reserved lock.
420  */
421 
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)422 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
423 {
424 	if (bo->bdev->driver->move_notify)
425 		bo->bdev->driver->move_notify(bo, NULL);
426 
427 	if (bo->ttm) {
428 		ttm_tt_unbind(bo->ttm);
429 		ttm_tt_destroy(bo->ttm);
430 		bo->ttm = NULL;
431 	}
432 	ttm_bo_mem_put(bo, &bo->mem);
433 
434 	ww_mutex_unlock (&bo->resv->lock);
435 }
436 
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)437 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
438 {
439 	struct ttm_bo_device *bdev = bo->bdev;
440 	struct ttm_bo_global *glob = bo->glob;
441 	struct ttm_bo_driver *driver = bdev->driver;
442 	void *sync_obj = NULL;
443 	int put_count;
444 	int ret;
445 
446 	spin_lock(&glob->lru_lock);
447 	ret = __ttm_bo_reserve(bo, false, true, false, 0);
448 
449 	spin_lock(&bdev->fence_lock);
450 	(void) ttm_bo_wait(bo, false, false, true);
451 	if (!ret && !bo->sync_obj) {
452 		spin_unlock(&bdev->fence_lock);
453 		put_count = ttm_bo_del_from_lru(bo);
454 
455 		spin_unlock(&glob->lru_lock);
456 		ttm_bo_cleanup_memtype_use(bo);
457 
458 		ttm_bo_list_ref_sub(bo, put_count, true);
459 
460 		return;
461 	}
462 	if (bo->sync_obj)
463 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
464 	spin_unlock(&bdev->fence_lock);
465 
466 	if (!ret) {
467 
468 		/*
469 		 * Make NO_EVICT bos immediately available to
470 		 * shrinkers, now that they are queued for
471 		 * destruction.
472 		 */
473 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
474 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
475 			ttm_bo_add_to_lru(bo);
476 		}
477 
478 		__ttm_bo_unreserve(bo);
479 	}
480 
481 	kref_get(&bo->list_kref);
482 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
483 	spin_unlock(&glob->lru_lock);
484 
485 	if (sync_obj) {
486 		driver->sync_obj_flush(sync_obj);
487 		driver->sync_obj_unref(&sync_obj);
488 	}
489 	schedule_delayed_work(&bdev->wq,
490 			      ((DRM_HZ / 100) < 1) ? 1 : DRM_HZ / 100);
491 }
492 
493 /**
494  * function ttm_bo_cleanup_refs_and_unlock
495  * If bo idle, remove from delayed- and lru lists, and unref.
496  * If not idle, do nothing.
497  *
498  * Must be called with lru_lock and reservation held, this function
499  * will drop both before returning.
500  *
501  * @interruptible         Any sleeps should occur interruptibly.
502  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
503  */
504 
ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_gpu)505 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
506 					  bool interruptible,
507 					  bool no_wait_gpu)
508 {
509 	struct ttm_bo_device *bdev = bo->bdev;
510 	struct ttm_bo_driver *driver = bdev->driver;
511 	struct ttm_bo_global *glob = bo->glob;
512 	int put_count;
513 	int ret;
514 
515 	spin_lock(&bdev->fence_lock);
516 	ret = ttm_bo_wait(bo, false, false, true);
517 
518 	if (ret && !no_wait_gpu) {
519 		void *sync_obj;
520 
521 		/*
522 		 * Take a reference to the fence and unreserve,
523 		 * at this point the buffer should be dead, so
524 		 * no new sync objects can be attached.
525 		 */
526 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
527 		spin_unlock(&bdev->fence_lock);
528 
529 		__ttm_bo_unreserve(bo);
530 		spin_unlock(&glob->lru_lock);
531 
532 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
533 		driver->sync_obj_unref(&sync_obj);
534 		if (ret)
535 			return ret;
536 
537 		/*
538 		 * remove sync_obj with ttm_bo_wait, the wait should be
539 		 * finished, and no new wait object should have been added.
540 		 */
541 		spin_lock(&bdev->fence_lock);
542 		ret = ttm_bo_wait(bo, false, false, true);
543 		WARN_ON(ret);
544 		spin_unlock(&bdev->fence_lock);
545 		if (ret)
546 			return ret;
547 
548 		spin_lock(&glob->lru_lock);
549 		ret = __ttm_bo_reserve(bo, false, true, false, 0);
550 
551 		/*
552 		 * We raced, and lost, someone else holds the reservation now,
553 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
554 		 *
555 		 * Even if it's not the case, because we finished waiting any
556 		 * delayed destruction would succeed, so just return success
557 		 * here.
558 		 */
559 		if (ret) {
560 			spin_unlock(&glob->lru_lock);
561 			return 0;
562 		}
563 	} else
564 		spin_unlock(&bdev->fence_lock);
565 
566 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
567 		__ttm_bo_unreserve(bo);
568 		spin_unlock(&glob->lru_lock);
569 		return ret;
570 	}
571 
572 	put_count = ttm_bo_del_from_lru(bo);
573 	list_del_init(&bo->ddestroy);
574 	++put_count;
575 
576 	spin_unlock(&glob->lru_lock);
577 	ttm_bo_cleanup_memtype_use(bo);
578 
579 	ttm_bo_list_ref_sub(bo, put_count, true);
580 
581 	return 0;
582 }
583 
584 /**
585  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
586  * encountered buffers.
587  */
588 
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)589 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
590 {
591 	struct ttm_bo_global *glob = bdev->glob;
592 	struct ttm_buffer_object *entry = NULL;
593 	int ret = 0;
594 
595 	spin_lock(&glob->lru_lock);
596 	if (list_empty(&bdev->ddestroy))
597 		goto out_unlock;
598 
599 	entry = list_first_entry(&bdev->ddestroy,
600 		struct ttm_buffer_object, ddestroy);
601 	kref_get(&entry->list_kref);
602 
603 	for (;;) {
604 		struct ttm_buffer_object *nentry = NULL;
605 
606 		if (entry->ddestroy.next != &bdev->ddestroy) {
607 			nentry = list_first_entry(&entry->ddestroy,
608 				struct ttm_buffer_object, ddestroy);
609 			kref_get(&nentry->list_kref);
610 		}
611 
612 		ret = __ttm_bo_reserve(entry, false, true, false, 0);
613 		if (remove_all && ret) {
614 			spin_unlock(&glob->lru_lock);
615 			ret = __ttm_bo_reserve(entry, false, false,
616 					       false, 0);
617 			spin_lock(&glob->lru_lock);
618 		}
619 
620 		if (!ret)
621 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
622 							     !remove_all);
623 		else
624 			spin_unlock(&glob->lru_lock);
625 
626 		kref_put(&entry->list_kref, ttm_bo_release_list);
627 		entry = nentry;
628 
629 		if (ret || !entry)
630 			goto out;
631 
632 		spin_lock(&glob->lru_lock);
633 		if (list_empty(&entry->ddestroy))
634 			break;
635 	}
636 
637 out_unlock:
638 	spin_unlock(&glob->lru_lock);
639 out:
640 	if (entry)
641 		kref_put(&entry->list_kref, ttm_bo_release_list);
642 	return ret;
643 }
644 
ttm_bo_delayed_workqueue(struct work_struct * work)645 static void ttm_bo_delayed_workqueue(struct work_struct *work)
646 {
647 	struct ttm_bo_device *bdev =
648 	    container_of(work, struct ttm_bo_device, wq.work);
649 
650 	if (ttm_bo_delayed_delete(bdev, false)) {
651 		schedule_delayed_work(&bdev->wq,
652 				      ((DRM_HZ / 100) < 1) ? 1 : DRM_HZ / 100);
653 	}
654 }
655 
ttm_bo_release(struct kref * kref)656 static void ttm_bo_release(struct kref *kref)
657 {
658 	struct ttm_buffer_object *bo =
659 	    container_of(kref, struct ttm_buffer_object, kref);
660 	struct ttm_bo_device *bdev = bo->bdev;
661 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
662 
663 #ifdef __NetBSD__
664 	uvm_obj_destroy(&bo->uvmobj, true);
665 #endif
666 	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
667 #ifdef __NetBSD__
668 	drm_vma_node_destroy(&bo->vma_node);
669 #endif
670 	ttm_mem_io_lock(man, false);
671 	ttm_mem_io_free_vm(bo);
672 	ttm_mem_io_unlock(man);
673 	ttm_bo_cleanup_refs_or_queue(bo);
674 	kref_put(&bo->list_kref, ttm_bo_release_list);
675 }
676 
ttm_bo_unref(struct ttm_buffer_object ** p_bo)677 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
678 {
679 	struct ttm_buffer_object *bo = *p_bo;
680 
681 	*p_bo = NULL;
682 	kref_put(&bo->kref, ttm_bo_release);
683 }
684 EXPORT_SYMBOL(ttm_bo_unref);
685 
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)686 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
687 {
688 	return cancel_delayed_work_sync(&bdev->wq);
689 }
690 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
691 
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)692 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
693 {
694 	if (resched)
695 		schedule_delayed_work(&bdev->wq,
696 				      ((DRM_HZ / 100) < 1) ? 1 : DRM_HZ / 100);
697 }
698 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
699 
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_gpu)700 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
701 			bool no_wait_gpu)
702 {
703 	struct ttm_bo_device *bdev = bo->bdev;
704 	struct ttm_mem_reg evict_mem;
705 	struct ttm_placement placement;
706 	int ret = 0;
707 
708 	spin_lock(&bdev->fence_lock);
709 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
710 	spin_unlock(&bdev->fence_lock);
711 
712 	if (unlikely(ret != 0)) {
713 		if (ret != -ERESTARTSYS) {
714 			pr_err("Failed to expire sync object before buffer eviction\n");
715 		}
716 		goto out;
717 	}
718 
719 	lockdep_assert_held(&bo->resv->lock.base);
720 
721 	evict_mem = bo->mem;
722 	evict_mem.mm_node = NULL;
723 	evict_mem.bus.io_reserved_vm = false;
724 	evict_mem.bus.io_reserved_count = 0;
725 
726 	placement.fpfn = 0;
727 	placement.lpfn = 0;
728 	placement.num_placement = 0;
729 	placement.num_busy_placement = 0;
730 	bdev->driver->evict_flags(bo, &placement);
731 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
732 				no_wait_gpu);
733 	if (ret) {
734 		if (ret != -ERESTARTSYS) {
735 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
736 			       bo);
737 			ttm_bo_mem_space_debug(bo, &placement);
738 		}
739 		goto out;
740 	}
741 
742 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
743 				     no_wait_gpu);
744 	if (ret) {
745 		if (ret != -ERESTARTSYS)
746 			pr_err("Buffer eviction failed\n");
747 		ttm_bo_mem_put(bo, &evict_mem);
748 		goto out;
749 	}
750 	bo->evicted = true;
751 out:
752 	return ret;
753 }
754 
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_gpu)755 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
756 				uint32_t mem_type,
757 				bool interruptible,
758 				bool no_wait_gpu)
759 {
760 	struct ttm_bo_global *glob = bdev->glob;
761 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
762 	struct ttm_buffer_object *bo;
763 	int ret = -EBUSY, put_count;
764 
765 	spin_lock(&glob->lru_lock);
766 	list_for_each_entry(bo, &man->lru, lru) {
767 		ret = __ttm_bo_reserve(bo, false, true, false, 0);
768 		if (!ret)
769 			break;
770 	}
771 
772 	if (ret) {
773 		spin_unlock(&glob->lru_lock);
774 		return ret;
775 	}
776 
777 	kref_get(&bo->list_kref);
778 
779 	if (!list_empty(&bo->ddestroy)) {
780 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
781 						     no_wait_gpu);
782 		kref_put(&bo->list_kref, ttm_bo_release_list);
783 		return ret;
784 	}
785 
786 	put_count = ttm_bo_del_from_lru(bo);
787 	spin_unlock(&glob->lru_lock);
788 
789 	BUG_ON(ret != 0);
790 
791 	ttm_bo_list_ref_sub(bo, put_count, true);
792 
793 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
794 	ttm_bo_unreserve(bo);
795 
796 	kref_put(&bo->list_kref, ttm_bo_release_list);
797 	return ret;
798 }
799 
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)800 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
801 {
802 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
803 
804 	if (mem->mm_node)
805 		(*man->func->put_node)(man, mem);
806 }
807 EXPORT_SYMBOL(ttm_bo_mem_put);
808 
809 /**
810  * Repeatedly evict memory from the LRU for @mem_type until we create enough
811  * space, or we've evicted everything and there isn't enough space.
812  */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_gpu)813 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
814 					uint32_t mem_type,
815 					struct ttm_placement *placement,
816 					struct ttm_mem_reg *mem,
817 					bool interruptible,
818 					bool no_wait_gpu)
819 {
820 	struct ttm_bo_device *bdev = bo->bdev;
821 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
822 	int ret;
823 
824 	do {
825 		ret = (*man->func->get_node)(man, bo, placement, mem);
826 		if (unlikely(ret != 0))
827 			return ret;
828 		if (mem->mm_node)
829 			break;
830 		ret = ttm_mem_evict_first(bdev, mem_type,
831 					  interruptible, no_wait_gpu);
832 		if (unlikely(ret != 0))
833 			return ret;
834 	} while (1);
835 	if (mem->mm_node == NULL)
836 		return -ENOMEM;
837 	mem->mem_type = mem_type;
838 	return 0;
839 }
840 
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)841 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
842 				      uint32_t cur_placement,
843 				      uint32_t proposed_placement)
844 {
845 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
846 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
847 
848 	/**
849 	 * Keep current caching if possible.
850 	 */
851 
852 	if ((cur_placement & caching) != 0)
853 		result |= (cur_placement & caching);
854 	else if ((man->default_caching & caching) != 0)
855 		result |= man->default_caching;
856 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
857 		result |= TTM_PL_FLAG_CACHED;
858 	else if ((TTM_PL_FLAG_WC & caching) != 0)
859 		result |= TTM_PL_FLAG_WC;
860 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
861 		result |= TTM_PL_FLAG_UNCACHED;
862 
863 	return result;
864 }
865 
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)866 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
867 				 uint32_t mem_type,
868 				 uint32_t proposed_placement,
869 				 uint32_t *masked_placement)
870 {
871 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
872 
873 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
874 		return false;
875 
876 	if ((proposed_placement & man->available_caching) == 0)
877 		return false;
878 
879 	cur_flags |= (proposed_placement & man->available_caching);
880 
881 	*masked_placement = cur_flags;
882 	return true;
883 }
884 
885 /**
886  * Creates space for memory region @mem according to its type.
887  *
888  * This function first searches for free space in compatible memory types in
889  * the priority order defined by the driver.  If free space isn't found, then
890  * ttm_bo_mem_force_space is attempted in priority order to evict and find
891  * space.
892  */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_gpu)893 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
894 			struct ttm_placement *placement,
895 			struct ttm_mem_reg *mem,
896 			bool interruptible,
897 			bool no_wait_gpu)
898 {
899 	struct ttm_bo_device *bdev = bo->bdev;
900 	struct ttm_mem_type_manager *man;
901 	uint32_t mem_type = TTM_PL_SYSTEM;
902 	uint32_t cur_flags = 0;
903 	bool type_found = false;
904 	bool type_ok = false;
905 	bool has_erestartsys = false;
906 	int i, ret;
907 
908 	mem->mm_node = NULL;
909 	for (i = 0; i < placement->num_placement; ++i) {
910 		ret = ttm_mem_type_from_flags(placement->placement[i],
911 						&mem_type);
912 		if (ret)
913 			return ret;
914 		man = &bdev->man[mem_type];
915 
916 		type_ok = ttm_bo_mt_compatible(man,
917 						mem_type,
918 						placement->placement[i],
919 						&cur_flags);
920 
921 		if (!type_ok)
922 			continue;
923 
924 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
925 						  cur_flags);
926 		/*
927 		 * Use the access and other non-mapping-related flag bits from
928 		 * the memory placement flags to the current flags
929 		 */
930 		ttm_flag_masked(&cur_flags, placement->placement[i],
931 				~TTM_PL_MASK_MEMTYPE);
932 
933 		if (mem_type == TTM_PL_SYSTEM)
934 			break;
935 
936 		if (man->has_type && man->use_type) {
937 			type_found = true;
938 			ret = (*man->func->get_node)(man, bo, placement, mem);
939 			if (unlikely(ret))
940 				return ret;
941 		}
942 		if (mem->mm_node)
943 			break;
944 	}
945 
946 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
947 		mem->mem_type = mem_type;
948 		mem->placement = cur_flags;
949 		return 0;
950 	}
951 
952 	if (!type_found)
953 		return -EINVAL;
954 
955 	for (i = 0; i < placement->num_busy_placement; ++i) {
956 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
957 						&mem_type);
958 		if (ret)
959 			return ret;
960 		man = &bdev->man[mem_type];
961 		if (!man->has_type)
962 			continue;
963 		if (!ttm_bo_mt_compatible(man,
964 						mem_type,
965 						placement->busy_placement[i],
966 						&cur_flags))
967 			continue;
968 
969 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
970 						  cur_flags);
971 		/*
972 		 * Use the access and other non-mapping-related flag bits from
973 		 * the memory placement flags to the current flags
974 		 */
975 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
976 				~TTM_PL_MASK_MEMTYPE);
977 
978 
979 		if (mem_type == TTM_PL_SYSTEM) {
980 			mem->mem_type = mem_type;
981 			mem->placement = cur_flags;
982 			mem->mm_node = NULL;
983 			return 0;
984 		}
985 
986 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
987 						interruptible, no_wait_gpu);
988 		if (ret == 0 && mem->mm_node) {
989 			mem->placement = cur_flags;
990 			return 0;
991 		}
992 		if (ret == -ERESTARTSYS)
993 			has_erestartsys = true;
994 	}
995 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
996 	return ret;
997 }
998 EXPORT_SYMBOL(ttm_bo_mem_space);
999 
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_gpu)1000 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1001 			struct ttm_placement *placement,
1002 			bool interruptible,
1003 			bool no_wait_gpu)
1004 {
1005 	int ret = 0;
1006 	struct ttm_mem_reg mem;
1007 	struct ttm_bo_device *bdev = bo->bdev;
1008 
1009 	lockdep_assert_held(&bo->resv->lock.base);
1010 
1011 	/*
1012 	 * FIXME: It's possible to pipeline buffer moves.
1013 	 * Have the driver move function wait for idle when necessary,
1014 	 * instead of doing it here.
1015 	 */
1016 	spin_lock(&bdev->fence_lock);
1017 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1018 	spin_unlock(&bdev->fence_lock);
1019 	if (ret)
1020 		return ret;
1021 	mem.num_pages = bo->num_pages;
1022 	mem.size = mem.num_pages << PAGE_SHIFT;
1023 	mem.page_alignment = bo->mem.page_alignment;
1024 	mem.bus.is_iomem = false;
1025 	mem.bus.io_reserved_vm = false;
1026 	mem.bus.io_reserved_count = 0;
1027 	/*
1028 	 * Determine where to move the buffer.
1029 	 */
1030 	ret = ttm_bo_mem_space(bo, placement, &mem,
1031 			       interruptible, no_wait_gpu);
1032 	if (ret)
1033 		goto out_unlock;
1034 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1035 				     interruptible, no_wait_gpu);
1036 out_unlock:
1037 	if (ret && mem.mm_node)
1038 		ttm_bo_mem_put(bo, &mem);
1039 	return ret;
1040 }
1041 
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem,uint32_t * new_flags)1042 static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1043 			      struct ttm_mem_reg *mem,
1044 			      uint32_t *new_flags)
1045 {
1046 	int i;
1047 
1048 	if (mem->mm_node && placement->lpfn != 0 &&
1049 	    (mem->start < placement->fpfn ||
1050 	     mem->start + mem->num_pages > placement->lpfn))
1051 		return false;
1052 
1053 	for (i = 0; i < placement->num_placement; i++) {
1054 		*new_flags = placement->placement[i];
1055 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1056 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1057 			return true;
1058 	}
1059 
1060 	for (i = 0; i < placement->num_busy_placement; i++) {
1061 		*new_flags = placement->busy_placement[i];
1062 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1063 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1064 			return true;
1065 	}
1066 
1067 	return false;
1068 }
1069 
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_gpu)1070 int ttm_bo_validate(struct ttm_buffer_object *bo,
1071 			struct ttm_placement *placement,
1072 			bool interruptible,
1073 			bool no_wait_gpu)
1074 {
1075 	int ret;
1076 	uint32_t new_flags;
1077 
1078 	lockdep_assert_held(&bo->resv->lock.base);
1079 	/* Check that range is valid */
1080 	if (placement->lpfn || placement->fpfn)
1081 		if (placement->fpfn > placement->lpfn ||
1082 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1083 			return -EINVAL;
1084 	/*
1085 	 * Check whether we need to move buffer.
1086 	 */
1087 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1088 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1089 					 no_wait_gpu);
1090 		if (ret)
1091 			return ret;
1092 	} else {
1093 		/*
1094 		 * Use the access and other non-mapping-related flag bits from
1095 		 * the compatible memory placement flags to the active flags
1096 		 */
1097 		ttm_flag_masked(&bo->mem.placement, new_flags,
1098 				~TTM_PL_MASK_MEMTYPE);
1099 	}
1100 	/*
1101 	 * We might need to add a TTM.
1102 	 */
1103 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1104 		ret = ttm_bo_add_ttm(bo, true);
1105 		if (ret)
1106 			return ret;
1107 	}
1108 	return 0;
1109 }
1110 EXPORT_SYMBOL(ttm_bo_validate);
1111 
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1112 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1113 				struct ttm_placement *placement)
1114 {
1115 	BUG_ON((placement->fpfn || placement->lpfn) &&
1116 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1117 
1118 	return 0;
1119 }
1120 
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,struct sg_table * sg,void (* destroy)(struct ttm_buffer_object *))1121 int ttm_bo_init(struct ttm_bo_device *bdev,
1122 		struct ttm_buffer_object *bo,
1123 		unsigned long size,
1124 		enum ttm_bo_type type,
1125 		struct ttm_placement *placement,
1126 		uint32_t page_alignment,
1127 		bool interruptible,
1128 		struct file *persistent_swap_storage,
1129 		size_t acc_size,
1130 		struct sg_table *sg,
1131 		void (*destroy) (struct ttm_buffer_object *))
1132 {
1133 	int ret = 0;
1134 	unsigned long num_pages;
1135 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1136 	bool locked;
1137 
1138 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1139 	if (ret) {
1140 		pr_err("Out of kernel memory\n");
1141 		if (destroy)
1142 			(*destroy)(bo);
1143 		else
1144 			kfree(bo);
1145 		return -ENOMEM;
1146 	}
1147 
1148 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1149 	if (num_pages == 0) {
1150 		pr_err("Illegal buffer object size\n");
1151 		if (destroy)
1152 			(*destroy)(bo);
1153 		else
1154 			kfree(bo);
1155 		ttm_mem_global_free(mem_glob, acc_size);
1156 		return -EINVAL;
1157 	}
1158 	bo->destroy = destroy;
1159 
1160 	kref_init(&bo->kref);
1161 	kref_init(&bo->list_kref);
1162 	atomic_set(&bo->cpu_writers, 0);
1163 	INIT_LIST_HEAD(&bo->lru);
1164 	INIT_LIST_HEAD(&bo->ddestroy);
1165 	INIT_LIST_HEAD(&bo->swap);
1166 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1167 #ifdef __NetBSD__
1168 	linux_mutex_init(&bo->wu_mutex);
1169 #else
1170 	mutex_init(&bo->wu_mutex);
1171 #endif
1172 	bo->bdev = bdev;
1173 	bo->glob = bdev->glob;
1174 	bo->type = type;
1175 	bo->num_pages = num_pages;
1176 	bo->mem.size = num_pages << PAGE_SHIFT;
1177 	bo->mem.mem_type = TTM_PL_SYSTEM;
1178 	bo->mem.num_pages = bo->num_pages;
1179 	bo->mem.mm_node = NULL;
1180 	bo->mem.page_alignment = page_alignment;
1181 	bo->mem.bus.io_reserved_vm = false;
1182 	bo->mem.bus.io_reserved_count = 0;
1183 	bo->priv_flags = 0;
1184 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1185 	bo->persistent_swap_storage = persistent_swap_storage;
1186 	bo->acc_size = acc_size;
1187 	bo->sg = sg;
1188 	bo->resv = &bo->ttm_resv;
1189 	reservation_object_init(bo->resv);
1190 	atomic_inc(&bo->glob->bo_count);
1191 #ifdef __NetBSD__
1192 	drm_vma_node_init(&bo->vma_node);
1193 	uvm_obj_init(&bo->uvmobj, bdev->driver->ttm_uvm_ops, true, 1);
1194 #else
1195 	drm_vma_node_reset(&bo->vma_node);
1196 #endif
1197 
1198 	ret = ttm_bo_check_placement(bo, placement);
1199 
1200 	/*
1201 	 * For ttm_bo_type_device buffers, allocate
1202 	 * address space from the device.
1203 	 */
1204 	if (likely(!ret) &&
1205 	    (bo->type == ttm_bo_type_device ||
1206 	     bo->type == ttm_bo_type_sg))
1207 		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1208 					 bo->mem.num_pages);
1209 
1210 	locked = ww_mutex_trylock(&bo->resv->lock);
1211 	WARN_ON(!locked);
1212 
1213 	if (likely(!ret))
1214 		ret = ttm_bo_validate(bo, placement, interruptible, false);
1215 
1216 	ttm_bo_unreserve(bo);
1217 
1218 	if (unlikely(ret))
1219 		ttm_bo_unref(&bo);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(ttm_bo_init);
1224 
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1225 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1226 		       unsigned long bo_size,
1227 		       unsigned struct_size)
1228 {
1229 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1230 	size_t size = 0;
1231 
1232 	size += ttm_round_pot(struct_size);
1233 	size += PAGE_ALIGN(npages * sizeof(void *));
1234 	size += ttm_round_pot(sizeof(struct ttm_tt));
1235 	return size;
1236 }
1237 EXPORT_SYMBOL(ttm_bo_acc_size);
1238 
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1239 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1240 			   unsigned long bo_size,
1241 			   unsigned struct_size)
1242 {
1243 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1244 	size_t size = 0;
1245 
1246 	size += ttm_round_pot(struct_size);
1247 	size += PAGE_ALIGN(npages * sizeof(void *));
1248 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1249 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1250 	return size;
1251 }
1252 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1253 
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1254 int ttm_bo_create(struct ttm_bo_device *bdev,
1255 			unsigned long size,
1256 			enum ttm_bo_type type,
1257 			struct ttm_placement *placement,
1258 			uint32_t page_alignment,
1259 			bool interruptible,
1260 			struct file *persistent_swap_storage,
1261 			struct ttm_buffer_object **p_bo)
1262 {
1263 	struct ttm_buffer_object *bo;
1264 	size_t acc_size;
1265 	int ret;
1266 
1267 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1268 	if (unlikely(bo == NULL))
1269 		return -ENOMEM;
1270 
1271 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1272 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1273 			  interruptible, persistent_swap_storage, acc_size,
1274 			  NULL, NULL);
1275 	if (likely(ret == 0))
1276 		*p_bo = bo;
1277 
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL(ttm_bo_create);
1281 
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1282 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1283 					unsigned mem_type, bool allow_errors)
1284 {
1285 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1286 	struct ttm_bo_global *glob = bdev->glob;
1287 	int ret;
1288 
1289 	/*
1290 	 * Can't use standard list traversal since we're unlocking.
1291 	 */
1292 
1293 	spin_lock(&glob->lru_lock);
1294 	while (!list_empty(&man->lru)) {
1295 		spin_unlock(&glob->lru_lock);
1296 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1297 		if (ret) {
1298 			if (allow_errors) {
1299 				return ret;
1300 			} else {
1301 				pr_err("Cleanup eviction failed\n");
1302 			}
1303 		}
1304 		spin_lock(&glob->lru_lock);
1305 	}
1306 	spin_unlock(&glob->lru_lock);
1307 	return 0;
1308 }
1309 
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1310 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1311 {
1312 	struct ttm_mem_type_manager *man;
1313 	int ret = -EINVAL;
1314 
1315 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1316 		pr_err("Illegal memory type %d\n", mem_type);
1317 		return ret;
1318 	}
1319 	man = &bdev->man[mem_type];
1320 
1321 	if (!man->has_type) {
1322 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1323 		       mem_type);
1324 		return ret;
1325 	}
1326 
1327 	man->use_type = false;
1328 	man->has_type = false;
1329 
1330 	ret = 0;
1331 	if (mem_type > 0) {
1332 		ttm_bo_force_list_clean(bdev, mem_type, false);
1333 
1334 		ret = (*man->func->takedown)(man);
1335 	}
1336 
1337 #ifdef __NetBSD__
1338 	linux_mutex_destroy(&man->io_reserve_mutex);
1339 #else
1340 	mutex_destroy(&man->io_reserve_mutex);
1341 #endif
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(ttm_bo_clean_mm);
1346 
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1347 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1348 {
1349 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1350 
1351 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1352 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1353 		return -EINVAL;
1354 	}
1355 
1356 	if (!man->has_type) {
1357 		pr_err("Memory type %u has not been initialized\n", mem_type);
1358 		return 0;
1359 	}
1360 
1361 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1362 }
1363 EXPORT_SYMBOL(ttm_bo_evict_mm);
1364 
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1365 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1366 			unsigned long p_size)
1367 {
1368 	int ret = -EINVAL;
1369 	struct ttm_mem_type_manager *man;
1370 
1371 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1372 	man = &bdev->man[type];
1373 	BUG_ON(man->has_type);
1374 	man->io_reserve_fastpath = true;
1375 	man->use_io_reserve_lru = false;
1376 #ifdef __NetBSD__
1377 	linux_mutex_init(&man->io_reserve_mutex);
1378 #else
1379 	mutex_init(&man->io_reserve_mutex);
1380 #endif
1381 	INIT_LIST_HEAD(&man->io_reserve_lru);
1382 
1383 	ret = bdev->driver->init_mem_type(bdev, type, man);
1384 	if (ret)
1385 		return ret;
1386 	man->bdev = bdev;
1387 
1388 	ret = 0;
1389 	if (type != TTM_PL_SYSTEM) {
1390 		ret = (*man->func->init)(man, p_size);
1391 		if (ret)
1392 			return ret;
1393 	}
1394 	man->has_type = true;
1395 	man->use_type = true;
1396 	man->size = p_size;
1397 
1398 	INIT_LIST_HEAD(&man->lru);
1399 
1400 	return 0;
1401 }
1402 EXPORT_SYMBOL(ttm_bo_init_mm);
1403 
1404 #ifndef __NetBSD__
ttm_bo_global_kobj_release(struct kobject * kobj)1405 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1406 {
1407 	struct ttm_bo_global *glob =
1408 		container_of(kobj, struct ttm_bo_global, kobj);
1409 
1410 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1411 	__free_page(glob->dummy_read_page);
1412 	mutex_destroy(&glob->device_list_mutex);
1413 	kfree(glob);
1414 }
1415 #endif
1416 
ttm_bo_global_release(struct drm_global_reference * ref)1417 void ttm_bo_global_release(struct drm_global_reference *ref)
1418 {
1419 	struct ttm_bo_global *glob = ref->object;
1420 
1421 #ifdef __NetBSD__
1422 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1423 	BUG_ON(glob->dummy_read_page != NULL);
1424 	spin_lock_destroy(&glob->lru_lock);
1425 	linux_mutex_destroy(&glob->device_list_mutex);
1426 	kfree(glob);
1427 #else
1428 	kobject_del(&glob->kobj);
1429 	kobject_put(&glob->kobj);
1430 #endif
1431 }
1432 EXPORT_SYMBOL(ttm_bo_global_release);
1433 
ttm_bo_global_init(struct drm_global_reference * ref)1434 int ttm_bo_global_init(struct drm_global_reference *ref)
1435 {
1436 	struct ttm_bo_global_ref *bo_ref =
1437 		container_of(ref, struct ttm_bo_global_ref, ref);
1438 	struct ttm_bo_global *glob = ref->object;
1439 	int ret;
1440 
1441 #ifdef __NetBSD__
1442 	linux_mutex_init(&glob->device_list_mutex);
1443 #else
1444 	mutex_init(&glob->device_list_mutex);
1445 #endif
1446 	spin_lock_init(&glob->lru_lock);
1447 	glob->mem_glob = bo_ref->mem_glob;
1448 #ifdef __NetBSD__
1449 	/* Only used by agp back end, will fix there.  */
1450 	/* XXX Fix agp back end to DTRT.  */
1451 	glob->dummy_read_page = NULL;
1452 #else
1453 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1454 
1455 	if (unlikely(glob->dummy_read_page == NULL)) {
1456 		ret = -ENOMEM;
1457 		goto out_no_drp;
1458 	}
1459 #endif
1460 
1461 	INIT_LIST_HEAD(&glob->swap_lru);
1462 	INIT_LIST_HEAD(&glob->device_list);
1463 
1464 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1465 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1466 	if (unlikely(ret != 0)) {
1467 		pr_err("Could not register buffer object swapout\n");
1468 		goto out_no_shrink;
1469 	}
1470 
1471 	atomic_set(&glob->bo_count, 0);
1472 
1473 #ifdef __NetBSD__
1474 	ret = 0;
1475 #else
1476 	ret = kobject_init_and_add(
1477 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1478 	if (unlikely(ret != 0))
1479 		kobject_put(&glob->kobj);
1480 #endif
1481 	return ret;
1482 out_no_shrink:
1483 #ifndef __NetBSD__
1484 	__free_page(glob->dummy_read_page);
1485 out_no_drp:
1486 #endif
1487 	kfree(glob);
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL(ttm_bo_global_init);
1491 
1492 
ttm_bo_device_release(struct ttm_bo_device * bdev)1493 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1494 {
1495 	int ret = 0;
1496 	unsigned i = TTM_NUM_MEM_TYPES;
1497 	struct ttm_mem_type_manager *man;
1498 	struct ttm_bo_global *glob = bdev->glob;
1499 
1500 	while (i--) {
1501 		man = &bdev->man[i];
1502 		if (man->has_type) {
1503 			man->use_type = false;
1504 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1505 				ret = -EBUSY;
1506 				pr_err("DRM memory manager type %d is not clean\n",
1507 				       i);
1508 			}
1509 			man->has_type = false;
1510 		}
1511 	}
1512 
1513 	mutex_lock(&glob->device_list_mutex);
1514 	list_del(&bdev->device_list);
1515 	mutex_unlock(&glob->device_list_mutex);
1516 
1517 	cancel_delayed_work_sync(&bdev->wq);
1518 
1519 	while (ttm_bo_delayed_delete(bdev, true))
1520 		;
1521 
1522 	spin_lock(&glob->lru_lock);
1523 	if (list_empty(&bdev->ddestroy))
1524 		TTM_DEBUG("Delayed destroy list was clean\n");
1525 
1526 	if (list_empty(&bdev->man[0].lru))
1527 		TTM_DEBUG("Swap list was clean\n");
1528 	spin_unlock(&glob->lru_lock);
1529 
1530 	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL(ttm_bo_device_release);
1535 
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,bus_space_tag_t memt,bus_dma_tag_t dmat,uint64_t file_page_offset,bool need_dma32)1536 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1537 		       struct ttm_bo_global *glob,
1538 		       struct ttm_bo_driver *driver,
1539 #ifdef __NetBSD__
1540 		       bus_space_tag_t memt,
1541 		       bus_dma_tag_t dmat,
1542 #else
1543 		       struct address_space *mapping,
1544 #endif
1545 		       uint64_t file_page_offset,
1546 		       bool need_dma32)
1547 {
1548 	int ret = -EINVAL;
1549 
1550 	bdev->driver = driver;
1551 
1552 	memset(bdev->man, 0, sizeof(bdev->man));
1553 
1554 	/*
1555 	 * Initialize the system memory buffer type.
1556 	 * Other types need to be driver / IOCTL initialized.
1557 	 */
1558 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1559 	if (unlikely(ret != 0))
1560 		goto out_no_sys;
1561 
1562 	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1563 				    0x10000000);
1564 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1565 	INIT_LIST_HEAD(&bdev->ddestroy);
1566 #ifdef __NetBSD__
1567 	bdev->memt = memt;
1568 	bdev->dmat = dmat;
1569 #else
1570 	bdev->dev_mapping = mapping;
1571 #endif
1572 	bdev->glob = glob;
1573 	bdev->need_dma32 = need_dma32;
1574 	bdev->val_seq = 0;
1575 	spin_lock_init(&bdev->fence_lock);
1576 	mutex_lock(&glob->device_list_mutex);
1577 	list_add_tail(&bdev->device_list, &glob->device_list);
1578 	mutex_unlock(&glob->device_list_mutex);
1579 
1580 	return 0;
1581 out_no_sys:
1582 	return ret;
1583 }
1584 EXPORT_SYMBOL(ttm_bo_device_init);
1585 
1586 /*
1587  * buffer object vm functions.
1588  */
1589 
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1590 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1591 {
1592 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1593 
1594 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1595 		if (mem->mem_type == TTM_PL_SYSTEM)
1596 			return false;
1597 
1598 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1599 			return false;
1600 
1601 		if (mem->placement & TTM_PL_FLAG_CACHED)
1602 			return false;
1603 	}
1604 	return true;
1605 }
1606 
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1607 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1608 {
1609 #ifndef __NetBSD__
1610 	struct ttm_bo_device *bdev = bo->bdev;
1611 #endif
1612 
1613 #ifdef __NetBSD__
1614 	if (bo->mem.bus.is_iomem) {
1615 		paddr_t start, end, pa;
1616 
1617 		KASSERTMSG((bo->mem.bus.base & (PAGE_SIZE - 1)) == 0,
1618 		    "bo bus base addr not page-aligned: %lx",
1619 		    bo->mem.bus.base);
1620 		KASSERTMSG((bo->mem.bus.offset & (PAGE_SIZE - 1)) == 0,
1621 		    "bo bus offset not page-aligned: %lx",
1622 		    bo->mem.bus.offset);
1623 		start = bo->mem.bus.base + bo->mem.bus.offset;
1624 		KASSERT((bo->mem.bus.size & (PAGE_SIZE - 1)) == 0);
1625 		end = start + bo->mem.bus.size;
1626 
1627 		for (pa = start; pa < end; pa += PAGE_SIZE)
1628 			pmap_pv_protect(pa, VM_PROT_NONE);
1629 	} else if (bo->ttm != NULL) {
1630 		unsigned i;
1631 
1632 		mutex_enter(bo->uvmobj.vmobjlock);
1633 		for (i = 0; i < bo->ttm->num_pages; i++)
1634 			pmap_page_protect(&bo->ttm->pages[i]->p_vmp,
1635 			    VM_PROT_NONE);
1636 		mutex_exit(bo->uvmobj.vmobjlock);
1637 	}
1638 #else
1639 	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1640 #endif
1641 	ttm_mem_io_free_vm(bo);
1642 }
1643 
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1644 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1645 {
1646 	struct ttm_bo_device *bdev = bo->bdev;
1647 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1648 
1649 	ttm_mem_io_lock(man, false);
1650 	ttm_bo_unmap_virtual_locked(bo);
1651 	ttm_mem_io_unlock(man);
1652 }
1653 
1654 
1655 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1656 
1657 
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1658 int ttm_bo_wait(struct ttm_buffer_object *bo,
1659 		bool lazy, bool interruptible, bool no_wait)
1660 {
1661 	struct ttm_bo_driver *driver = bo->bdev->driver;
1662 	struct ttm_bo_device *bdev = bo->bdev;
1663 	void *sync_obj;
1664 	int ret = 0;
1665 
1666 	if (likely(bo->sync_obj == NULL))
1667 		return 0;
1668 
1669 	while (bo->sync_obj) {
1670 
1671 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1672 			void *tmp_obj = bo->sync_obj;
1673 			bo->sync_obj = NULL;
1674 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1675 			spin_unlock(&bdev->fence_lock);
1676 			driver->sync_obj_unref(&tmp_obj);
1677 			spin_lock(&bdev->fence_lock);
1678 			continue;
1679 		}
1680 
1681 		if (no_wait)
1682 			return -EBUSY;
1683 
1684 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1685 		spin_unlock(&bdev->fence_lock);
1686 		ret = driver->sync_obj_wait(sync_obj,
1687 					    lazy, interruptible);
1688 		if (unlikely(ret != 0)) {
1689 			driver->sync_obj_unref(&sync_obj);
1690 			spin_lock(&bdev->fence_lock);
1691 			return ret;
1692 		}
1693 		spin_lock(&bdev->fence_lock);
1694 		if (likely(bo->sync_obj == sync_obj)) {
1695 			void *tmp_obj = bo->sync_obj;
1696 			bo->sync_obj = NULL;
1697 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1698 				  &bo->priv_flags);
1699 			spin_unlock(&bdev->fence_lock);
1700 			driver->sync_obj_unref(&sync_obj);
1701 			driver->sync_obj_unref(&tmp_obj);
1702 			spin_lock(&bdev->fence_lock);
1703 		} else {
1704 			spin_unlock(&bdev->fence_lock);
1705 			driver->sync_obj_unref(&sync_obj);
1706 			spin_lock(&bdev->fence_lock);
1707 		}
1708 	}
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL(ttm_bo_wait);
1712 
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1713 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1714 {
1715 	struct ttm_bo_device *bdev = bo->bdev;
1716 	int ret = 0;
1717 
1718 	/*
1719 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1720 	 */
1721 
1722 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1723 	if (unlikely(ret != 0))
1724 		return ret;
1725 	spin_lock(&bdev->fence_lock);
1726 	ret = ttm_bo_wait(bo, false, true, no_wait);
1727 	spin_unlock(&bdev->fence_lock);
1728 	if (likely(ret == 0))
1729 		atomic_inc(&bo->cpu_writers);
1730 	ttm_bo_unreserve(bo);
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1734 
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1735 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1736 {
1737 	atomic_dec(&bo->cpu_writers);
1738 }
1739 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1740 
1741 /**
1742  * A buffer object shrink method that tries to swap out the first
1743  * buffer object on the bo_global::swap_lru list.
1744  */
1745 
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1746 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1747 {
1748 	struct ttm_bo_global *glob =
1749 	    container_of(shrink, struct ttm_bo_global, shrink);
1750 	struct ttm_buffer_object *bo;
1751 	int ret = -EBUSY;
1752 	int put_count;
1753 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1754 
1755 	spin_lock(&glob->lru_lock);
1756 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1757 		ret = __ttm_bo_reserve(bo, false, true, false, 0);
1758 		if (!ret)
1759 			break;
1760 	}
1761 
1762 	if (ret) {
1763 		spin_unlock(&glob->lru_lock);
1764 		return ret;
1765 	}
1766 
1767 	kref_get(&bo->list_kref);
1768 
1769 	if (!list_empty(&bo->ddestroy)) {
1770 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1771 		kref_put(&bo->list_kref, ttm_bo_release_list);
1772 		return ret;
1773 	}
1774 
1775 	put_count = ttm_bo_del_from_lru(bo);
1776 	spin_unlock(&glob->lru_lock);
1777 
1778 	ttm_bo_list_ref_sub(bo, put_count, true);
1779 
1780 	/**
1781 	 * Wait for GPU, then move to system cached.
1782 	 */
1783 
1784 	spin_lock(&bo->bdev->fence_lock);
1785 	ret = ttm_bo_wait(bo, false, false, false);
1786 	spin_unlock(&bo->bdev->fence_lock);
1787 
1788 	if (unlikely(ret != 0))
1789 		goto out;
1790 
1791 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1792 		struct ttm_mem_reg evict_mem;
1793 
1794 		evict_mem = bo->mem;
1795 		evict_mem.mm_node = NULL;
1796 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1797 		evict_mem.mem_type = TTM_PL_SYSTEM;
1798 
1799 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1800 					     false, false);
1801 		if (unlikely(ret != 0))
1802 			goto out;
1803 	}
1804 
1805 	ttm_bo_unmap_virtual(bo);
1806 
1807 	/**
1808 	 * Swap out. Buffer will be swapped in again as soon as
1809 	 * anyone tries to access a ttm page.
1810 	 */
1811 
1812 	if (bo->bdev->driver->swap_notify)
1813 		bo->bdev->driver->swap_notify(bo);
1814 
1815 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1816 out:
1817 
1818 	/**
1819 	 *
1820 	 * Unreserve without putting on LRU to avoid swapping out an
1821 	 * already swapped buffer.
1822 	 */
1823 
1824 	__ttm_bo_unreserve(bo);
1825 	kref_put(&bo->list_kref, ttm_bo_release_list);
1826 	return ret;
1827 }
1828 
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1829 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1830 {
1831 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1832 		;
1833 }
1834 EXPORT_SYMBOL(ttm_bo_swapout_all);
1835 
1836 /**
1837  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1838  * unreserved
1839  *
1840  * @bo: Pointer to buffer
1841  */
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo)1842 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1843 {
1844 	int ret;
1845 
1846 	/*
1847 	 * In the absense of a wait_unlocked API,
1848 	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1849 	 * concurrent use of this function. Note that this use of
1850 	 * bo::wu_mutex can go away if we change locking order to
1851 	 * mmap_sem -> bo::reserve.
1852 	 */
1853 	ret = mutex_lock_interruptible(&bo->wu_mutex);
1854 	if (unlikely(ret != 0))
1855 		return -ERESTARTSYS;
1856 	if (!ww_mutex_is_locked(&bo->resv->lock))
1857 		goto out_unlock;
1858 	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1859 	if (unlikely(ret != 0))
1860 		goto out_unlock;
1861 	__ttm_bo_unreserve(bo);
1862 
1863 out_unlock:
1864 	mutex_unlock(&bo->wu_mutex);
1865 	return ret;
1866 }
1867