1 /* $OpenBSD: localtime.c,v 1.67 2024/08/18 02:20:29 guenther Exp $ */
2 /*
3 ** This file is in the public domain, so clarified as of
4 ** 1996-06-05 by Arthur David Olson.
5 */
6
7 /*
8 ** Leap second handling from Bradley White.
9 ** POSIX-style TZ environment variable handling from Guy Harris.
10 */
11
12 #include <ctype.h>
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <unistd.h>
20
21 #include "private.h"
22 #include "tzfile.h"
23 #include "thread_private.h"
24
25 #ifndef TZ_ABBR_MAX_LEN
26 #define TZ_ABBR_MAX_LEN 16
27 #endif /* !defined TZ_ABBR_MAX_LEN */
28
29 #ifndef TZ_ABBR_CHAR_SET
30 #define TZ_ABBR_CHAR_SET \
31 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
32 #endif /* !defined TZ_ABBR_CHAR_SET */
33
34 #ifndef TZ_ABBR_ERR_CHAR
35 #define TZ_ABBR_ERR_CHAR '_'
36 #endif /* !defined TZ_ABBR_ERR_CHAR */
37
38 #ifndef WILDABBR
39 /*
40 ** Someone might make incorrect use of a time zone abbreviation:
41 ** 1. They might reference tzname[0] before calling tzset (explicitly
42 ** or implicitly).
43 ** 2. They might reference tzname[1] before calling tzset (explicitly
44 ** or implicitly).
45 ** 3. They might reference tzname[1] after setting to a time zone
46 ** in which Daylight Saving Time is never observed.
47 ** 4. They might reference tzname[0] after setting to a time zone
48 ** in which Standard Time is never observed.
49 ** 5. They might reference tm.tm_zone after calling offtime.
50 ** What's best to do in the above cases is open to debate;
51 ** for now, we just set things up so that in any of the five cases
52 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
53 ** string "tzname[0] used before set", and similarly for the other cases.
54 ** And another: initialize tzname[0] to "ERA", with an explanation in the
55 ** manual page of what this "time zone abbreviation" means (doing this so
56 ** that tzname[0] has the "normal" length of three characters).
57 */
58 #define WILDABBR " "
59 #endif /* !defined WILDABBR */
60
61 static char wildabbr[] = WILDABBR;
62
63 static const char gmt[] = "GMT";
64
65 /*
66 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
67 ** We default to US rules as of 1999-08-17.
68 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
69 ** implementation dependent; for historical reasons, US rules are a
70 ** common default.
71 */
72 #ifndef TZDEFRULESTRING
73 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
74 #endif /* !defined TZDEFDST */
75
76 struct ttinfo { /* time type information */
77 long tt_gmtoff; /* UTC offset in seconds */
78 int tt_isdst; /* used to set tm_isdst */
79 int tt_abbrind; /* abbreviation list index */
80 int tt_ttisstd; /* TRUE if transition is std time */
81 int tt_ttisgmt; /* TRUE if transition is UTC */
82 };
83
84 struct lsinfo { /* leap second information */
85 time_t ls_trans; /* transition time */
86 long ls_corr; /* correction to apply */
87 };
88
89 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
90
91 #ifdef TZNAME_MAX
92 #define MY_TZNAME_MAX TZNAME_MAX
93 #endif /* defined TZNAME_MAX */
94 #ifndef TZNAME_MAX
95 #define MY_TZNAME_MAX 255
96 #endif /* !defined TZNAME_MAX */
97
98 struct state {
99 int leapcnt;
100 int timecnt;
101 int typecnt;
102 int charcnt;
103 int goback;
104 int goahead;
105 time_t ats[TZ_MAX_TIMES];
106 unsigned char types[TZ_MAX_TIMES];
107 struct ttinfo ttis[TZ_MAX_TYPES];
108 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
109 (2 * (MY_TZNAME_MAX + 1)))];
110 struct lsinfo lsis[TZ_MAX_LEAPS];
111 };
112
113 struct rule {
114 int r_type; /* type of rule--see below */
115 int r_day; /* day number of rule */
116 int r_week; /* week number of rule */
117 int r_mon; /* month number of rule */
118 long r_time; /* transition time of rule */
119 };
120
121 #define JULIAN_DAY 0 /* Jn - Julian day */
122 #define DAY_OF_YEAR 1 /* n - day of year */
123 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
124
125 /*
126 ** Prototypes for static functions.
127 */
128
129 static long detzcode(const char * codep);
130 static time_t detzcode64(const char * codep);
131 static int differ_by_repeat(time_t t1, time_t t0);
132 static const char * getzname(const char * strp);
133 static const char * getqzname(const char * strp, const int delim);
134 static const char * getnum(const char * strp, int * nump, int min,
135 int max);
136 static const char * getsecs(const char * strp, long * secsp);
137 static const char * getoffset(const char * strp, long * offsetp);
138 static const char * getrule(const char * strp, struct rule * rulep);
139 static void gmtload(struct state * sp);
140 static struct tm * gmtsub(const time_t * timep, long offset,
141 struct tm * tmp);
142 static struct tm * localsub(const time_t * timep, long offset,
143 struct tm * tmp);
144 static int increment_overflow(int * number, int delta);
145 static int leaps_thru_end_of(int y);
146 static int long_increment_overflow(long * number, int delta);
147 static int long_normalize_overflow(long * tensptr,
148 int * unitsptr, int base);
149 static int normalize_overflow(int * tensptr, int * unitsptr,
150 int base);
151 static void settzname(void);
152 static time_t time1(struct tm * tmp,
153 struct tm * (*funcp)(const time_t *,
154 long, struct tm *),
155 long offset);
156 static time_t time2(struct tm *tmp,
157 struct tm * (*funcp)(const time_t *,
158 long, struct tm*),
159 long offset, int * okayp);
160 static time_t time2sub(struct tm *tmp,
161 struct tm * (*funcp)(const time_t *,
162 long, struct tm*),
163 long offset, int * okayp, int do_norm_secs);
164 static struct tm * timesub(const time_t * timep, long offset,
165 const struct state * sp, struct tm * tmp);
166 static int tmcomp(const struct tm * atmp,
167 const struct tm * btmp);
168 static time_t transtime(time_t janfirst, int year,
169 const struct rule * rulep, long offset);
170 static int typesequiv(const struct state * sp, int a, int b);
171 static int tzload(const char * name, struct state * sp,
172 int doextend);
173 static int tzparse(const char * name, struct state * sp,
174 int lastditch);
175
176 #ifdef STD_INSPIRED
177 struct tm *offtime(const time_t *, long);
178 time_t time2posix(time_t);
179 time_t posix2time(time_t);
180 PROTO_DEPRECATED(offtime);
181 PROTO_DEPRECATED(time2posix);
182 PROTO_DEPRECATED(posix2time);
183 #endif
184
185 static struct state * lclptr;
186 static struct state * gmtptr;
187
188
189 #ifndef TZ_STRLEN_MAX
190 #define TZ_STRLEN_MAX 255
191 #endif /* !defined TZ_STRLEN_MAX */
192
193 static int lcl_is_set;
194 static int gmt_is_set;
195 _THREAD_PRIVATE_MUTEX(lcl);
196 _THREAD_PRIVATE_MUTEX(gmt);
197
198 char * tzname[2] = {
199 wildabbr,
200 wildabbr
201 };
202 #if 0
203 DEF_WEAK(tzname);
204 #endif
205
206 /*
207 ** Section 4.12.3 of X3.159-1989 requires that
208 ** Except for the strftime function, these functions [asctime,
209 ** ctime, gmtime, localtime] return values in one of two static
210 ** objects: a broken-down time structure and an array of char.
211 ** Thanks to Paul Eggert for noting this.
212 */
213
214 static struct tm tm;
215
216 long timezone = 0;
217 int daylight = 0;
218
219 static long
detzcode(const char * codep)220 detzcode(const char *codep)
221 {
222 long result;
223 int i;
224
225 result = (codep[0] & 0x80) ? ~0L : 0;
226 for (i = 0; i < 4; ++i)
227 result = (result << 8) | (codep[i] & 0xff);
228 return result;
229 }
230
231 static time_t
detzcode64(const char * codep)232 detzcode64(const char *codep)
233 {
234 time_t result;
235 int i;
236
237 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
238 for (i = 0; i < 8; ++i)
239 result = result * 256 + (codep[i] & 0xff);
240 return result;
241 }
242
243 static void
settzname(void)244 settzname(void)
245 {
246 struct state * const sp = lclptr;
247 int i;
248
249 tzname[0] = wildabbr;
250 tzname[1] = wildabbr;
251 daylight = 0;
252 timezone = 0;
253 if (sp == NULL) {
254 tzname[0] = tzname[1] = (char *)gmt;
255 return;
256 }
257 /*
258 ** And to get the latest zone names into tzname. . .
259 */
260 for (i = 0; i < sp->timecnt; ++i) {
261 const struct ttinfo *ttisp = &sp->ttis[sp->types[i]];
262
263 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
264 if (ttisp->tt_isdst)
265 daylight = 1;
266 if (!ttisp->tt_isdst)
267 timezone = -(ttisp->tt_gmtoff);
268 }
269 /*
270 ** Finally, scrub the abbreviations.
271 ** First, replace bogus characters.
272 */
273 for (i = 0; i < sp->charcnt; ++i) {
274 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
275 sp->chars[i] = TZ_ABBR_ERR_CHAR;
276 }
277 /*
278 ** Second, truncate long abbreviations.
279 */
280 for (i = 0; i < sp->typecnt; ++i) {
281 const struct ttinfo *ttisp = &sp->ttis[i];
282 char *cp = &sp->chars[ttisp->tt_abbrind];
283
284 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
285 strcmp(cp, GRANDPARENTED) != 0)
286 *(cp + TZ_ABBR_MAX_LEN) = '\0';
287 }
288 }
289
290 static int
differ_by_repeat(time_t t1,time_t t0)291 differ_by_repeat(time_t t1, time_t t0)
292 {
293 if (TYPE_BIT(time_t) - 1 < SECSPERREPEAT_BITS)
294 return 0;
295 return (int64_t)t1 - t0 == SECSPERREPEAT;
296 }
297
298 static int
tzpath_ok(const char * name)299 tzpath_ok(const char *name)
300 {
301 /* Reject absolute paths that don't start with TZDIR. */
302 if (name[0] == '/' && (strncmp(name, TZDIR, sizeof(TZDIR) - 1) != 0 ||
303 name[sizeof(TZDIR) - 1] != '/'))
304 return 0;
305
306 /* Reject paths that contain "../". */
307 if (strstr(name, "../") != NULL)
308 return 0;
309
310 return 1;
311 }
312
313 static int
open_tzfile(const char * name)314 open_tzfile(const char *name)
315 {
316 char fullname[PATH_MAX];
317 int i;
318
319 if (name != NULL) {
320 /*
321 * POSIX section 8 says that names starting with a ':' are
322 * "implementation-defined". We treat them as timezone paths.
323 */
324 if (name[0] == ':')
325 name++;
326
327 /*
328 * Ignore absolute paths that don't start with TZDIR
329 * or that contain "../".
330 */
331 if (!tzpath_ok(name))
332 name = NULL;
333 }
334
335 if (name == NULL) {
336 name = TZDEFAULT;
337 } else if (name[0] != '/') {
338 /* Time zone data path is relative to TZDIR. */
339 i = snprintf(fullname, sizeof(fullname), "%s/%s", TZDIR, name);
340 if (i < 0 || i >= sizeof(fullname)) {
341 errno = ENAMETOOLONG;
342 return -1;
343 }
344 name = fullname;
345 }
346
347 return open(name, O_RDONLY);
348 }
349
350 static int
tzload(const char * name,struct state * sp,int doextend)351 tzload(const char *name, struct state *sp, int doextend)
352 {
353 const char * p;
354 int i;
355 int fid;
356 int stored;
357 int nread;
358 typedef union {
359 struct tzhead tzhead;
360 char buf[2 * sizeof(struct tzhead) +
361 2 * sizeof *sp +
362 4 * TZ_MAX_TIMES];
363 } u_t;
364 u_t * up;
365
366 up = calloc(1, sizeof *up);
367 if (up == NULL)
368 return -1;
369
370 sp->goback = sp->goahead = FALSE;
371
372 if ((fid = open_tzfile(name)) == -1) {
373 /* Could be a POSIX section 8-style TZ string. */
374 goto oops;
375 }
376
377 nread = read(fid, up->buf, sizeof up->buf);
378 if (close(fid) == -1 || nread <= 0)
379 goto oops;
380 for (stored = 4; stored <= 8; stored *= 2) {
381 int ttisstdcnt;
382 int ttisgmtcnt;
383
384 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
385 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
386 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
387 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
388 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
389 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
390 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
391 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
392 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
393 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
394 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
395 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
396 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
397 goto oops;
398 if (nread - (p - up->buf) <
399 sp->timecnt * stored + /* ats */
400 sp->timecnt + /* types */
401 sp->typecnt * 6 + /* ttinfos */
402 sp->charcnt + /* chars */
403 sp->leapcnt * (stored + 4) + /* lsinfos */
404 ttisstdcnt + /* ttisstds */
405 ttisgmtcnt) /* ttisgmts */
406 goto oops;
407 for (i = 0; i < sp->timecnt; ++i) {
408 sp->ats[i] = (stored == 4) ?
409 detzcode(p) : detzcode64(p);
410 p += stored;
411 }
412 for (i = 0; i < sp->timecnt; ++i) {
413 sp->types[i] = (unsigned char) *p++;
414 if (sp->types[i] >= sp->typecnt)
415 goto oops;
416 }
417 for (i = 0; i < sp->typecnt; ++i) {
418 struct ttinfo * ttisp;
419
420 ttisp = &sp->ttis[i];
421 ttisp->tt_gmtoff = detzcode(p);
422 p += 4;
423 ttisp->tt_isdst = (unsigned char) *p++;
424 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
425 goto oops;
426 ttisp->tt_abbrind = (unsigned char) *p++;
427 if (ttisp->tt_abbrind < 0 ||
428 ttisp->tt_abbrind > sp->charcnt)
429 goto oops;
430 }
431 for (i = 0; i < sp->charcnt; ++i)
432 sp->chars[i] = *p++;
433 sp->chars[i] = '\0'; /* ensure '\0' at end */
434 for (i = 0; i < sp->leapcnt; ++i) {
435 struct lsinfo * lsisp;
436
437 lsisp = &sp->lsis[i];
438 lsisp->ls_trans = (stored == 4) ?
439 detzcode(p) : detzcode64(p);
440 p += stored;
441 lsisp->ls_corr = detzcode(p);
442 p += 4;
443 }
444 for (i = 0; i < sp->typecnt; ++i) {
445 struct ttinfo * ttisp;
446
447 ttisp = &sp->ttis[i];
448 if (ttisstdcnt == 0)
449 ttisp->tt_ttisstd = FALSE;
450 else {
451 ttisp->tt_ttisstd = *p++;
452 if (ttisp->tt_ttisstd != TRUE &&
453 ttisp->tt_ttisstd != FALSE)
454 goto oops;
455 }
456 }
457 for (i = 0; i < sp->typecnt; ++i) {
458 struct ttinfo * ttisp;
459
460 ttisp = &sp->ttis[i];
461 if (ttisgmtcnt == 0)
462 ttisp->tt_ttisgmt = FALSE;
463 else {
464 ttisp->tt_ttisgmt = *p++;
465 if (ttisp->tt_ttisgmt != TRUE &&
466 ttisp->tt_ttisgmt != FALSE)
467 goto oops;
468 }
469 }
470 /*
471 ** Out-of-sort ats should mean we're running on a
472 ** signed time_t system but using a data file with
473 ** unsigned values (or vice versa).
474 */
475 for (i = 0; i < sp->timecnt - 2; ++i)
476 if (sp->ats[i] > sp->ats[i + 1]) {
477 ++i;
478 /*
479 ** Ignore the end (easy).
480 */
481 sp->timecnt = i;
482 break;
483 }
484 /*
485 ** If this is an old file, we're done.
486 */
487 if (up->tzhead.tzh_version[0] == '\0')
488 break;
489 nread -= p - up->buf;
490 for (i = 0; i < nread; ++i)
491 up->buf[i] = p[i];
492 /*
493 ** If this is a narrow integer time_t system, we're done.
494 */
495 if (stored >= sizeof(time_t))
496 break;
497 }
498 if (doextend && nread > 2 &&
499 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
500 sp->typecnt + 2 <= TZ_MAX_TYPES) {
501 struct state ts;
502 int result;
503
504 up->buf[nread - 1] = '\0';
505 result = tzparse(&up->buf[1], &ts, FALSE);
506 if (result == 0 && ts.typecnt == 2 &&
507 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
508 for (i = 0; i < 2; ++i)
509 ts.ttis[i].tt_abbrind +=
510 sp->charcnt;
511 for (i = 0; i < ts.charcnt; ++i)
512 sp->chars[sp->charcnt++] =
513 ts.chars[i];
514 i = 0;
515 while (i < ts.timecnt &&
516 ts.ats[i] <=
517 sp->ats[sp->timecnt - 1])
518 ++i;
519 while (i < ts.timecnt &&
520 sp->timecnt < TZ_MAX_TIMES) {
521 sp->ats[sp->timecnt] =
522 ts.ats[i];
523 sp->types[sp->timecnt] =
524 sp->typecnt +
525 ts.types[i];
526 ++sp->timecnt;
527 ++i;
528 }
529 sp->ttis[sp->typecnt++] = ts.ttis[0];
530 sp->ttis[sp->typecnt++] = ts.ttis[1];
531 }
532 }
533 if (sp->timecnt > 1) {
534 for (i = 1; i < sp->timecnt; ++i) {
535 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
536 differ_by_repeat(sp->ats[i], sp->ats[0])) {
537 sp->goback = TRUE;
538 break;
539 }
540 }
541 for (i = sp->timecnt - 2; i >= 0; --i) {
542 if (typesequiv(sp, sp->types[sp->timecnt - 1],
543 sp->types[i]) &&
544 differ_by_repeat(sp->ats[sp->timecnt - 1],
545 sp->ats[i])) {
546 sp->goahead = TRUE;
547 break;
548 }
549 }
550 }
551 free(up);
552 return 0;
553 oops:
554 free(up);
555 return -1;
556 }
557
558 static int
typesequiv(const struct state * sp,int a,int b)559 typesequiv(const struct state *sp, int a, int b)
560 {
561 int result;
562
563 if (sp == NULL ||
564 a < 0 || a >= sp->typecnt ||
565 b < 0 || b >= sp->typecnt)
566 result = FALSE;
567 else {
568 const struct ttinfo * ap = &sp->ttis[a];
569 const struct ttinfo * bp = &sp->ttis[b];
570 result = ap->tt_gmtoff == bp->tt_gmtoff &&
571 ap->tt_isdst == bp->tt_isdst &&
572 ap->tt_ttisstd == bp->tt_ttisstd &&
573 ap->tt_ttisgmt == bp->tt_ttisgmt &&
574 strcmp(&sp->chars[ap->tt_abbrind],
575 &sp->chars[bp->tt_abbrind]) == 0;
576 }
577 return result;
578 }
579
580 static const int mon_lengths[2][MONSPERYEAR] = {
581 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
582 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
583 };
584
585 static const int year_lengths[2] = {
586 DAYSPERNYEAR, DAYSPERLYEAR
587 };
588
589 /*
590 ** Given a pointer into a time zone string, scan until a character that is not
591 ** a valid character in a zone name is found. Return a pointer to that
592 ** character.
593 */
594
595 static const char *
getzname(const char * strp)596 getzname(const char *strp)
597 {
598 char c;
599
600 while ((c = *strp) != '\0' && !isdigit((unsigned char)c) && c != ',' && c != '-' &&
601 c != '+')
602 ++strp;
603 return strp;
604 }
605
606 /*
607 ** Given a pointer into an extended time zone string, scan until the ending
608 ** delimiter of the zone name is located. Return a pointer to the delimiter.
609 **
610 ** As with getzname above, the legal character set is actually quite
611 ** restricted, with other characters producing undefined results.
612 ** We don't do any checking here; checking is done later in common-case code.
613 */
614
615 static const char *
getqzname(const char * strp,const int delim)616 getqzname(const char *strp, const int delim)
617 {
618 int c;
619
620 while ((c = *strp) != '\0' && c != delim)
621 ++strp;
622 return strp;
623 }
624
625 /*
626 ** Given a pointer into a time zone string, extract a number from that string.
627 ** Check that the number is within a specified range; if it is not, return
628 ** NULL.
629 ** Otherwise, return a pointer to the first character not part of the number.
630 */
631
632 static const char *
getnum(const char * strp,int * nump,int min,int max)633 getnum(const char *strp, int *nump, int min, int max)
634 {
635 char c;
636 int num;
637
638 if (strp == NULL || !isdigit((unsigned char)(c = *strp)))
639 return NULL;
640 num = 0;
641 do {
642 num = num * 10 + (c - '0');
643 if (num > max)
644 return NULL; /* illegal value */
645 c = *++strp;
646 } while (isdigit((unsigned char)c));
647 if (num < min)
648 return NULL; /* illegal value */
649 *nump = num;
650 return strp;
651 }
652
653 /*
654 ** Given a pointer into a time zone string, extract a number of seconds,
655 ** in hh[:mm[:ss]] form, from the string.
656 ** If any error occurs, return NULL.
657 ** Otherwise, return a pointer to the first character not part of the number
658 ** of seconds.
659 */
660
661 static const char *
getsecs(const char * strp,long * secsp)662 getsecs(const char *strp, long *secsp)
663 {
664 int num;
665
666 /*
667 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
668 ** "M10.4.6/26", which does not conform to Posix,
669 ** but which specifies the equivalent of
670 ** ``02:00 on the first Sunday on or after 23 Oct''.
671 */
672 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
673 if (strp == NULL)
674 return NULL;
675 *secsp = num * (long) SECSPERHOUR;
676 if (*strp == ':') {
677 ++strp;
678 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
679 if (strp == NULL)
680 return NULL;
681 *secsp += num * SECSPERMIN;
682 if (*strp == ':') {
683 ++strp;
684 /* `SECSPERMIN' allows for leap seconds. */
685 strp = getnum(strp, &num, 0, SECSPERMIN);
686 if (strp == NULL)
687 return NULL;
688 *secsp += num;
689 }
690 }
691 return strp;
692 }
693
694 /*
695 ** Given a pointer into a time zone string, extract an offset, in
696 ** [+-]hh[:mm[:ss]] form, from the string.
697 ** If any error occurs, return NULL.
698 ** Otherwise, return a pointer to the first character not part of the time.
699 */
700
701 static const char *
getoffset(const char * strp,long * offsetp)702 getoffset(const char *strp, long *offsetp)
703 {
704 int neg = 0;
705
706 if (*strp == '-') {
707 neg = 1;
708 ++strp;
709 } else if (*strp == '+')
710 ++strp;
711 strp = getsecs(strp, offsetp);
712 if (strp == NULL)
713 return NULL; /* illegal time */
714 if (neg)
715 *offsetp = -*offsetp;
716 return strp;
717 }
718
719 /*
720 ** Given a pointer into a time zone string, extract a rule in the form
721 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
722 ** If a valid rule is not found, return NULL.
723 ** Otherwise, return a pointer to the first character not part of the rule.
724 */
725
726 static const char *
getrule(const char * strp,struct rule * rulep)727 getrule(const char *strp, struct rule *rulep)
728 {
729 if (*strp == 'J') {
730 /*
731 ** Julian day.
732 */
733 rulep->r_type = JULIAN_DAY;
734 ++strp;
735 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
736 } else if (*strp == 'M') {
737 /*
738 ** Month, week, day.
739 */
740 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
741 ++strp;
742 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
743 if (strp == NULL)
744 return NULL;
745 if (*strp++ != '.')
746 return NULL;
747 strp = getnum(strp, &rulep->r_week, 1, 5);
748 if (strp == NULL)
749 return NULL;
750 if (*strp++ != '.')
751 return NULL;
752 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
753 } else if (isdigit((unsigned char)*strp)) {
754 /*
755 ** Day of year.
756 */
757 rulep->r_type = DAY_OF_YEAR;
758 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
759 } else
760 return NULL; /* invalid format */
761 if (strp == NULL)
762 return NULL;
763 if (*strp == '/') {
764 /*
765 ** Time specified.
766 */
767 ++strp;
768 strp = getsecs(strp, &rulep->r_time);
769 } else
770 rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
771 return strp;
772 }
773
774 /*
775 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
776 ** year, a rule, and the offset from UTC at the time that rule takes effect,
777 ** calculate the Epoch-relative time that rule takes effect.
778 */
779
780 static time_t
transtime(time_t janfirst,int year,const struct rule * rulep,long offset)781 transtime(time_t janfirst, int year, const struct rule *rulep, long offset)
782 {
783 int leapyear;
784 time_t value;
785 int i;
786 int d, m1, yy0, yy1, yy2, dow;
787
788 value = 0;
789 leapyear = isleap(year);
790 switch (rulep->r_type) {
791
792 case JULIAN_DAY:
793 /*
794 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
795 ** years.
796 ** In non-leap years, or if the day number is 59 or less, just
797 ** add SECSPERDAY times the day number-1 to the time of
798 ** January 1, midnight, to get the day.
799 */
800 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
801 if (leapyear && rulep->r_day >= 60)
802 value += SECSPERDAY;
803 break;
804
805 case DAY_OF_YEAR:
806 /*
807 ** n - day of year.
808 ** Just add SECSPERDAY times the day number to the time of
809 ** January 1, midnight, to get the day.
810 */
811 value = janfirst + rulep->r_day * SECSPERDAY;
812 break;
813
814 case MONTH_NTH_DAY_OF_WEEK:
815 /*
816 ** Mm.n.d - nth "dth day" of month m.
817 */
818 value = janfirst;
819 for (i = 0; i < rulep->r_mon - 1; ++i)
820 value += mon_lengths[leapyear][i] * SECSPERDAY;
821
822 /*
823 ** Use Zeller's Congruence to get day-of-week of first day of
824 ** month.
825 */
826 m1 = (rulep->r_mon + 9) % 12 + 1;
827 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
828 yy1 = yy0 / 100;
829 yy2 = yy0 % 100;
830 dow = ((26 * m1 - 2) / 10 +
831 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
832 if (dow < 0)
833 dow += DAYSPERWEEK;
834
835 /*
836 ** "dow" is the day-of-week of the first day of the month. Get
837 ** the day-of-month (zero-origin) of the first "dow" day of the
838 ** month.
839 */
840 d = rulep->r_day - dow;
841 if (d < 0)
842 d += DAYSPERWEEK;
843 for (i = 1; i < rulep->r_week; ++i) {
844 if (d + DAYSPERWEEK >=
845 mon_lengths[leapyear][rulep->r_mon - 1])
846 break;
847 d += DAYSPERWEEK;
848 }
849
850 /*
851 ** "d" is the day-of-month (zero-origin) of the day we want.
852 */
853 value += d * SECSPERDAY;
854 break;
855 }
856
857 /*
858 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
859 ** question. To get the Epoch-relative time of the specified local
860 ** time on that day, add the transition time and the current offset
861 ** from UTC.
862 */
863 return value + rulep->r_time + offset;
864 }
865
866 /*
867 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
868 ** appropriate.
869 */
870
871 static int
tzparse(const char * name,struct state * sp,int lastditch)872 tzparse(const char *name, struct state *sp, int lastditch)
873 {
874 const char * stdname;
875 const char * dstname;
876 size_t stdlen;
877 size_t dstlen;
878 long stdoffset;
879 long dstoffset;
880 time_t * atp;
881 unsigned char * typep;
882 char * cp;
883 int load_result;
884 static struct ttinfo zttinfo;
885
886 dstname = NULL;
887 stdname = name;
888 if (lastditch) {
889 stdlen = strlen(name); /* length of standard zone name */
890 name += stdlen;
891 if (stdlen >= sizeof sp->chars)
892 stdlen = (sizeof sp->chars) - 1;
893 stdoffset = 0;
894 } else {
895 if (*name == '<') {
896 name++;
897 stdname = name;
898 name = getqzname(name, '>');
899 if (*name != '>')
900 return (-1);
901 stdlen = name - stdname;
902 name++;
903 } else {
904 name = getzname(name);
905 stdlen = name - stdname;
906 }
907 if (*name == '\0')
908 return -1;
909 name = getoffset(name, &stdoffset);
910 if (name == NULL)
911 return -1;
912 }
913 load_result = tzload(TZDEFRULES, sp, FALSE);
914 if (load_result != 0)
915 sp->leapcnt = 0; /* so, we're off a little */
916 if (*name != '\0') {
917 if (*name == '<') {
918 dstname = ++name;
919 name = getqzname(name, '>');
920 if (*name != '>')
921 return -1;
922 dstlen = name - dstname;
923 name++;
924 } else {
925 dstname = name;
926 name = getzname(name);
927 dstlen = name - dstname; /* length of DST zone name */
928 }
929 if (*name != '\0' && *name != ',' && *name != ';') {
930 name = getoffset(name, &dstoffset);
931 if (name == NULL)
932 return -1;
933 } else
934 dstoffset = stdoffset - SECSPERHOUR;
935 if (*name == '\0' && load_result != 0)
936 name = TZDEFRULESTRING;
937 if (*name == ',' || *name == ';') {
938 struct rule start;
939 struct rule end;
940 int year;
941 time_t janfirst;
942 time_t starttime;
943 time_t endtime;
944
945 ++name;
946 if ((name = getrule(name, &start)) == NULL)
947 return -1;
948 if (*name++ != ',')
949 return -1;
950 if ((name = getrule(name, &end)) == NULL)
951 return -1;
952 if (*name != '\0')
953 return -1;
954 sp->typecnt = 2; /* standard time and DST */
955 /*
956 ** Two transitions per year, from EPOCH_YEAR forward.
957 */
958 sp->ttis[0] = sp->ttis[1] = zttinfo;
959 sp->ttis[0].tt_gmtoff = -dstoffset;
960 sp->ttis[0].tt_isdst = 1;
961 sp->ttis[0].tt_abbrind = stdlen + 1;
962 sp->ttis[1].tt_gmtoff = -stdoffset;
963 sp->ttis[1].tt_isdst = 0;
964 sp->ttis[1].tt_abbrind = 0;
965 atp = sp->ats;
966 typep = sp->types;
967 janfirst = 0;
968 sp->timecnt = 0;
969 for (year = EPOCH_YEAR;
970 sp->timecnt + 2 <= TZ_MAX_TIMES;
971 ++year) {
972 time_t newfirst;
973
974 starttime = transtime(janfirst, year, &start,
975 stdoffset);
976 endtime = transtime(janfirst, year, &end,
977 dstoffset);
978 if (starttime > endtime) {
979 *atp++ = endtime;
980 *typep++ = 1; /* DST ends */
981 *atp++ = starttime;
982 *typep++ = 0; /* DST begins */
983 } else {
984 *atp++ = starttime;
985 *typep++ = 0; /* DST begins */
986 *atp++ = endtime;
987 *typep++ = 1; /* DST ends */
988 }
989 sp->timecnt += 2;
990 newfirst = janfirst;
991 newfirst += year_lengths[isleap(year)] *
992 SECSPERDAY;
993 if (newfirst <= janfirst)
994 break;
995 janfirst = newfirst;
996 }
997 } else {
998 long theirstdoffset;
999 long theirdstoffset;
1000 long theiroffset;
1001 int isdst;
1002 int i;
1003 int j;
1004
1005 if (*name != '\0')
1006 return -1;
1007 /*
1008 ** Initial values of theirstdoffset and theirdstoffset.
1009 */
1010 theirstdoffset = 0;
1011 for (i = 0; i < sp->timecnt; ++i) {
1012 j = sp->types[i];
1013 if (!sp->ttis[j].tt_isdst) {
1014 theirstdoffset =
1015 -sp->ttis[j].tt_gmtoff;
1016 break;
1017 }
1018 }
1019 theirdstoffset = 0;
1020 for (i = 0; i < sp->timecnt; ++i) {
1021 j = sp->types[i];
1022 if (sp->ttis[j].tt_isdst) {
1023 theirdstoffset =
1024 -sp->ttis[j].tt_gmtoff;
1025 break;
1026 }
1027 }
1028 /*
1029 ** Initially we're assumed to be in standard time.
1030 */
1031 isdst = FALSE;
1032 theiroffset = theirstdoffset;
1033 /*
1034 ** Now juggle transition times and types
1035 ** tracking offsets as you do.
1036 */
1037 for (i = 0; i < sp->timecnt; ++i) {
1038 j = sp->types[i];
1039 sp->types[i] = sp->ttis[j].tt_isdst;
1040 if (sp->ttis[j].tt_ttisgmt) {
1041 /* No adjustment to transition time */
1042 } else {
1043 /*
1044 ** If summer time is in effect, and the
1045 ** transition time was not specified as
1046 ** standard time, add the summer time
1047 ** offset to the transition time;
1048 ** otherwise, add the standard time
1049 ** offset to the transition time.
1050 */
1051 /*
1052 ** Transitions from DST to DDST
1053 ** will effectively disappear since
1054 ** POSIX provides for only one DST
1055 ** offset.
1056 */
1057 if (isdst && !sp->ttis[j].tt_ttisstd) {
1058 sp->ats[i] += dstoffset -
1059 theirdstoffset;
1060 } else {
1061 sp->ats[i] += stdoffset -
1062 theirstdoffset;
1063 }
1064 }
1065 theiroffset = -sp->ttis[j].tt_gmtoff;
1066 if (sp->ttis[j].tt_isdst)
1067 theirdstoffset = theiroffset;
1068 else
1069 theirstdoffset = theiroffset;
1070 }
1071 /*
1072 ** Finally, fill in ttis.
1073 */
1074 sp->ttis[0] = sp->ttis[1] = zttinfo;
1075 sp->ttis[0].tt_gmtoff = -stdoffset;
1076 sp->ttis[0].tt_isdst = FALSE;
1077 sp->ttis[0].tt_abbrind = 0;
1078 sp->ttis[1].tt_gmtoff = -dstoffset;
1079 sp->ttis[1].tt_isdst = TRUE;
1080 sp->ttis[1].tt_abbrind = stdlen + 1;
1081 sp->typecnt = 2;
1082 }
1083 } else {
1084 dstlen = 0;
1085 sp->typecnt = 1; /* only standard time */
1086 sp->timecnt = 0;
1087 sp->ttis[0] = zttinfo;
1088 sp->ttis[0].tt_gmtoff = -stdoffset;
1089 sp->ttis[0].tt_isdst = 0;
1090 sp->ttis[0].tt_abbrind = 0;
1091 }
1092 sp->charcnt = stdlen + 1;
1093 if (dstlen != 0)
1094 sp->charcnt += dstlen + 1;
1095 if ((size_t) sp->charcnt > sizeof sp->chars)
1096 return -1;
1097 cp = sp->chars;
1098 strlcpy(cp, stdname, stdlen + 1);
1099 cp += stdlen + 1;
1100 if (dstlen != 0) {
1101 strlcpy(cp, dstname, dstlen + 1);
1102 }
1103 return 0;
1104 }
1105
1106 static void
gmtload(struct state * sp)1107 gmtload(struct state *sp)
1108 {
1109 if (tzload(gmt, sp, TRUE) != 0)
1110 (void) tzparse(gmt, sp, TRUE);
1111 }
1112
1113 static void
tzsetwall_basic(void)1114 tzsetwall_basic(void)
1115 {
1116 if (lcl_is_set < 0)
1117 return;
1118 lcl_is_set = -1;
1119
1120 if (lclptr == NULL) {
1121 lclptr = calloc(1, sizeof *lclptr);
1122 if (lclptr == NULL) {
1123 settzname(); /* all we can do */
1124 return;
1125 }
1126 }
1127 if (tzload(NULL, lclptr, TRUE) != 0)
1128 gmtload(lclptr);
1129 settzname();
1130 }
1131
1132 #ifndef STD_INSPIRED
1133 /*
1134 ** A non-static declaration of tzsetwall in a system header file
1135 ** may cause a warning about this upcoming static declaration...
1136 */
1137 static
1138 #endif /* !defined STD_INSPIRED */
1139 void
tzsetwall(void)1140 tzsetwall(void)
1141 {
1142 _THREAD_PRIVATE_MUTEX_LOCK(lcl);
1143 tzsetwall_basic();
1144 _THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1145 }
1146
1147 static void
tzset_basic(void)1148 tzset_basic(void)
1149 {
1150 static char lcl_TZname[TZ_STRLEN_MAX + 1];
1151 const char * name;
1152
1153 name = getenv("TZ");
1154 if (name == NULL) {
1155 tzsetwall_basic();
1156 return;
1157 }
1158
1159 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1160 return;
1161 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1162 if (lcl_is_set)
1163 strlcpy(lcl_TZname, name, sizeof lcl_TZname);
1164
1165 /* Ignore TZ for setuid/setgid processes. */
1166 if (issetugid())
1167 name = TZDEFAULT;
1168
1169 if (lclptr == NULL) {
1170 lclptr = calloc(1, sizeof *lclptr);
1171 if (lclptr == NULL) {
1172 settzname(); /* all we can do */
1173 return;
1174 }
1175 }
1176 if (*name == '\0') {
1177 /*
1178 ** User wants it fast rather than right.
1179 */
1180 lclptr->leapcnt = 0; /* so, we're off a little */
1181 lclptr->timecnt = 0;
1182 lclptr->typecnt = 0;
1183 lclptr->ttis[0].tt_isdst = 0;
1184 lclptr->ttis[0].tt_gmtoff = 0;
1185 lclptr->ttis[0].tt_abbrind = 0;
1186 strlcpy(lclptr->chars, gmt, sizeof lclptr->chars);
1187 } else if (tzload(name, lclptr, TRUE) != 0) {
1188 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1189 gmtload(lclptr);
1190 }
1191 settzname();
1192 }
1193
1194 void
tzset(void)1195 tzset(void)
1196 {
1197 _THREAD_PRIVATE_MUTEX_LOCK(lcl);
1198 tzset_basic();
1199 _THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1200 }
1201 DEF_WEAK(tzset);
1202
1203 /*
1204 ** The easy way to behave "as if no library function calls" localtime
1205 ** is to not call it--so we drop its guts into "localsub", which can be
1206 ** freely called. (And no, the PANS doesn't require the above behavior--
1207 ** but it *is* desirable.)
1208 **
1209 ** The unused offset argument is for the benefit of mktime variants.
1210 */
1211
1212 static struct tm *
localsub(const time_t * timep,long offset,struct tm * tmp)1213 localsub(const time_t *timep, long offset, struct tm *tmp)
1214 {
1215 struct state * sp;
1216 const struct ttinfo * ttisp;
1217 int i;
1218 struct tm * result;
1219 const time_t t = *timep;
1220
1221 sp = lclptr;
1222 if (sp == NULL)
1223 return gmtsub(timep, offset, tmp);
1224 if ((sp->goback && t < sp->ats[0]) ||
1225 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1226 time_t newt = t;
1227 time_t seconds;
1228 time_t tcycles;
1229 int_fast64_t icycles;
1230
1231 if (t < sp->ats[0])
1232 seconds = sp->ats[0] - t;
1233 else
1234 seconds = t - sp->ats[sp->timecnt - 1];
1235 --seconds;
1236 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1237 ++tcycles;
1238 icycles = tcycles;
1239 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1240 return NULL;
1241 seconds = icycles;
1242 seconds *= YEARSPERREPEAT;
1243 seconds *= AVGSECSPERYEAR;
1244 if (t < sp->ats[0])
1245 newt += seconds;
1246 else
1247 newt -= seconds;
1248 if (newt < sp->ats[0] ||
1249 newt > sp->ats[sp->timecnt - 1])
1250 return NULL; /* "cannot happen" */
1251 result = localsub(&newt, offset, tmp);
1252 if (result == tmp) {
1253 time_t newy;
1254
1255 newy = tmp->tm_year;
1256 if (t < sp->ats[0])
1257 newy -= icycles * YEARSPERREPEAT;
1258 else
1259 newy += icycles * YEARSPERREPEAT;
1260 tmp->tm_year = newy;
1261 if (tmp->tm_year != newy)
1262 return NULL;
1263 }
1264 return result;
1265 }
1266 if (sp->timecnt == 0 || t < sp->ats[0]) {
1267 i = 0;
1268 while (sp->ttis[i].tt_isdst) {
1269 if (++i >= sp->typecnt) {
1270 i = 0;
1271 break;
1272 }
1273 }
1274 } else {
1275 int lo = 1;
1276 int hi = sp->timecnt;
1277
1278 while (lo < hi) {
1279 int mid = (lo + hi) >> 1;
1280
1281 if (t < sp->ats[mid])
1282 hi = mid;
1283 else
1284 lo = mid + 1;
1285 }
1286 i = (int) sp->types[lo - 1];
1287 }
1288 ttisp = &sp->ttis[i];
1289 /*
1290 ** To get (wrong) behavior that's compatible with System V Release 2.0
1291 ** you'd replace the statement below with
1292 ** t += ttisp->tt_gmtoff;
1293 ** timesub(&t, 0L, sp, tmp);
1294 */
1295 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1296 tmp->tm_isdst = ttisp->tt_isdst;
1297 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1298 tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
1299 return result;
1300 }
1301
1302 /*
1303 ** Re-entrant version of localtime.
1304 */
1305
1306 struct tm *
localtime_r(const time_t * timep,struct tm * p_tm)1307 localtime_r(const time_t *timep, struct tm *p_tm)
1308 {
1309 _THREAD_PRIVATE_MUTEX_LOCK(lcl);
1310 tzset_basic();
1311 p_tm = localsub(timep, 0L, p_tm);
1312 _THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1313 return p_tm;
1314 }
1315 DEF_WEAK(localtime_r);
1316
1317 struct tm *
localtime(const time_t * timep)1318 localtime(const time_t *timep)
1319 {
1320 _THREAD_PRIVATE_KEY(localtime);
1321 struct tm * p_tm = (struct tm*)_THREAD_PRIVATE(localtime, tm, NULL);
1322
1323 if (p_tm == NULL)
1324 return NULL;
1325 return localtime_r(timep, p_tm);
1326 }
1327 DEF_STRONG(localtime);
1328
1329 /*
1330 ** gmtsub is to gmtime as localsub is to localtime.
1331 */
1332
1333 static struct tm *
gmtsub(const time_t * timep,long offset,struct tm * tmp)1334 gmtsub(const time_t *timep, long offset, struct tm *tmp)
1335 {
1336 struct tm * result;
1337
1338 _THREAD_PRIVATE_MUTEX_LOCK(gmt);
1339 if (!gmt_is_set) {
1340 gmt_is_set = TRUE;
1341 gmtptr = calloc(1, sizeof(*gmtptr));
1342 if (gmtptr != NULL)
1343 gmtload(gmtptr);
1344 }
1345 _THREAD_PRIVATE_MUTEX_UNLOCK(gmt);
1346 result = timesub(timep, offset, gmtptr, tmp);
1347 /*
1348 ** Could get fancy here and deliver something such as
1349 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1350 ** but this is no time for a treasure hunt.
1351 */
1352 if (offset != 0)
1353 tmp->tm_zone = wildabbr;
1354 else {
1355 if (gmtptr == NULL)
1356 tmp->tm_zone = (char *)gmt;
1357 else
1358 tmp->tm_zone = gmtptr->chars;
1359 }
1360 return result;
1361 }
1362
1363 /*
1364 ** Re-entrant version of gmtime.
1365 */
1366
1367 struct tm *
gmtime_r(const time_t * timep,struct tm * p_tm)1368 gmtime_r(const time_t *timep, struct tm *p_tm)
1369 {
1370 return gmtsub(timep, 0L, p_tm);
1371 }
1372 DEF_WEAK(gmtime_r);
1373
1374 struct tm *
gmtime(const time_t * timep)1375 gmtime(const time_t *timep)
1376 {
1377 _THREAD_PRIVATE_KEY(gmtime);
1378 struct tm * p_tm = (struct tm*) _THREAD_PRIVATE(gmtime, tm, NULL);
1379
1380 if (p_tm == NULL)
1381 return NULL;
1382 return gmtime_r(timep, p_tm);
1383
1384 }
1385 DEF_WEAK(gmtime);
1386
1387 #ifdef STD_INSPIRED
1388
1389 struct tm *
offtime(const time_t * timep,long offset)1390 offtime(const time_t *timep, long offset)
1391 {
1392 return gmtsub(timep, offset, &tm);
1393 }
1394
1395 #endif /* defined STD_INSPIRED */
1396
1397 /*
1398 ** Return the number of leap years through the end of the given year
1399 ** where, to make the math easy, the answer for year zero is defined as zero.
1400 */
1401
1402 static int
leaps_thru_end_of(int y)1403 leaps_thru_end_of(int y)
1404 {
1405 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1406 -(leaps_thru_end_of(-(y + 1)) + 1);
1407 }
1408
1409 static struct tm *
timesub(const time_t * timep,long offset,const struct state * sp,struct tm * tmp)1410 timesub(const time_t *timep, long offset, const struct state *sp, struct tm *tmp)
1411 {
1412 const struct lsinfo * lp;
1413 time_t tdays;
1414 int idays; /* unsigned would be so 2003 */
1415 long rem;
1416 int y;
1417 const int * ip;
1418 long corr;
1419 int hit;
1420 int i;
1421 long seconds;
1422
1423 corr = 0;
1424 hit = 0;
1425 i = (sp == NULL) ? 0 : sp->leapcnt;
1426 while (--i >= 0) {
1427 lp = &sp->lsis[i];
1428 if (*timep >= lp->ls_trans) {
1429 if (*timep == lp->ls_trans) {
1430 hit = ((i == 0 && lp->ls_corr > 0) ||
1431 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1432 if (hit) {
1433 while (i > 0 &&
1434 sp->lsis[i].ls_trans ==
1435 sp->lsis[i - 1].ls_trans + 1 &&
1436 sp->lsis[i].ls_corr ==
1437 sp->lsis[i - 1].ls_corr + 1) {
1438 ++hit;
1439 --i;
1440 }
1441 }
1442 }
1443 corr = lp->ls_corr;
1444 break;
1445 }
1446 }
1447 y = EPOCH_YEAR;
1448 tdays = *timep / SECSPERDAY;
1449 rem = *timep - tdays * SECSPERDAY;
1450 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1451 int newy;
1452 time_t tdelta;
1453 int idelta;
1454 int leapdays;
1455
1456 tdelta = tdays / DAYSPERLYEAR;
1457 idelta = tdelta;
1458 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1459 return NULL;
1460 if (idelta == 0)
1461 idelta = (tdays < 0) ? -1 : 1;
1462 newy = y;
1463 if (increment_overflow(&newy, idelta))
1464 return NULL;
1465 leapdays = leaps_thru_end_of(newy - 1) -
1466 leaps_thru_end_of(y - 1);
1467 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1468 tdays -= leapdays;
1469 y = newy;
1470 }
1471
1472 seconds = tdays * SECSPERDAY + 0.5;
1473 tdays = seconds / SECSPERDAY;
1474 rem += seconds - tdays * SECSPERDAY;
1475
1476 /*
1477 ** Given the range, we can now fearlessly cast...
1478 */
1479 idays = tdays;
1480 rem += offset - corr;
1481 while (rem < 0) {
1482 rem += SECSPERDAY;
1483 --idays;
1484 }
1485 while (rem >= SECSPERDAY) {
1486 rem -= SECSPERDAY;
1487 ++idays;
1488 }
1489 while (idays < 0) {
1490 if (increment_overflow(&y, -1))
1491 return NULL;
1492 idays += year_lengths[isleap(y)];
1493 }
1494 while (idays >= year_lengths[isleap(y)]) {
1495 idays -= year_lengths[isleap(y)];
1496 if (increment_overflow(&y, 1))
1497 return NULL;
1498 }
1499 tmp->tm_year = y;
1500 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1501 return NULL;
1502 tmp->tm_yday = idays;
1503 /*
1504 ** The "extra" mods below avoid overflow problems.
1505 */
1506 tmp->tm_wday = EPOCH_WDAY +
1507 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1508 (DAYSPERNYEAR % DAYSPERWEEK) +
1509 leaps_thru_end_of(y - 1) -
1510 leaps_thru_end_of(EPOCH_YEAR - 1) +
1511 idays;
1512 tmp->tm_wday %= DAYSPERWEEK;
1513 if (tmp->tm_wday < 0)
1514 tmp->tm_wday += DAYSPERWEEK;
1515 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1516 rem %= SECSPERHOUR;
1517 tmp->tm_min = (int) (rem / SECSPERMIN);
1518 /*
1519 ** A positive leap second requires a special
1520 ** representation. This uses "... ??:59:60" et seq.
1521 */
1522 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1523 ip = mon_lengths[isleap(y)];
1524 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1525 idays -= ip[tmp->tm_mon];
1526 tmp->tm_mday = (int) (idays + 1);
1527 tmp->tm_isdst = 0;
1528 tmp->tm_gmtoff = offset;
1529 return tmp;
1530 }
1531
1532 char *
ctime(const time_t * timep)1533 ctime(const time_t *timep)
1534 {
1535 /*
1536 ** Section 4.12.3.2 of X3.159-1989 requires that
1537 ** The ctime function converts the calendar time pointed to by timer
1538 ** to local time in the form of a string. It is equivalent to
1539 ** asctime(localtime(timer))
1540 */
1541 return asctime(localtime(timep));
1542 }
1543
1544 char *
ctime_r(const time_t * timep,char * buf)1545 ctime_r(const time_t *timep, char *buf)
1546 {
1547 struct tm mytm;
1548
1549 return asctime_r(localtime_r(timep, &mytm), buf);
1550 }
1551
1552 /*
1553 ** Adapted from code provided by Robert Elz, who writes:
1554 ** The "best" way to do mktime I think is based on an idea of Bob
1555 ** Kridle's (so its said...) from a long time ago.
1556 ** It does a binary search of the time_t space. Since time_t's are
1557 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1558 ** would still be very reasonable).
1559 */
1560
1561 #ifndef WRONG
1562 #define WRONG (-1)
1563 #endif /* !defined WRONG */
1564
1565 /*
1566 ** Normalize logic courtesy Paul Eggert.
1567 */
1568
1569 static int
increment_overflow(int * ip,int j)1570 increment_overflow(int *ip, int j)
1571 {
1572 int const i = *ip;
1573
1574 /*
1575 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1576 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1577 ** If i < 0 there can only be overflow if i + j < INT_MIN
1578 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1579 */
1580 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1581 return TRUE;
1582 *ip += j;
1583 return FALSE;
1584 }
1585
1586 static int
long_increment_overflow(long * lp,int m)1587 long_increment_overflow(long *lp, int m)
1588 {
1589 long const l = *lp;
1590
1591 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1592 return TRUE;
1593 *lp += m;
1594 return FALSE;
1595 }
1596
1597 static int
normalize_overflow(int * tensptr,int * unitsptr,int base)1598 normalize_overflow(int *tensptr, int *unitsptr, int base)
1599 {
1600 int tensdelta;
1601
1602 tensdelta = (*unitsptr >= 0) ?
1603 (*unitsptr / base) :
1604 (-1 - (-1 - *unitsptr) / base);
1605 *unitsptr -= tensdelta * base;
1606 return increment_overflow(tensptr, tensdelta);
1607 }
1608
1609 static int
long_normalize_overflow(long * tensptr,int * unitsptr,int base)1610 long_normalize_overflow(long *tensptr, int *unitsptr, int base)
1611 {
1612 int tensdelta;
1613
1614 tensdelta = (*unitsptr >= 0) ?
1615 (*unitsptr / base) :
1616 (-1 - (-1 - *unitsptr) / base);
1617 *unitsptr -= tensdelta * base;
1618 return long_increment_overflow(tensptr, tensdelta);
1619 }
1620
1621 static int
tmcomp(const struct tm * atmp,const struct tm * btmp)1622 tmcomp(const struct tm *atmp, const struct tm *btmp)
1623 {
1624 int result;
1625
1626 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1627 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1628 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1629 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1630 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1631 result = atmp->tm_sec - btmp->tm_sec;
1632 return result;
1633 }
1634
1635 static time_t
time2sub(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset,int * okayp,int do_norm_secs)1636 time2sub(struct tm *tmp, struct tm *(*funcp)(const time_t *, long, struct tm *),
1637 long offset, int *okayp, int do_norm_secs)
1638 {
1639 const struct state * sp;
1640 int dir;
1641 int i, j;
1642 int saved_seconds;
1643 long li;
1644 time_t lo;
1645 time_t hi;
1646 long y;
1647 time_t newt;
1648 time_t t;
1649 struct tm yourtm, mytm;
1650
1651 *okayp = FALSE;
1652 yourtm = *tmp;
1653 if (do_norm_secs) {
1654 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1655 SECSPERMIN))
1656 return WRONG;
1657 }
1658 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1659 return WRONG;
1660 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1661 return WRONG;
1662 y = yourtm.tm_year;
1663 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1664 return WRONG;
1665 /*
1666 ** Turn y into an actual year number for now.
1667 ** It is converted back to an offset from TM_YEAR_BASE later.
1668 */
1669 if (long_increment_overflow(&y, TM_YEAR_BASE))
1670 return WRONG;
1671 while (yourtm.tm_mday <= 0) {
1672 if (long_increment_overflow(&y, -1))
1673 return WRONG;
1674 li = y + (1 < yourtm.tm_mon);
1675 yourtm.tm_mday += year_lengths[isleap(li)];
1676 }
1677 while (yourtm.tm_mday > DAYSPERLYEAR) {
1678 li = y + (1 < yourtm.tm_mon);
1679 yourtm.tm_mday -= year_lengths[isleap(li)];
1680 if (long_increment_overflow(&y, 1))
1681 return WRONG;
1682 }
1683 for ( ; ; ) {
1684 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1685 if (yourtm.tm_mday <= i)
1686 break;
1687 yourtm.tm_mday -= i;
1688 if (++yourtm.tm_mon >= MONSPERYEAR) {
1689 yourtm.tm_mon = 0;
1690 if (long_increment_overflow(&y, 1))
1691 return WRONG;
1692 }
1693 }
1694 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1695 return WRONG;
1696 yourtm.tm_year = y;
1697 if (yourtm.tm_year != y)
1698 return WRONG;
1699 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1700 saved_seconds = 0;
1701 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1702 /*
1703 ** We can't set tm_sec to 0, because that might push the
1704 ** time below the minimum representable time.
1705 ** Set tm_sec to 59 instead.
1706 ** This assumes that the minimum representable time is
1707 ** not in the same minute that a leap second was deleted from,
1708 ** which is a safer assumption than using 58 would be.
1709 */
1710 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1711 return WRONG;
1712 saved_seconds = yourtm.tm_sec;
1713 yourtm.tm_sec = SECSPERMIN - 1;
1714 } else {
1715 saved_seconds = yourtm.tm_sec;
1716 yourtm.tm_sec = 0;
1717 }
1718 /*
1719 ** Do a binary search (this works whatever time_t's type is).
1720 */
1721 lo = 1;
1722 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1723 lo *= 2;
1724 hi = -(lo + 1);
1725 for ( ; ; ) {
1726 t = lo / 2 + hi / 2;
1727 if (t < lo)
1728 t = lo;
1729 else if (t > hi)
1730 t = hi;
1731 if ((*funcp)(&t, offset, &mytm) == NULL) {
1732 /*
1733 ** Assume that t is too extreme to be represented in
1734 ** a struct tm; arrange things so that it is less
1735 ** extreme on the next pass.
1736 */
1737 dir = (t > 0) ? 1 : -1;
1738 } else
1739 dir = tmcomp(&mytm, &yourtm);
1740 if (dir != 0) {
1741 if (t == lo) {
1742 ++t;
1743 if (t <= lo)
1744 return WRONG;
1745 ++lo;
1746 } else if (t == hi) {
1747 --t;
1748 if (t >= hi)
1749 return WRONG;
1750 --hi;
1751 }
1752 if (lo > hi)
1753 return WRONG;
1754 if (dir > 0)
1755 hi = t;
1756 else
1757 lo = t;
1758 continue;
1759 }
1760 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1761 break;
1762 /*
1763 ** Right time, wrong type.
1764 ** Hunt for right time, right type.
1765 ** It's okay to guess wrong since the guess
1766 ** gets checked.
1767 */
1768 sp = (const struct state *)
1769 ((funcp == localsub) ? lclptr : gmtptr);
1770 if (sp == NULL)
1771 return WRONG;
1772 for (i = sp->typecnt - 1; i >= 0; --i) {
1773 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1774 continue;
1775 for (j = sp->typecnt - 1; j >= 0; --j) {
1776 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1777 continue;
1778 newt = t + sp->ttis[j].tt_gmtoff -
1779 sp->ttis[i].tt_gmtoff;
1780 if ((*funcp)(&newt, offset, &mytm) == NULL)
1781 continue;
1782 if (tmcomp(&mytm, &yourtm) != 0)
1783 continue;
1784 if (mytm.tm_isdst != yourtm.tm_isdst)
1785 continue;
1786 /*
1787 ** We have a match.
1788 */
1789 t = newt;
1790 goto label;
1791 }
1792 }
1793 return WRONG;
1794 }
1795 label:
1796 newt = t + saved_seconds;
1797 if ((newt < t) != (saved_seconds < 0))
1798 return WRONG;
1799 t = newt;
1800 if ((*funcp)(&t, offset, tmp))
1801 *okayp = TRUE;
1802 return t;
1803 }
1804
1805 static time_t
time2(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset,int * okayp)1806 time2(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1807 long offset, int *okayp)
1808 {
1809 time_t t;
1810
1811 /*
1812 ** First try without normalization of seconds
1813 ** (in case tm_sec contains a value associated with a leap second).
1814 ** If that fails, try with normalization of seconds.
1815 */
1816 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1817 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1818 }
1819
1820 static time_t
time1(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset)1821 time1(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1822 long offset)
1823 {
1824 time_t t;
1825 const struct state * sp;
1826 int samei, otheri;
1827 int sameind, otherind;
1828 int i;
1829 int nseen;
1830 int seen[TZ_MAX_TYPES];
1831 int types[TZ_MAX_TYPES];
1832 int okay;
1833
1834 if (tmp == NULL) {
1835 errno = EINVAL;
1836 return WRONG;
1837 }
1838 if (tmp->tm_isdst > 1)
1839 tmp->tm_isdst = 1;
1840 t = time2(tmp, funcp, offset, &okay);
1841 #ifdef PCTS
1842 /*
1843 ** PCTS code courtesy Grant Sullivan.
1844 */
1845 if (okay)
1846 return t;
1847 if (tmp->tm_isdst < 0)
1848 tmp->tm_isdst = 0; /* reset to std and try again */
1849 #endif /* defined PCTS */
1850 #ifndef PCTS
1851 if (okay || tmp->tm_isdst < 0)
1852 return t;
1853 #endif /* !defined PCTS */
1854 /*
1855 ** We're supposed to assume that somebody took a time of one type
1856 ** and did some math on it that yielded a "struct tm" that's bad.
1857 ** We try to divine the type they started from and adjust to the
1858 ** type they need.
1859 */
1860 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
1861 if (sp == NULL)
1862 return WRONG;
1863 for (i = 0; i < sp->typecnt; ++i)
1864 seen[i] = FALSE;
1865 nseen = 0;
1866 for (i = sp->timecnt - 1; i >= 0; --i) {
1867 if (!seen[sp->types[i]]) {
1868 seen[sp->types[i]] = TRUE;
1869 types[nseen++] = sp->types[i];
1870 }
1871 }
1872 for (sameind = 0; sameind < nseen; ++sameind) {
1873 samei = types[sameind];
1874 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1875 continue;
1876 for (otherind = 0; otherind < nseen; ++otherind) {
1877 otheri = types[otherind];
1878 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1879 continue;
1880 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1881 sp->ttis[samei].tt_gmtoff;
1882 tmp->tm_isdst = !tmp->tm_isdst;
1883 t = time2(tmp, funcp, offset, &okay);
1884 if (okay)
1885 return t;
1886 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1887 sp->ttis[samei].tt_gmtoff;
1888 tmp->tm_isdst = !tmp->tm_isdst;
1889 }
1890 }
1891 return WRONG;
1892 }
1893
1894 time_t
mktime(struct tm * tmp)1895 mktime(struct tm *tmp)
1896 {
1897 time_t ret;
1898
1899 _THREAD_PRIVATE_MUTEX_LOCK(lcl);
1900 tzset_basic();
1901 ret = time1(tmp, localsub, 0L);
1902 _THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1903 return ret;
1904 }
1905 DEF_STRONG(mktime);
1906
1907 #ifdef STD_INSPIRED
1908
1909 time_t
timelocal(struct tm * tmp)1910 timelocal(struct tm *tmp)
1911 {
1912 if (tmp != NULL)
1913 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1914 return mktime(tmp);
1915 }
1916
1917 time_t
timegm(struct tm * tmp)1918 timegm(struct tm *tmp)
1919 {
1920 if (tmp != NULL)
1921 tmp->tm_isdst = 0;
1922 return time1(tmp, gmtsub, 0L);
1923 }
1924
1925 time_t
timeoff(struct tm * tmp,long offset)1926 timeoff(struct tm *tmp, long offset)
1927 {
1928 if (tmp != NULL)
1929 tmp->tm_isdst = 0;
1930 return time1(tmp, gmtsub, offset);
1931 }
1932
1933 #endif /* defined STD_INSPIRED */
1934
1935 /*
1936 ** XXX--is the below the right way to conditionalize??
1937 */
1938
1939 #ifdef STD_INSPIRED
1940
1941 /*
1942 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1943 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1944 ** is not the case if we are accounting for leap seconds.
1945 ** So, we provide the following conversion routines for use
1946 ** when exchanging timestamps with POSIX conforming systems.
1947 */
1948
1949 static long
leapcorr(time_t * timep)1950 leapcorr(time_t *timep)
1951 {
1952 struct state * sp;
1953 struct lsinfo * lp;
1954 int i;
1955
1956 sp = lclptr;
1957 i = sp->leapcnt;
1958 while (--i >= 0) {
1959 lp = &sp->lsis[i];
1960 if (*timep >= lp->ls_trans)
1961 return lp->ls_corr;
1962 }
1963 return 0;
1964 }
1965
1966 time_t
time2posix(time_t t)1967 time2posix(time_t t)
1968 {
1969 tzset();
1970 return t - leapcorr(&t);
1971 }
1972
1973 time_t
posix2time(time_t t)1974 posix2time(time_t t)
1975 {
1976 time_t x;
1977 time_t y;
1978
1979 tzset();
1980 /*
1981 ** For a positive leap second hit, the result
1982 ** is not unique. For a negative leap second
1983 ** hit, the corresponding time doesn't exist,
1984 ** so we return an adjacent second.
1985 */
1986 x = t + leapcorr(&t);
1987 y = x - leapcorr(&x);
1988 if (y < t) {
1989 do {
1990 x++;
1991 y = x - leapcorr(&x);
1992 } while (y < t);
1993 if (t != y)
1994 return x - 1;
1995 } else if (y > t) {
1996 do {
1997 --x;
1998 y = x - leapcorr(&x);
1999 } while (y > t);
2000 if (t != y)
2001 return x + 1;
2002 }
2003 return x;
2004 }
2005
2006 #endif /* defined STD_INSPIRED */
2007