xref: /netbsd/sys/uvm/uvm_aobj.c (revision de002c03)
1 /*	$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29  */
30 
31 /*
32  * uvm_aobj.c: anonymous memory uvm_object pager
33  *
34  * author: Chuck Silvers <chuq@chuq.com>
35  * started: Jan-1998
36  *
37  * - design mostly from Chuck Cranor
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $");
42 
43 #ifdef _KERNEL_OPT
44 #include "opt_uvmhist.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/pool.h>
52 #include <sys/atomic.h>
53 
54 #include <uvm/uvm.h>
55 #include <uvm/uvm_page_array.h>
56 
57 /*
58  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
59  * keeping the list of resident pages, it may also keep a list of allocated
60  * swap blocks.  Depending on the size of the object, this list is either
61  * stored in an array (small objects) or in a hash table (large objects).
62  *
63  * Lock order
64  *
65  *	uao_list_lock ->
66  *		uvm_object::vmobjlock
67  */
68 
69 /*
70  * Note: for hash tables, we break the address space of the aobj into blocks
71  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
72  */
73 
74 #define	UAO_SWHASH_CLUSTER_SHIFT	4
75 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
76 
77 /* Get the "tag" for this page index. */
78 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
80     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81 
82 /* Given an ELT and a page index, find the swap slot. */
83 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
84     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
85 
86 /* Given an ELT, return its pageidx base. */
87 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89 
90 /* The hash function. */
91 #define	UAO_SWHASH_HASH(aobj, idx) \
92     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
93     & (aobj)->u_swhashmask)])
94 
95 /*
96  * The threshold which determines whether we will use an array or a
97  * hash table to store the list of allocated swap blocks.
98  */
99 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
100 #define	UAO_USES_SWHASH(aobj) \
101     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
102 
103 /* The number of buckets in a hash, with an upper bound. */
104 #define	UAO_SWHASH_MAXBUCKETS		256
105 #define	UAO_SWHASH_BUCKETS(aobj) \
106     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
107 
108 /*
109  * uao_swhash_elt: when a hash table is being used, this structure defines
110  * the format of an entry in the bucket list.
111  */
112 
113 struct uao_swhash_elt {
114 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
115 	voff_t tag;				/* our 'tag' */
116 	int count;				/* our number of active slots */
117 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
118 };
119 
120 /*
121  * uao_swhash: the swap hash table structure
122  */
123 
124 LIST_HEAD(uao_swhash, uao_swhash_elt);
125 
126 /*
127  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
128  * Note: pages for this pool must not come from a pageable kernel map.
129  */
130 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
131 
132 /*
133  * uvm_aobj: the actual anon-backed uvm_object
134  *
135  * => the uvm_object is at the top of the structure, this allows
136  *   (struct uvm_aobj *) == (struct uvm_object *)
137  * => only one of u_swslots and u_swhash is used in any given aobj
138  */
139 
140 struct uvm_aobj {
141 	struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
142 	pgoff_t u_pages;	 /* number of pages in entire object */
143 	int u_flags;		 /* the flags (see uvm_aobj.h) */
144 	int *u_swslots;		 /* array of offset->swapslot mappings */
145 				 /*
146 				  * hashtable of offset->swapslot mappings
147 				  * (u_swhash is an array of bucket heads)
148 				  */
149 	struct uao_swhash *u_swhash;
150 	u_long u_swhashmask;		/* mask for hashtable */
151 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
152 	int u_freelist;		  /* freelist to allocate pages from */
153 };
154 
155 static void	uao_free(struct uvm_aobj *);
156 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
157 		    int *, int, vm_prot_t, int, int);
158 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
159 
160 #if defined(VMSWAP)
161 static struct uao_swhash_elt *uao_find_swhash_elt
162     (struct uvm_aobj *, int, bool);
163 
164 static bool uao_pagein(struct uvm_aobj *, int, int);
165 static bool uao_pagein_page(struct uvm_aobj *, int);
166 #endif /* defined(VMSWAP) */
167 
168 static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
169 
170 /*
171  * aobj_pager
172  *
173  * note that some functions (e.g. put) are handled elsewhere
174  */
175 
176 const struct uvm_pagerops aobj_pager = {
177 	.pgo_reference = uao_reference,
178 	.pgo_detach = uao_detach,
179 	.pgo_get = uao_get,
180 	.pgo_put = uao_put,
181 };
182 
183 /*
184  * uao_list: global list of active aobjs, locked by uao_list_lock
185  */
186 
LIST_HEAD(aobjlist,uvm_aobj)187 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
188 static kmutex_t		uao_list_lock		__cacheline_aligned;
189 
190 /*
191  * hash table/array related functions
192  */
193 
194 #if defined(VMSWAP)
195 
196 /*
197  * uao_find_swhash_elt: find (or create) a hash table entry for a page
198  * offset.
199  *
200  * => the object should be locked by the caller
201  */
202 
203 static struct uao_swhash_elt *
204 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
205 {
206 	struct uao_swhash *swhash;
207 	struct uao_swhash_elt *elt;
208 	voff_t page_tag;
209 
210 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
211 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
212 
213 	/*
214 	 * now search the bucket for the requested tag
215 	 */
216 
217 	LIST_FOREACH(elt, swhash, list) {
218 		if (elt->tag == page_tag) {
219 			return elt;
220 		}
221 	}
222 	if (!create) {
223 		return NULL;
224 	}
225 
226 	/*
227 	 * allocate a new entry for the bucket and init/insert it in
228 	 */
229 
230 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
231 	if (elt == NULL) {
232 		return NULL;
233 	}
234 	LIST_INSERT_HEAD(swhash, elt, list);
235 	elt->tag = page_tag;
236 	elt->count = 0;
237 	memset(elt->slots, 0, sizeof(elt->slots));
238 	return elt;
239 }
240 
241 /*
242  * uao_find_swslot: find the swap slot number for an aobj/pageidx
243  *
244  * => object must be locked by caller
245  */
246 
247 int
uao_find_swslot(struct uvm_object * uobj,int pageidx)248 uao_find_swslot(struct uvm_object *uobj, int pageidx)
249 {
250 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
251 	struct uao_swhash_elt *elt;
252 
253 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
254 
255 	/*
256 	 * if noswap flag is set, then we never return a slot
257 	 */
258 
259 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
260 		return 0;
261 
262 	/*
263 	 * if hashing, look in hash table.
264 	 */
265 
266 	if (UAO_USES_SWHASH(aobj)) {
267 		elt = uao_find_swhash_elt(aobj, pageidx, false);
268 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
269 	}
270 
271 	/*
272 	 * otherwise, look in the array
273 	 */
274 
275 	return aobj->u_swslots[pageidx];
276 }
277 
278 /*
279  * uao_set_swslot: set the swap slot for a page in an aobj.
280  *
281  * => setting a slot to zero frees the slot
282  * => object must be locked by caller
283  * => we return the old slot number, or -1 if we failed to allocate
284  *    memory to record the new slot number
285  */
286 
287 int
uao_set_swslot(struct uvm_object * uobj,int pageidx,int slot)288 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
289 {
290 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
291 	struct uao_swhash_elt *elt;
292 	int oldslot;
293 	UVMHIST_FUNC(__func__);
294 	UVMHIST_CALLARGS(pdhist, "aobj %#jx pageidx %jd slot %jd",
295 	    (uintptr_t)aobj, pageidx, slot, 0);
296 
297 	KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0);
298 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
299 
300 	/*
301 	 * if noswap flag is set, then we can't set a non-zero slot.
302 	 */
303 
304 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
305 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
306 		return 0;
307 	}
308 
309 	/*
310 	 * are we using a hash table?  if so, add it in the hash.
311 	 */
312 
313 	if (UAO_USES_SWHASH(aobj)) {
314 
315 		/*
316 		 * Avoid allocating an entry just to free it again if
317 		 * the page had not swap slot in the first place, and
318 		 * we are freeing.
319 		 */
320 
321 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
322 		if (elt == NULL) {
323 			return slot ? -1 : 0;
324 		}
325 
326 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
327 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
328 
329 		/*
330 		 * now adjust the elt's reference counter and free it if we've
331 		 * dropped it to zero.
332 		 */
333 
334 		if (slot) {
335 			if (oldslot == 0)
336 				elt->count++;
337 		} else {
338 			if (oldslot)
339 				elt->count--;
340 
341 			if (elt->count == 0) {
342 				LIST_REMOVE(elt, list);
343 				pool_put(&uao_swhash_elt_pool, elt);
344 			}
345 		}
346 	} else {
347 		/* we are using an array */
348 		oldslot = aobj->u_swslots[pageidx];
349 		aobj->u_swslots[pageidx] = slot;
350 	}
351 	return oldslot;
352 }
353 
354 #endif /* defined(VMSWAP) */
355 
356 /*
357  * end of hash/array functions
358  */
359 
360 /*
361  * uao_free: free all resources held by an aobj, and then free the aobj
362  *
363  * => the aobj should be dead
364  */
365 
366 static void
uao_free(struct uvm_aobj * aobj)367 uao_free(struct uvm_aobj *aobj)
368 {
369 	struct uvm_object *uobj = &aobj->u_obj;
370 
371 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
372 	KASSERT(rw_write_held(uobj->vmobjlock));
373 	uao_dropswap_range(uobj, 0, 0);
374 	rw_exit(uobj->vmobjlock);
375 
376 #if defined(VMSWAP)
377 	if (UAO_USES_SWHASH(aobj)) {
378 
379 		/*
380 		 * free the hash table itself.
381 		 */
382 
383 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
384 	} else {
385 
386 		/*
387 		 * free the array itself.
388 		 */
389 
390 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
391 	}
392 #endif /* defined(VMSWAP) */
393 
394 	/*
395 	 * finally free the aobj itself
396 	 */
397 
398 	uvm_obj_destroy(uobj, true);
399 	kmem_free(aobj, sizeof(struct uvm_aobj));
400 }
401 
402 /*
403  * pager functions
404  */
405 
406 /*
407  * uao_create: create an aobj of the given size and return its uvm_object.
408  *
409  * => for normal use, flags are always zero
410  * => for the kernel object, the flags are:
411  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
412  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
413  */
414 
415 struct uvm_object *
uao_create(voff_t size,int flags)416 uao_create(voff_t size, int flags)
417 {
418 	static struct uvm_aobj kernel_object_store;
419 	static krwlock_t bootstrap_kernel_object_lock;
420 	static int kobj_alloced __diagused = 0;
421 	pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
422 	struct uvm_aobj *aobj;
423 	int refs;
424 
425 	/*
426 	 * Allocate a new aobj, unless kernel object is requested.
427 	 */
428 
429 	if (flags & UAO_FLAG_KERNOBJ) {
430 		KASSERT(!kobj_alloced);
431 		aobj = &kernel_object_store;
432 		aobj->u_pages = pages;
433 		aobj->u_flags = UAO_FLAG_NOSWAP;
434 		refs = UVM_OBJ_KERN;
435 		kobj_alloced = UAO_FLAG_KERNOBJ;
436 	} else if (flags & UAO_FLAG_KERNSWAP) {
437 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
438 		aobj = &kernel_object_store;
439 		kobj_alloced = UAO_FLAG_KERNSWAP;
440 		refs = 0xdeadbeaf; /* XXX: gcc */
441 	} else {
442 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
443 		aobj->u_pages = pages;
444 		aobj->u_flags = 0;
445 		refs = 1;
446 	}
447 
448 	/*
449 	 * no freelist by default
450 	 */
451 
452 	aobj->u_freelist = VM_NFREELIST;
453 
454 	/*
455  	 * allocate hash/array if necessary
456  	 *
457  	 * note: in the KERNSWAP case no need to worry about locking since
458  	 * we are still booting we should be the only thread around.
459  	 */
460 
461 	const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
462 	if (flags == 0 || kernswap) {
463 #if defined(VMSWAP)
464 
465 		/* allocate hash table or array depending on object size */
466 		if (UAO_USES_SWHASH(aobj)) {
467 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
468 			    HASH_LIST, true, &aobj->u_swhashmask);
469 		} else {
470 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
471 			    KM_SLEEP);
472 		}
473 #endif /* defined(VMSWAP) */
474 
475 		/*
476 		 * Replace kernel_object's temporary static lock with
477 		 * a regular rw_obj.  We cannot use uvm_obj_setlock()
478 		 * because that would try to free the old lock.
479 		 */
480 
481 		if (kernswap) {
482 			aobj->u_obj.vmobjlock = rw_obj_alloc();
483 			rw_destroy(&bootstrap_kernel_object_lock);
484 		}
485 		if (flags) {
486 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
487 			return &aobj->u_obj;
488 		}
489 	}
490 
491 	/*
492 	 * Initialise UVM object.
493 	 */
494 
495 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
496 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
497 	if (__predict_false(kernobj)) {
498 		/* Use a temporary static lock for kernel_object. */
499 		rw_init(&bootstrap_kernel_object_lock);
500 		uvm_obj_setlock(&aobj->u_obj, &bootstrap_kernel_object_lock);
501 	}
502 
503 	/*
504  	 * now that aobj is ready, add it to the global list
505  	 */
506 
507 	mutex_enter(&uao_list_lock);
508 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
509 	mutex_exit(&uao_list_lock);
510 	return(&aobj->u_obj);
511 }
512 
513 /*
514  * uao_set_pgfl: allocate pages only from the specified freelist.
515  *
516  * => must be called before any pages are allocated for the object.
517  * => reset by setting it to VM_NFREELIST, meaning any freelist.
518  */
519 
520 void
uao_set_pgfl(struct uvm_object * uobj,int freelist)521 uao_set_pgfl(struct uvm_object *uobj, int freelist)
522 {
523 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
524 
525 	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
526 	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
527 	    freelist);
528 
529 	aobj->u_freelist = freelist;
530 }
531 
532 /*
533  * uao_pagealloc: allocate a page for aobj.
534  */
535 
536 static inline struct vm_page *
uao_pagealloc(struct uvm_object * uobj,voff_t offset,int flags)537 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
538 {
539 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
540 
541 	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
542 		return uvm_pagealloc(uobj, offset, NULL, flags);
543 	else
544 		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
545 		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
546 }
547 
548 /*
549  * uao_init: set up aobj pager subsystem
550  *
551  * => called at boot time from uvm_pager_init()
552  */
553 
554 void
uao_init(void)555 uao_init(void)
556 {
557 	static int uao_initialized;
558 
559 	if (uao_initialized)
560 		return;
561 	uao_initialized = true;
562 	LIST_INIT(&uao_list);
563 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
564 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
565 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
566 }
567 
568 /*
569  * uao_reference: hold a reference to an anonymous UVM object.
570  */
571 void
uao_reference(struct uvm_object * uobj)572 uao_reference(struct uvm_object *uobj)
573 {
574 	/* Kernel object is persistent. */
575 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
576 		return;
577 	}
578 	atomic_inc_uint(&uobj->uo_refs);
579 }
580 
581 /*
582  * uao_detach: drop a reference to an anonymous UVM object.
583  */
584 void
uao_detach(struct uvm_object * uobj)585 uao_detach(struct uvm_object *uobj)
586 {
587 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
588 	struct uvm_page_array a;
589 	struct vm_page *pg;
590 
591 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
592 
593 	/*
594 	 * Detaching from kernel object is a NOP.
595 	 */
596 
597 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
598 		return;
599 
600 	/*
601 	 * Drop the reference.  If it was the last one, destroy the object.
602 	 */
603 
604 	KASSERT(uobj->uo_refs > 0);
605 	UVMHIST_LOG(maphist,"  (uobj=%#jx)  ref=%jd",
606 	    (uintptr_t)uobj, uobj->uo_refs, 0, 0);
607 	membar_release();
608 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
609 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
610 		return;
611 	}
612 	membar_acquire();
613 
614 	/*
615 	 * Remove the aobj from the global list.
616 	 */
617 
618 	mutex_enter(&uao_list_lock);
619 	LIST_REMOVE(aobj, u_list);
620 	mutex_exit(&uao_list_lock);
621 
622 	/*
623 	 * Free all the pages left in the aobj.  For each page, when the
624 	 * page is no longer busy (and thus after any disk I/O that it is
625 	 * involved in is complete), release any swap resources and free
626 	 * the page itself.
627 	 */
628 	uvm_page_array_init(&a, uobj, 0);
629 	rw_enter(uobj->vmobjlock, RW_WRITER);
630 	while ((pg = uvm_page_array_fill_and_peek(&a, 0, 0)) != NULL) {
631 		uvm_page_array_advance(&a);
632 		pmap_page_protect(pg, VM_PROT_NONE);
633 		if (pg->flags & PG_BUSY) {
634 			uvm_pagewait(pg, uobj->vmobjlock, "uao_det");
635 			uvm_page_array_clear(&a);
636 			rw_enter(uobj->vmobjlock, RW_WRITER);
637 			continue;
638 		}
639 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
640 		uvm_pagefree(pg);
641 	}
642 	uvm_page_array_fini(&a);
643 
644 	/*
645 	 * Finally, free the anonymous UVM object itself.
646 	 */
647 
648 	uao_free(aobj);
649 }
650 
651 /*
652  * uao_put: flush pages out of a uvm object
653  *
654  * => object should be locked by caller.  we may _unlock_ the object
655  *	if (and only if) we need to clean a page (PGO_CLEANIT).
656  *	XXXJRT Currently, however, we don't.  In the case of cleaning
657  *	XXXJRT a page, we simply just deactivate it.  Should probably
658  *	XXXJRT handle this better, in the future (although "flushing"
659  *	XXXJRT anonymous memory isn't terribly important).
660  * => if PGO_CLEANIT is not set, then we will neither unlock the object
661  *	or block.
662  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
663  *	for flushing.
664  * => we return 0 unless we encountered some sort of I/O error
665  *	XXXJRT currently never happens, as we never directly initiate
666  *	XXXJRT I/O
667  */
668 
669 static int
uao_put(struct uvm_object * uobj,voff_t start,voff_t stop,int flags)670 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
671 {
672 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
673 	struct uvm_page_array a;
674 	struct vm_page *pg;
675 	voff_t curoff;
676 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
677 
678 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
679 	KASSERT(rw_write_held(uobj->vmobjlock));
680 
681 	if (flags & PGO_ALLPAGES) {
682 		start = 0;
683 		stop = aobj->u_pages << PAGE_SHIFT;
684 	} else {
685 		start = trunc_page(start);
686 		if (stop == 0) {
687 			stop = aobj->u_pages << PAGE_SHIFT;
688 		} else {
689 			stop = round_page(stop);
690 		}
691 		if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
692 			printf("uao_put: strange, got an out of range "
693 			    "flush %#jx > %#jx (fixed)\n",
694 			    (uintmax_t)stop,
695 			    (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
696 			stop = aobj->u_pages << PAGE_SHIFT;
697 		}
698 	}
699 	UVMHIST_LOG(maphist,
700 	    " flush start=%#jx, stop=%#jx, flags=%#jx",
701 	    start, stop, flags, 0);
702 
703 	/*
704 	 * Don't need to do any work here if we're not freeing
705 	 * or deactivating pages.
706 	 */
707 
708 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
709 		rw_exit(uobj->vmobjlock);
710 		return 0;
711 	}
712 
713 	/* locked: uobj */
714 	uvm_page_array_init(&a, uobj, 0);
715 	curoff = start;
716 	while ((pg = uvm_page_array_fill_and_peek(&a, curoff, 0)) != NULL) {
717 		if (pg->offset >= stop) {
718 			break;
719 		}
720 
721 		/*
722 		 * wait and try again if the page is busy.
723 		 */
724 
725 		if (pg->flags & PG_BUSY) {
726 			uvm_pagewait(pg, uobj->vmobjlock, "uao_put");
727 			uvm_page_array_clear(&a);
728 			rw_enter(uobj->vmobjlock, RW_WRITER);
729 			continue;
730 		}
731 		uvm_page_array_advance(&a);
732 		curoff = pg->offset + PAGE_SIZE;
733 
734 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
735 
736 		/*
737 		 * XXX In these first 3 cases, we always just
738 		 * XXX deactivate the page.  We may want to
739 		 * XXX handle the different cases more specifically
740 		 * XXX in the future.
741 		 */
742 
743 		case PGO_CLEANIT|PGO_FREE:
744 		case PGO_CLEANIT|PGO_DEACTIVATE:
745 		case PGO_DEACTIVATE:
746  deactivate_it:
747  			uvm_pagelock(pg);
748 			uvm_pagedeactivate(pg);
749  			uvm_pageunlock(pg);
750 			break;
751 
752 		case PGO_FREE:
753 			/*
754 			 * If there are multiple references to
755 			 * the object, just deactivate the page.
756 			 */
757 
758 			if (uobj->uo_refs > 1)
759 				goto deactivate_it;
760 
761 			/*
762 			 * free the swap slot and the page.
763 			 */
764 
765 			pmap_page_protect(pg, VM_PROT_NONE);
766 
767 			/*
768 			 * freeing swapslot here is not strictly necessary.
769 			 * however, leaving it here doesn't save much
770 			 * because we need to update swap accounting anyway.
771 			 */
772 
773 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
774 			uvm_pagefree(pg);
775 			break;
776 
777 		default:
778 			panic("%s: impossible", __func__);
779 		}
780 	}
781 	rw_exit(uobj->vmobjlock);
782 	uvm_page_array_fini(&a);
783 	return 0;
784 }
785 
786 /*
787  * uao_get: fetch me a page
788  *
789  * we have three cases:
790  * 1: page is resident     -> just return the page.
791  * 2: page is zero-fill    -> allocate a new page and zero it.
792  * 3: page is swapped out  -> fetch the page from swap.
793  *
794  * case 1 can be handled with PGO_LOCKED, cases 2 and 3 cannot.
795  * so, if the "center" page hits case 2/3 then we will need to return EBUSY.
796  *
797  * => prefer map unlocked (not required)
798  * => object must be locked!  we will _unlock_ it before starting any I/O.
799  * => flags: PGO_LOCKED: fault data structures are locked
800  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
801  * => NOTE: caller must check for released pages!!
802  */
803 
804 static int
uao_get(struct uvm_object * uobj,voff_t offset,struct vm_page ** pps,int * npagesp,int centeridx,vm_prot_t access_type,int advice,int flags)805 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
806     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
807 {
808 	voff_t current_offset;
809 	struct vm_page *ptmp;
810 	int lcv, gotpages, maxpages, swslot, pageidx;
811 	bool overwrite = ((flags & PGO_OVERWRITE) != 0);
812 	struct uvm_page_array a;
813 
814 	UVMHIST_FUNC(__func__);
815 	UVMHIST_CALLARGS(pdhist, "aobj=%#jx offset=%jd, flags=%#jx",
816 		    (uintptr_t)uobj, offset, flags,0);
817 
818 	/*
819 	 * the object must be locked.  it can only be a read lock when
820 	 * processing a read fault with PGO_LOCKED.
821 	 */
822 
823 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
824 	KASSERT(rw_lock_held(uobj->vmobjlock));
825 	KASSERT(rw_write_held(uobj->vmobjlock) ||
826 	   ((flags & PGO_LOCKED) != 0 && (access_type & VM_PROT_WRITE) == 0));
827 
828 	/*
829  	 * get number of pages
830  	 */
831 
832 	maxpages = *npagesp;
833 
834 	/*
835  	 * step 1: handled the case where fault data structures are locked.
836  	 */
837 
838 	if (flags & PGO_LOCKED) {
839 
840 		/*
841  		 * step 1a: get pages that are already resident.   only do
842 		 * this if the data structures are locked (i.e. the first
843 		 * time through).
844  		 */
845 
846 		uvm_page_array_init(&a, uobj, 0);
847 		gotpages = 0;	/* # of pages we got so far */
848 		for (lcv = 0; lcv < maxpages; lcv++) {
849 			ptmp = uvm_page_array_fill_and_peek(&a,
850 			    offset + (lcv << PAGE_SHIFT), maxpages);
851 			if (ptmp == NULL) {
852 				break;
853 			}
854 			KASSERT(ptmp->offset >= offset);
855 			lcv = (ptmp->offset - offset) >> PAGE_SHIFT;
856 			if (lcv >= maxpages) {
857 				break;
858 			}
859 			uvm_page_array_advance(&a);
860 
861 			/*
862 			 * to be useful must get a non-busy page
863 			 */
864 
865 			if ((ptmp->flags & PG_BUSY) != 0) {
866 				continue;
867 			}
868 
869 			/*
870 			 * useful page: plug it in our result array
871 			 */
872 
873 			KASSERT(uvm_pagegetdirty(ptmp) !=
874 			    UVM_PAGE_STATUS_CLEAN);
875 			pps[lcv] = ptmp;
876 			gotpages++;
877 		}
878 		uvm_page_array_fini(&a);
879 
880 		/*
881  		 * step 1b: now we've either done everything needed or we
882 		 * to unlock and do some waiting or I/O.
883  		 */
884 
885 		UVMHIST_LOG(pdhist, "<- done (done=%jd)",
886 		    (pps[centeridx] != NULL), 0,0,0);
887 		*npagesp = gotpages;
888 		return pps[centeridx] != NULL ? 0 : EBUSY;
889 	}
890 
891 	/*
892  	 * step 2: get non-resident or busy pages.
893  	 * object is locked.   data structures are unlocked.
894  	 */
895 
896 	if ((flags & PGO_SYNCIO) == 0) {
897 		goto done;
898 	}
899 
900 	uvm_page_array_init(&a, uobj, 0);
901 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;) {
902 
903 		/*
904  		 * we have yet to locate the current page (pps[lcv]).   we
905 		 * first look for a page that is already at the current offset.
906 		 * if we find a page, we check to see if it is busy or
907 		 * released.  if that is the case, then we sleep on the page
908 		 * until it is no longer busy or released and repeat the lookup.
909 		 * if the page we found is neither busy nor released, then we
910 		 * busy it (so we own it) and plug it into pps[lcv].   we are
911 		 * ready to move on to the next page.
912  		 */
913 
914 		ptmp = uvm_page_array_fill_and_peek(&a, current_offset,
915 		    maxpages - lcv);
916 
917 		if (ptmp != NULL && ptmp->offset == current_offset) {
918 			/* page is there, see if we need to wait on it */
919 			if ((ptmp->flags & PG_BUSY) != 0) {
920 				UVMHIST_LOG(pdhist,
921 				    "sleeping, ptmp->flags %#jx\n",
922 				    ptmp->flags,0,0,0);
923 				uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get");
924 				rw_enter(uobj->vmobjlock, RW_WRITER);
925 				uvm_page_array_clear(&a);
926 				continue;
927 			}
928 
929 			/*
930  			 * if we get here then the page is resident and
931 			 * unbusy.  we busy it now (so we own it).  if
932 			 * overwriting, mark the page dirty up front as
933 			 * it will be zapped via an unmanaged mapping.
934  			 */
935 
936 			KASSERT(uvm_pagegetdirty(ptmp) !=
937 			    UVM_PAGE_STATUS_CLEAN);
938 			if (overwrite) {
939 				uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
940 			}
941 			/* we own it, caller must un-busy */
942 			ptmp->flags |= PG_BUSY;
943 			UVM_PAGE_OWN(ptmp, "uao_get2");
944 			pps[lcv++] = ptmp;
945 			current_offset += PAGE_SIZE;
946 			uvm_page_array_advance(&a);
947 			continue;
948 		} else {
949 			KASSERT(ptmp == NULL || ptmp->offset > current_offset);
950 		}
951 
952 		/*
953 		 * not resident.  allocate a new busy/fake/clean page in the
954 		 * object.  if it's in swap we need to do I/O to fill in the
955 		 * data, otherwise the page needs to be cleared: if it's not
956 		 * destined to be overwritten, then zero it here and now.
957 		 */
958 
959 		pageidx = current_offset >> PAGE_SHIFT;
960 		swslot = uao_find_swslot(uobj, pageidx);
961 		ptmp = uao_pagealloc(uobj, current_offset,
962 		    swslot != 0 || overwrite ? 0 : UVM_PGA_ZERO);
963 
964 		/* out of RAM? */
965 		if (ptmp == NULL) {
966 			rw_exit(uobj->vmobjlock);
967 			UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL",0,0,0,0);
968 			uvm_wait("uao_getpage");
969 			rw_enter(uobj->vmobjlock, RW_WRITER);
970 			uvm_page_array_clear(&a);
971 			continue;
972 		}
973 
974 		/*
975  		 * if swslot == 0, page hasn't existed before and is zeroed.
976  		 * otherwise we have a "fake/busy/clean" page that we just
977  		 * allocated.  do the needed "i/o", reading from swap.
978  		 */
979 
980 		if (swslot != 0) {
981 #if defined(VMSWAP)
982 			int error;
983 
984 			UVMHIST_LOG(pdhist, "pagein from swslot %jd",
985 			     swslot, 0,0,0);
986 
987 			/*
988 			 * page in the swapped-out page.
989 			 * unlock object for i/o, relock when done.
990 			 */
991 
992 			uvm_page_array_clear(&a);
993 			rw_exit(uobj->vmobjlock);
994 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
995 			rw_enter(uobj->vmobjlock, RW_WRITER);
996 
997 			/*
998 			 * I/O done.  check for errors.
999 			 */
1000 
1001 			if (error != 0) {
1002 				UVMHIST_LOG(pdhist, "<- done (error=%jd)",
1003 				    error,0,0,0);
1004 
1005 				/*
1006 				 * remove the swap slot from the aobj
1007 				 * and mark the aobj as having no real slot.
1008 				 * don't free the swap slot, thus preventing
1009 				 * it from being used again.
1010 				 */
1011 
1012 				swslot = uao_set_swslot(uobj, pageidx,
1013 				    SWSLOT_BAD);
1014 				if (swslot > 0) {
1015 					uvm_swap_markbad(swslot, 1);
1016 				}
1017 
1018 				uvm_pagefree(ptmp);
1019 				rw_exit(uobj->vmobjlock);
1020 				UVMHIST_LOG(pdhist, "<- done (error)",
1021 				    error,lcv,0,0);
1022 				if (lcv != 0) {
1023 					uvm_page_unbusy(pps, lcv);
1024 				}
1025 				memset(pps, 0, maxpages * sizeof(pps[0]));
1026 				uvm_page_array_fini(&a);
1027 				return error;
1028 			}
1029 #else /* defined(VMSWAP) */
1030 			panic("%s: pagein", __func__);
1031 #endif /* defined(VMSWAP) */
1032 		}
1033 
1034 		/*
1035 		 * note that we will allow the page being writably-mapped
1036 		 * (!PG_RDONLY) regardless of access_type.  if overwrite,
1037 		 * the page can be modified through an unmanaged mapping
1038 		 * so mark it dirty up front.
1039 		 */
1040 		if (overwrite) {
1041 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
1042 		} else {
1043 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
1044 		}
1045 
1046 		/*
1047  		 * we got the page!   clear the fake flag (indicates valid
1048 		 * data now in page) and plug into our result array.   note
1049 		 * that page is still busy.
1050  		 *
1051  		 * it is the callers job to:
1052  		 * => check if the page is released
1053  		 * => unbusy the page
1054  		 * => activate the page
1055  		 */
1056 		KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
1057 		KASSERT((ptmp->flags & PG_FAKE) != 0);
1058 		KASSERT(ptmp->offset == current_offset);
1059 		ptmp->flags &= ~PG_FAKE;
1060 		pps[lcv++] = ptmp;
1061 		current_offset += PAGE_SIZE;
1062 	}
1063 	uvm_page_array_fini(&a);
1064 
1065 	/*
1066  	 * finally, unlock object and return.
1067  	 */
1068 
1069 done:
1070 	rw_exit(uobj->vmobjlock);
1071 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1072 	return 0;
1073 }
1074 
1075 #if defined(VMSWAP)
1076 
1077 /*
1078  * uao_dropswap:  release any swap resources from this aobj page.
1079  *
1080  * => aobj must be locked or have a reference count of 0.
1081  */
1082 
1083 void
uao_dropswap(struct uvm_object * uobj,int pageidx)1084 uao_dropswap(struct uvm_object *uobj, int pageidx)
1085 {
1086 	int slot;
1087 
1088 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1089 
1090 	slot = uao_set_swslot(uobj, pageidx, 0);
1091 	if (slot) {
1092 		uvm_swap_free(slot, 1);
1093 	}
1094 }
1095 
1096 /*
1097  * page in every page in every aobj that is paged-out to a range of swslots.
1098  *
1099  * => nothing should be locked.
1100  * => returns true if pagein was aborted due to lack of memory.
1101  */
1102 
1103 bool
uao_swap_off(int startslot,int endslot)1104 uao_swap_off(int startslot, int endslot)
1105 {
1106 	struct uvm_aobj *aobj;
1107 
1108 	/*
1109 	 * Walk the list of all anonymous UVM objects.  Grab the first.
1110 	 */
1111 	mutex_enter(&uao_list_lock);
1112 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1113 		mutex_exit(&uao_list_lock);
1114 		return false;
1115 	}
1116 	uao_reference(&aobj->u_obj);
1117 
1118 	do {
1119 		struct uvm_aobj *nextaobj;
1120 		bool rv;
1121 
1122 		/*
1123 		 * Prefetch the next object and immediately hold a reference
1124 		 * on it, so neither the current nor the next entry could
1125 		 * disappear while we are iterating.
1126 		 */
1127 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1128 			uao_reference(&nextaobj->u_obj);
1129 		}
1130 		mutex_exit(&uao_list_lock);
1131 
1132 		/*
1133 		 * Page in all pages in the swap slot range.
1134 		 */
1135 		rw_enter(aobj->u_obj.vmobjlock, RW_WRITER);
1136 		rv = uao_pagein(aobj, startslot, endslot);
1137 		rw_exit(aobj->u_obj.vmobjlock);
1138 
1139 		/* Drop the reference of the current object. */
1140 		uao_detach(&aobj->u_obj);
1141 		if (rv) {
1142 			if (nextaobj) {
1143 				uao_detach(&nextaobj->u_obj);
1144 			}
1145 			return rv;
1146 		}
1147 
1148 		aobj = nextaobj;
1149 		mutex_enter(&uao_list_lock);
1150 	} while (aobj);
1151 
1152 	mutex_exit(&uao_list_lock);
1153 	return false;
1154 }
1155 
1156 /*
1157  * page in any pages from aobj in the given range.
1158  *
1159  * => aobj must be locked and is returned locked.
1160  * => returns true if pagein was aborted due to lack of memory.
1161  */
1162 static bool
uao_pagein(struct uvm_aobj * aobj,int startslot,int endslot)1163 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1164 {
1165 	bool rv;
1166 
1167 	if (UAO_USES_SWHASH(aobj)) {
1168 		struct uao_swhash_elt *elt;
1169 		int buck;
1170 
1171 restart:
1172 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1173 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1174 			     elt != NULL;
1175 			     elt = LIST_NEXT(elt, list)) {
1176 				int i;
1177 
1178 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1179 					int slot = elt->slots[i];
1180 
1181 					/*
1182 					 * if the slot isn't in range, skip it.
1183 					 */
1184 
1185 					if (slot < startslot ||
1186 					    slot >= endslot) {
1187 						continue;
1188 					}
1189 
1190 					/*
1191 					 * process the page,
1192 					 * the start over on this object
1193 					 * since the swhash elt
1194 					 * may have been freed.
1195 					 */
1196 
1197 					rv = uao_pagein_page(aobj,
1198 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1199 					if (rv) {
1200 						return rv;
1201 					}
1202 					goto restart;
1203 				}
1204 			}
1205 		}
1206 	} else {
1207 		int i;
1208 
1209 		for (i = 0; i < aobj->u_pages; i++) {
1210 			int slot = aobj->u_swslots[i];
1211 
1212 			/*
1213 			 * if the slot isn't in range, skip it
1214 			 */
1215 
1216 			if (slot < startslot || slot >= endslot) {
1217 				continue;
1218 			}
1219 
1220 			/*
1221 			 * process the page.
1222 			 */
1223 
1224 			rv = uao_pagein_page(aobj, i);
1225 			if (rv) {
1226 				return rv;
1227 			}
1228 		}
1229 	}
1230 
1231 	return false;
1232 }
1233 
1234 /*
1235  * uao_pagein_page: page in a single page from an anonymous UVM object.
1236  *
1237  * => Returns true if pagein was aborted due to lack of memory.
1238  * => Object must be locked and is returned locked.
1239  */
1240 
1241 static bool
uao_pagein_page(struct uvm_aobj * aobj,int pageidx)1242 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1243 {
1244 	struct uvm_object *uobj = &aobj->u_obj;
1245 	struct vm_page *pg;
1246 	int rv, npages;
1247 
1248 	pg = NULL;
1249 	npages = 1;
1250 
1251 	KASSERT(rw_write_held(uobj->vmobjlock));
1252 	rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
1253 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1254 
1255 	/*
1256 	 * relock and finish up.
1257 	 */
1258 
1259 	rw_enter(uobj->vmobjlock, RW_WRITER);
1260 	switch (rv) {
1261 	case 0:
1262 		break;
1263 
1264 	case EIO:
1265 	case ERESTART:
1266 
1267 		/*
1268 		 * nothing more to do on errors.
1269 		 * ERESTART can only mean that the anon was freed,
1270 		 * so again there's nothing to do.
1271 		 */
1272 
1273 		return false;
1274 
1275 	default:
1276 		return true;
1277 	}
1278 
1279 	/*
1280 	 * ok, we've got the page now.
1281 	 * mark it as dirty, clear its swslot and un-busy it.
1282 	 */
1283 	uao_dropswap(&aobj->u_obj, pageidx);
1284 
1285 	/*
1286 	 * make sure it's on a page queue.
1287 	 */
1288 	uvm_pagelock(pg);
1289 	uvm_pageenqueue(pg);
1290 	uvm_pagewakeup(pg);
1291 	uvm_pageunlock(pg);
1292 
1293 	pg->flags &= ~(PG_BUSY|PG_FAKE);
1294 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1295 	UVM_PAGE_OWN(pg, NULL);
1296 
1297 	return false;
1298 }
1299 
1300 /*
1301  * uao_dropswap_range: drop swapslots in the range.
1302  *
1303  * => aobj must be locked and is returned locked.
1304  * => start is inclusive.  end is exclusive.
1305  */
1306 
1307 void
uao_dropswap_range(struct uvm_object * uobj,voff_t start,voff_t end)1308 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1309 {
1310 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1311 	int swpgonlydelta = 0;
1312 
1313 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1314 	KASSERT(rw_write_held(uobj->vmobjlock));
1315 
1316 	if (end == 0) {
1317 		end = INT64_MAX;
1318 	}
1319 
1320 	if (UAO_USES_SWHASH(aobj)) {
1321 		int i, hashbuckets = aobj->u_swhashmask + 1;
1322 		voff_t taghi;
1323 		voff_t taglo;
1324 
1325 		taglo = UAO_SWHASH_ELT_TAG(start);
1326 		taghi = UAO_SWHASH_ELT_TAG(end);
1327 
1328 		for (i = 0; i < hashbuckets; i++) {
1329 			struct uao_swhash_elt *elt, *next;
1330 
1331 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1332 			     elt != NULL;
1333 			     elt = next) {
1334 				int startidx, endidx;
1335 				int j;
1336 
1337 				next = LIST_NEXT(elt, list);
1338 
1339 				if (elt->tag < taglo || taghi < elt->tag) {
1340 					continue;
1341 				}
1342 
1343 				if (elt->tag == taglo) {
1344 					startidx =
1345 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1346 				} else {
1347 					startidx = 0;
1348 				}
1349 
1350 				if (elt->tag == taghi) {
1351 					endidx =
1352 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1353 				} else {
1354 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1355 				}
1356 
1357 				for (j = startidx; j < endidx; j++) {
1358 					int slot = elt->slots[j];
1359 
1360 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1361 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1362 					    + j) << PAGE_SHIFT) == NULL);
1363 					if (slot > 0) {
1364 						uvm_swap_free(slot, 1);
1365 						swpgonlydelta++;
1366 						KASSERT(elt->count > 0);
1367 						elt->slots[j] = 0;
1368 						elt->count--;
1369 					}
1370 				}
1371 
1372 				if (elt->count == 0) {
1373 					LIST_REMOVE(elt, list);
1374 					pool_put(&uao_swhash_elt_pool, elt);
1375 				}
1376 			}
1377 		}
1378 	} else {
1379 		int i;
1380 
1381 		if (aobj->u_pages < end) {
1382 			end = aobj->u_pages;
1383 		}
1384 		for (i = start; i < end; i++) {
1385 			int slot = aobj->u_swslots[i];
1386 
1387 			if (slot > 0) {
1388 				uvm_swap_free(slot, 1);
1389 				swpgonlydelta++;
1390 			}
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * adjust the counter of pages only in swap for all
1396 	 * the swap slots we've freed.
1397 	 */
1398 
1399 	if (swpgonlydelta > 0) {
1400 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1401 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1402 	}
1403 }
1404 
1405 #endif /* defined(VMSWAP) */
1406