xref: /netbsd/sys/dev/pci/ubsec.c (revision 342fbd52)
1 /*	$NetBSD: ubsec.c,v 1.63 2023/05/06 21:53:26 andvar Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.63 2023/05/06 21:53:26 andvar Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, 58xx hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #include <sys/errno.h>
51 #include <sys/malloc.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/device.h>
55 #include <sys/module.h>
56 #include <sys/queue.h>
57 #include <sys/sysctl.h>
58 
59 #include <opencrypto/cryptodev.h>
60 #include <opencrypto/xform.h>
61 #include <sys/cprng.h>
62 #include <sys/md5.h>
63 #include <sys/rndsource.h>
64 #include <sys/sha1.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 #include <dev/pci/pcidevs.h>
69 
70 #include <dev/pci/ubsecreg.h>
71 #include <dev/pci/ubsecvar.h>
72 
73 #define UBSEC_NO_RNG	/* hangs on attach */
74 #define letoh16 htole16
75 #define letoh32 htole32
76 
77 /*
78  * Prototypes and count for the pci_device structure
79  */
80 static	int  ubsec_probe(device_t, cfdata_t, void *);
81 static	void ubsec_attach(device_t, device_t, void *);
82 static	int  ubsec_detach(device_t, int);
83 static	void ubsec_reset_board(struct ubsec_softc *);
84 static	void ubsec_init_board(struct ubsec_softc *);
85 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
86 static	void ubsec_cleanchip(struct ubsec_softc *);
87 static	void ubsec_totalreset(struct ubsec_softc *);
88 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
89 
90 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
91 	      ubsec_detach, NULL);
92 extern struct cfdriver ubsec_cd;
93 
94 /* patchable */
95 #ifdef	UBSEC_DEBUG
96 extern int ubsec_debug;
97 int ubsec_debug=1;
98 #endif
99 
100 static	int	ubsec_intr(void *);
101 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
102 static	void	ubsec_freesession(void*, u_int64_t);
103 static	int	ubsec_process(void*, struct cryptop *, int hint);
104 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
105 static	void	ubsec_feed(struct ubsec_softc *);
106 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
107 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
108 static	void	ubsec_feed2(struct ubsec_softc *);
109 static	void	ubsec_feed4(struct ubsec_softc *);
110 #ifndef UBSEC_NO_RNG
111 static  void	ubsec_rng(void *);
112 static  void	ubsec_rng_locked(void *);
113 static  void	ubsec_rng_get(size_t, void *);
114 #endif /* UBSEC_NO_RNG */
115 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
116 				 struct ubsec_dma_alloc *, int);
117 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
118 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
119 
120 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
121 static	void	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
122 					 struct cryptkop *, int);
123 static	void	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
124 					 struct cryptkop *, int);
125 static	void	ubsec_kprocess_rsapriv(struct ubsec_softc *,
126 				       struct cryptkop *, int);
127 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
128 static	int	ubsec_ksigbits(struct crparam *);
129 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
130 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
131 
132 #ifdef UBSEC_DEBUG
133 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
134 static void	ubsec_dump_mcr(struct ubsec_mcr *);
135 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
136 #endif
137 
138 #define	READ_REG(sc,r) \
139 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
140 
141 #define WRITE_REG(sc,reg,val) \
142 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
143 
144 #define	SWAP32(x) (x) = htole32(ntohl((x)))
145 #ifndef HTOLE32
146  #define	HTOLE32(x) (x) = htole32(x)
147 #endif
148 
149 struct ubsec_stats ubsecstats;
150 
151 /*
152  * ubsec_maxbatch controls the number of crypto ops to voluntarily
153  * collect into one submission to the hardware.  This batching happens
154  * when ops are dispatched from the crypto subsystem with a hint that
155  * more are to follow immediately.  These ops must also not be marked
156  * with a ``no delay'' flag.
157  */
158 static	int ubsec_maxbatch = 1;
159 
160 /*
161  * ubsec_maxaggr controls the number of crypto ops to submit to the
162  * hardware as a unit.  This aggregation reduces the number of interrupts
163  * to the host at the expense of increased latency (for all but the last
164  * operation).  For network traffic setting this to one yields the highest
165  * performance but at the expense of more interrupt processing.
166  */
167 static	int ubsec_maxaggr = 1;
168 
169 static const struct ubsec_product {
170 	pci_vendor_id_t		ubsec_vendor;
171 	pci_product_id_t	ubsec_product;
172 	int			ubsec_flags;
173 	int			ubsec_statmask;
174 	int			ubsec_maxaggr;
175 	const char		*ubsec_name;
176 } ubsec_products[] = {
177 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
178 	  0,
179 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
180 	  UBS_MIN_AGGR,
181 	  "Bluesteel 5501"
182 	},
183 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
184 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
185 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
186 	  UBS_MIN_AGGR,
187 	  "Bluesteel 5601"
188 	},
189 
190 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
191 	  0,
192 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
193 	  UBS_MIN_AGGR,
194 	  "Broadcom BCM5801"
195 	},
196 
197 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  UBS_MIN_AGGR,
201 	  "Broadcom BCM5802"
202 	},
203 
204 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
205 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
206 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
207 	  UBS_MIN_AGGR,
208 	  "Broadcom BCM5805"
209 	},
210 
211 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
212 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
213 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
214 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
215 	  UBS_MIN_AGGR,
216 	  "Broadcom BCM5820"
217 	},
218 
219 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
220 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
221 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
222 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
223 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
224 	  UBS_MIN_AGGR,
225 	  "Broadcom BCM5821"
226 	},
227 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
228 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
229 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
230 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
231 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
232 	  UBS_MIN_AGGR,
233 	  "Sun Crypto Accelerator 1000"
234 	},
235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 	  UBS_MIN_AGGR,
241 	  "Broadcom BCM5821 (Sun)"
242 	},
243 
244 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
245 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
246 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
247 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
248 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
249 	  UBS_MIN_AGGR,
250 	  "Broadcom BCM5822"
251 	},
252 
253 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 	  UBS_MIN_AGGR,
259 	  "Broadcom BCM5823"
260 	},
261 
262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
267 	  UBS_MIN_AGGR,
268 	  "Broadcom BCM5825"
269 	},
270 
271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
272 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
273 	      UBS_FLAGS_LONGCTX |
274 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
275 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
276 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
277 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
278 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
279 	  UBS_MAX_AGGR,
280 	  "Broadcom BCM5860"
281 	},
282 
283 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
284 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
285 	      UBS_FLAGS_LONGCTX |
286 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
287 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
288 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
289 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
290 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
291 	  UBS_MAX_AGGR,
292 	  "Broadcom BCM5861"
293 	},
294 
295 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
296 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
297 	      UBS_FLAGS_LONGCTX |
298 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
299 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
300 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
301 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
302 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
303 	  UBS_MAX_AGGR,
304 	  "Broadcom BCM5862"
305 	},
306 
307 	{ 0,			0,
308 	  0,
309 	  0,
310 	  0,
311 	  NULL
312 	}
313 };
314 
315 static const struct ubsec_product *
ubsec_lookup(const struct pci_attach_args * pa)316 ubsec_lookup(const struct pci_attach_args *pa)
317 {
318 	const struct ubsec_product *up;
319 
320 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
321 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
322 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
323 			return (up);
324 	}
325 	return (NULL);
326 }
327 
328 static int
ubsec_probe(device_t parent,cfdata_t match,void * aux)329 ubsec_probe(device_t parent, cfdata_t match, void *aux)
330 {
331 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
332 
333 	if (ubsec_lookup(pa) != NULL)
334 		return (1);
335 
336 	return (0);
337 }
338 
339 static void
ubsec_attach(device_t parent,device_t self,void * aux)340 ubsec_attach(device_t parent, device_t self, void *aux)
341 {
342 	struct ubsec_softc *sc = device_private(self);
343 	struct pci_attach_args *pa = aux;
344 	const struct ubsec_product *up;
345 	pci_chipset_tag_t pc = pa->pa_pc;
346 	pci_intr_handle_t ih;
347 	const char *intrstr = NULL;
348 	pcireg_t memtype;
349 	struct ubsec_dma *dmap;
350 	u_int32_t cmd, i;
351 	char intrbuf[PCI_INTRSTR_LEN];
352 
353 	sc->sc_dev = self;
354 	sc->sc_pct = pc;
355 
356 	up = ubsec_lookup(pa);
357 	if (up == NULL) {
358 		printf("\n");
359 		panic("ubsec_attach: impossible");
360 	}
361 
362 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
363 
364 	SIMPLEQ_INIT(&sc->sc_queue);
365 	SIMPLEQ_INIT(&sc->sc_qchip);
366 	SIMPLEQ_INIT(&sc->sc_queue2);
367 	SIMPLEQ_INIT(&sc->sc_qchip2);
368 	SIMPLEQ_INIT(&sc->sc_queue4);
369 	SIMPLEQ_INIT(&sc->sc_qchip4);
370 	SIMPLEQ_INIT(&sc->sc_q2free);
371 
372 	sc->sc_flags = up->ubsec_flags;
373 	sc->sc_statmask = up->ubsec_statmask;
374 	sc->sc_maxaggr = up->ubsec_maxaggr;
375 
376 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
377 	cmd |= PCI_COMMAND_MASTER_ENABLE;
378 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
379 
380 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
381 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
382 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
383 		aprint_error_dev(self, "can't find mem space");
384 		return;
385 	}
386 
387 	sc->sc_dmat = pa->pa_dmat;
388 
389 	if (pci_intr_map(pa, &ih)) {
390 		aprint_error_dev(self, "couldn't map interrupt\n");
391 		return;
392 	}
393 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
394 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
395 	    device_xname(self));
396 	if (sc->sc_ih == NULL) {
397 		aprint_error_dev(self, "couldn't establish interrupt");
398 		if (intrstr != NULL)
399 			aprint_error(" at %s", intrstr);
400 		aprint_error("\n");
401 		return;
402 	}
403 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
404 
405 	sc->sc_cid = crypto_get_driverid(0);
406 	if (sc->sc_cid < 0) {
407 		aprint_error_dev(self, "couldn't get crypto driver id\n");
408 		pci_intr_disestablish(pc, sc->sc_ih);
409 		return;
410 	}
411 
412 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
413 
414 	SIMPLEQ_INIT(&sc->sc_freequeue);
415 	dmap = sc->sc_dmaa;
416 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
417 		struct ubsec_q *q;
418 
419 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
420 
421 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
422 		    &dmap->d_alloc, 0)) {
423 			aprint_error_dev(self, "can't allocate dma buffers\n");
424 			free(q, M_DEVBUF);
425 			break;
426 		}
427 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
428 
429 		q->q_dma = dmap;
430 		sc->sc_queuea[i] = q;
431 
432 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
433 	}
434 
435 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
436 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
437 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
438 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
439 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
440 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
441 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
442 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
443 	if (sc->sc_flags & UBS_FLAGS_AES) {
444 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
445 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
446 	}
447 
448 	/*
449 	 * Reset Broadcom chip
450 	 */
451 	ubsec_reset_board(sc);
452 
453 	/*
454 	 * Init Broadcom specific PCI settings
455 	 */
456 	ubsec_init_pciregs(pa);
457 
458 	/*
459 	 * Init Broadcom chip
460 	 */
461 	ubsec_init_board(sc);
462 
463 #ifndef UBSEC_NO_RNG
464 	if (sc->sc_flags & UBS_FLAGS_RNG) {
465 		if (sc->sc_flags & UBS_FLAGS_RNG4)
466 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
467 		else
468 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
469 
470 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
471 		    &sc->sc_rng.rng_q.q_mcr, 0))
472 			goto skip_rng;
473 
474 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
475 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
476 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
477 			goto skip_rng;
478 		}
479 
480 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
481 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
482 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
483 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
484 			goto skip_rng;
485 		}
486 		if (hz >= 100)
487 			sc->sc_rnghz = hz / 100;
488 		else
489 			sc->sc_rnghz = 1;
490 		callout_init(&sc->sc_rngto, 0);
491 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
492 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
493 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
494 				  RND_TYPE_RNG,
495 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
496 
497  skip_rng:
498 		if (sc->sc_rnghz)
499 			aprint_normal_dev(self,
500 			    "random number generator enabled\n");
501 		else
502 			aprint_error_dev(self,
503 			    "WARNING: random number generator disabled\n");
504 	}
505 #endif /* UBSEC_NO_RNG */
506 
507 	if (sc->sc_flags & UBS_FLAGS_KEY) {
508 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
509 
510 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
511 				 ubsec_kprocess, sc);
512 #if 0
513 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
514 				 ubsec_kprocess, sc);
515 #endif
516 	}
517 }
518 
519 static int
ubsec_detach(device_t self,int flags)520 ubsec_detach(device_t self, int flags)
521 {
522 	struct ubsec_softc *sc = device_private(self);
523 	struct ubsec_q *q, *qtmp;
524 	volatile u_int32_t ctrl;
525 
526 	/* disable interrupts */
527 	/* XXX wait/abort current ops? where is DMAERR enabled? */
528 	ctrl = READ_REG(sc, BS_CTRL);
529 
530 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
531 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
532 		ctrl &= ~BS_CTRL_MCR4INT;
533 
534 	WRITE_REG(sc, BS_CTRL, ctrl);
535 
536 #ifndef UBSEC_NO_RNG
537 	if (sc->sc_flags & UBS_FLAGS_RNG) {
538 		callout_halt(&sc->sc_rngto, NULL);
539 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
540 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
541 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
542 		rnd_detach_source(&sc->sc_rnd_source);
543 	}
544 #endif /* UBSEC_NO_RNG */
545 
546 	crypto_unregister_all(sc->sc_cid);
547 
548 	mutex_spin_enter(&sc->sc_mtx);
549 
550 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
551 
552 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
553 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
554 		if (q->q_src_map != NULL)
555 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
556 		if (q->q_cached_dst_map != NULL)
557 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
558 		free(q, M_DEVBUF);
559 	}
560 
561 	mutex_spin_exit(&sc->sc_mtx);
562 
563 	if (sc->sc_ih != NULL) {
564 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
565 		sc->sc_ih = NULL;
566 	}
567 
568 	if (sc->sc_memsize != 0) {
569 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
570 		sc->sc_memsize = 0;
571 	}
572 
573 	return 0;
574 }
575 
576 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
577 
578 #ifdef _MODULE
579 #include "ioconf.c"
580 #endif
581 
582 static int
ubsec_modcmd(modcmd_t cmd,void * data)583 ubsec_modcmd(modcmd_t cmd, void *data)
584 {
585 	int error = 0;
586 
587 	switch (cmd) {
588 	case MODULE_CMD_INIT:
589 #ifdef _MODULE
590 		error = config_init_component(cfdriver_ioconf_ubsec,
591 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
592 #endif
593 		return error;
594 	case MODULE_CMD_FINI:
595 #ifdef _MODULE
596 		error = config_fini_component(cfdriver_ioconf_ubsec,
597 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
598 #endif
599 		return error;
600 	default:
601 		return ENOTTY;
602 	}
603 }
604 
605 SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl")
606 {
607 	const struct sysctlnode *node = NULL;
608 
609 	sysctl_createv(clog, 0, NULL, &node,
610 		CTLFLAG_PERMANENT,
611 		CTLTYPE_NODE, "ubsec",
612 		SYSCTL_DESCR("ubsec opetions"),
613 		NULL, 0, NULL, 0,
614 		CTL_HW, CTL_CREATE, CTL_EOL);
615 	sysctl_createv(clog, 0, &node, NULL,
616 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
617 		CTLTYPE_INT, "maxbatch",
618 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
619 		NULL, 0, &ubsec_maxbatch, 0,
620 		CTL_CREATE, CTL_EOL);
621 	sysctl_createv(clog, 0, &node, NULL,
622 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
623 		CTLTYPE_INT, "maxaggr",
624 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
625 		NULL, 0, &ubsec_maxaggr, 0,
626 		CTL_CREATE, CTL_EOL);
627 
628 	return;
629 }
630 
631 /*
632  * UBSEC Interrupt routine
633  */
634 static int
ubsec_intr(void * arg)635 ubsec_intr(void *arg)
636 {
637 	struct ubsec_softc *sc = arg;
638 	volatile u_int32_t stat;
639 	struct ubsec_q *q;
640 	struct ubsec_dma *dmap;
641 	int flags;
642 	int npkts = 0, i;
643 
644 	mutex_spin_enter(&sc->sc_mtx);
645 	stat = READ_REG(sc, BS_STAT);
646 	stat &= sc->sc_statmask;
647 	if (stat == 0) {
648 		mutex_spin_exit(&sc->sc_mtx);
649 		return (0);
650 	}
651 
652 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
653 
654 	/*
655 	 * Check to see if we have any packets waiting for us
656 	 */
657 	if ((stat & BS_STAT_MCR1_DONE)) {
658 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
659 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
660 			dmap = q->q_dma;
661 
662 			if ((dmap->d_dma->d_mcr.mcr_flags
663 			    & htole16(UBS_MCR_DONE)) == 0)
664 				break;
665 
666 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
667 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
668 
669 			npkts = q->q_nstacked_mcrs;
670 			sc->sc_nqchip -= 1+npkts;
671 			/*
672 			 * search for further sc_qchip ubsec_q's that share
673 			 * the same MCR, and complete them too, they must be
674 			 * at the top.
675 			 */
676 			for (i = 0; i < npkts; i++) {
677 				if(q->q_stacked_mcr[i])
678 					ubsec_callback(sc, q->q_stacked_mcr[i]);
679 				else
680 					break;
681 			}
682 			ubsec_callback(sc, q);
683 		}
684 
685 		/*
686 		 * Don't send any more packet to chip if there has been
687 		 * a DMAERR.
688 		 */
689 		if (!(stat & BS_STAT_DMAERR))
690 			ubsec_feed(sc);
691 	}
692 
693 	/*
694 	 * Check to see if we have any key setups/rng's waiting for us
695 	 */
696 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
697 	    (stat & BS_STAT_MCR2_DONE)) {
698 		struct ubsec_q2 *q2;
699 		struct ubsec_mcr *mcr;
700 
701 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
702 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
703 
704 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
705 			    0, q2->q_mcr.dma_map->dm_mapsize,
706 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
707 
708 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
709 
710 			/* A bug in new devices requires to swap this field */
711 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
712 				flags = htole16(mcr->mcr_flags);
713 			else
714 				flags = mcr->mcr_flags;
715 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
716 				bus_dmamap_sync(sc->sc_dmat,
717 				    q2->q_mcr.dma_map, 0,
718 				    q2->q_mcr.dma_map->dm_mapsize,
719 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
720 				break;
721 			}
722 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
723 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
724 			ubsec_callback2(sc, q2);
725 			/*
726 			 * Don't send any more packet to chip if there has been
727 			 * a DMAERR.
728 			 */
729 			if (!(stat & BS_STAT_DMAERR))
730 				ubsec_feed2(sc);
731 		}
732 	}
733 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
734 		struct ubsec_q2 *q2;
735 		struct ubsec_mcr *mcr;
736 
737 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
738 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
739 
740 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
741 			    0, q2->q_mcr.dma_map->dm_mapsize,
742 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
743 
744 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
745 
746 			/* A bug in new devices requires to swap this field */
747 			flags = htole16(mcr->mcr_flags);
748 
749 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
750 				bus_dmamap_sync(sc->sc_dmat,
751 				    q2->q_mcr.dma_map, 0,
752 				    q2->q_mcr.dma_map->dm_mapsize,
753 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754 				break;
755 			}
756 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
757 			ubsec_callback2(sc, q2);
758 			/*
759 			 * Don't send any more packet to chip if there has been
760 			 * a DMAERR.
761 			 */
762 			if (!(stat & BS_STAT_DMAERR))
763 				ubsec_feed4(sc);
764 		}
765 	}
766 
767 	/*
768 	 * Check to see if we got any DMA Error
769 	 */
770 	if (stat & BS_STAT_DMAERR) {
771 #ifdef UBSEC_DEBUG
772 		if (ubsec_debug) {
773 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
774 
775 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
776 			    (a & BS_ERR_READ) ? "read" : "write",
777 			       a & BS_ERR_ADDR);
778 		}
779 #endif /* UBSEC_DEBUG */
780 		ubsecstats.hst_dmaerr++;
781 		ubsec_totalreset(sc);
782 		ubsec_feed(sc);
783 	}
784 
785 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
786 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
787 #ifdef UBSEC_DEBUG
788 		if (ubsec_debug)
789 			printf("%s: wakeup crypto (%x)\n",
790 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
791 #endif /* UBSEC_DEBUG */
792 		sc->sc_needwakeup &= ~wkeup;
793 		crypto_unblock(sc->sc_cid, wkeup);
794 	}
795 	mutex_spin_exit(&sc->sc_mtx);
796 	return (1);
797 }
798 
799 /*
800  * ubsec_feed() - aggregate and post requests to chip
801  * OpenBSD comments:
802  *		  It is assumed that the caller set splnet()
803  */
804 static void
ubsec_feed(struct ubsec_softc * sc)805 ubsec_feed(struct ubsec_softc *sc)
806 {
807 	struct ubsec_q *q, *q2;
808 	int npkts, i;
809 	void *v;
810 	u_int32_t stat;
811 #ifdef UBSEC_DEBUG
812 	static int max;
813 #endif /* UBSEC_DEBUG */
814 
815 	npkts = sc->sc_nqueue;
816 	if (npkts > ubsecstats.hst_maxqueue)
817 		ubsecstats.hst_maxqueue = npkts;
818 	if (npkts < 2)
819 		goto feed1;
820 
821 	/*
822 	 * Decide how many ops to combine in a single MCR.  We cannot
823 	 * aggregate more than UBS_MAX_AGGR because this is the number
824 	 * of slots defined in the data structure.  Otherwise we clamp
825 	 * based on the tunable parameter ubsec_maxaggr.  Note that
826 	 * aggregation can happen in two ways: either by batching ops
827 	 * from above or because the h/w backs up and throttles us.
828 	 * Aggregating ops reduces the number of interrupts to the host
829 	 * but also (potentially) increases the latency for processing
830 	 * completed ops as we only get an interrupt when all aggregated
831 	 * ops have completed.
832 	 */
833 	if (npkts > sc->sc_maxaggr)
834 		npkts = sc->sc_maxaggr;
835 	if (npkts > ubsec_maxaggr)
836 		npkts = ubsec_maxaggr;
837 	if (npkts > ubsecstats.hst_maxbatch)
838 		ubsecstats.hst_maxbatch = npkts;
839 	if (npkts < 2)
840 		goto feed1;
841 	ubsecstats.hst_totbatch += npkts-1;
842 
843 	if ((stat = READ_REG(sc, BS_STAT))
844 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
845 		if (stat & BS_STAT_DMAERR) {
846 			ubsec_totalreset(sc);
847 			ubsecstats.hst_dmaerr++;
848 		} else {
849 			ubsecstats.hst_mcr1full++;
850 		}
851 		return;
852 	}
853 
854 #ifdef UBSEC_DEBUG
855 	if (ubsec_debug)
856 	    printf("merging %d records\n", npkts);
857 	/* XXX temporary aggregation statistics reporting code */
858 	if (max < npkts) {
859 		max = npkts;
860 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
861 		    max);
862 	}
863 #endif /* UBSEC_DEBUG */
864 
865 	q = SIMPLEQ_FIRST(&sc->sc_queue);
866 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
867 	--sc->sc_nqueue;
868 
869 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
870 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
871 	if (q->q_dst_map != NULL)
872 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
873 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
874 
875 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
876 
877 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
878 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
879 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
880 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
881 		if (q2->q_dst_map != NULL)
882 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
883 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
884 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
885 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
886 		--sc->sc_nqueue;
887 
888 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
889 		v = (char*)v + (sizeof(struct ubsec_mcr) -
890 				 sizeof(struct ubsec_mcr_add));
891 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
892 		    sizeof(struct ubsec_mcr_add));
893 		q->q_stacked_mcr[i] = q2;
894 	}
895 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
896 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
897 	sc->sc_nqchip += npkts;
898 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
899 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
900 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
901 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
902 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
903 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
904 	    offsetof(struct ubsec_dmachunk, d_mcr));
905 	return;
906 
907 feed1:
908 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
909 		if ((stat = READ_REG(sc, BS_STAT))
910 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
911 			if (stat & BS_STAT_DMAERR) {
912 				ubsec_totalreset(sc);
913 				ubsecstats.hst_dmaerr++;
914 			} else {
915 				ubsecstats.hst_mcr1full++;
916 			}
917 			break;
918 		}
919 
920 		q = SIMPLEQ_FIRST(&sc->sc_queue);
921 
922 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
923 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
924 		if (q->q_dst_map != NULL)
925 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
926 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
927 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
928 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
929 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
930 
931 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
932 		    offsetof(struct ubsec_dmachunk, d_mcr));
933 #ifdef UBSEC_DEBUG
934 		if (ubsec_debug)
935 			printf("feed: q->chip %p %08x stat %08x\n",
936  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
937 			       stat);
938 #endif /* UBSEC_DEBUG */
939 		q = SIMPLEQ_FIRST(&sc->sc_queue);
940 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
941 		--sc->sc_nqueue;
942 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
943 		sc->sc_nqchip++;
944 	}
945 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
946 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
947 }
948 
949 /*
950  * Allocate a new 'session' and return an encoded session id.  'sidp'
951  * contains our registration id, and should contain an encoded session
952  * id on successful allocation.
953  */
954 static int
ubsec_newsession(void * arg,u_int32_t * sidp,struct cryptoini * cri)955 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
956 {
957 	struct cryptoini *c, *encini = NULL, *macini = NULL;
958 	struct ubsec_softc *sc = arg;
959 	struct ubsec_session *ses = NULL;
960 	MD5_CTX md5ctx;
961 	SHA1_CTX sha1ctx;
962 	int i, sesn;
963 
964 	for (c = cri; c != NULL; c = c->cri_next) {
965 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
966 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
967 			if (macini)
968 				return (EINVAL);
969 			macini = c;
970 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
971 		    c->cri_alg == CRYPTO_3DES_CBC ||
972 		    c->cri_alg == CRYPTO_AES_CBC) {
973 			if (encini)
974 				return (EINVAL);
975 			encini = c;
976 		} else
977 			return (EINVAL);
978 	}
979 	if (encini == NULL && macini == NULL)
980 		return (EINVAL);
981 
982 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
983 		switch (encini->cri_klen) {
984 		case 128:
985 		case 192:
986 		case 256:
987 			break;
988 		default:
989 			return (EINVAL);
990 		}
991 	}
992 
993 	if (sc->sc_sessions == NULL) {
994 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
995 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
996 		if (ses == NULL)
997 			return (ENOMEM);
998 		sesn = 0;
999 		sc->sc_nsessions = 1;
1000 	} else {
1001 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1002 			if (sc->sc_sessions[sesn].ses_used == 0) {
1003 				ses = &sc->sc_sessions[sesn];
1004 				break;
1005 			}
1006 		}
1007 
1008 		if (ses == NULL) {
1009 			sesn = sc->sc_nsessions;
1010 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1011 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1012 			if (ses == NULL)
1013 				return (ENOMEM);
1014 			memcpy(ses, sc->sc_sessions, sesn *
1015 			    sizeof(struct ubsec_session));
1016 			memset(sc->sc_sessions, 0, sesn *
1017 			    sizeof(struct ubsec_session));
1018 			free(sc->sc_sessions, M_DEVBUF);
1019 			sc->sc_sessions = ses;
1020 			ses = &sc->sc_sessions[sesn];
1021 			sc->sc_nsessions++;
1022 		}
1023 	}
1024 
1025 	memset(ses, 0, sizeof(struct ubsec_session));
1026 	ses->ses_used = 1;
1027 	if (encini) {
1028 		/* Go ahead and compute key in ubsec's byte order */
1029 		if (encini->cri_alg == CRYPTO_AES_CBC) {
1030 			memcpy(ses->ses_key, encini->cri_key,
1031 			    encini->cri_klen / 8);
1032 		}
1033 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1034 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
1035 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
1036 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
1037 		} else
1038 			memcpy(ses->ses_key, encini->cri_key, 24);
1039 
1040 		SWAP32(ses->ses_key[0]);
1041 		SWAP32(ses->ses_key[1]);
1042 		SWAP32(ses->ses_key[2]);
1043 		SWAP32(ses->ses_key[3]);
1044 		SWAP32(ses->ses_key[4]);
1045 		SWAP32(ses->ses_key[5]);
1046 	}
1047 
1048 	if (macini) {
1049 		for (i = 0; i < macini->cri_klen / 8; i++)
1050 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1051 
1052 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1053 			MD5Init(&md5ctx);
1054 			MD5Update(&md5ctx, macini->cri_key,
1055 			    macini->cri_klen / 8);
1056 			MD5Update(&md5ctx, hmac_ipad_buffer,
1057 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1058 			memcpy(ses->ses_hminner, md5ctx.state,
1059 			    sizeof(md5ctx.state));
1060 		} else {
1061 			SHA1Init(&sha1ctx);
1062 			SHA1Update(&sha1ctx, macini->cri_key,
1063 			    macini->cri_klen / 8);
1064 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1065 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1066 			memcpy(ses->ses_hminner, sha1ctx.state,
1067 			    sizeof(sha1ctx.state));
1068 		}
1069 
1070 		for (i = 0; i < macini->cri_klen / 8; i++)
1071 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1072 
1073 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1074 			MD5Init(&md5ctx);
1075 			MD5Update(&md5ctx, macini->cri_key,
1076 			    macini->cri_klen / 8);
1077 			MD5Update(&md5ctx, hmac_opad_buffer,
1078 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1079 			memcpy(ses->ses_hmouter, md5ctx.state,
1080 			    sizeof(md5ctx.state));
1081 		} else {
1082 			SHA1Init(&sha1ctx);
1083 			SHA1Update(&sha1ctx, macini->cri_key,
1084 			    macini->cri_klen / 8);
1085 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1086 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1087 			memcpy(ses->ses_hmouter, sha1ctx.state,
1088 			    sizeof(sha1ctx.state));
1089 		}
1090 
1091 		for (i = 0; i < macini->cri_klen / 8; i++)
1092 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1093 	}
1094 
1095 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Deallocate a session.
1101  */
1102 static void
ubsec_freesession(void * arg,u_int64_t tid)1103 ubsec_freesession(void *arg, u_int64_t tid)
1104 {
1105 	struct ubsec_softc *sc = arg;
1106 	int session;
1107 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1108 
1109 	session = UBSEC_SESSION(sid);
1110 	KASSERTMSG(session >= 0, "session=%d", session);
1111 	KASSERTMSG(session < sc->sc_nsessions, "session=%d nsessions=%d",
1112 	    session, sc->sc_nsessions);
1113 
1114 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1115 }
1116 
1117 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1118 static void
ubsec_op_cb(void * arg,bus_dma_segment_t * seg,int nsegs,bus_size_t mapsize,int error)1119 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1120     int error)
1121 {
1122 	struct ubsec_operand *op = arg;
1123 
1124 	KASSERT(nsegs <= UBS_MAX_SCATTER
1125 		/*, ("Too many DMA segments returned when mapping operand")*/);
1126 #ifdef UBSEC_DEBUG
1127 	if (ubsec_debug)
1128 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1129 			(u_int) mapsize, nsegs);
1130 #endif
1131 	op->mapsize = mapsize;
1132 	op->nsegs = nsegs;
1133 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1134 }
1135 #endif
1136 
1137 static int
ubsec_process(void * arg,struct cryptop * crp,int hint)1138 ubsec_process(void *arg, struct cryptop *crp, int hint)
1139 {
1140 	struct ubsec_q *q = NULL;
1141 	int err = 0, i, j, nicealign;
1142 	struct ubsec_softc *sc = arg;
1143 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1144 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1145 	int sskip, dskip, stheend, dtheend;
1146 	int16_t coffset;
1147 	struct ubsec_session *ses, key;
1148 	struct ubsec_dma *dmap = NULL;
1149 	u_int16_t flags = 0;
1150 	int ivlen = 0, keylen = 0;
1151 
1152 	KASSERTMSG(UBSEC_SESSION(crp->crp_sid) < sc->sc_nsessions,
1153 	    "invalid session id 0x%"PRIx64", nsessions=%d",
1154 	    crp->crp_sid, sc->sc_nsessions);
1155 
1156 	mutex_spin_enter(&sc->sc_mtx);
1157 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1158 		ubsecstats.hst_queuefull++;
1159 		mutex_spin_exit(&sc->sc_mtx);
1160 		err = ERESTART;
1161 		goto errout;
1162 	}
1163 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1164 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1165 	mutex_spin_exit(&sc->sc_mtx);
1166 
1167 	dmap = q->q_dma; /* Save dma pointer */
1168 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1169 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1170 	memset(&key, 0, sizeof(key));
1171 
1172 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1173 	q->q_dma = dmap;
1174 	ses = &sc->sc_sessions[q->q_sesn];
1175 
1176 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1177 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1178 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1179 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1180 		q->q_src_io = (struct uio *)crp->crp_buf;
1181 		q->q_dst_io = (struct uio *)crp->crp_buf;
1182 	} else {
1183 		ubsecstats.hst_badflags++;
1184 		err = EINVAL;
1185 		goto errout;	/* XXX we don't handle contiguous blocks! */
1186 	}
1187 
1188 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1189 
1190 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1191 	dmap->d_dma->d_mcr.mcr_flags = 0;
1192 	q->q_crp = crp;
1193 
1194 	crd1 = crp->crp_desc;
1195 	if (crd1 == NULL) {
1196 		ubsecstats.hst_nodesc++;
1197 		err = EINVAL;
1198 		goto errout;
1199 	}
1200 	crd2 = crd1->crd_next;
1201 
1202 	if (crd2 == NULL) {
1203 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1204 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1205 			maccrd = crd1;
1206 			enccrd = NULL;
1207 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1208 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1209 		    crd1->crd_alg == CRYPTO_AES_CBC) {
1210 			maccrd = NULL;
1211 			enccrd = crd1;
1212 		} else {
1213 			ubsecstats.hst_badalg++;
1214 			err = EINVAL;
1215 			goto errout;
1216 		}
1217 	} else {
1218 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1219 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1220 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1221 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
1222 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
1223 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1224 			maccrd = crd1;
1225 			enccrd = crd2;
1226 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1227 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1228 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
1229 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1230 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1231 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1232 			enccrd = crd1;
1233 			maccrd = crd2;
1234 		} else {
1235 			/*
1236 			 * We cannot order the ubsec as requested
1237 			 */
1238 			ubsecstats.hst_badalg++;
1239 			err = EINVAL;
1240 			goto errout;
1241 		}
1242 	}
1243 
1244 	if (enccrd) {
1245 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1246 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1247 				/*
1248 				 * We cannot order the ubsec as requested
1249 				 */
1250 				ubsecstats.hst_badalg++;
1251 				err = EINVAL;
1252 				goto errout;
1253 			}
1254 			flags |= htole16(UBS_PKTCTX_ENC_AES);
1255 			switch (enccrd->crd_klen) {
1256 			case 128:
1257 			case 192:
1258 			case 256:
1259 				keylen = enccrd->crd_klen / 8;
1260 				break;
1261 			default:
1262 				err = EINVAL;
1263 				goto errout;
1264 			}
1265 			ivlen = 16;
1266 		} else {
1267 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
1268 			ivlen = 8;
1269 			keylen = 24;
1270 		}
1271 
1272 		encoffset = enccrd->crd_skip;
1273 
1274 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1275 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1276 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1277 			else
1278 				cprng_fast(key.ses_iv, ivlen);
1279 
1280 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1281 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1282 					m_copyback(q->q_src_m,
1283 					    enccrd->crd_inject,
1284 					    ivlen, (void *)key.ses_iv);
1285 				else if (crp->crp_flags & CRYPTO_F_IOV)
1286 					cuio_copyback(q->q_src_io,
1287 					    enccrd->crd_inject,
1288 					    ivlen, (void *)key.ses_iv);
1289 			}
1290 		} else {
1291 			flags |= htole16(UBS_PKTCTX_INBOUND);
1292 
1293 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1294 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1295 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1296 				m_copydata(q->q_src_m, enccrd->crd_inject,
1297 				    ivlen, (void *)key.ses_iv);
1298 			else if (crp->crp_flags & CRYPTO_F_IOV)
1299 				cuio_copydata(q->q_src_io,
1300 				    enccrd->crd_inject, 8,
1301 				    (void *)key.ses_iv);
1302 		}
1303 
1304 		for (i = 0; i < (keylen / 4); i++)
1305 			key.ses_key[i] = ses->ses_key[i];
1306 		for (i = 0; i < (ivlen / 4); i++)
1307 			SWAP32(key.ses_iv[i]);
1308 	}
1309 
1310 	if (maccrd) {
1311 		macoffset = maccrd->crd_skip;
1312 
1313 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1314 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1315 		else
1316 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1317 
1318 		for (i = 0; i < 5; i++) {
1319 			key.ses_hminner[i] = ses->ses_hminner[i];
1320 			key.ses_hmouter[i] = ses->ses_hmouter[i];
1321 
1322 			HTOLE32(key.ses_hminner[i]);
1323 			HTOLE32(key.ses_hmouter[i]);
1324 		}
1325 	}
1326 
1327 	if (enccrd && maccrd) {
1328 		/*
1329 		 * ubsec cannot handle packets where the end of encryption
1330 		 * and authentication are not the same, or where the
1331 		 * encrypted part begins before the authenticated part.
1332 		 */
1333 		if ((encoffset + enccrd->crd_len) !=
1334 		    (macoffset + maccrd->crd_len)) {
1335 			ubsecstats.hst_lenmismatch++;
1336 			err = EINVAL;
1337 			goto errout;
1338 		}
1339 		if (enccrd->crd_skip < maccrd->crd_skip) {
1340 			ubsecstats.hst_skipmismatch++;
1341 			err = EINVAL;
1342 			goto errout;
1343 		}
1344 		sskip = maccrd->crd_skip;
1345 		cpskip = dskip = enccrd->crd_skip;
1346 		stheend = maccrd->crd_len;
1347 		dtheend = enccrd->crd_len;
1348 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1349 		cpoffset = cpskip + dtheend;
1350 #ifdef UBSEC_DEBUG
1351 		if (ubsec_debug) {
1352 			printf("mac: skip %d, len %d, inject %d\n",
1353 			    maccrd->crd_skip, maccrd->crd_len,
1354 			    maccrd->crd_inject);
1355 			printf("enc: skip %d, len %d, inject %d\n",
1356 			    enccrd->crd_skip, enccrd->crd_len,
1357 			    enccrd->crd_inject);
1358 			printf("src: skip %d, len %d\n", sskip, stheend);
1359 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1360 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1361 			       coffset, stheend, cpskip, cpoffset);
1362 		}
1363 #endif
1364 	} else {
1365 		cpskip = dskip = sskip = macoffset + encoffset;
1366 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1367 		cpoffset = cpskip + dtheend;
1368 		coffset = 0;
1369 	}
1370 
1371 	if (q->q_src_map == NULL) {
1372 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1373 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1374 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1375 			err = ENOMEM;
1376 			goto errout;
1377 		}
1378 	}
1379 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1380 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1381 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1382 			ubsecstats.hst_noload++;
1383 			err = ENOMEM;
1384 			goto errout;
1385 		}
1386 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1387 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1388 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1389 			ubsecstats.hst_noload++;
1390 			err = ENOMEM;
1391 			goto errout;
1392 		}
1393 	}
1394 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1395 
1396 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1397 
1398 #ifdef UBSEC_DEBUG
1399 	if (ubsec_debug)
1400 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1401 #endif
1402 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1403 		struct ubsec_pktbuf *pb;
1404 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1405 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1406 
1407 		if (sskip >= packl) {
1408 			sskip -= packl;
1409 			continue;
1410 		}
1411 
1412 		packl -= sskip;
1413 		packp += sskip;
1414 		sskip = 0;
1415 
1416 		if (packl > 0xfffc) {
1417 			err = EIO;
1418 			goto errout;
1419 		}
1420 
1421 		if (j == 0)
1422 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1423 		else
1424 			pb = &dmap->d_dma->d_sbuf[j - 1];
1425 
1426 		pb->pb_addr = htole32(packp);
1427 
1428 		if (stheend) {
1429 			if (packl > stheend) {
1430 				pb->pb_len = htole32(stheend);
1431 				stheend = 0;
1432 			} else {
1433 				pb->pb_len = htole32(packl);
1434 				stheend -= packl;
1435 			}
1436 		} else
1437 			pb->pb_len = htole32(packl);
1438 
1439 		if ((i + 1) == q->q_src_map->dm_nsegs)
1440 			pb->pb_next = 0;
1441 		else
1442 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1443 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1444 		j++;
1445 	}
1446 
1447 	if (enccrd == NULL && maccrd != NULL) {
1448 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1449 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1450 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1451 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1452 #ifdef UBSEC_DEBUG
1453 		if (ubsec_debug)
1454 			printf("opkt: %x %x %x\n",
1455 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1456 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1457 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1458 
1459 #endif
1460 	} else {
1461 		if (crp->crp_flags & CRYPTO_F_IOV) {
1462 			if (!nicealign) {
1463 				ubsecstats.hst_iovmisaligned++;
1464 				err = EINVAL;
1465 				goto errout;
1466 			}
1467 			if (q->q_dst_map == NULL) {
1468 				if (q->q_cached_dst_map == NULL) {
1469 					/*
1470 					 * XXX: ``what the heck's that''
1471 					 * 0xfff0?
1472 					 */
1473 					if (bus_dmamap_create(sc->sc_dmat,
1474 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1475 					    BUS_DMA_NOWAIT,
1476 					    &q->q_cached_dst_map) != 0) {
1477 						ubsecstats.hst_nomap++;
1478 						err = ENOMEM;
1479 						goto errout;
1480 					}
1481 				}
1482 				q->q_dst_map = q->q_cached_dst_map;
1483 			}
1484 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1485 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1486 				ubsecstats.hst_noload++;
1487 				err = ENOMEM;
1488 				goto errout;
1489 			}
1490 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1491 			if (nicealign) {
1492 				q->q_dst_m = q->q_src_m;
1493 				q->q_dst_map = q->q_src_map;
1494 			} else {
1495 				int totlen, len;
1496 				struct mbuf *m, *top, **mp;
1497 
1498 				ubsecstats.hst_unaligned++;
1499 				totlen = q->q_src_map->dm_mapsize;
1500 				if (q->q_src_m->m_flags & M_PKTHDR) {
1501 					len = MHLEN;
1502 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1503 					/*XXX FIXME: m_dup_pkthdr */
1504 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1505 						m_free(m);
1506 						m = NULL;
1507 					}
1508 				} else {
1509 					len = MLEN;
1510 					MGET(m, M_DONTWAIT, MT_DATA);
1511 				}
1512 				if (m == NULL) {
1513 					ubsecstats.hst_nombuf++;
1514 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1515 					goto errout;
1516 				}
1517 				if (len == MHLEN)
1518 				  /*XXX was M_DUP_PKTHDR*/
1519 				  m_copy_pkthdr(m, q->q_src_m);
1520 				if (totlen >= MINCLSIZE) {
1521 					MCLGET(m, M_DONTWAIT);
1522 					if ((m->m_flags & M_EXT) == 0) {
1523 						m_free(m);
1524 						ubsecstats.hst_nomcl++;
1525 						err = sc->sc_nqueue
1526 						    ? ERESTART : ENOMEM;
1527 						goto errout;
1528 					}
1529 					len = MCLBYTES;
1530 				}
1531 				m->m_len = len;
1532 				top = NULL;
1533 				mp = &top;
1534 
1535 				while (totlen > 0) {
1536 					if (top) {
1537 						MGET(m, M_DONTWAIT, MT_DATA);
1538 						if (m == NULL) {
1539 							m_freem(top);
1540 							ubsecstats.hst_nombuf++;
1541 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1542 							goto errout;
1543 						}
1544 						len = MLEN;
1545 					}
1546 					if (top && totlen >= MINCLSIZE) {
1547 						MCLGET(m, M_DONTWAIT);
1548 						if ((m->m_flags & M_EXT) == 0) {
1549 							*mp = m;
1550 							m_freem(top);
1551 							ubsecstats.hst_nomcl++;
1552 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1553 							goto errout;
1554 						}
1555 						len = MCLBYTES;
1556 					}
1557 					m->m_len = len = uimin(totlen, len);
1558 					totlen -= len;
1559 					*mp = m;
1560 					mp = &m->m_next;
1561 				}
1562 				q->q_dst_m = top;
1563 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1564 				    cpskip, cpoffset);
1565 				if (q->q_dst_map == NULL) {
1566 					if (q->q_cached_dst_map == NULL) {
1567 						/* XXX again, what the heck is that 0xfff0? */
1568 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1569 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1570 						    &q->q_cached_dst_map) != 0) {
1571 							ubsecstats.hst_nomap++;
1572 							err = ENOMEM;
1573 							goto errout;
1574 						}
1575 					}
1576 					q->q_dst_map = q->q_cached_dst_map;
1577 				}
1578 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1579 				    q->q_dst_map, q->q_dst_m,
1580 				    BUS_DMA_NOWAIT) != 0) {
1581 					ubsecstats.hst_noload++;
1582 					err = ENOMEM;
1583 					goto errout;
1584 				}
1585 			}
1586 		} else {
1587 			ubsecstats.hst_badflags++;
1588 			err = EINVAL;
1589 			goto errout;
1590 		}
1591 
1592 #ifdef UBSEC_DEBUG
1593 		if (ubsec_debug)
1594 			printf("dst skip: %d\n", dskip);
1595 #endif
1596 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1597 			struct ubsec_pktbuf *pb;
1598 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1599 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1600 
1601 			if (dskip >= packl) {
1602 				dskip -= packl;
1603 				continue;
1604 			}
1605 
1606 			packl -= dskip;
1607 			packp += dskip;
1608 			dskip = 0;
1609 
1610 			if (packl > 0xfffc) {
1611 				err = EIO;
1612 				goto errout;
1613 			}
1614 
1615 			if (j == 0)
1616 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1617 			else
1618 				pb = &dmap->d_dma->d_dbuf[j - 1];
1619 
1620 			pb->pb_addr = htole32(packp);
1621 
1622 			if (dtheend) {
1623 				if (packl > dtheend) {
1624 					pb->pb_len = htole32(dtheend);
1625 					dtheend = 0;
1626 				} else {
1627 					pb->pb_len = htole32(packl);
1628 					dtheend -= packl;
1629 				}
1630 			} else
1631 				pb->pb_len = htole32(packl);
1632 
1633 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1634 				if (maccrd)
1635 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1636 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1637 				else
1638 					pb->pb_next = 0;
1639 			} else
1640 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1641 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1642 			j++;
1643 		}
1644 	}
1645 
1646 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1647 	    offsetof(struct ubsec_dmachunk, d_ctx));
1648 
1649 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1650 		struct ubsec_pktctx_aes128	*aes128;
1651 		struct ubsec_pktctx_aes192	*aes192;
1652 		struct ubsec_pktctx_aes256	*aes256;
1653 		struct ubsec_pktctx_hdr		*ph;
1654 		u_int8_t			*ctx;
1655 
1656 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1657 		    offsetof(struct ubsec_dmachunk, d_ctx);
1658 
1659 		ph = (struct ubsec_pktctx_hdr *)ctx;
1660 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1661 		ph->ph_flags = flags;
1662 		ph->ph_offset = htole16(coffset >> 2);
1663 
1664 		switch (enccrd->crd_klen) {
1665 		case 128:
1666 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1667  			ph->ph_len = htole16(sizeof(*aes128));
1668 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1669 			for (i = 0; i < 4; i++)
1670 				aes128->pc_aeskey[i] = key.ses_key[i];
1671 			for (i = 0; i < 5; i++)
1672 				aes128->pc_hminner[i] = key.ses_hminner[i];
1673 			for (i = 0; i < 5; i++)
1674 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
1675 			for (i = 0; i < 4; i++)
1676 				aes128->pc_iv[i] = key.ses_iv[i];
1677 			break;
1678 		case 192:
1679 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1680 			ph->ph_len = htole16(sizeof(*aes192));
1681 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1682 			for (i = 0; i < 6; i++)
1683 				aes192->pc_aeskey[i] = key.ses_key[i];
1684 			for (i = 0; i < 5; i++)
1685 				aes192->pc_hminner[i] = key.ses_hminner[i];
1686 			for (i = 0; i < 5; i++)
1687 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
1688 			for (i = 0; i < 4; i++)
1689 				aes192->pc_iv[i] = key.ses_iv[i];
1690 			break;
1691 		case 256:
1692 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1693 			ph->ph_len = htole16(sizeof(*aes256));
1694 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1695 			for (i = 0; i < 8; i++)
1696 				aes256->pc_aeskey[i] = key.ses_key[i];
1697 			for (i = 0; i < 5; i++)
1698 				aes256->pc_hminner[i] = key.ses_hminner[i];
1699 			for (i = 0; i < 5; i++)
1700 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
1701 			for (i = 0; i < 4; i++)
1702 				aes256->pc_iv[i] = key.ses_iv[i];
1703 			break;
1704 		}
1705 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1706 		struct ubsec_pktctx_3des	*ctx;
1707 		struct ubsec_pktctx_hdr		*ph;
1708 
1709 		ctx = (struct ubsec_pktctx_3des *)
1710 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1711 		    offsetof(struct ubsec_dmachunk, d_ctx));
1712 
1713 		ph = (struct ubsec_pktctx_hdr *)ctx;
1714 		ph->ph_len = htole16(sizeof(*ctx));
1715 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1716 		ph->ph_flags = flags;
1717 		ph->ph_offset = htole16(coffset >> 2);
1718 
1719 		for (i = 0; i < 6; i++)
1720 			ctx->pc_deskey[i] = key.ses_key[i];
1721 		for (i = 0; i < 5; i++)
1722 			ctx->pc_hminner[i] = key.ses_hminner[i];
1723 		for (i = 0; i < 5; i++)
1724 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1725 		for (i = 0; i < 2; i++)
1726 			ctx->pc_iv[i] = key.ses_iv[i];
1727 	} else {
1728 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1729 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1730 		    offsetof(struct ubsec_dmachunk, d_ctx));
1731 
1732 		ctx->pc_flags = flags;
1733 		ctx->pc_offset = htole16(coffset >> 2);
1734 		for (i = 0; i < 6; i++)
1735 			ctx->pc_deskey[i] = key.ses_key[i];
1736 		for (i = 0; i < 5; i++)
1737 			ctx->pc_hminner[i] = key.ses_hminner[i];
1738 		for (i = 0; i < 5; i++)
1739 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1740 		for (i = 0; i < 2; i++)
1741 			ctx->pc_iv[i] = key.ses_iv[i];
1742 	}
1743 
1744 	mutex_spin_enter(&sc->sc_mtx);
1745 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1746 	sc->sc_nqueue++;
1747 	ubsecstats.hst_ipackets++;
1748 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1749 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1750 		ubsec_feed(sc);
1751 	mutex_spin_exit(&sc->sc_mtx);
1752 	return 0;
1753 
1754 errout:
1755 	if (q != NULL) {
1756 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1757 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1758 		}
1759 		if (q->q_src_map != NULL) {
1760 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1761 		}
1762 
1763 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1764 			m_freem(q->q_dst_m);
1765 
1766 		mutex_spin_enter(&sc->sc_mtx);
1767 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1768 		mutex_spin_exit(&sc->sc_mtx);
1769 	}
1770 	if (err == ERESTART) {
1771 		mutex_spin_enter(&sc->sc_mtx);
1772 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1773 		mutex_spin_exit(&sc->sc_mtx);
1774 		return ERESTART;
1775 	}
1776 	crp->crp_etype = err;
1777 	crypto_done(crp);
1778 	return 0;
1779 }
1780 
1781 static void
ubsec_callback(struct ubsec_softc * sc,struct ubsec_q * q)1782 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1783 {
1784 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1785 	struct cryptodesc *crd;
1786 	struct ubsec_dma *dmap = q->q_dma;
1787 
1788 	ubsecstats.hst_opackets++;
1789 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1790 
1791 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1792 	    dmap->d_alloc.dma_map->dm_mapsize,
1793 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1794 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1795 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1796 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1797 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1798 	}
1799 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1800 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1801 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1802 
1803 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1804 		m_freem(q->q_src_m);
1805 		crp->crp_buf = (void *)q->q_dst_m;
1806 	}
1807 
1808 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1809 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1810 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1811 			continue;
1812 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1813 			m_copyback((struct mbuf *)crp->crp_buf,
1814 			    crd->crd_inject, 12,
1815 			    (void *)dmap->d_dma->d_macbuf);
1816 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1817 			bcopy((void *)dmap->d_dma->d_macbuf,
1818 			    crp->crp_mac, 12);
1819 		break;
1820 	}
1821 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1822 	crypto_done(crp);
1823 }
1824 
1825 static void
ubsec_mcopy(struct mbuf * srcm,struct mbuf * dstm,int hoffset,int toffset)1826 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1827 {
1828 	int i, j, dlen, slen;
1829 	char *dptr, *sptr;
1830 
1831 	j = 0;
1832 	sptr = srcm->m_data;
1833 	slen = srcm->m_len;
1834 	dptr = dstm->m_data;
1835 	dlen = dstm->m_len;
1836 
1837 	while (1) {
1838 		for (i = 0; i < uimin(slen, dlen); i++) {
1839 			if (j < hoffset || j >= toffset)
1840 				*dptr++ = *sptr++;
1841 			slen--;
1842 			dlen--;
1843 			j++;
1844 		}
1845 		if (slen == 0) {
1846 			srcm = srcm->m_next;
1847 			if (srcm == NULL)
1848 				return;
1849 			sptr = srcm->m_data;
1850 			slen = srcm->m_len;
1851 		}
1852 		if (dlen == 0) {
1853 			dstm = dstm->m_next;
1854 			if (dstm == NULL)
1855 				return;
1856 			dptr = dstm->m_data;
1857 			dlen = dstm->m_len;
1858 		}
1859 	}
1860 }
1861 
1862 /*
1863  * feed the key generator, must be called at splnet() or higher.
1864  */
1865 static void
ubsec_feed2(struct ubsec_softc * sc)1866 ubsec_feed2(struct ubsec_softc *sc)
1867 {
1868 	struct ubsec_q2 *q;
1869 
1870 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1871 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1872 			break;
1873 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1874 
1875 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1876 		    q->q_mcr.dma_map->dm_mapsize,
1877 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1878 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1879 		    q->q_ctx.dma_map->dm_mapsize,
1880 		    BUS_DMASYNC_PREWRITE);
1881 
1882 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1883 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1884 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1885 		--sc->sc_nqueue2;
1886 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1887 	}
1888 }
1889 
1890 /*
1891  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1892  */
1893 void
ubsec_feed4(struct ubsec_softc * sc)1894 ubsec_feed4(struct ubsec_softc *sc)
1895 {
1896 	struct ubsec_q2 *q;
1897 
1898 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1899 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1900 			break;
1901 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1902 
1903 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1904 		    q->q_mcr.dma_map->dm_mapsize,
1905 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1906 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1907 		    q->q_ctx.dma_map->dm_mapsize,
1908 		    BUS_DMASYNC_PREWRITE);
1909 
1910 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1911 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1912 		--sc->sc_nqueue4;
1913 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1914 	}
1915 }
1916 
1917 /*
1918  * Callback for handling random numbers
1919  */
1920 static void
ubsec_callback2(struct ubsec_softc * sc,struct ubsec_q2 * q)1921 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1922 {
1923 	struct cryptkop *krp;
1924 	struct ubsec_ctx_keyop *ctx;
1925 
1926 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1927 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1928 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1929 
1930 	switch (q->q_type) {
1931 #ifndef UBSEC_NO_RNG
1932 	case UBS_CTXOP_RNGSHA1:
1933 	case UBS_CTXOP_RNGBYPASS: {
1934 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1935 		u_int32_t *p;
1936 		int i;
1937 
1938 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1939 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1940 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1941 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
1942 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
1943 		sc->sc_rng_need -= i;
1944 		rng->rng_used = 0;
1945 		if (sc->sc_rng_need > 0) {
1946 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
1947 		}
1948 		break;
1949 	}
1950 #endif
1951 	case UBS_CTXOP_MODEXP: {
1952 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1953 		u_int rlen, clen;
1954 
1955 		krp = me->me_krp;
1956 		rlen = (me->me_modbits + 7) / 8;
1957 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1958 
1959 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1960 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1961 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1962 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1963 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1964 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1965 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1966 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1967 
1968 		if (clen < rlen)
1969 			krp->krp_status = E2BIG;
1970 		else {
1971 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1972 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1973 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1974 					+ 7) / 8);
1975 				bcopy(me->me_C.dma_vaddr,
1976 				    krp->krp_param[krp->krp_iparams].crp_p,
1977 				    (me->me_modbits + 7) / 8);
1978 			} else
1979 				ubsec_kshift_l(me->me_shiftbits,
1980 				    me->me_C.dma_vaddr, me->me_normbits,
1981 				    krp->krp_param[krp->krp_iparams].crp_p,
1982 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1983 		}
1984 
1985 		crypto_kdone(krp);
1986 
1987 		/* bzero all potentially sensitive data */
1988 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1989 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1990 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1991 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1992 
1993 		/* Can't free here, so put us on the free list. */
1994 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1995 		break;
1996 	}
1997 	case UBS_CTXOP_RSAPRIV: {
1998 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1999 		u_int len;
2000 
2001 		krp = rp->rpr_krp;
2002 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2003 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2004 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2005 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2006 
2007 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2008 		    / 8;
2009 		bcopy(rp->rpr_msgout.dma_vaddr,
2010 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2011 
2012 		crypto_kdone(krp);
2013 
2014 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2015 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2016 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2017 
2018 		/* Can't free here, so put us on the free list. */
2019 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2020 		break;
2021 	}
2022 	default:
2023 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2024 		    letoh16(ctx->ctx_op));
2025 		break;
2026 	}
2027 }
2028 
2029 #ifndef UBSEC_NO_RNG
2030 
2031 static void
ubsec_rng_get(size_t bytes,void * vsc)2032 ubsec_rng_get(size_t bytes, void *vsc)
2033 {
2034 	struct ubsec_softc *sc = vsc;
2035 
2036 	mutex_spin_enter(&sc->sc_mtx);
2037 	sc->sc_rng_need = bytes;
2038 	ubsec_rng_locked(sc);
2039 	mutex_spin_exit(&sc->sc_mtx);
2040 
2041 }
2042 
2043 static void
ubsec_rng(void * vsc)2044 ubsec_rng(void *vsc)
2045 {
2046 	struct ubsec_softc *sc = vsc;
2047 	mutex_spin_enter(&sc->sc_mtx);
2048 	ubsec_rng_locked(sc);
2049 	mutex_spin_exit(&sc->sc_mtx);
2050 }
2051 
2052 static void
ubsec_rng_locked(void * vsc)2053 ubsec_rng_locked(void *vsc)
2054 {
2055 	struct ubsec_softc *sc = vsc;
2056 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2057 	struct ubsec_mcr *mcr;
2058 	struct ubsec_ctx_rngbypass *ctx;
2059 	int *nqueue;
2060 
2061 	/* Caller is responsible to lock and release sc_mtx. */
2062 	KASSERT(mutex_owned(&sc->sc_mtx));
2063 
2064 	if (rng->rng_used) {
2065 		return;
2066 	}
2067 
2068 	if (sc->sc_rng_need < 1) {
2069 		callout_stop(&sc->sc_rngto);
2070 		return;
2071 	}
2072 
2073 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2074 		nqueue = &sc->sc_nqueue4;
2075 	else
2076 		nqueue = &sc->sc_nqueue2;
2077 
2078 	(*nqueue)++;
2079 	if (*nqueue >= UBS_MAX_NQUEUE)
2080  		goto out;
2081 
2082 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2083 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2084 
2085 	mcr->mcr_pkts = htole16(1);
2086 	mcr->mcr_flags = 0;
2087 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2088 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2089 	mcr->mcr_ipktbuf.pb_len = 0;
2090 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2091 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2092 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2093 	    UBS_PKTBUF_LEN);
2094 	mcr->mcr_opktbuf.pb_next = 0;
2095 
2096 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2097 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2098 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2099 
2100 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2101 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2102 
2103 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2104 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2105 		ubsec_feed4(sc);
2106 	} else {
2107 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2108 		ubsec_feed2(sc);
2109 	}
2110 	rng->rng_used = 1;
2111 	ubsecstats.hst_rng++;
2112 
2113 	return;
2114 
2115 out:
2116 	/*
2117 	 * Something weird happened, generate our own call back.
2118 	 */
2119 	(*nqueue)--;
2120 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2121 }
2122 #endif /* UBSEC_NO_RNG */
2123 
2124 static int
ubsec_dma_malloc(struct ubsec_softc * sc,bus_size_t size,struct ubsec_dma_alloc * dma,int mapflags)2125 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2126 		 struct ubsec_dma_alloc *dma,int mapflags)
2127 {
2128 	int r;
2129 
2130 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2131 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2132 		goto fail_0;
2133 
2134 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2135 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2136 		goto fail_1;
2137 
2138 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2139 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2140 		goto fail_2;
2141 
2142 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2143 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2144 		goto fail_3;
2145 
2146 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2147 	dma->dma_size = size;
2148 	return (0);
2149 
2150 fail_3:
2151 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2152 fail_2:
2153 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2154 fail_1:
2155 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2156 fail_0:
2157 	dma->dma_map = NULL;
2158 	return (r);
2159 }
2160 
2161 static void
ubsec_dma_free(struct ubsec_softc * sc,struct ubsec_dma_alloc * dma)2162 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2163 {
2164 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2165 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2166 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2167 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2168 }
2169 
2170 /*
2171  * Resets the board.  Values in the registers are left as is
2172  * from the reset (i.e. initial values are assigned elsewhere).
2173  */
2174 static void
ubsec_reset_board(struct ubsec_softc * sc)2175 ubsec_reset_board(struct ubsec_softc *sc)
2176 {
2177 	volatile u_int32_t ctrl;
2178 
2179 	ctrl = READ_REG(sc, BS_CTRL);
2180 	ctrl |= BS_CTRL_RESET;
2181 	WRITE_REG(sc, BS_CTRL, ctrl);
2182 
2183 	/*
2184 	* Wait approx. 30 PCI clocks = 900 ns = 0.9 us
2185 	*/
2186 	DELAY(10);
2187 
2188 	/* Enable RNG and interrupts on newer devices */
2189 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2190 #ifndef UBSEC_NO_RNG
2191 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2192 #endif
2193 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2194 	}
2195 }
2196 
2197 /*
2198  * Init Broadcom registers
2199  */
2200 static void
ubsec_init_board(struct ubsec_softc * sc)2201 ubsec_init_board(struct ubsec_softc *sc)
2202 {
2203 	u_int32_t ctrl;
2204 
2205 	ctrl = READ_REG(sc, BS_CTRL);
2206 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2207 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2208 
2209 	/*
2210 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2211 	 * anyone got hw docs?
2212 	 */
2213 	if (sc->sc_flags & UBS_FLAGS_KEY)
2214 		ctrl |= BS_CTRL_MCR2INT;
2215 	else
2216 		ctrl &= ~BS_CTRL_MCR2INT;
2217 
2218 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2219 		ctrl &= ~BS_CTRL_SWNORM;
2220 
2221 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2222 		ctrl |= BS_CTRL_BSIZE240;
2223 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2224 
2225 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2226 			ctrl |= BS_CTRL_MCR4INT;
2227 		else
2228 			ctrl &= ~BS_CTRL_MCR4INT;
2229 	}
2230 
2231 	WRITE_REG(sc, BS_CTRL, ctrl);
2232 }
2233 
2234 /*
2235  * Init Broadcom PCI registers
2236  */
2237 static void
ubsec_init_pciregs(struct pci_attach_args * pa)2238 ubsec_init_pciregs(struct pci_attach_args *pa)
2239 {
2240 	pci_chipset_tag_t pc = pa->pa_pc;
2241 	u_int32_t misc;
2242 
2243 	/*
2244 	 * This will set the cache line size to 1, this will
2245 	 * force the BCM58xx chip just to do burst read/writes.
2246 	 * Cache line read/writes are to slow
2247 	 */
2248 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2249 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2250 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2251 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2252 }
2253 
2254 /*
2255  * Clean up after a chip crash.
2256  * It is assumed that the caller in splnet()
2257  */
2258 static void
ubsec_cleanchip(struct ubsec_softc * sc)2259 ubsec_cleanchip(struct ubsec_softc *sc)
2260 {
2261 	struct ubsec_q *q;
2262 
2263 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2264 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2265 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2266 		ubsec_free_q(sc, q);
2267 	}
2268 	sc->sc_nqchip = 0;
2269 }
2270 
2271 /*
2272  * free a ubsec_q
2273  * It is assumed that the caller is within splnet()
2274  */
2275 static int
ubsec_free_q(struct ubsec_softc * sc,struct ubsec_q * q)2276 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2277 {
2278 	struct ubsec_q *q2;
2279 	struct cryptop *crp;
2280 	int npkts;
2281 	int i;
2282 
2283 	npkts = q->q_nstacked_mcrs;
2284 
2285 	for (i = 0; i < npkts; i++) {
2286 		if(q->q_stacked_mcr[i]) {
2287 			q2 = q->q_stacked_mcr[i];
2288 
2289 			if ((q2->q_dst_m != NULL)
2290 			    && (q2->q_src_m != q2->q_dst_m))
2291 				m_freem(q2->q_dst_m);
2292 
2293 			crp = (struct cryptop *)q2->q_crp;
2294 
2295 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2296 
2297 			crp->crp_etype = EFAULT;
2298 			crypto_done(crp);
2299 		} else {
2300 			break;
2301 		}
2302 	}
2303 
2304 	/*
2305 	 * Free header MCR
2306 	 */
2307 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2308 		m_freem(q->q_dst_m);
2309 
2310 	crp = (struct cryptop *)q->q_crp;
2311 
2312 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2313 
2314 	crp->crp_etype = EFAULT;
2315 	crypto_done(crp);
2316 	return(0);
2317 }
2318 
2319 /*
2320  * Routine to reset the chip and clean up.
2321  * It is assumed that the caller is in splnet()
2322  */
2323 static void
ubsec_totalreset(struct ubsec_softc * sc)2324 ubsec_totalreset(struct ubsec_softc *sc)
2325 {
2326 	ubsec_reset_board(sc);
2327 	ubsec_init_board(sc);
2328 	ubsec_cleanchip(sc);
2329 }
2330 
2331 static int
ubsec_dmamap_aligned(bus_dmamap_t map)2332 ubsec_dmamap_aligned(bus_dmamap_t map)
2333 {
2334 	int i;
2335 
2336 	for (i = 0; i < map->dm_nsegs; i++) {
2337 		if (map->dm_segs[i].ds_addr & 3)
2338 			return (0);
2339 		if ((i != (map->dm_nsegs - 1)) &&
2340 		    (map->dm_segs[i].ds_len & 3))
2341 			return (0);
2342 	}
2343 	return (1);
2344 }
2345 
2346 static void
ubsec_kfree(struct ubsec_softc * sc,struct ubsec_q2 * q)2347 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2348 {
2349 	switch (q->q_type) {
2350 	case UBS_CTXOP_MODEXP: {
2351 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2352 
2353 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2354 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2355 		ubsec_dma_free(sc, &me->me_M);
2356 		ubsec_dma_free(sc, &me->me_E);
2357 		ubsec_dma_free(sc, &me->me_C);
2358 		ubsec_dma_free(sc, &me->me_epb);
2359 		free(me, M_DEVBUF);
2360 		break;
2361 	}
2362 	case UBS_CTXOP_RSAPRIV: {
2363 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2364 
2365 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2366 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2367 		ubsec_dma_free(sc, &rp->rpr_msgin);
2368 		ubsec_dma_free(sc, &rp->rpr_msgout);
2369 		free(rp, M_DEVBUF);
2370 		break;
2371 	}
2372 	default:
2373 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2374 		    q->q_type);
2375 		break;
2376 	}
2377 }
2378 
2379 static int
ubsec_kprocess(void * arg,struct cryptkop * krp,int hint)2380 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2381 {
2382 	struct ubsec_softc *sc = arg;
2383 
2384 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2385 		struct ubsec_q2 *q;
2386 
2387 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2388 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2389 		ubsec_kfree(sc, q);
2390 	}
2391 
2392 	switch (krp->krp_op) {
2393 	case CRK_MOD_EXP:
2394 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2395 			ubsec_kprocess_modexp_hw(sc, krp, hint);
2396 		else
2397 			ubsec_kprocess_modexp_sw(sc, krp, hint);
2398 		break;
2399 	case CRK_MOD_EXP_CRT:
2400 		ubsec_kprocess_rsapriv(sc, krp, hint);
2401 		break;
2402 	default:
2403 		printf("%s: kprocess: invalid op 0x%x\n",
2404 		    device_xname(sc->sc_dev), krp->krp_op);
2405 		krp->krp_status = EOPNOTSUPP;
2406 		crypto_kdone(krp);
2407 	}
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2413  */
2414 static void
ubsec_kprocess_modexp_sw(struct ubsec_softc * sc,struct cryptkop * krp,int hint)2415 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2416 			 int hint)
2417 {
2418 	struct ubsec_q2_modexp *me;
2419 	struct ubsec_mcr *mcr;
2420 	struct ubsec_ctx_modexp *ctx;
2421 	struct ubsec_pktbuf *epb;
2422 	int err = 0;
2423 	u_int nbits, normbits, mbits, shiftbits, ebits;
2424 
2425 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2426 	if (me == NULL) {
2427 		err = ENOMEM;
2428 		goto errout;
2429 	}
2430 	memset(me, 0, sizeof *me);
2431 	me->me_krp = krp;
2432 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2433 
2434 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2435 	if (nbits <= 512)
2436 		normbits = 512;
2437 	else if (nbits <= 768)
2438 		normbits = 768;
2439 	else if (nbits <= 1024)
2440 		normbits = 1024;
2441 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2442 		normbits = 1536;
2443 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2444 		normbits = 2048;
2445 	else {
2446 		err = E2BIG;
2447 		goto errout;
2448 	}
2449 
2450 	shiftbits = normbits - nbits;
2451 
2452 	me->me_modbits = nbits;
2453 	me->me_shiftbits = shiftbits;
2454 	me->me_normbits = normbits;
2455 
2456 	/* Sanity check: result bits must be >= true modulus bits. */
2457 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2458 		err = ERANGE;
2459 		goto errout;
2460 	}
2461 
2462 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2463 	    &me->me_q.q_mcr, 0)) {
2464 		err = ENOMEM;
2465 		goto errout;
2466 	}
2467 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2468 
2469 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2470 	    &me->me_q.q_ctx, 0)) {
2471 		err = ENOMEM;
2472 		goto errout;
2473 	}
2474 
2475 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2476 	if (mbits > nbits) {
2477 		err = E2BIG;
2478 		goto errout;
2479 	}
2480 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2481 		err = ENOMEM;
2482 		goto errout;
2483 	}
2484 	ubsec_kshift_r(shiftbits,
2485 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2486 	    me->me_M.dma_vaddr, normbits);
2487 
2488 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2489 		err = ENOMEM;
2490 		goto errout;
2491 	}
2492 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2493 
2494 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2495 	if (ebits > nbits) {
2496 		err = E2BIG;
2497 		goto errout;
2498 	}
2499 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2500 		err = ENOMEM;
2501 		goto errout;
2502 	}
2503 	ubsec_kshift_r(shiftbits,
2504 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2505 	    me->me_E.dma_vaddr, normbits);
2506 
2507 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2508 	    &me->me_epb, 0)) {
2509 		err = ENOMEM;
2510 		goto errout;
2511 	}
2512 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2513 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2514 	epb->pb_next = 0;
2515 	epb->pb_len = htole32(normbits / 8);
2516 
2517 #ifdef UBSEC_DEBUG
2518 	if (ubsec_debug) {
2519 		printf("Epb ");
2520 		ubsec_dump_pb(epb);
2521 	}
2522 #endif
2523 
2524 	mcr->mcr_pkts = htole16(1);
2525 	mcr->mcr_flags = 0;
2526 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2527 	mcr->mcr_reserved = 0;
2528 	mcr->mcr_pktlen = 0;
2529 
2530 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2531 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2532 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2533 
2534 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2535 	mcr->mcr_opktbuf.pb_next = 0;
2536 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2537 
2538 #ifdef DIAGNOSTIC
2539 	/* Misaligned output buffer will hang the chip. */
2540 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2541 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2542 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2543 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2544 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
2545 		    letoh32(mcr->mcr_opktbuf.pb_len));
2546 #endif
2547 
2548 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2549 	memset(ctx, 0, sizeof(*ctx));
2550 	ubsec_kshift_r(shiftbits,
2551 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2552 	    ctx->me_N, normbits);
2553 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2554 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2555 	ctx->me_E_len = htole16(nbits);
2556 	ctx->me_N_len = htole16(nbits);
2557 
2558 #ifdef UBSEC_DEBUG
2559 	if (ubsec_debug) {
2560 		ubsec_dump_mcr(mcr);
2561 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2562 	}
2563 #endif
2564 
2565 	/*
2566 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2567 	 * everything else.
2568 	 */
2569 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2570 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2571 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2572 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2573 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2574 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2575 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2576 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2577 
2578 	/* Enqueue and we're done... */
2579 	mutex_spin_enter(&sc->sc_mtx);
2580 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2581 	ubsec_feed2(sc);
2582 	ubsecstats.hst_modexp++;
2583 	mutex_spin_exit(&sc->sc_mtx);
2584 
2585 	return;
2586 
2587 errout:
2588 	if (me != NULL) {
2589 		if (me->me_q.q_mcr.dma_map != NULL)
2590 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2591 		if (me->me_q.q_ctx.dma_map != NULL) {
2592 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2593 			    me->me_q.q_ctx.dma_size);
2594 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2595 		}
2596 		if (me->me_M.dma_map != NULL) {
2597 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2598 			ubsec_dma_free(sc, &me->me_M);
2599 		}
2600 		if (me->me_E.dma_map != NULL) {
2601 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2602 			ubsec_dma_free(sc, &me->me_E);
2603 		}
2604 		if (me->me_C.dma_map != NULL) {
2605 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2606 			ubsec_dma_free(sc, &me->me_C);
2607 		}
2608 		if (me->me_epb.dma_map != NULL)
2609 			ubsec_dma_free(sc, &me->me_epb);
2610 		free(me, M_DEVBUF);
2611 	}
2612 	krp->krp_status = err;
2613 	crypto_kdone(krp);
2614 }
2615 
2616 /*
2617  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2618  */
2619 static void
ubsec_kprocess_modexp_hw(struct ubsec_softc * sc,struct cryptkop * krp,int hint)2620 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2621 			 int hint)
2622 {
2623 	struct ubsec_q2_modexp *me;
2624 	struct ubsec_mcr *mcr;
2625 	struct ubsec_ctx_modexp *ctx;
2626 	struct ubsec_pktbuf *epb;
2627 	int err = 0;
2628 	u_int nbits, normbits, mbits, shiftbits, ebits;
2629 
2630 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2631 	if (me == NULL) {
2632 		err = ENOMEM;
2633 		goto errout;
2634 	}
2635 	memset(me, 0, sizeof *me);
2636 	me->me_krp = krp;
2637 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2638 
2639 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2640 	if (nbits <= 512)
2641 		normbits = 512;
2642 	else if (nbits <= 768)
2643 		normbits = 768;
2644 	else if (nbits <= 1024)
2645 		normbits = 1024;
2646 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2647 		normbits = 1536;
2648 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2649 		normbits = 2048;
2650 	else {
2651 		err = E2BIG;
2652 		goto errout;
2653 	}
2654 
2655 	shiftbits = normbits - nbits;
2656 
2657 	/* XXX ??? */
2658 	me->me_modbits = nbits;
2659 	me->me_shiftbits = shiftbits;
2660 	me->me_normbits = normbits;
2661 
2662 	/* Sanity check: result bits must be >= true modulus bits. */
2663 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2664 		err = ERANGE;
2665 		goto errout;
2666 	}
2667 
2668 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2669 	    &me->me_q.q_mcr, 0)) {
2670 		err = ENOMEM;
2671 		goto errout;
2672 	}
2673 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2674 
2675 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2676 	    &me->me_q.q_ctx, 0)) {
2677 		err = ENOMEM;
2678 		goto errout;
2679 	}
2680 
2681 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2682 	if (mbits > nbits) {
2683 		err = E2BIG;
2684 		goto errout;
2685 	}
2686 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2687 		err = ENOMEM;
2688 		goto errout;
2689 	}
2690 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2691 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2692 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2693 
2694 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2695 		err = ENOMEM;
2696 		goto errout;
2697 	}
2698 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2699 
2700 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2701 	if (ebits > nbits) {
2702 		err = E2BIG;
2703 		goto errout;
2704 	}
2705 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2706 		err = ENOMEM;
2707 		goto errout;
2708 	}
2709 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2710 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2711 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2712 
2713 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2714 	    &me->me_epb, 0)) {
2715 		err = ENOMEM;
2716 		goto errout;
2717 	}
2718 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2719 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2720 	epb->pb_next = 0;
2721 	epb->pb_len = htole32((ebits + 7) / 8);
2722 
2723 #ifdef UBSEC_DEBUG
2724 	if (ubsec_debug) {
2725 		printf("Epb ");
2726 		ubsec_dump_pb(epb);
2727 	}
2728 #endif
2729 
2730 	mcr->mcr_pkts = htole16(1);
2731 	mcr->mcr_flags = 0;
2732 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2733 	mcr->mcr_reserved = 0;
2734 	mcr->mcr_pktlen = 0;
2735 
2736 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2737 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2738 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2739 
2740 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2741 	mcr->mcr_opktbuf.pb_next = 0;
2742 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2743 
2744 #ifdef DIAGNOSTIC
2745 	/* Misaligned output buffer will hang the chip. */
2746 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2747 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2748 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2749 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2750 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2751 		    letoh32(mcr->mcr_opktbuf.pb_len));
2752 #endif
2753 
2754 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2755 	memset(ctx, 0, sizeof(*ctx));
2756 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2757 	    (nbits + 7) / 8);
2758 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2759 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2760 	ctx->me_E_len = htole16(ebits);
2761 	ctx->me_N_len = htole16(nbits);
2762 
2763 #ifdef UBSEC_DEBUG
2764 	if (ubsec_debug) {
2765 		ubsec_dump_mcr(mcr);
2766 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2767 	}
2768 #endif
2769 
2770 	/*
2771 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2772 	 * everything else.
2773 	 */
2774 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2775 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2776 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2777 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2778 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2779 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2780 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2781 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2782 
2783 	/* Enqueue and we're done... */
2784 	mutex_spin_enter(&sc->sc_mtx);
2785 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2786 	ubsec_feed2(sc);
2787 	mutex_spin_exit(&sc->sc_mtx);
2788 
2789 	return;
2790 
2791 errout:
2792 	if (me != NULL) {
2793 		if (me->me_q.q_mcr.dma_map != NULL)
2794 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2795 		if (me->me_q.q_ctx.dma_map != NULL) {
2796 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2797 			    me->me_q.q_ctx.dma_size);
2798 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2799 		}
2800 		if (me->me_M.dma_map != NULL) {
2801 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2802 			ubsec_dma_free(sc, &me->me_M);
2803 		}
2804 		if (me->me_E.dma_map != NULL) {
2805 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2806 			ubsec_dma_free(sc, &me->me_E);
2807 		}
2808 		if (me->me_C.dma_map != NULL) {
2809 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2810 			ubsec_dma_free(sc, &me->me_C);
2811 		}
2812 		if (me->me_epb.dma_map != NULL)
2813 			ubsec_dma_free(sc, &me->me_epb);
2814 		free(me, M_DEVBUF);
2815 	}
2816 	krp->krp_status = err;
2817 	crypto_kdone(krp);
2818 }
2819 
2820 static void
ubsec_kprocess_rsapriv(struct ubsec_softc * sc,struct cryptkop * krp,int hint)2821 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2822 		       int hint)
2823 {
2824 	struct ubsec_q2_rsapriv *rp = NULL;
2825 	struct ubsec_mcr *mcr;
2826 	struct ubsec_ctx_rsapriv *ctx;
2827 	int err = 0;
2828 	u_int padlen, msglen;
2829 
2830 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2831 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2832 	if (msglen > padlen)
2833 		padlen = msglen;
2834 
2835 	if (padlen <= 256)
2836 		padlen = 256;
2837 	else if (padlen <= 384)
2838 		padlen = 384;
2839 	else if (padlen <= 512)
2840 		padlen = 512;
2841 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2842 		padlen = 768;
2843 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2844 		padlen = 1024;
2845 	else {
2846 		err = E2BIG;
2847 		goto errout;
2848 	}
2849 
2850 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2851 		err = E2BIG;
2852 		goto errout;
2853 	}
2854 
2855 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2856 		err = E2BIG;
2857 		goto errout;
2858 	}
2859 
2860 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2861 		err = E2BIG;
2862 		goto errout;
2863 	}
2864 
2865 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2866 	if (rp == NULL) {
2867 		err = ENOMEM;
2868 		goto errout;
2869 	}
2870 	rp->rpr_krp = krp;
2871 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2872 
2873 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2874 	    &rp->rpr_q.q_mcr, 0)) {
2875 		err = ENOMEM;
2876 		goto errout;
2877 	}
2878 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2879 
2880 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2881 	    &rp->rpr_q.q_ctx, 0)) {
2882 		err = ENOMEM;
2883 		goto errout;
2884 	}
2885 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2886 	memset(ctx, 0, sizeof *ctx);
2887 
2888 	/* Copy in p */
2889 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2890 	    &ctx->rpr_buf[0 * (padlen / 8)],
2891 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2892 
2893 	/* Copy in q */
2894 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2895 	    &ctx->rpr_buf[1 * (padlen / 8)],
2896 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2897 
2898 	/* Copy in dp */
2899 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2900 	    &ctx->rpr_buf[2 * (padlen / 8)],
2901 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2902 
2903 	/* Copy in dq */
2904 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2905 	    &ctx->rpr_buf[3 * (padlen / 8)],
2906 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2907 
2908 	/* Copy in pinv */
2909 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2910 	    &ctx->rpr_buf[4 * (padlen / 8)],
2911 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2912 
2913 	msglen = padlen * 2;
2914 
2915 	/* Copy in input message (aligned buffer/length). */
2916 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2917 		/* Is this likely? */
2918 		err = E2BIG;
2919 		goto errout;
2920 	}
2921 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2922 		err = ENOMEM;
2923 		goto errout;
2924 	}
2925 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2926 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2927 	    rp->rpr_msgin.dma_vaddr,
2928 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2929 
2930 	/* Prepare space for output message (aligned buffer/length). */
2931 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2932 		/* Is this likely? */
2933 		err = E2BIG;
2934 		goto errout;
2935 	}
2936 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2937 		err = ENOMEM;
2938 		goto errout;
2939 	}
2940 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2941 
2942 	mcr->mcr_pkts = htole16(1);
2943 	mcr->mcr_flags = 0;
2944 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2945 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2946 	mcr->mcr_ipktbuf.pb_next = 0;
2947 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2948 	mcr->mcr_reserved = 0;
2949 	mcr->mcr_pktlen = htole16(msglen);
2950 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2951 	mcr->mcr_opktbuf.pb_next = 0;
2952 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2953 
2954 #ifdef DIAGNOSTIC
2955 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2956 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2957 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
2958 		    (u_long) rp->rpr_msgin.dma_size);
2959 	}
2960 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2961 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2962 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
2963 		    (u_long) rp->rpr_msgout.dma_size);
2964 	}
2965 #endif
2966 
2967 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2968 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2969 	ctx->rpr_q_len = htole16(padlen);
2970 	ctx->rpr_p_len = htole16(padlen);
2971 
2972 	/*
2973 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2974 	 * everything else.
2975 	 */
2976 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2977 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2978 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2979 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2980 
2981 	/* Enqueue and we're done... */
2982 	mutex_spin_enter(&sc->sc_mtx);
2983 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2984 	ubsec_feed2(sc);
2985 	ubsecstats.hst_modexpcrt++;
2986 	mutex_spin_exit(&sc->sc_mtx);
2987 	return;
2988 
2989 errout:
2990 	if (rp != NULL) {
2991 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2992 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2993 		if (rp->rpr_msgin.dma_map != NULL) {
2994 			memset(rp->rpr_msgin.dma_vaddr, 0,
2995 			    rp->rpr_msgin.dma_size);
2996 			ubsec_dma_free(sc, &rp->rpr_msgin);
2997 		}
2998 		if (rp->rpr_msgout.dma_map != NULL) {
2999 			memset(rp->rpr_msgout.dma_vaddr, 0,
3000 			    rp->rpr_msgout.dma_size);
3001 			ubsec_dma_free(sc, &rp->rpr_msgout);
3002 		}
3003 		free(rp, M_DEVBUF);
3004 	}
3005 	krp->krp_status = err;
3006 	crypto_kdone(krp);
3007 }
3008 
3009 #ifdef UBSEC_DEBUG
3010 static void
ubsec_dump_pb(volatile struct ubsec_pktbuf * pb)3011 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3012 {
3013 	printf("addr 0x%x (0x%x) next 0x%x\n",
3014 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3015 }
3016 
3017 static void
ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop * c)3018 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3019 {
3020 	printf("CTX (0x%x):\n", c->ctx_len);
3021 	switch (letoh16(c->ctx_op)) {
3022 	case UBS_CTXOP_RNGBYPASS:
3023 	case UBS_CTXOP_RNGSHA1:
3024 		break;
3025 	case UBS_CTXOP_MODEXP:
3026 	{
3027 		struct ubsec_ctx_modexp *cx = (void *)c;
3028 		int i, len;
3029 
3030 		printf(" Elen %u, Nlen %u\n",
3031 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3032 		len = (cx->me_N_len + 7)/8;
3033 		for (i = 0; i < len; i++)
3034 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3035 		printf("\n");
3036 		break;
3037 	}
3038 	default:
3039 		printf("unknown context: %x\n", c->ctx_op);
3040 	}
3041 	printf("END CTX\n");
3042 }
3043 
3044 static void
ubsec_dump_mcr(struct ubsec_mcr * mcr)3045 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3046 {
3047 	volatile struct ubsec_mcr_add *ma;
3048 	int i;
3049 
3050 	printf("MCR:\n");
3051 	printf(" pkts: %u, flags 0x%x\n",
3052 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3053 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3054 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3055 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3056 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3057 		    letoh16(ma->mcr_reserved));
3058 		printf(" %d: ipkt ", i);
3059 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3060 		printf(" %d: opkt ", i);
3061 		ubsec_dump_pb(&ma->mcr_opktbuf);
3062 		ma++;
3063 	}
3064 	printf("END MCR\n");
3065 }
3066 #endif /* UBSEC_DEBUG */
3067 
3068 /*
3069  * Return the number of significant bits of a big number.
3070  */
3071 static int
ubsec_ksigbits(struct crparam * cr)3072 ubsec_ksigbits(struct crparam *cr)
3073 {
3074 	u_int plen = (cr->crp_nbits + 7) / 8;
3075 	int i, sig = plen * 8;
3076 	u_int8_t c, *p = cr->crp_p;
3077 
3078 	for (i = plen - 1; i >= 0; i--) {
3079 		c = p[i];
3080 		if (c != 0) {
3081 			while ((c & 0x80) == 0) {
3082 				sig--;
3083 				c <<= 1;
3084 			}
3085 			break;
3086 		}
3087 		sig -= 8;
3088 	}
3089 	return (sig);
3090 }
3091 
3092 static void
ubsec_kshift_r(u_int shiftbits,u_int8_t * src,u_int srcbits,u_int8_t * dst,u_int dstbits)3093 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3094     u_int8_t *dst, u_int dstbits)
3095 {
3096 	u_int slen, dlen;
3097 	int i, si, di, n;
3098 
3099 	slen = (srcbits + 7) / 8;
3100 	dlen = (dstbits + 7) / 8;
3101 
3102 	for (i = 0; i < slen; i++)
3103 		dst[i] = src[i];
3104 	for (i = 0; i < dlen - slen; i++)
3105 		dst[slen + i] = 0;
3106 
3107 	n = shiftbits / 8;
3108 	if (n != 0) {
3109 		si = dlen - n - 1;
3110 		di = dlen - 1;
3111 		while (si >= 0)
3112 			dst[di--] = dst[si--];
3113 		while (di >= 0)
3114 			dst[di--] = 0;
3115 	}
3116 
3117 	n = shiftbits % 8;
3118 	if (n != 0) {
3119 		for (i = dlen - 1; i > 0; i--)
3120 			dst[i] = (dst[i] << n) |
3121 			    (dst[i - 1] >> (8 - n));
3122 		dst[0] = dst[0] << n;
3123 	}
3124 }
3125 
3126 static void
ubsec_kshift_l(u_int shiftbits,u_int8_t * src,u_int srcbits,u_int8_t * dst,u_int dstbits)3127 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3128     u_int8_t *dst, u_int dstbits)
3129 {
3130 	int slen, dlen, i, n;
3131 
3132 	slen = (srcbits + 7) / 8;
3133 	dlen = (dstbits + 7) / 8;
3134 
3135 	n = shiftbits / 8;
3136 	for (i = 0; i < slen; i++)
3137 		dst[i] = src[i + n];
3138 	for (i = 0; i < dlen - slen; i++)
3139 		dst[slen + i] = 0;
3140 
3141 	n = shiftbits % 8;
3142 	if (n != 0) {
3143 		for (i = 0; i < (dlen - 1); i++)
3144 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3145 		dst[dlen - 1] = dst[dlen - 1] >> n;
3146 	}
3147 }
3148