xref: /freebsd/sys/ufs/ufs/ufs_bmap.c (revision b068bb09)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bio.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/racct.h>
46 #include <sys/resourcevar.h>
47 #include <sys/stat.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vnode_pager.h>
52 
53 #include <ufs/ufs/extattr.h>
54 #include <ufs/ufs/quota.h>
55 #include <ufs/ufs/inode.h>
56 #include <ufs/ufs/ufsmount.h>
57 #include <ufs/ufs/ufs_extern.h>
58 
59 static ufs_lbn_t lbn_count(struct ufsmount *, int);
60 static int readindir(struct vnode *, ufs_lbn_t, ufs2_daddr_t, struct buf **);
61 
62 /*
63  * Bmap converts the logical block number of a file to its physical block
64  * number on the disk. The conversion is done by using the logical block
65  * number to index into the array of block pointers described by the dinode.
66  */
67 int
ufs_bmap(struct vop_bmap_args * ap)68 ufs_bmap(
69 	struct vop_bmap_args /* {
70 		struct vnode *a_vp;
71 		daddr_t a_bn;
72 		struct bufobj **a_bop;
73 		daddr_t *a_bnp;
74 		int *a_runp;
75 		int *a_runb;
76 	} */ *ap)
77 {
78 	ufs2_daddr_t blkno;
79 	int error;
80 
81 	/*
82 	 * Check for underlying vnode requests and ensure that logical
83 	 * to physical mapping is requested.
84 	 */
85 	if (ap->a_bop != NULL)
86 		*ap->a_bop = &VFSTOUFS(ap->a_vp->v_mount)->um_devvp->v_bufobj;
87 	if (ap->a_bnp == NULL)
88 		return (0);
89 
90 	error = ufs_bmaparray(ap->a_vp, ap->a_bn, &blkno, NULL,
91 	    ap->a_runp, ap->a_runb);
92 	*ap->a_bnp = blkno;
93 	return (error);
94 }
95 
96 static int
readindir(struct vnode * vp,ufs_lbn_t lbn,ufs2_daddr_t daddr,struct buf ** bpp)97 readindir(struct vnode *vp,
98 	ufs_lbn_t lbn,
99 	ufs2_daddr_t daddr,
100 	struct buf **bpp)
101 {
102 	struct buf *bp;
103 	struct mount *mp;
104 	struct ufsmount *ump;
105 	int error;
106 
107 	mp = vp->v_mount;
108 	ump = VFSTOUFS(mp);
109 
110 	bp = getblk(vp, lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
111 	if ((bp->b_flags & B_CACHE) == 0) {
112 		KASSERT(daddr != 0,
113 		    ("readindir: indirect block not in cache"));
114 
115 		bp->b_blkno = blkptrtodb(ump, daddr);
116 		bp->b_iocmd = BIO_READ;
117 		bp->b_flags &= ~B_INVAL;
118 		bp->b_ioflags &= ~BIO_ERROR;
119 		vfs_busy_pages(bp, 0);
120 		bp->b_iooffset = dbtob(bp->b_blkno);
121 		bstrategy(bp);
122 #ifdef RACCT
123 		if (racct_enable) {
124 			PROC_LOCK(curproc);
125 			racct_add_buf(curproc, bp, 0);
126 			PROC_UNLOCK(curproc);
127 		}
128 #endif
129 		curthread->td_ru.ru_inblock++;
130 		error = bufwait(bp);
131 		if (error != 0) {
132 			brelse(bp);
133 			return (error);
134 		}
135 	}
136 	*bpp = bp;
137 	return (0);
138 }
139 
140 /*
141  * Indirect blocks are now on the vnode for the file.  They are given negative
142  * logical block numbers.  Indirect blocks are addressed by the negative
143  * address of the first data block to which they point.  Double indirect blocks
144  * are addressed by one less than the address of the first indirect block to
145  * which they point.  Triple indirect blocks are addressed by one less than
146  * the address of the first double indirect block to which they point.
147  *
148  * ufs_bmaparray does the bmap conversion, and if requested returns the
149  * array of logical blocks which must be traversed to get to a block.
150  * Each entry contains the offset into that block that gets you to the
151  * next block and the disk address of the block (if it is assigned).
152  */
153 
154 int
ufs_bmaparray(struct vnode * vp,ufs2_daddr_t bn,ufs2_daddr_t * bnp,struct buf * nbp,int * runp,int * runb)155 ufs_bmaparray(struct vnode *vp,
156 	ufs2_daddr_t bn,
157 	ufs2_daddr_t *bnp,
158 	struct buf *nbp,
159 	int *runp,
160 	int *runb)
161 {
162 	struct inode *ip;
163 	struct buf *bp;
164 	struct ufsmount *ump;
165 	struct mount *mp;
166 	struct indir a[UFS_NIADDR+1], *ap;
167 	ufs2_daddr_t daddr;
168 	ufs_lbn_t metalbn;
169 	int error, num, maxrun = 0;
170 	int *nump;
171 
172 	ap = NULL;
173 	ip = VTOI(vp);
174 	mp = vp->v_mount;
175 	ump = VFSTOUFS(mp);
176 
177 	if (runp) {
178 		maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
179 		*runp = 0;
180 	}
181 
182 	if (runb) {
183 		*runb = 0;
184 	}
185 
186 	ap = a;
187 	nump = &num;
188 	error = ufs_getlbns(vp, bn, ap, nump);
189 	if (error)
190 		return (error);
191 
192 	num = *nump;
193 	if (num == 0) {
194 		if (bn >= 0 && bn < UFS_NDADDR) {
195 			*bnp = blkptrtodb(ump, DIP(ip, i_db[bn]));
196 		} else if (bn < 0 && bn >= -UFS_NXADDR) {
197 			*bnp = blkptrtodb(ump, ip->i_din2->di_extb[-1 - bn]);
198 			if (*bnp == 0)
199 				*bnp = -1;
200 			if (nbp == NULL) {
201 				/* indirect block not found */
202 				return (EINVAL);
203 			}
204 			nbp->b_xflags |= BX_ALTDATA;
205 			return (0);
206 		} else {
207 			/* blkno out of range */
208 			return (EINVAL);
209 		}
210 		/*
211 		 * Since this is FFS independent code, we are out of
212 		 * scope for the definitions of BLK_NOCOPY and
213 		 * BLK_SNAP, but we do know that they will fall in
214 		 * the range 1..um_seqinc, so we use that test and
215 		 * return a request for a zeroed out buffer if attempts
216 		 * are made to read a BLK_NOCOPY or BLK_SNAP block.
217 		 */
218 		if (IS_SNAPSHOT(ip) && DIP(ip, i_db[bn]) > 0 &&
219 		    DIP(ip, i_db[bn]) < ump->um_seqinc) {
220 			*bnp = -1;
221 		} else if (*bnp == 0) {
222 			*bnp = IS_SNAPSHOT(ip) ? blkptrtodb(ump,
223 			    bn * ump->um_seqinc) : -1;
224 		} else if (runp) {
225 			ufs2_daddr_t bnb = bn;
226 			for (++bn; bn < UFS_NDADDR && *runp < maxrun &&
227 			    is_sequential(ump, DIP(ip, i_db[bn - 1]),
228 			    DIP(ip, i_db[bn]));
229 			    ++bn, ++*runp);
230 			bn = bnb;
231 			if (runb && (bn > 0)) {
232 				for (--bn; (bn >= 0) && (*runb < maxrun) &&
233 					is_sequential(ump, DIP(ip, i_db[bn]),
234 						DIP(ip, i_db[bn+1]));
235 						--bn, ++*runb);
236 			}
237 		}
238 		return (0);
239 	}
240 
241 	/* Get disk address out of indirect block array */
242 	daddr = DIP(ip, i_ib[ap->in_off]);
243 
244 	for (bp = NULL, ++ap; --num; ++ap) {
245 		/*
246 		 * Exit the loop if there is no disk address assigned yet and
247 		 * the indirect block isn't in the cache, or if we were
248 		 * looking for an indirect block and we've found it.
249 		 */
250 
251 		metalbn = ap->in_lbn;
252 		if ((daddr == 0 && !incore(&vp->v_bufobj, metalbn)) || metalbn == bn)
253 			break;
254 		/*
255 		 * If we get here, we've either got the block in the cache
256 		 * or we have a disk address for it, go fetch it.
257 		 */
258 		if (bp)
259 			bqrelse(bp);
260 		error = readindir(vp, metalbn, daddr, &bp);
261 		if (error != 0)
262 			return (error);
263 
264 		if (I_IS_UFS1(ip))
265 			daddr = ((ufs1_daddr_t *)bp->b_data)[ap->in_off];
266 		else
267 			daddr = ((ufs2_daddr_t *)bp->b_data)[ap->in_off];
268 		if ((error = UFS_CHECK_BLKNO(mp, ip->i_number, daddr,
269 		     mp->mnt_stat.f_iosize)) != 0) {
270 			bqrelse(bp);
271 			return (error);
272 		}
273 		if (I_IS_UFS1(ip)) {
274 			if (num == 1 && daddr && runp) {
275 				for (bn = ap->in_off + 1;
276 				    bn < MNINDIR(ump) && *runp < maxrun &&
277 				    is_sequential(ump,
278 				    ((ufs1_daddr_t *)bp->b_data)[bn - 1],
279 				    ((ufs1_daddr_t *)bp->b_data)[bn]);
280 				    ++bn, ++*runp);
281 				bn = ap->in_off;
282 				if (runb && bn) {
283 					for (--bn; bn >= 0 && *runb < maxrun &&
284 					    is_sequential(ump,
285 					    ((ufs1_daddr_t *)bp->b_data)[bn],
286 					    ((ufs1_daddr_t *)bp->b_data)[bn+1]);
287 					    --bn, ++*runb);
288 				}
289 			}
290 			continue;
291 		}
292 		if (num == 1 && daddr && runp) {
293 			for (bn = ap->in_off + 1;
294 			    bn < MNINDIR(ump) && *runp < maxrun &&
295 			    is_sequential(ump,
296 			    ((ufs2_daddr_t *)bp->b_data)[bn - 1],
297 			    ((ufs2_daddr_t *)bp->b_data)[bn]);
298 			    ++bn, ++*runp);
299 			bn = ap->in_off;
300 			if (runb && bn) {
301 				for (--bn; bn >= 0 && *runb < maxrun &&
302 				    is_sequential(ump,
303 				    ((ufs2_daddr_t *)bp->b_data)[bn],
304 				    ((ufs2_daddr_t *)bp->b_data)[bn + 1]);
305 				    --bn, ++*runb);
306 			}
307 		}
308 	}
309 	if (bp)
310 		bqrelse(bp);
311 
312 	/*
313 	 * Since this is FFS independent code, we are out of scope for the
314 	 * definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
315 	 * will fall in the range 1..um_seqinc, so we use that test and
316 	 * return a request for a zeroed out buffer if attempts are made
317 	 * to read a BLK_NOCOPY or BLK_SNAP block.
318 	 */
319 	if (IS_SNAPSHOT(ip) && daddr > 0 && daddr < ump->um_seqinc){
320 		*bnp = -1;
321 		return (0);
322 	}
323 	*bnp = blkptrtodb(ump, daddr);
324 	if (*bnp == 0) {
325 		if (IS_SNAPSHOT(ip))
326 			*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
327 		else
328 			*bnp = -1;
329 	}
330 	return (0);
331 }
332 
333 static ufs_lbn_t
lbn_count(struct ufsmount * ump,int level)334 lbn_count(struct ufsmount *ump, int level)
335 {
336 	ufs_lbn_t blockcnt;
337 
338 	for (blockcnt = 1; level > 0; level--)
339 		blockcnt *= MNINDIR(ump);
340 	return (blockcnt);
341 }
342 
343 int
ufs_bmap_seekdata(struct vnode * vp,off_t * offp)344 ufs_bmap_seekdata(struct vnode *vp, off_t *offp)
345 {
346 	struct buf *bp;
347 	struct indir a[UFS_NIADDR + 1], *ap;
348 	struct inode *ip;
349 	struct mount *mp;
350 	struct ufsmount *ump;
351 	ufs2_daddr_t bn, daddr, nextbn;
352 	uint64_t bsize;
353 	off_t numblks;
354 	int error, num, num1, off;
355 
356 	bp = NULL;
357 	error = 0;
358 	ip = VTOI(vp);
359 	mp = vp->v_mount;
360 	ump = VFSTOUFS(mp);
361 
362 	if (vp->v_type != VREG || IS_SNAPSHOT(ip))
363 		return (EINVAL);
364 	if (*offp < 0 || *offp >= ip->i_size)
365 		return (ENXIO);
366 
367 	/*
368 	 * We could have pages on the vnode' object queue which still
369 	 * do not have the data blocks allocated.  Convert all dirty
370 	 * pages into buffer writes to ensure that we see all
371 	 * allocated data.
372 	 */
373 	vnode_pager_clean_sync(vp);
374 
375 	bsize = mp->mnt_stat.f_iosize;
376 	for (bn = *offp / bsize, numblks = howmany(ip->i_size, bsize);
377 	    bn < numblks; bn = nextbn) {
378 		if (bn < UFS_NDADDR) {
379 			daddr = DIP(ip, i_db[bn]);
380 			if (daddr != 0)
381 				break;
382 			nextbn = bn + 1;
383 			continue;
384 		}
385 
386 		ap = a;
387 		error = ufs_getlbns(vp, bn, ap, &num);
388 		if (error != 0)
389 			break;
390 		MPASS(num >= 2);
391 		daddr = DIP(ip, i_ib[ap->in_off]);
392 		ap++, num--;
393 		for (nextbn = UFS_NDADDR, num1 = num - 1; num1 > 0; num1--)
394 			nextbn += lbn_count(ump, num1);
395 		if (daddr == 0) {
396 			nextbn += lbn_count(ump, num);
397 			continue;
398 		}
399 
400 		for (; daddr != 0 && num > 0; ap++, num--) {
401 			if (bp != NULL)
402 				bqrelse(bp);
403 			error = readindir(vp, ap->in_lbn, daddr, &bp);
404 			if (error != 0)
405 				return (error);
406 
407 			/*
408 			 * Scan the indirect block until we find a non-zero
409 			 * pointer.
410 			 */
411 			off = ap->in_off;
412 			do {
413 				daddr = I_IS_UFS1(ip) ?
414 				    ((ufs1_daddr_t *)bp->b_data)[off] :
415 				    ((ufs2_daddr_t *)bp->b_data)[off];
416 			} while (daddr == 0 && ++off < MNINDIR(ump));
417 			nextbn += off * lbn_count(ump, num - 1);
418 
419 			/*
420 			 * We need to recompute the LBNs of indirect
421 			 * blocks, so restart with the updated block offset.
422 			 */
423 			if (off != ap->in_off)
424 				break;
425 		}
426 		if (num == 0) {
427 			/*
428 			 * We found a data block.
429 			 */
430 			bn = nextbn;
431 			break;
432 		}
433 	}
434 	if (bp != NULL)
435 		bqrelse(bp);
436 	if (bn >= numblks)
437 		error = ENXIO;
438 	if (error == 0 && *offp < bn * bsize)
439 		*offp = bn * bsize;
440 	return (error);
441 }
442 
443 /*
444  * Create an array of logical block number/offset pairs which represent the
445  * path of indirect blocks required to access a data block.  The first "pair"
446  * contains the logical block number of the appropriate single, double or
447  * triple indirect block and the offset into the inode indirect block array.
448  * Note, the logical block number of the inode single/double/triple indirect
449  * block appears twice in the array, once with the offset into the i_ib and
450  * once with the offset into the page itself.
451  */
452 int
ufs_getlbns(struct vnode * vp,ufs2_daddr_t bn,struct indir * ap,int * nump)453 ufs_getlbns(struct vnode *vp,
454 	ufs2_daddr_t bn,
455 	struct indir *ap,
456 	int *nump)
457 {
458 	ufs2_daddr_t blockcnt;
459 	ufs_lbn_t metalbn, realbn;
460 	struct ufsmount *ump;
461 	int i, numlevels, off;
462 
463 	ump = VFSTOUFS(vp->v_mount);
464 	if (nump)
465 		*nump = 0;
466 	numlevels = 0;
467 	realbn = bn;
468 	if (bn < 0)
469 		bn = -bn;
470 
471 	/* The first UFS_NDADDR blocks are direct blocks. */
472 	if (bn < UFS_NDADDR)
473 		return (0);
474 
475 	/*
476 	 * Determine the number of levels of indirection.  After this loop
477 	 * is done, blockcnt indicates the number of data blocks possible
478 	 * at the previous level of indirection, and UFS_NIADDR - i is the
479 	 * number of levels of indirection needed to locate the requested block.
480 	 */
481 	for (blockcnt = 1, i = UFS_NIADDR, bn -= UFS_NDADDR; ;
482 	    i--, bn -= blockcnt) {
483 		if (i == 0)
484 			return (EFBIG);
485 		blockcnt *= MNINDIR(ump);
486 		if (bn < blockcnt)
487 			break;
488 	}
489 
490 	/* Calculate the address of the first meta-block. */
491 	if (realbn >= 0)
492 		metalbn = -(realbn - bn + UFS_NIADDR - i);
493 	else
494 		metalbn = -(-realbn - bn + UFS_NIADDR - i);
495 
496 	/*
497 	 * At each iteration, off is the offset into the bap array which is
498 	 * an array of disk addresses at the current level of indirection.
499 	 * The logical block number and the offset in that block are stored
500 	 * into the argument array.
501 	 */
502 	ap->in_lbn = metalbn;
503 	ap->in_off = off = UFS_NIADDR - i;
504 	ap++;
505 	for (++numlevels; i <= UFS_NIADDR; i++) {
506 		/* If searching for a meta-data block, quit when found. */
507 		if (metalbn == realbn)
508 			break;
509 
510 		blockcnt /= MNINDIR(ump);
511 		off = (bn / blockcnt) % MNINDIR(ump);
512 
513 		++numlevels;
514 		ap->in_lbn = metalbn;
515 		ap->in_off = off;
516 		++ap;
517 
518 		metalbn -= -1 + off * blockcnt;
519 	}
520 	if (nump)
521 		*nump = numlevels;
522 	return (0);
523 }
524