1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6 
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19 
20 #ifdef WIN32
21 #define LOG_MSEC_SLACK	2
22 #else
23 #define LOG_MSEC_SLACK	1
24 #endif
25 
26 struct fio_sem *stat_sem;
27 
clear_rusage_stat(struct thread_data * td)28 void clear_rusage_stat(struct thread_data *td)
29 {
30 	struct thread_stat *ts = &td->ts;
31 
32 	fio_getrusage(&td->ru_start);
33 	ts->usr_time = ts->sys_time = 0;
34 	ts->ctx = 0;
35 	ts->minf = ts->majf = 0;
36 }
37 
update_rusage_stat(struct thread_data * td)38 void update_rusage_stat(struct thread_data *td)
39 {
40 	struct thread_stat *ts = &td->ts;
41 
42 	fio_getrusage(&td->ru_end);
43 	ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44 					&td->ru_end.ru_utime);
45 	ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46 					&td->ru_end.ru_stime);
47 	ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48 			- (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49 	ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50 	ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51 
52 	memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53 }
54 
55 /*
56  * Given a latency, return the index of the corresponding bucket in
57  * the structure tracking percentiles.
58  *
59  * (1) find the group (and error bits) that the value (latency)
60  * belongs to by looking at its MSB. (2) find the bucket number in the
61  * group by looking at the index bits.
62  *
63  */
plat_val_to_idx(unsigned long long val)64 static unsigned int plat_val_to_idx(unsigned long long val)
65 {
66 	unsigned int msb, error_bits, base, offset, idx;
67 
68 	/* Find MSB starting from bit 0 */
69 	if (val == 0)
70 		msb = 0;
71 	else
72 		msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73 
74 	/*
75 	 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76 	 * all bits of the sample as index
77 	 */
78 	if (msb <= FIO_IO_U_PLAT_BITS)
79 		return val;
80 
81 	/* Compute the number of error bits to discard*/
82 	error_bits = msb - FIO_IO_U_PLAT_BITS;
83 
84 	/* Compute the number of buckets before the group */
85 	base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86 
87 	/*
88 	 * Discard the error bits and apply the mask to find the
89 	 * index for the buckets in the group
90 	 */
91 	offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92 
93 	/* Make sure the index does not exceed (array size - 1) */
94 	idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95 		(base + offset) : (FIO_IO_U_PLAT_NR - 1);
96 
97 	return idx;
98 }
99 
100 /*
101  * Convert the given index of the bucket array to the value
102  * represented by the bucket
103  */
plat_idx_to_val(unsigned int idx)104 static unsigned long long plat_idx_to_val(unsigned int idx)
105 {
106 	unsigned int error_bits;
107 	unsigned long long k, base;
108 
109 	assert(idx < FIO_IO_U_PLAT_NR);
110 
111 	/* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112 	 * all bits of the sample as index */
113 	if (idx < (FIO_IO_U_PLAT_VAL << 1))
114 		return idx;
115 
116 	/* Find the group and compute the minimum value of that group */
117 	error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118 	base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119 
120 	/* Find its bucket number of the group */
121 	k = idx % FIO_IO_U_PLAT_VAL;
122 
123 	/* Return the mean of the range of the bucket */
124 	return base + ((k + 0.5) * (1 << error_bits));
125 }
126 
double_cmp(const void * a,const void * b)127 static int double_cmp(const void *a, const void *b)
128 {
129 	const fio_fp64_t fa = *(const fio_fp64_t *) a;
130 	const fio_fp64_t fb = *(const fio_fp64_t *) b;
131 	int cmp = 0;
132 
133 	if (fa.u.f > fb.u.f)
134 		cmp = 1;
135 	else if (fa.u.f < fb.u.f)
136 		cmp = -1;
137 
138 	return cmp;
139 }
140 
calc_clat_percentiles(uint64_t * io_u_plat,unsigned long long nr,fio_fp64_t * plist,unsigned long long ** output,unsigned long long * maxv,unsigned long long * minv)141 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142 				   fio_fp64_t *plist, unsigned long long **output,
143 				   unsigned long long *maxv, unsigned long long *minv)
144 {
145 	unsigned long long sum = 0;
146 	unsigned int len, i, j = 0;
147 	unsigned long long *ovals = NULL;
148 	bool is_last;
149 
150 	*minv = -1ULL;
151 	*maxv = 0;
152 
153 	len = 0;
154 	while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155 		len++;
156 
157 	if (!len)
158 		return 0;
159 
160 	/*
161 	 * Sort the percentile list. Note that it may already be sorted if
162 	 * we are using the default values, but since it's a short list this
163 	 * isn't a worry. Also note that this does not work for NaN values.
164 	 */
165 	if (len > 1)
166 		qsort(plist, len, sizeof(plist[0]), double_cmp);
167 
168 	ovals = malloc(len * sizeof(*ovals));
169 	if (!ovals)
170 		return 0;
171 
172 	/*
173 	 * Calculate bucket values, note down max and min values
174 	 */
175 	is_last = false;
176 	for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177 		sum += io_u_plat[i];
178 		while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179 			assert(plist[j].u.f <= 100.0);
180 
181 			ovals[j] = plat_idx_to_val(i);
182 			if (ovals[j] < *minv)
183 				*minv = ovals[j];
184 			if (ovals[j] > *maxv)
185 				*maxv = ovals[j];
186 
187 			is_last = (j == len - 1) != 0;
188 			if (is_last)
189 				break;
190 
191 			j++;
192 		}
193 	}
194 
195 	if (!is_last)
196 		log_err("fio: error calculating latency percentiles\n");
197 
198 	*output = ovals;
199 	return len;
200 }
201 
202 /*
203  * Find and display the p-th percentile of clat
204  */
show_clat_percentiles(uint64_t * io_u_plat,unsigned long long nr,fio_fp64_t * plist,unsigned int precision,const char * pre,struct buf_output * out)205 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206 				  fio_fp64_t *plist, unsigned int precision,
207 				  const char *pre, struct buf_output *out)
208 {
209 	unsigned int divisor, len, i, j = 0;
210 	unsigned long long minv, maxv;
211 	unsigned long long *ovals;
212 	int per_line, scale_down, time_width;
213 	bool is_last;
214 	char fmt[32];
215 
216 	len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217 	if (!len || !ovals)
218 		return;
219 
220 	/*
221 	 * We default to nsecs, but if the value range is such that we
222 	 * should scale down to usecs or msecs, do that.
223 	 */
224 	if (minv > 2000000 && maxv > 99999999ULL) {
225 		scale_down = 2;
226 		divisor = 1000000;
227 		log_buf(out, "    %s percentiles (msec):\n     |", pre);
228 	} else if (minv > 2000 && maxv > 99999) {
229 		scale_down = 1;
230 		divisor = 1000;
231 		log_buf(out, "    %s percentiles (usec):\n     |", pre);
232 	} else {
233 		scale_down = 0;
234 		divisor = 1;
235 		log_buf(out, "    %s percentiles (nsec):\n     |", pre);
236 	}
237 
238 
239 	time_width = max(5, (int) (log10(maxv / divisor) + 1));
240 	snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241 			precision, time_width);
242 	/* fmt will be something like " %5.2fth=[%4llu]%c" */
243 	per_line = (80 - 7) / (precision + 10 + time_width);
244 
245 	for (j = 0; j < len; j++) {
246 		/* for formatting */
247 		if (j != 0 && (j % per_line) == 0)
248 			log_buf(out, "     |");
249 
250 		/* end of the list */
251 		is_last = (j == len - 1) != 0;
252 
253 		for (i = 0; i < scale_down; i++)
254 			ovals[j] = (ovals[j] + 999) / 1000;
255 
256 		log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257 
258 		if (is_last)
259 			break;
260 
261 		if ((j % per_line) == per_line - 1)	/* for formatting */
262 			log_buf(out, "\n");
263 	}
264 
265 	free(ovals);
266 }
267 
calc_lat(struct io_stat * is,unsigned long long * min,unsigned long long * max,double * mean,double * dev)268 bool calc_lat(struct io_stat *is, unsigned long long *min,
269 	      unsigned long long *max, double *mean, double *dev)
270 {
271 	double n = (double) is->samples;
272 
273 	if (n == 0)
274 		return false;
275 
276 	*min = is->min_val;
277 	*max = is->max_val;
278 	*mean = is->mean.u.f;
279 
280 	if (n > 1.0)
281 		*dev = sqrt(is->S.u.f / (n - 1.0));
282 	else
283 		*dev = 0;
284 
285 	return true;
286 }
287 
show_mixed_group_stats(struct group_run_stats * rs,struct buf_output * out)288 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out)
289 {
290 	char *io, *agg, *min, *max;
291 	char *ioalt, *aggalt, *minalt, *maxalt;
292 	uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
293 	uint64_t min_run = -1, max_run = 0;
294 	const int i2p = is_power_of_2(rs->kb_base);
295 	int i;
296 
297 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
298 		if (!rs->max_run[i])
299 			continue;
300 		io_mix += rs->iobytes[i];
301 		agg_mix += rs->agg[i];
302 		min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
303 		max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
304 		min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
305 		max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
306 	}
307 	io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
308 	ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
309 	agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
310 	aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
311 	min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
312 	minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
313 	max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
314 	maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
315 	log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
316 			agg, aggalt, min, max, minalt, maxalt, io, ioalt,
317 			(unsigned long long) min_run,
318 			(unsigned long long) max_run);
319 	free(io);
320 	free(agg);
321 	free(min);
322 	free(max);
323 	free(ioalt);
324 	free(aggalt);
325 	free(minalt);
326 	free(maxalt);
327 }
328 
show_group_stats(struct group_run_stats * rs,struct buf_output * out)329 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
330 {
331 	char *io, *agg, *min, *max;
332 	char *ioalt, *aggalt, *minalt, *maxalt;
333 	const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
334 	int i;
335 
336 	log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
337 
338 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
339 		const int i2p = is_power_of_2(rs->kb_base);
340 
341 		if (!rs->max_run[i])
342 			continue;
343 
344 		io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
345 		ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
346 		agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
347 		aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
348 		min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
349 		minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
350 		max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
351 		maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
352 		log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
353 				(rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
354 				agg, aggalt, min, max, minalt, maxalt, io, ioalt,
355 				(unsigned long long) rs->min_run[i],
356 				(unsigned long long) rs->max_run[i]);
357 
358 		free(io);
359 		free(agg);
360 		free(min);
361 		free(max);
362 		free(ioalt);
363 		free(aggalt);
364 		free(minalt);
365 		free(maxalt);
366 	}
367 
368 	/* Need to aggregate statisitics to show mixed values */
369 	if (rs->unified_rw_rep == UNIFIED_BOTH)
370 		show_mixed_group_stats(rs, out);
371 }
372 
stat_calc_dist(uint64_t * map,unsigned long total,double * io_u_dist)373 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
374 {
375 	int i;
376 
377 	/*
378 	 * Do depth distribution calculations
379 	 */
380 	for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
381 		if (total) {
382 			io_u_dist[i] = (double) map[i] / (double) total;
383 			io_u_dist[i] *= 100.0;
384 			if (io_u_dist[i] < 0.1 && map[i])
385 				io_u_dist[i] = 0.1;
386 		} else
387 			io_u_dist[i] = 0.0;
388 	}
389 }
390 
stat_calc_lat(struct thread_stat * ts,double * dst,uint64_t * src,int nr)391 static void stat_calc_lat(struct thread_stat *ts, double *dst,
392 			  uint64_t *src, int nr)
393 {
394 	unsigned long total = ddir_rw_sum(ts->total_io_u);
395 	int i;
396 
397 	/*
398 	 * Do latency distribution calculations
399 	 */
400 	for (i = 0; i < nr; i++) {
401 		if (total) {
402 			dst[i] = (double) src[i] / (double) total;
403 			dst[i] *= 100.0;
404 			if (dst[i] < 0.01 && src[i])
405 				dst[i] = 0.01;
406 		} else
407 			dst[i] = 0.0;
408 	}
409 }
410 
411 /*
412  * To keep the terse format unaltered, add all of the ns latency
413  * buckets to the first us latency bucket
414  */
stat_calc_lat_nu(struct thread_stat * ts,double * io_u_lat_u)415 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
416 {
417 	unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
418 	int i;
419 
420 	stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
421 
422 	for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
423 		ntotal += ts->io_u_lat_n[i];
424 
425 	io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
426 }
427 
stat_calc_lat_n(struct thread_stat * ts,double * io_u_lat)428 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
429 {
430 	stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
431 }
432 
stat_calc_lat_u(struct thread_stat * ts,double * io_u_lat)433 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
434 {
435 	stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
436 }
437 
stat_calc_lat_m(struct thread_stat * ts,double * io_u_lat)438 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
439 {
440 	stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
441 }
442 
display_lat(const char * name,unsigned long long min,unsigned long long max,double mean,double dev,struct buf_output * out)443 static void display_lat(const char *name, unsigned long long min,
444 			unsigned long long max, double mean, double dev,
445 			struct buf_output *out)
446 {
447 	const char *base = "(nsec)";
448 	char *minp, *maxp;
449 
450 	if (nsec_to_msec(&min, &max, &mean, &dev))
451 		base = "(msec)";
452 	else if (nsec_to_usec(&min, &max, &mean, &dev))
453 		base = "(usec)";
454 
455 	minp = num2str(min, 6, 1, 0, N2S_NONE);
456 	maxp = num2str(max, 6, 1, 0, N2S_NONE);
457 
458 	log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
459 		 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460 
461 	free(minp);
462 	free(maxp);
463 }
464 
convert_agg_kbytes_percent(struct group_run_stats * rs,int ddir,int mean)465 static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
466 {
467 	double p_of_agg = 100.0;
468 	if (rs && rs->agg[ddir] > 1024) {
469 		p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
470 
471 		if (p_of_agg > 100.0)
472 			p_of_agg = 100.0;
473 	}
474 	return p_of_agg;
475 }
476 
show_mixed_ddir_status(struct group_run_stats * rs,struct thread_stat * ts,struct buf_output * out)477 static void show_mixed_ddir_status(struct group_run_stats *rs,
478 				   struct thread_stat *ts,
479 				   struct buf_output *out)
480 {
481 	unsigned long runt;
482 	unsigned long long min, max, bw, iops;
483 	double mean, dev;
484 	char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
485 	struct thread_stat *ts_lcl;
486 	int i2p;
487 	int ddir = 0;
488 
489 	/*
490 	 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
491 	 * Trims (ddir = 2) */
492 	ts_lcl = malloc(sizeof(struct thread_stat));
493 	memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
494 	/* calculate mixed stats  */
495 	ts_lcl->unified_rw_rep = UNIFIED_MIXED;
496 	init_thread_stat_min_vals(ts_lcl);
497 
498 	sum_thread_stats(ts_lcl, ts, 1);
499 
500 	assert(ddir_rw(ddir));
501 
502 	if (!ts_lcl->runtime[ddir]) {
503 		free(ts_lcl);
504 		return;
505 	}
506 
507 	i2p = is_power_of_2(rs->kb_base);
508 	runt = ts_lcl->runtime[ddir];
509 
510 	bw = (1000 * ts_lcl->io_bytes[ddir]) / runt;
511 	io_p = num2str(ts_lcl->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
512 	bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
513 	bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
514 
515 	iops = (1000 * ts_lcl->total_io_u[ddir]) / runt;
516 	iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
517 
518 	log_buf(out, "  mixed: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
519 			iops_p, bw_p, bw_p_alt, io_p,
520 			(unsigned long long) ts_lcl->runtime[ddir],
521 			post_st ? : "");
522 
523 	free(post_st);
524 	free(io_p);
525 	free(bw_p);
526 	free(bw_p_alt);
527 	free(iops_p);
528 
529 	if (calc_lat(&ts_lcl->slat_stat[ddir], &min, &max, &mean, &dev))
530 		display_lat("slat", min, max, mean, dev, out);
531 	if (calc_lat(&ts_lcl->clat_stat[ddir], &min, &max, &mean, &dev))
532 		display_lat("clat", min, max, mean, dev, out);
533 	if (calc_lat(&ts_lcl->lat_stat[ddir], &min, &max, &mean, &dev))
534 		display_lat(" lat", min, max, mean, dev, out);
535 	if (calc_lat(&ts_lcl->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
536 		display_lat(ts_lcl->lat_percentiles ? "high prio_lat" : "high prio_clat",
537 				min, max, mean, dev, out);
538 		if (calc_lat(&ts_lcl->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
539 			display_lat(ts_lcl->lat_percentiles ? "low prio_lat" : "low prio_clat",
540 					min, max, mean, dev, out);
541 	}
542 
543 	if (ts->slat_percentiles && ts_lcl->slat_stat[ddir].samples > 0)
544 		show_clat_percentiles(ts_lcl->io_u_plat[FIO_SLAT][ddir],
545 				ts_lcl->slat_stat[ddir].samples,
546 				ts->percentile_list,
547 				ts->percentile_precision, "slat", out);
548 	if (ts->clat_percentiles && ts_lcl->clat_stat[ddir].samples > 0)
549 		show_clat_percentiles(ts_lcl->io_u_plat[FIO_CLAT][ddir],
550 				ts_lcl->clat_stat[ddir].samples,
551 				ts->percentile_list,
552 				ts->percentile_precision, "clat", out);
553 	if (ts->lat_percentiles && ts_lcl->lat_stat[ddir].samples > 0)
554 		show_clat_percentiles(ts_lcl->io_u_plat[FIO_LAT][ddir],
555 				ts_lcl->lat_stat[ddir].samples,
556 				ts->percentile_list,
557 				ts->percentile_precision, "lat", out);
558 
559 	if (ts->clat_percentiles || ts->lat_percentiles) {
560 		const char *name = ts->lat_percentiles ? "lat" : "clat";
561 		char prio_name[32];
562 		uint64_t samples;
563 
564 		if (ts->lat_percentiles)
565 			samples = ts_lcl->lat_stat[ddir].samples;
566 		else
567 			samples = ts_lcl->clat_stat[ddir].samples;
568 
569 		/* Only print if high and low priority stats were collected */
570 		if (ts_lcl->clat_high_prio_stat[ddir].samples > 0 &&
571 				ts_lcl->clat_low_prio_stat[ddir].samples > 0) {
572 			sprintf(prio_name, "high prio (%.2f%%) %s",
573 					100. * (double) ts_lcl->clat_high_prio_stat[ddir].samples / (double) samples,
574 					name);
575 			show_clat_percentiles(ts_lcl->io_u_plat_high_prio[ddir],
576 					ts_lcl->clat_high_prio_stat[ddir].samples,
577 					ts->percentile_list,
578 					ts->percentile_precision, prio_name, out);
579 
580 			sprintf(prio_name, "low prio (%.2f%%) %s",
581 					100. * (double) ts_lcl->clat_low_prio_stat[ddir].samples / (double) samples,
582 					name);
583 			show_clat_percentiles(ts_lcl->io_u_plat_low_prio[ddir],
584 					ts_lcl->clat_low_prio_stat[ddir].samples,
585 					ts->percentile_list,
586 					ts->percentile_precision, prio_name, out);
587 		}
588 	}
589 
590 	if (calc_lat(&ts_lcl->bw_stat[ddir], &min, &max, &mean, &dev)) {
591 		double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
592 		const char *bw_str;
593 
594 		if ((rs->unit_base == 1) && i2p)
595 			bw_str = "Kibit";
596 		else if (rs->unit_base == 1)
597 			bw_str = "kbit";
598 		else if (i2p)
599 			bw_str = "KiB";
600 		else
601 			bw_str = "kB";
602 
603 		p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
604 
605 		if (rs->unit_base == 1) {
606 			min *= 8.0;
607 			max *= 8.0;
608 			mean *= 8.0;
609 			dev *= 8.0;
610 		}
611 
612 		if (mean > fkb_base * fkb_base) {
613 			min /= fkb_base;
614 			max /= fkb_base;
615 			mean /= fkb_base;
616 			dev /= fkb_base;
617 			bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
618 		}
619 
620 		log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
621 			"avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
622 			bw_str, min, max, p_of_agg, mean, dev,
623 			(&ts_lcl->bw_stat[ddir])->samples);
624 	}
625 	if (calc_lat(&ts_lcl->iops_stat[ddir], &min, &max, &mean, &dev)) {
626 		log_buf(out, "   iops        : min=%5llu, max=%5llu, "
627 			"avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
628 			min, max, mean, dev, (&ts_lcl->iops_stat[ddir])->samples);
629 	}
630 
631 	free(ts_lcl);
632 }
633 
show_ddir_status(struct group_run_stats * rs,struct thread_stat * ts,int ddir,struct buf_output * out)634 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
635 			     int ddir, struct buf_output *out)
636 {
637 	unsigned long runt;
638 	unsigned long long min, max, bw, iops;
639 	double mean, dev;
640 	char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
641 	int i2p;
642 
643 	if (ddir_sync(ddir)) {
644 		if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
645 			log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
646 			display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
647 			show_clat_percentiles(ts->io_u_sync_plat,
648 						ts->sync_stat.samples,
649 						ts->percentile_list,
650 						ts->percentile_precision,
651 						io_ddir_name(ddir), out);
652 		}
653 		return;
654 	}
655 
656 	assert(ddir_rw(ddir));
657 
658 	if (!ts->runtime[ddir])
659 		return;
660 
661 	i2p = is_power_of_2(rs->kb_base);
662 	runt = ts->runtime[ddir];
663 
664 	bw = (1000 * ts->io_bytes[ddir]) / runt;
665 	io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
666 	bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
667 	bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
668 
669 	iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
670 	iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
671 	if (ddir == DDIR_WRITE)
672 		post_st = zbd_write_status(ts);
673 	else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
674 		uint64_t total;
675 		double hit;
676 
677 		total = ts->cachehit + ts->cachemiss;
678 		hit = (double) ts->cachehit / (double) total;
679 		hit *= 100.0;
680 		if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
681 			post_st = NULL;
682 	}
683 
684 	log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
685 			(ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
686 			iops_p, bw_p, bw_p_alt, io_p,
687 			(unsigned long long) ts->runtime[ddir],
688 			post_st ? : "");
689 
690 	free(post_st);
691 	free(io_p);
692 	free(bw_p);
693 	free(bw_p_alt);
694 	free(iops_p);
695 
696 	if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
697 		display_lat("slat", min, max, mean, dev, out);
698 	if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
699 		display_lat("clat", min, max, mean, dev, out);
700 	if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
701 		display_lat(" lat", min, max, mean, dev, out);
702 	if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
703 		display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
704 				min, max, mean, dev, out);
705 		if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
706 			display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
707 					min, max, mean, dev, out);
708 	}
709 
710 	if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
711 		show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
712 					ts->slat_stat[ddir].samples,
713 					ts->percentile_list,
714 					ts->percentile_precision, "slat", out);
715 	if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
716 		show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
717 					ts->clat_stat[ddir].samples,
718 					ts->percentile_list,
719 					ts->percentile_precision, "clat", out);
720 	if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
721 		show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
722 					ts->lat_stat[ddir].samples,
723 					ts->percentile_list,
724 					ts->percentile_precision, "lat", out);
725 
726 	if (ts->clat_percentiles || ts->lat_percentiles) {
727 		const char *name = ts->lat_percentiles ? "lat" : "clat";
728 		char prio_name[32];
729 		uint64_t samples;
730 
731 		if (ts->lat_percentiles)
732 			samples = ts->lat_stat[ddir].samples;
733 		else
734 			samples = ts->clat_stat[ddir].samples;
735 
736 		/* Only print this if some high and low priority stats were collected */
737 		if (ts->clat_high_prio_stat[ddir].samples > 0 &&
738 			ts->clat_low_prio_stat[ddir].samples > 0)
739 		{
740 			sprintf(prio_name, "high prio (%.2f%%) %s",
741 					100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
742 					name);
743 			show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
744 						ts->clat_high_prio_stat[ddir].samples,
745 						ts->percentile_list,
746 						ts->percentile_precision, prio_name, out);
747 
748 			sprintf(prio_name, "low prio (%.2f%%) %s",
749 					100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
750 					name);
751 			show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
752 						ts->clat_low_prio_stat[ddir].samples,
753 						ts->percentile_list,
754 						ts->percentile_precision, prio_name, out);
755 		}
756 	}
757 
758 	if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
759 		double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
760 		const char *bw_str;
761 
762 		if ((rs->unit_base == 1) && i2p)
763 			bw_str = "Kibit";
764 		else if (rs->unit_base == 1)
765 			bw_str = "kbit";
766 		else if (i2p)
767 			bw_str = "KiB";
768 		else
769 			bw_str = "kB";
770 
771 		p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
772 
773 		if (rs->unit_base == 1) {
774 			min *= 8.0;
775 			max *= 8.0;
776 			mean *= 8.0;
777 			dev *= 8.0;
778 		}
779 
780 		if (mean > fkb_base * fkb_base) {
781 			min /= fkb_base;
782 			max /= fkb_base;
783 			mean /= fkb_base;
784 			dev /= fkb_base;
785 			bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
786 		}
787 
788 		log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
789 			"avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
790 			bw_str, min, max, p_of_agg, mean, dev,
791 			(&ts->bw_stat[ddir])->samples);
792 	}
793 	if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
794 		log_buf(out, "   iops        : min=%5llu, max=%5llu, "
795 			"avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
796 			min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
797 	}
798 }
799 
show_lat(double * io_u_lat,int nr,const char ** ranges,const char * msg,struct buf_output * out)800 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
801 		     const char *msg, struct buf_output *out)
802 {
803 	bool new_line = true, shown = false;
804 	int i, line = 0;
805 
806 	for (i = 0; i < nr; i++) {
807 		if (io_u_lat[i] <= 0.0)
808 			continue;
809 		shown = true;
810 		if (new_line) {
811 			if (line)
812 				log_buf(out, "\n");
813 			log_buf(out, "  lat (%s)   : ", msg);
814 			new_line = false;
815 			line = 0;
816 		}
817 		if (line)
818 			log_buf(out, ", ");
819 		log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
820 		line++;
821 		if (line == 5)
822 			new_line = true;
823 	}
824 
825 	if (shown)
826 		log_buf(out, "\n");
827 
828 	return true;
829 }
830 
show_lat_n(double * io_u_lat_n,struct buf_output * out)831 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
832 {
833 	const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
834 				 "250=", "500=", "750=", "1000=", };
835 
836 	show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
837 }
838 
show_lat_u(double * io_u_lat_u,struct buf_output * out)839 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
840 {
841 	const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
842 				 "250=", "500=", "750=", "1000=", };
843 
844 	show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
845 }
846 
show_lat_m(double * io_u_lat_m,struct buf_output * out)847 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
848 {
849 	const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
850 				 "250=", "500=", "750=", "1000=", "2000=",
851 				 ">=2000=", };
852 
853 	show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
854 }
855 
show_latencies(struct thread_stat * ts,struct buf_output * out)856 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
857 {
858 	double io_u_lat_n[FIO_IO_U_LAT_N_NR];
859 	double io_u_lat_u[FIO_IO_U_LAT_U_NR];
860 	double io_u_lat_m[FIO_IO_U_LAT_M_NR];
861 
862 	stat_calc_lat_n(ts, io_u_lat_n);
863 	stat_calc_lat_u(ts, io_u_lat_u);
864 	stat_calc_lat_m(ts, io_u_lat_m);
865 
866 	show_lat_n(io_u_lat_n, out);
867 	show_lat_u(io_u_lat_u, out);
868 	show_lat_m(io_u_lat_m, out);
869 }
870 
block_state_category(int block_state)871 static int block_state_category(int block_state)
872 {
873 	switch (block_state) {
874 	case BLOCK_STATE_UNINIT:
875 		return 0;
876 	case BLOCK_STATE_TRIMMED:
877 	case BLOCK_STATE_WRITTEN:
878 		return 1;
879 	case BLOCK_STATE_WRITE_FAILURE:
880 	case BLOCK_STATE_TRIM_FAILURE:
881 		return 2;
882 	default:
883 		/* Silence compile warning on some BSDs and have a return */
884 		assert(0);
885 		return -1;
886 	}
887 }
888 
compare_block_infos(const void * bs1,const void * bs2)889 static int compare_block_infos(const void *bs1, const void *bs2)
890 {
891 	uint64_t block1 = *(uint64_t *)bs1;
892 	uint64_t block2 = *(uint64_t *)bs2;
893 	int state1 = BLOCK_INFO_STATE(block1);
894 	int state2 = BLOCK_INFO_STATE(block2);
895 	int bscat1 = block_state_category(state1);
896 	int bscat2 = block_state_category(state2);
897 	int cycles1 = BLOCK_INFO_TRIMS(block1);
898 	int cycles2 = BLOCK_INFO_TRIMS(block2);
899 
900 	if (bscat1 < bscat2)
901 		return -1;
902 	if (bscat1 > bscat2)
903 		return 1;
904 
905 	if (cycles1 < cycles2)
906 		return -1;
907 	if (cycles1 > cycles2)
908 		return 1;
909 
910 	if (state1 < state2)
911 		return -1;
912 	if (state1 > state2)
913 		return 1;
914 
915 	assert(block1 == block2);
916 	return 0;
917 }
918 
calc_block_percentiles(int nr_block_infos,uint32_t * block_infos,fio_fp64_t * plist,unsigned int ** percentiles,unsigned int * types)919 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
920 				  fio_fp64_t *plist, unsigned int **percentiles,
921 				  unsigned int *types)
922 {
923 	int len = 0;
924 	int i, nr_uninit;
925 
926 	qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
927 
928 	while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
929 		len++;
930 
931 	if (!len)
932 		return 0;
933 
934 	/*
935 	 * Sort the percentile list. Note that it may already be sorted if
936 	 * we are using the default values, but since it's a short list this
937 	 * isn't a worry. Also note that this does not work for NaN values.
938 	 */
939 	if (len > 1)
940 		qsort(plist, len, sizeof(plist[0]), double_cmp);
941 
942 	/* Start only after the uninit entries end */
943 	for (nr_uninit = 0;
944 	     nr_uninit < nr_block_infos
945 		&& BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
946 	     nr_uninit ++)
947 		;
948 
949 	if (nr_uninit == nr_block_infos)
950 		return 0;
951 
952 	*percentiles = calloc(len, sizeof(**percentiles));
953 
954 	for (i = 0; i < len; i++) {
955 		int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
956 				+ nr_uninit;
957 		(*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
958 	}
959 
960 	memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
961 	for (i = 0; i < nr_block_infos; i++)
962 		types[BLOCK_INFO_STATE(block_infos[i])]++;
963 
964 	return len;
965 }
966 
967 static const char *block_state_names[] = {
968 	[BLOCK_STATE_UNINIT] = "unwritten",
969 	[BLOCK_STATE_TRIMMED] = "trimmed",
970 	[BLOCK_STATE_WRITTEN] = "written",
971 	[BLOCK_STATE_TRIM_FAILURE] = "trim failure",
972 	[BLOCK_STATE_WRITE_FAILURE] = "write failure",
973 };
974 
show_block_infos(int nr_block_infos,uint32_t * block_infos,fio_fp64_t * plist,struct buf_output * out)975 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
976 			     fio_fp64_t *plist, struct buf_output *out)
977 {
978 	int len, pos, i;
979 	unsigned int *percentiles = NULL;
980 	unsigned int block_state_counts[BLOCK_STATE_COUNT];
981 
982 	len = calc_block_percentiles(nr_block_infos, block_infos, plist,
983 				     &percentiles, block_state_counts);
984 
985 	log_buf(out, "  block lifetime percentiles :\n   |");
986 	pos = 0;
987 	for (i = 0; i < len; i++) {
988 		uint32_t block_info = percentiles[i];
989 #define LINE_LENGTH	75
990 		char str[LINE_LENGTH];
991 		int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
992 				     plist[i].u.f, block_info,
993 				     i == len - 1 ? '\n' : ',');
994 		assert(strln < LINE_LENGTH);
995 		if (pos + strln > LINE_LENGTH) {
996 			pos = 0;
997 			log_buf(out, "\n   |");
998 		}
999 		log_buf(out, "%s", str);
1000 		pos += strln;
1001 #undef LINE_LENGTH
1002 	}
1003 	if (percentiles)
1004 		free(percentiles);
1005 
1006 	log_buf(out, "        states               :");
1007 	for (i = 0; i < BLOCK_STATE_COUNT; i++)
1008 		log_buf(out, " %s=%u%c",
1009 			 block_state_names[i], block_state_counts[i],
1010 			 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
1011 }
1012 
show_ss_normal(struct thread_stat * ts,struct buf_output * out)1013 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
1014 {
1015 	char *p1, *p1alt, *p2;
1016 	unsigned long long bw_mean, iops_mean;
1017 	const int i2p = is_power_of_2(ts->kb_base);
1018 
1019 	if (!ts->ss_dur)
1020 		return;
1021 
1022 	bw_mean = steadystate_bw_mean(ts);
1023 	iops_mean = steadystate_iops_mean(ts);
1024 
1025 	p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
1026 	p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
1027 	p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
1028 
1029 	log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
1030 		ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
1031 		p1, p1alt, p2,
1032 		ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1033 		ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
1034 		ts->ss_criterion.u.f,
1035 		ts->ss_state & FIO_SS_PCT ? "%" : "");
1036 
1037 	free(p1);
1038 	free(p1alt);
1039 	free(p2);
1040 }
1041 
show_agg_stats(struct disk_util_agg * agg,int terse,struct buf_output * out)1042 static void show_agg_stats(struct disk_util_agg *agg, int terse,
1043 			   struct buf_output *out)
1044 {
1045 	if (!agg->slavecount)
1046 		return;
1047 
1048 	if (!terse) {
1049 		log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
1050 			 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
1051 			 "aggrutil=%3.2f%%",
1052 			(unsigned long long) agg->ios[0] / agg->slavecount,
1053 			(unsigned long long) agg->ios[1] / agg->slavecount,
1054 			(unsigned long long) agg->merges[0] / agg->slavecount,
1055 			(unsigned long long) agg->merges[1] / agg->slavecount,
1056 			(unsigned long long) agg->ticks[0] / agg->slavecount,
1057 			(unsigned long long) agg->ticks[1] / agg->slavecount,
1058 			(unsigned long long) agg->time_in_queue / agg->slavecount,
1059 			agg->max_util.u.f);
1060 	} else {
1061 		log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1062 			(unsigned long long) agg->ios[0] / agg->slavecount,
1063 			(unsigned long long) agg->ios[1] / agg->slavecount,
1064 			(unsigned long long) agg->merges[0] / agg->slavecount,
1065 			(unsigned long long) agg->merges[1] / agg->slavecount,
1066 			(unsigned long long) agg->ticks[0] / agg->slavecount,
1067 			(unsigned long long) agg->ticks[1] / agg->slavecount,
1068 			(unsigned long long) agg->time_in_queue / agg->slavecount,
1069 			agg->max_util.u.f);
1070 	}
1071 }
1072 
aggregate_slaves_stats(struct disk_util * masterdu)1073 static void aggregate_slaves_stats(struct disk_util *masterdu)
1074 {
1075 	struct disk_util_agg *agg = &masterdu->agg;
1076 	struct disk_util_stat *dus;
1077 	struct flist_head *entry;
1078 	struct disk_util *slavedu;
1079 	double util;
1080 
1081 	flist_for_each(entry, &masterdu->slaves) {
1082 		slavedu = flist_entry(entry, struct disk_util, slavelist);
1083 		dus = &slavedu->dus;
1084 		agg->ios[0] += dus->s.ios[0];
1085 		agg->ios[1] += dus->s.ios[1];
1086 		agg->merges[0] += dus->s.merges[0];
1087 		agg->merges[1] += dus->s.merges[1];
1088 		agg->sectors[0] += dus->s.sectors[0];
1089 		agg->sectors[1] += dus->s.sectors[1];
1090 		agg->ticks[0] += dus->s.ticks[0];
1091 		agg->ticks[1] += dus->s.ticks[1];
1092 		agg->time_in_queue += dus->s.time_in_queue;
1093 		agg->slavecount++;
1094 
1095 		util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1096 		/* System utilization is the utilization of the
1097 		 * component with the highest utilization.
1098 		 */
1099 		if (util > agg->max_util.u.f)
1100 			agg->max_util.u.f = util;
1101 
1102 	}
1103 
1104 	if (agg->max_util.u.f > 100.0)
1105 		agg->max_util.u.f = 100.0;
1106 }
1107 
print_disk_util(struct disk_util_stat * dus,struct disk_util_agg * agg,int terse,struct buf_output * out)1108 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1109 		     int terse, struct buf_output *out)
1110 {
1111 	double util = 0;
1112 
1113 	if (dus->s.msec)
1114 		util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1115 	if (util > 100.0)
1116 		util = 100.0;
1117 
1118 	if (!terse) {
1119 		if (agg->slavecount)
1120 			log_buf(out, "  ");
1121 
1122 		log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
1123 			 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1124 				dus->name,
1125 				(unsigned long long) dus->s.ios[0],
1126 				(unsigned long long) dus->s.ios[1],
1127 				(unsigned long long) dus->s.merges[0],
1128 				(unsigned long long) dus->s.merges[1],
1129 				(unsigned long long) dus->s.ticks[0],
1130 				(unsigned long long) dus->s.ticks[1],
1131 				(unsigned long long) dus->s.time_in_queue,
1132 				util);
1133 	} else {
1134 		log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1135 				dus->name,
1136 				(unsigned long long) dus->s.ios[0],
1137 				(unsigned long long) dus->s.ios[1],
1138 				(unsigned long long) dus->s.merges[0],
1139 				(unsigned long long) dus->s.merges[1],
1140 				(unsigned long long) dus->s.ticks[0],
1141 				(unsigned long long) dus->s.ticks[1],
1142 				(unsigned long long) dus->s.time_in_queue,
1143 				util);
1144 	}
1145 
1146 	/*
1147 	 * If the device has slaves, aggregate the stats for
1148 	 * those slave devices also.
1149 	 */
1150 	show_agg_stats(agg, terse, out);
1151 
1152 	if (!terse)
1153 		log_buf(out, "\n");
1154 }
1155 
json_array_add_disk_util(struct disk_util_stat * dus,struct disk_util_agg * agg,struct json_array * array)1156 void json_array_add_disk_util(struct disk_util_stat *dus,
1157 		struct disk_util_agg *agg, struct json_array *array)
1158 {
1159 	struct json_object *obj;
1160 	double util = 0;
1161 
1162 	if (dus->s.msec)
1163 		util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1164 	if (util > 100.0)
1165 		util = 100.0;
1166 
1167 	obj = json_create_object();
1168 	json_array_add_value_object(array, obj);
1169 
1170 	json_object_add_value_string(obj, "name", (const char *)dus->name);
1171 	json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1172 	json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1173 	json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1174 	json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1175 	json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1176 	json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1177 	json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1178 	json_object_add_value_float(obj, "util", util);
1179 
1180 	/*
1181 	 * If the device has slaves, aggregate the stats for
1182 	 * those slave devices also.
1183 	 */
1184 	if (!agg->slavecount)
1185 		return;
1186 	json_object_add_value_int(obj, "aggr_read_ios",
1187 				agg->ios[0] / agg->slavecount);
1188 	json_object_add_value_int(obj, "aggr_write_ios",
1189 				agg->ios[1] / agg->slavecount);
1190 	json_object_add_value_int(obj, "aggr_read_merges",
1191 				agg->merges[0] / agg->slavecount);
1192 	json_object_add_value_int(obj, "aggr_write_merge",
1193 				agg->merges[1] / agg->slavecount);
1194 	json_object_add_value_int(obj, "aggr_read_ticks",
1195 				agg->ticks[0] / agg->slavecount);
1196 	json_object_add_value_int(obj, "aggr_write_ticks",
1197 				agg->ticks[1] / agg->slavecount);
1198 	json_object_add_value_int(obj, "aggr_in_queue",
1199 				agg->time_in_queue / agg->slavecount);
1200 	json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1201 }
1202 
json_object_add_disk_utils(struct json_object * obj,struct flist_head * head)1203 static void json_object_add_disk_utils(struct json_object *obj,
1204 				       struct flist_head *head)
1205 {
1206 	struct json_array *array = json_create_array();
1207 	struct flist_head *entry;
1208 	struct disk_util *du;
1209 
1210 	json_object_add_value_array(obj, "disk_util", array);
1211 
1212 	flist_for_each(entry, head) {
1213 		du = flist_entry(entry, struct disk_util, list);
1214 
1215 		aggregate_slaves_stats(du);
1216 		json_array_add_disk_util(&du->dus, &du->agg, array);
1217 	}
1218 }
1219 
show_disk_util(int terse,struct json_object * parent,struct buf_output * out)1220 void show_disk_util(int terse, struct json_object *parent,
1221 		    struct buf_output *out)
1222 {
1223 	struct flist_head *entry;
1224 	struct disk_util *du;
1225 	bool do_json;
1226 
1227 	if (!is_running_backend())
1228 		return;
1229 
1230 	if (flist_empty(&disk_list))
1231 		return;
1232 
1233 	if ((output_format & FIO_OUTPUT_JSON) && parent)
1234 		do_json = true;
1235 	else
1236 		do_json = false;
1237 
1238 	if (!terse && !do_json)
1239 		log_buf(out, "\nDisk stats (read/write):\n");
1240 
1241 	if (do_json) {
1242 		json_object_add_disk_utils(parent, &disk_list);
1243 	} else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1244 		flist_for_each(entry, &disk_list) {
1245 			du = flist_entry(entry, struct disk_util, list);
1246 
1247 			aggregate_slaves_stats(du);
1248 			print_disk_util(&du->dus, &du->agg, terse, out);
1249 		}
1250 	}
1251 }
1252 
show_thread_status_normal(struct thread_stat * ts,struct group_run_stats * rs,struct buf_output * out)1253 static void show_thread_status_normal(struct thread_stat *ts,
1254 				      struct group_run_stats *rs,
1255 				      struct buf_output *out)
1256 {
1257 	double usr_cpu, sys_cpu;
1258 	unsigned long runtime;
1259 	double io_u_dist[FIO_IO_U_MAP_NR];
1260 	time_t time_p;
1261 	char time_buf[32];
1262 
1263 	if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1264 		return;
1265 
1266 	memset(time_buf, 0, sizeof(time_buf));
1267 
1268 	time(&time_p);
1269 	os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1270 
1271 	if (!ts->error) {
1272 		log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1273 					ts->name, ts->groupid, ts->members,
1274 					ts->error, (int) ts->pid, time_buf);
1275 	} else {
1276 		log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1277 					ts->name, ts->groupid, ts->members,
1278 					ts->error, ts->verror, (int) ts->pid,
1279 					time_buf);
1280 	}
1281 
1282 	if (strlen(ts->description))
1283 		log_buf(out, "  Description  : [%s]\n", ts->description);
1284 
1285 	for_each_rw_ddir(ddir) {
1286 		if (ts->io_bytes[ddir])
1287 			show_ddir_status(rs, ts, ddir, out);
1288 	}
1289 
1290 	if (ts->unified_rw_rep == UNIFIED_BOTH)
1291 		show_mixed_ddir_status(rs, ts, out);
1292 
1293 	show_latencies(ts, out);
1294 
1295 	if (ts->sync_stat.samples)
1296 		show_ddir_status(rs, ts, DDIR_SYNC, out);
1297 
1298 	runtime = ts->total_run_time;
1299 	if (runtime) {
1300 		double runt = (double) runtime;
1301 
1302 		usr_cpu = (double) ts->usr_time * 100 / runt;
1303 		sys_cpu = (double) ts->sys_time * 100 / runt;
1304 	} else {
1305 		usr_cpu = 0;
1306 		sys_cpu = 0;
1307 	}
1308 
1309 	log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1310 		 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1311 			(unsigned long long) ts->ctx,
1312 			(unsigned long long) ts->majf,
1313 			(unsigned long long) ts->minf);
1314 
1315 	stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1316 	log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1317 		 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1318 					io_u_dist[1], io_u_dist[2],
1319 					io_u_dist[3], io_u_dist[4],
1320 					io_u_dist[5], io_u_dist[6]);
1321 
1322 	stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1323 	log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1324 		 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1325 					io_u_dist[1], io_u_dist[2],
1326 					io_u_dist[3], io_u_dist[4],
1327 					io_u_dist[5], io_u_dist[6]);
1328 	stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1329 	log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1330 		 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1331 					io_u_dist[1], io_u_dist[2],
1332 					io_u_dist[3], io_u_dist[4],
1333 					io_u_dist[5], io_u_dist[6]);
1334 	log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1335 				 " short=%llu,%llu,%llu,0"
1336 				 " dropped=%llu,%llu,%llu,0\n",
1337 					(unsigned long long) ts->total_io_u[0],
1338 					(unsigned long long) ts->total_io_u[1],
1339 					(unsigned long long) ts->total_io_u[2],
1340 					(unsigned long long) ts->total_io_u[3],
1341 					(unsigned long long) ts->short_io_u[0],
1342 					(unsigned long long) ts->short_io_u[1],
1343 					(unsigned long long) ts->short_io_u[2],
1344 					(unsigned long long) ts->drop_io_u[0],
1345 					(unsigned long long) ts->drop_io_u[1],
1346 					(unsigned long long) ts->drop_io_u[2]);
1347 	if (ts->continue_on_error) {
1348 		log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1349 					(unsigned long long)ts->total_err_count,
1350 					ts->first_error,
1351 					strerror(ts->first_error));
1352 	}
1353 	if (ts->latency_depth) {
1354 		log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1355 					(unsigned long long)ts->latency_target,
1356 					(unsigned long long)ts->latency_window,
1357 					ts->latency_percentile.u.f,
1358 					ts->latency_depth);
1359 	}
1360 
1361 	if (ts->nr_block_infos)
1362 		show_block_infos(ts->nr_block_infos, ts->block_infos,
1363 				  ts->percentile_list, out);
1364 
1365 	if (ts->ss_dur)
1366 		show_ss_normal(ts, out);
1367 }
1368 
show_ddir_status_terse(struct thread_stat * ts,struct group_run_stats * rs,int ddir,int ver,struct buf_output * out)1369 static void show_ddir_status_terse(struct thread_stat *ts,
1370 				   struct group_run_stats *rs, int ddir,
1371 				   int ver, struct buf_output *out)
1372 {
1373 	unsigned long long min, max, minv, maxv, bw, iops;
1374 	unsigned long long *ovals = NULL;
1375 	double mean, dev;
1376 	unsigned int len;
1377 	int i, bw_stat;
1378 
1379 	assert(ddir_rw(ddir));
1380 
1381 	iops = bw = 0;
1382 	if (ts->runtime[ddir]) {
1383 		uint64_t runt = ts->runtime[ddir];
1384 
1385 		bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1386 		iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1387 	}
1388 
1389 	log_buf(out, ";%llu;%llu;%llu;%llu",
1390 		(unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1391 					(unsigned long long) ts->runtime[ddir]);
1392 
1393 	if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1394 		log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1395 	else
1396 		log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1397 
1398 	if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1399 		log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1400 	else
1401 		log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1402 
1403 	if (ts->lat_percentiles) {
1404 		len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1405 					ts->lat_stat[ddir].samples,
1406 					ts->percentile_list, &ovals, &maxv,
1407 					&minv);
1408 	} else if (ts->clat_percentiles) {
1409 		len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1410 					ts->clat_stat[ddir].samples,
1411 					ts->percentile_list, &ovals, &maxv,
1412 					&minv);
1413 	} else {
1414 		len = 0;
1415 	}
1416 
1417 	for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1418 		if (i >= len) {
1419 			log_buf(out, ";0%%=0");
1420 			continue;
1421 		}
1422 		log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1423 	}
1424 
1425 	if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1426 		log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1427 	else
1428 		log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1429 
1430 	free(ovals);
1431 
1432 	bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1433 	if (bw_stat) {
1434 		double p_of_agg = 100.0;
1435 
1436 		if (rs->agg[ddir]) {
1437 			p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1438 			if (p_of_agg > 100.0)
1439 				p_of_agg = 100.0;
1440 		}
1441 
1442 		log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1443 	} else {
1444 		log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1445 	}
1446 
1447 	if (ver == 5) {
1448 		if (bw_stat)
1449 			log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1450 		else
1451 			log_buf(out, ";%lu", 0UL);
1452 
1453 		if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1454 			log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1455 				mean, dev, (&ts->iops_stat[ddir])->samples);
1456 		else
1457 			log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1458 	}
1459 }
1460 
show_mixed_ddir_status_terse(struct thread_stat * ts,struct group_run_stats * rs,int ver,struct buf_output * out)1461 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1462 				   struct group_run_stats *rs,
1463 				   int ver, struct buf_output *out)
1464 {
1465 	struct thread_stat *ts_lcl;
1466 
1467 	/*
1468 	 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1469 	 * Trims (ddir = 2)
1470 	 */
1471 	ts_lcl = malloc(sizeof(struct thread_stat));
1472 	memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1473 	/* calculate mixed stats  */
1474 	ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1475 	init_thread_stat_min_vals(ts_lcl);
1476 	ts_lcl->lat_percentiles = ts->lat_percentiles;
1477 	ts_lcl->clat_percentiles = ts->clat_percentiles;
1478 	ts_lcl->slat_percentiles = ts->slat_percentiles;
1479 	ts_lcl->percentile_precision = ts->percentile_precision;
1480 	memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1481 
1482 	sum_thread_stats(ts_lcl, ts, 1);
1483 
1484 	/* add the aggregated stats to json parent */
1485 	show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1486 	free(ts_lcl);
1487 }
1488 
add_ddir_lat_json(struct thread_stat * ts,uint32_t percentiles,struct io_stat * lat_stat,uint64_t * io_u_plat)1489 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1490 					     uint32_t percentiles,
1491 					     struct io_stat *lat_stat,
1492 					     uint64_t *io_u_plat)
1493 {
1494 	char buf[120];
1495 	double mean, dev;
1496 	unsigned int i, len;
1497 	struct json_object *lat_object, *percentile_object, *clat_bins_object;
1498 	unsigned long long min, max, maxv, minv, *ovals = NULL;
1499 
1500 	if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1501 		min = max = 0;
1502 		mean = dev = 0.0;
1503 	}
1504 	lat_object = json_create_object();
1505 	json_object_add_value_int(lat_object, "min", min);
1506 	json_object_add_value_int(lat_object, "max", max);
1507 	json_object_add_value_float(lat_object, "mean", mean);
1508 	json_object_add_value_float(lat_object, "stddev", dev);
1509 	json_object_add_value_int(lat_object, "N", lat_stat->samples);
1510 
1511 	if (percentiles && lat_stat->samples) {
1512 		len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1513 				ts->percentile_list, &ovals, &maxv, &minv);
1514 
1515 		if (len > FIO_IO_U_LIST_MAX_LEN)
1516 			len = FIO_IO_U_LIST_MAX_LEN;
1517 
1518 		percentile_object = json_create_object();
1519 		json_object_add_value_object(lat_object, "percentile", percentile_object);
1520 		for (i = 0; i < len; i++) {
1521 			snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1522 			json_object_add_value_int(percentile_object, buf, ovals[i]);
1523 		}
1524 		free(ovals);
1525 
1526 		if (output_format & FIO_OUTPUT_JSON_PLUS) {
1527 			clat_bins_object = json_create_object();
1528 			json_object_add_value_object(lat_object, "bins", clat_bins_object);
1529 
1530 			for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1531 				if (io_u_plat[i]) {
1532 					snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1533 					json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1534 				}
1535 		}
1536 	}
1537 
1538 	return lat_object;
1539 }
1540 
add_ddir_status_json(struct thread_stat * ts,struct group_run_stats * rs,int ddir,struct json_object * parent)1541 static void add_ddir_status_json(struct thread_stat *ts,
1542 		struct group_run_stats *rs, int ddir, struct json_object *parent)
1543 {
1544 	unsigned long long min, max;
1545 	unsigned long long bw_bytes, bw;
1546 	double mean, dev, iops;
1547 	struct json_object *dir_object, *tmp_object;
1548 	double p_of_agg = 100.0;
1549 
1550 	assert(ddir_rw(ddir) || ddir_sync(ddir));
1551 
1552 	if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1553 		return;
1554 
1555 	dir_object = json_create_object();
1556 	json_object_add_value_object(parent,
1557 		(ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1558 
1559 	if (ddir_rw(ddir)) {
1560 		bw_bytes = 0;
1561 		bw = 0;
1562 		iops = 0.0;
1563 		if (ts->runtime[ddir]) {
1564 			uint64_t runt = ts->runtime[ddir];
1565 
1566 			bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1567 			bw = bw_bytes / 1024; /* KiB/s */
1568 			iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1569 		}
1570 
1571 		json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1572 		json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1573 		json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1574 		json_object_add_value_int(dir_object, "bw", bw);
1575 		json_object_add_value_float(dir_object, "iops", iops);
1576 		json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1577 		json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1578 		json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1579 		json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1580 
1581 		tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1582 				&ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1583 		json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1584 
1585 		tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1586 				&ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1587 		json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1588 
1589 		tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1590 				&ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1591 		json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1592 	} else {
1593 		json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1594 		tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1595 				&ts->sync_stat, ts->io_u_sync_plat);
1596 		json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1597 	}
1598 
1599 	if (!ddir_rw(ddir))
1600 		return;
1601 
1602 	/* Only print PRIO latencies if some high priority samples were gathered */
1603 	if (ts->clat_high_prio_stat[ddir].samples > 0) {
1604 		const char *high, *low;
1605 
1606 		if (ts->lat_percentiles) {
1607 			high = "lat_high_prio";
1608 			low = "lat_low_prio";
1609 		} else {
1610 			high = "clat_high_prio";
1611 			low = "clat_low_prio";
1612 		}
1613 
1614 		tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1615 				&ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1616 		json_object_add_value_object(dir_object, high, tmp_object);
1617 
1618 		tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1619 				&ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1620 		json_object_add_value_object(dir_object, low, tmp_object);
1621 	}
1622 
1623 	if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1624 		p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1625 	} else {
1626 		min = max = 0;
1627 		p_of_agg = mean = dev = 0.0;
1628 	}
1629 
1630 	json_object_add_value_int(dir_object, "bw_min", min);
1631 	json_object_add_value_int(dir_object, "bw_max", max);
1632 	json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1633 	json_object_add_value_float(dir_object, "bw_mean", mean);
1634 	json_object_add_value_float(dir_object, "bw_dev", dev);
1635 	json_object_add_value_int(dir_object, "bw_samples",
1636 				(&ts->bw_stat[ddir])->samples);
1637 
1638 	if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1639 		min = max = 0;
1640 		mean = dev = 0.0;
1641 	}
1642 	json_object_add_value_int(dir_object, "iops_min", min);
1643 	json_object_add_value_int(dir_object, "iops_max", max);
1644 	json_object_add_value_float(dir_object, "iops_mean", mean);
1645 	json_object_add_value_float(dir_object, "iops_stddev", dev);
1646 	json_object_add_value_int(dir_object, "iops_samples",
1647 				(&ts->iops_stat[ddir])->samples);
1648 
1649 	if (ts->cachehit + ts->cachemiss) {
1650 		uint64_t total;
1651 		double hit;
1652 
1653 		total = ts->cachehit + ts->cachemiss;
1654 		hit = (double) ts->cachehit / (double) total;
1655 		hit *= 100.0;
1656 		json_object_add_value_float(dir_object, "cachehit", hit);
1657 	}
1658 }
1659 
add_mixed_ddir_status_json(struct thread_stat * ts,struct group_run_stats * rs,struct json_object * parent)1660 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1661 		struct group_run_stats *rs, struct json_object *parent)
1662 {
1663 	struct thread_stat *ts_lcl;
1664 
1665 	/*
1666 	 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1667 	 * Trims (ddir = 2)
1668 	 */
1669 	ts_lcl = malloc(sizeof(struct thread_stat));
1670 	memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1671 	/* calculate mixed stats  */
1672 	ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1673 	init_thread_stat_min_vals(ts_lcl);
1674 	ts_lcl->lat_percentiles = ts->lat_percentiles;
1675 	ts_lcl->clat_percentiles = ts->clat_percentiles;
1676 	ts_lcl->slat_percentiles = ts->slat_percentiles;
1677 	ts_lcl->percentile_precision = ts->percentile_precision;
1678 	memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1679 
1680 	sum_thread_stats(ts_lcl, ts, 1);
1681 
1682 	/* add the aggregated stats to json parent */
1683 	add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1684 	free(ts_lcl);
1685 }
1686 
show_thread_status_terse_all(struct thread_stat * ts,struct group_run_stats * rs,int ver,struct buf_output * out)1687 static void show_thread_status_terse_all(struct thread_stat *ts,
1688 					 struct group_run_stats *rs, int ver,
1689 					 struct buf_output *out)
1690 {
1691 	double io_u_dist[FIO_IO_U_MAP_NR];
1692 	double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1693 	double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1694 	double usr_cpu, sys_cpu;
1695 	int i;
1696 
1697 	/* General Info */
1698 	if (ver == 2)
1699 		log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1700 	else
1701 		log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1702 			ts->name, ts->groupid, ts->error);
1703 
1704 	/* Log Read Status, or mixed if unified_rw_rep = 1 */
1705 	show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1706 	if (ts->unified_rw_rep != UNIFIED_MIXED) {
1707 		/* Log Write Status */
1708 		show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1709 		/* Log Trim Status */
1710 		if (ver == 2 || ver == 4 || ver == 5)
1711 			show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1712 	}
1713 	if (ts->unified_rw_rep == UNIFIED_BOTH)
1714 		show_mixed_ddir_status_terse(ts, rs, ver, out);
1715 	/* CPU Usage */
1716 	if (ts->total_run_time) {
1717 		double runt = (double) ts->total_run_time;
1718 
1719 		usr_cpu = (double) ts->usr_time * 100 / runt;
1720 		sys_cpu = (double) ts->sys_time * 100 / runt;
1721 	} else {
1722 		usr_cpu = 0;
1723 		sys_cpu = 0;
1724 	}
1725 
1726 	log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1727 						(unsigned long long) ts->ctx,
1728 						(unsigned long long) ts->majf,
1729 						(unsigned long long) ts->minf);
1730 
1731 	/* Calc % distribution of IO depths, usecond, msecond latency */
1732 	stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1733 	stat_calc_lat_nu(ts, io_u_lat_u);
1734 	stat_calc_lat_m(ts, io_u_lat_m);
1735 
1736 	/* Only show fixed 7 I/O depth levels*/
1737 	log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1738 			io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1739 			io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1740 
1741 	/* Microsecond latency */
1742 	for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1743 		log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1744 	/* Millisecond latency */
1745 	for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1746 		log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1747 
1748 	/* disk util stats, if any */
1749 	if (ver >= 3 && is_running_backend())
1750 		show_disk_util(1, NULL, out);
1751 
1752 	/* Additional output if continue_on_error set - default off*/
1753 	if (ts->continue_on_error)
1754 		log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1755 
1756 	/* Additional output if description is set */
1757 	if (strlen(ts->description)) {
1758 		if (ver == 2)
1759 			log_buf(out, "\n");
1760 		log_buf(out, ";%s", ts->description);
1761 	}
1762 
1763 	log_buf(out, "\n");
1764 }
1765 
json_add_job_opts(struct json_object * root,const char * name,struct flist_head * opt_list)1766 static void json_add_job_opts(struct json_object *root, const char *name,
1767 			      struct flist_head *opt_list)
1768 {
1769 	struct json_object *dir_object;
1770 	struct flist_head *entry;
1771 	struct print_option *p;
1772 
1773 	if (flist_empty(opt_list))
1774 		return;
1775 
1776 	dir_object = json_create_object();
1777 	json_object_add_value_object(root, name, dir_object);
1778 
1779 	flist_for_each(entry, opt_list) {
1780 		p = flist_entry(entry, struct print_option, list);
1781 		json_object_add_value_string(dir_object, p->name, p->value);
1782 	}
1783 }
1784 
show_thread_status_json(struct thread_stat * ts,struct group_run_stats * rs,struct flist_head * opt_list)1785 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1786 						   struct group_run_stats *rs,
1787 						   struct flist_head *opt_list)
1788 {
1789 	struct json_object *root, *tmp;
1790 	struct jobs_eta *je;
1791 	double io_u_dist[FIO_IO_U_MAP_NR];
1792 	double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1793 	double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1794 	double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1795 	double usr_cpu, sys_cpu;
1796 	int i;
1797 	size_t size;
1798 
1799 	root = json_create_object();
1800 	json_object_add_value_string(root, "jobname", ts->name);
1801 	json_object_add_value_int(root, "groupid", ts->groupid);
1802 	json_object_add_value_int(root, "error", ts->error);
1803 
1804 	/* ETA Info */
1805 	je = get_jobs_eta(true, &size);
1806 	if (je) {
1807 		json_object_add_value_int(root, "eta", je->eta_sec);
1808 		json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1809 	}
1810 
1811 	if (opt_list)
1812 		json_add_job_opts(root, "job options", opt_list);
1813 
1814 	add_ddir_status_json(ts, rs, DDIR_READ, root);
1815 	add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1816 	add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1817 	add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1818 
1819 	if (ts->unified_rw_rep == UNIFIED_BOTH)
1820 		add_mixed_ddir_status_json(ts, rs, root);
1821 
1822 	/* CPU Usage */
1823 	if (ts->total_run_time) {
1824 		double runt = (double) ts->total_run_time;
1825 
1826 		usr_cpu = (double) ts->usr_time * 100 / runt;
1827 		sys_cpu = (double) ts->sys_time * 100 / runt;
1828 	} else {
1829 		usr_cpu = 0;
1830 		sys_cpu = 0;
1831 	}
1832 	json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1833 	json_object_add_value_float(root, "usr_cpu", usr_cpu);
1834 	json_object_add_value_float(root, "sys_cpu", sys_cpu);
1835 	json_object_add_value_int(root, "ctx", ts->ctx);
1836 	json_object_add_value_int(root, "majf", ts->majf);
1837 	json_object_add_value_int(root, "minf", ts->minf);
1838 
1839 	/* Calc % distribution of IO depths */
1840 	stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1841 	tmp = json_create_object();
1842 	json_object_add_value_object(root, "iodepth_level", tmp);
1843 	/* Only show fixed 7 I/O depth levels*/
1844 	for (i = 0; i < 7; i++) {
1845 		char name[20];
1846 		if (i < 6)
1847 			snprintf(name, 20, "%d", 1 << i);
1848 		else
1849 			snprintf(name, 20, ">=%d", 1 << i);
1850 		json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1851 	}
1852 
1853 	/* Calc % distribution of submit IO depths */
1854 	stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1855 	tmp = json_create_object();
1856 	json_object_add_value_object(root, "iodepth_submit", tmp);
1857 	/* Only show fixed 7 I/O depth levels*/
1858 	for (i = 0; i < 7; i++) {
1859 		char name[20];
1860 		if (i == 0)
1861 			snprintf(name, 20, "0");
1862 		else if (i < 6)
1863 			snprintf(name, 20, "%d", 1 << (i+1));
1864 		else
1865 			snprintf(name, 20, ">=%d", 1 << i);
1866 		json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1867 	}
1868 
1869 	/* Calc % distribution of completion IO depths */
1870 	stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1871 	tmp = json_create_object();
1872 	json_object_add_value_object(root, "iodepth_complete", tmp);
1873 	/* Only show fixed 7 I/O depth levels*/
1874 	for (i = 0; i < 7; i++) {
1875 		char name[20];
1876 		if (i == 0)
1877 			snprintf(name, 20, "0");
1878 		else if (i < 6)
1879 			snprintf(name, 20, "%d", 1 << (i+1));
1880 		else
1881 			snprintf(name, 20, ">=%d", 1 << i);
1882 		json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1883 	}
1884 
1885 	/* Calc % distribution of nsecond, usecond, msecond latency */
1886 	stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1887 	stat_calc_lat_n(ts, io_u_lat_n);
1888 	stat_calc_lat_u(ts, io_u_lat_u);
1889 	stat_calc_lat_m(ts, io_u_lat_m);
1890 
1891 	/* Nanosecond latency */
1892 	tmp = json_create_object();
1893 	json_object_add_value_object(root, "latency_ns", tmp);
1894 	for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1895 		const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1896 				 "250", "500", "750", "1000", };
1897 		json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1898 	}
1899 	/* Microsecond latency */
1900 	tmp = json_create_object();
1901 	json_object_add_value_object(root, "latency_us", tmp);
1902 	for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1903 		const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1904 				 "250", "500", "750", "1000", };
1905 		json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1906 	}
1907 	/* Millisecond latency */
1908 	tmp = json_create_object();
1909 	json_object_add_value_object(root, "latency_ms", tmp);
1910 	for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1911 		const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1912 				 "250", "500", "750", "1000", "2000",
1913 				 ">=2000", };
1914 		json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1915 	}
1916 
1917 	/* Additional output if continue_on_error set - default off*/
1918 	if (ts->continue_on_error) {
1919 		json_object_add_value_int(root, "total_err", ts->total_err_count);
1920 		json_object_add_value_int(root, "first_error", ts->first_error);
1921 	}
1922 
1923 	if (ts->latency_depth) {
1924 		json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1925 		json_object_add_value_int(root, "latency_target", ts->latency_target);
1926 		json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1927 		json_object_add_value_int(root, "latency_window", ts->latency_window);
1928 	}
1929 
1930 	/* Additional output if description is set */
1931 	if (strlen(ts->description))
1932 		json_object_add_value_string(root, "desc", ts->description);
1933 
1934 	if (ts->nr_block_infos) {
1935 		/* Block error histogram and types */
1936 		int len;
1937 		unsigned int *percentiles = NULL;
1938 		unsigned int block_state_counts[BLOCK_STATE_COUNT];
1939 
1940 		len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1941 					     ts->percentile_list,
1942 					     &percentiles, block_state_counts);
1943 
1944 		if (len) {
1945 			struct json_object *block, *percentile_object, *states;
1946 			int state;
1947 			block = json_create_object();
1948 			json_object_add_value_object(root, "block", block);
1949 
1950 			percentile_object = json_create_object();
1951 			json_object_add_value_object(block, "percentiles",
1952 						     percentile_object);
1953 			for (i = 0; i < len; i++) {
1954 				char buf[20];
1955 				snprintf(buf, sizeof(buf), "%f",
1956 					 ts->percentile_list[i].u.f);
1957 				json_object_add_value_int(percentile_object,
1958 							  buf,
1959 							  percentiles[i]);
1960 			}
1961 
1962 			states = json_create_object();
1963 			json_object_add_value_object(block, "states", states);
1964 			for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1965 				json_object_add_value_int(states,
1966 					block_state_names[state],
1967 					block_state_counts[state]);
1968 			}
1969 			free(percentiles);
1970 		}
1971 	}
1972 
1973 	if (ts->ss_dur) {
1974 		struct json_object *data;
1975 		struct json_array *iops, *bw;
1976 		int j, k, l;
1977 		char ss_buf[64];
1978 
1979 		snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1980 			ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1981 			ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1982 			(float) ts->ss_limit.u.f,
1983 			ts->ss_state & FIO_SS_PCT ? "%" : "");
1984 
1985 		tmp = json_create_object();
1986 		json_object_add_value_object(root, "steadystate", tmp);
1987 		json_object_add_value_string(tmp, "ss", ss_buf);
1988 		json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1989 		json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1990 
1991 		snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1992 			ts->ss_state & FIO_SS_PCT ? "%" : "");
1993 		json_object_add_value_string(tmp, "criterion", ss_buf);
1994 		json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1995 		json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1996 
1997 		data = json_create_object();
1998 		json_object_add_value_object(tmp, "data", data);
1999 		bw = json_create_array();
2000 		iops = json_create_array();
2001 
2002 		/*
2003 		** if ss was attained or the buffer is not full,
2004 		** ss->head points to the first element in the list.
2005 		** otherwise it actually points to the second element
2006 		** in the list
2007 		*/
2008 		if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
2009 			j = ts->ss_head;
2010 		else
2011 			j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
2012 		for (l = 0; l < ts->ss_dur; l++) {
2013 			k = (j + l) % ts->ss_dur;
2014 			json_array_add_value_int(bw, ts->ss_bw_data[k]);
2015 			json_array_add_value_int(iops, ts->ss_iops_data[k]);
2016 		}
2017 		json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
2018 		json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
2019 		json_object_add_value_array(data, "iops", iops);
2020 		json_object_add_value_array(data, "bw", bw);
2021 	}
2022 
2023 	return root;
2024 }
2025 
show_thread_status_terse(struct thread_stat * ts,struct group_run_stats * rs,struct buf_output * out)2026 static void show_thread_status_terse(struct thread_stat *ts,
2027 				     struct group_run_stats *rs,
2028 				     struct buf_output *out)
2029 {
2030 	if (terse_version >= 2 && terse_version <= 5)
2031 		show_thread_status_terse_all(ts, rs, terse_version, out);
2032 	else
2033 		log_err("fio: bad terse version!? %d\n", terse_version);
2034 }
2035 
show_thread_status(struct thread_stat * ts,struct group_run_stats * rs,struct flist_head * opt_list,struct buf_output * out)2036 struct json_object *show_thread_status(struct thread_stat *ts,
2037 				       struct group_run_stats *rs,
2038 				       struct flist_head *opt_list,
2039 				       struct buf_output *out)
2040 {
2041 	struct json_object *ret = NULL;
2042 
2043 	if (output_format & FIO_OUTPUT_TERSE)
2044 		show_thread_status_terse(ts, rs,  out);
2045 	if (output_format & FIO_OUTPUT_JSON)
2046 		ret = show_thread_status_json(ts, rs, opt_list);
2047 	if (output_format & FIO_OUTPUT_NORMAL)
2048 		show_thread_status_normal(ts, rs,  out);
2049 
2050 	return ret;
2051 }
2052 
__sum_stat(struct io_stat * dst,struct io_stat * src,bool first)2053 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
2054 {
2055 	double mean, S;
2056 
2057 	dst->min_val = min(dst->min_val, src->min_val);
2058 	dst->max_val = max(dst->max_val, src->max_val);
2059 
2060 	/*
2061 	 * Compute new mean and S after the merge
2062 	 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
2063 	 *  #Parallel_algorithm>
2064 	 */
2065 	if (first) {
2066 		mean = src->mean.u.f;
2067 		S = src->S.u.f;
2068 	} else {
2069 		double delta = src->mean.u.f - dst->mean.u.f;
2070 
2071 		mean = ((src->mean.u.f * src->samples) +
2072 			(dst->mean.u.f * dst->samples)) /
2073 			(dst->samples + src->samples);
2074 
2075 		S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
2076 			(dst->samples * src->samples) /
2077 			(dst->samples + src->samples);
2078 	}
2079 
2080 	dst->samples += src->samples;
2081 	dst->mean.u.f = mean;
2082 	dst->S.u.f = S;
2083 
2084 }
2085 
2086 /*
2087  * We sum two kinds of stats - one that is time based, in which case we
2088  * apply the proper summing technique, and then one that is iops/bw
2089  * numbers. For group_reporting, we should just add those up, not make
2090  * them the mean of everything.
2091  */
sum_stat(struct io_stat * dst,struct io_stat * src,bool first,bool pure_sum)2092 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
2093 		     bool pure_sum)
2094 {
2095 	if (src->samples == 0)
2096 		return;
2097 
2098 	if (!pure_sum) {
2099 		__sum_stat(dst, src, first);
2100 		return;
2101 	}
2102 
2103 	if (first) {
2104 		dst->min_val = src->min_val;
2105 		dst->max_val = src->max_val;
2106 		dst->samples = src->samples;
2107 		dst->mean.u.f = src->mean.u.f;
2108 		dst->S.u.f = src->S.u.f;
2109 	} else {
2110 		dst->min_val += src->min_val;
2111 		dst->max_val += src->max_val;
2112 		dst->samples += src->samples;
2113 		dst->mean.u.f += src->mean.u.f;
2114 		dst->S.u.f += src->S.u.f;
2115 	}
2116 }
2117 
sum_group_stats(struct group_run_stats * dst,struct group_run_stats * src)2118 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2119 {
2120 	int i;
2121 
2122 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2123 		if (dst->max_run[i] < src->max_run[i])
2124 			dst->max_run[i] = src->max_run[i];
2125 		if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2126 			dst->min_run[i] = src->min_run[i];
2127 		if (dst->max_bw[i] < src->max_bw[i])
2128 			dst->max_bw[i] = src->max_bw[i];
2129 		if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2130 			dst->min_bw[i] = src->min_bw[i];
2131 
2132 		dst->iobytes[i] += src->iobytes[i];
2133 		dst->agg[i] += src->agg[i];
2134 	}
2135 
2136 	if (!dst->kb_base)
2137 		dst->kb_base = src->kb_base;
2138 	if (!dst->unit_base)
2139 		dst->unit_base = src->unit_base;
2140 	if (!dst->sig_figs)
2141 		dst->sig_figs = src->sig_figs;
2142 }
2143 
sum_thread_stats(struct thread_stat * dst,struct thread_stat * src,bool first)2144 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
2145 		      bool first)
2146 {
2147 	int k, l, m;
2148 
2149 	sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
2150 
2151 	for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2152 		if (dst->unified_rw_rep != UNIFIED_MIXED) {
2153 			sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
2154 			sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
2155 			sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
2156 			sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
2157 			sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
2158 			sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
2159 			sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
2160 
2161 			dst->io_bytes[l] += src->io_bytes[l];
2162 
2163 			if (dst->runtime[l] < src->runtime[l])
2164 				dst->runtime[l] = src->runtime[l];
2165 		} else {
2166 			sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
2167 			sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
2168 			sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
2169 			sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
2170 			sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
2171 			sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
2172 			sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
2173 
2174 			dst->io_bytes[0] += src->io_bytes[l];
2175 
2176 			if (dst->runtime[0] < src->runtime[l])
2177 				dst->runtime[0] = src->runtime[l];
2178 
2179 			/*
2180 			 * We're summing to the same destination, so override
2181 			 * 'first' after the first iteration of the loop
2182 			 */
2183 			first = false;
2184 		}
2185 	}
2186 
2187 	dst->usr_time += src->usr_time;
2188 	dst->sys_time += src->sys_time;
2189 	dst->ctx += src->ctx;
2190 	dst->majf += src->majf;
2191 	dst->minf += src->minf;
2192 
2193 	for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2194 		dst->io_u_map[k] += src->io_u_map[k];
2195 		dst->io_u_submit[k] += src->io_u_submit[k];
2196 		dst->io_u_complete[k] += src->io_u_complete[k];
2197 	}
2198 
2199 	for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2200 		dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2201 	for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2202 		dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2203 	for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2204 		dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2205 
2206 	for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2207 		if (dst->unified_rw_rep != UNIFIED_MIXED) {
2208 			dst->total_io_u[k] += src->total_io_u[k];
2209 			dst->short_io_u[k] += src->short_io_u[k];
2210 			dst->drop_io_u[k] += src->drop_io_u[k];
2211 		} else {
2212 			dst->total_io_u[0] += src->total_io_u[k];
2213 			dst->short_io_u[0] += src->short_io_u[k];
2214 			dst->drop_io_u[0] += src->drop_io_u[k];
2215 		}
2216 	}
2217 
2218 	dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2219 
2220 	for (k = 0; k < FIO_LAT_CNT; k++)
2221 		for (l = 0; l < DDIR_RWDIR_CNT; l++)
2222 			for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2223 				if (dst->unified_rw_rep != UNIFIED_MIXED)
2224 					dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2225 				else
2226 					dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2227 
2228 	for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2229 		dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2230 
2231 	for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2232 		for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2233 			if (dst->unified_rw_rep != UNIFIED_MIXED) {
2234 				dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2235 				dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2236 			} else {
2237 				dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2238 				dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2239 			}
2240 
2241 		}
2242 	}
2243 
2244 	dst->total_run_time += src->total_run_time;
2245 	dst->total_submit += src->total_submit;
2246 	dst->total_complete += src->total_complete;
2247 	dst->nr_zone_resets += src->nr_zone_resets;
2248 	dst->cachehit += src->cachehit;
2249 	dst->cachemiss += src->cachemiss;
2250 }
2251 
init_group_run_stat(struct group_run_stats * gs)2252 void init_group_run_stat(struct group_run_stats *gs)
2253 {
2254 	int i;
2255 	memset(gs, 0, sizeof(*gs));
2256 
2257 	for (i = 0; i < DDIR_RWDIR_CNT; i++)
2258 		gs->min_bw[i] = gs->min_run[i] = ~0UL;
2259 }
2260 
init_thread_stat_min_vals(struct thread_stat * ts)2261 void init_thread_stat_min_vals(struct thread_stat *ts)
2262 {
2263 	int i;
2264 
2265 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2266 		ts->clat_stat[i].min_val = ULONG_MAX;
2267 		ts->slat_stat[i].min_val = ULONG_MAX;
2268 		ts->lat_stat[i].min_val = ULONG_MAX;
2269 		ts->bw_stat[i].min_val = ULONG_MAX;
2270 		ts->iops_stat[i].min_val = ULONG_MAX;
2271 		ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2272 		ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2273 	}
2274 	ts->sync_stat.min_val = ULONG_MAX;
2275 }
2276 
init_thread_stat(struct thread_stat * ts)2277 void init_thread_stat(struct thread_stat *ts)
2278 {
2279 	memset(ts, 0, sizeof(*ts));
2280 
2281 	init_thread_stat_min_vals(ts);
2282 	ts->groupid = -1;
2283 }
2284 
__show_run_stats(void)2285 void __show_run_stats(void)
2286 {
2287 	struct group_run_stats *runstats, *rs;
2288 	struct thread_data *td;
2289 	struct thread_stat *threadstats, *ts;
2290 	int i, j, k, nr_ts, last_ts, idx;
2291 	bool kb_base_warned = false;
2292 	bool unit_base_warned = false;
2293 	struct json_object *root = NULL;
2294 	struct json_array *array = NULL;
2295 	struct buf_output output[FIO_OUTPUT_NR];
2296 	struct flist_head **opt_lists;
2297 
2298 	runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2299 
2300 	for (i = 0; i < groupid + 1; i++)
2301 		init_group_run_stat(&runstats[i]);
2302 
2303 	/*
2304 	 * find out how many threads stats we need. if group reporting isn't
2305 	 * enabled, it's one-per-td.
2306 	 */
2307 	nr_ts = 0;
2308 	last_ts = -1;
2309 	for_each_td(td, i) {
2310 		if (!td->o.group_reporting) {
2311 			nr_ts++;
2312 			continue;
2313 		}
2314 		if (last_ts == td->groupid)
2315 			continue;
2316 		if (!td->o.stats)
2317 			continue;
2318 
2319 		last_ts = td->groupid;
2320 		nr_ts++;
2321 	}
2322 
2323 	threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2324 	opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2325 
2326 	for (i = 0; i < nr_ts; i++) {
2327 		init_thread_stat(&threadstats[i]);
2328 		opt_lists[i] = NULL;
2329 	}
2330 
2331 	j = 0;
2332 	last_ts = -1;
2333 	idx = 0;
2334 	for_each_td(td, i) {
2335 		if (!td->o.stats)
2336 			continue;
2337 		if (idx && (!td->o.group_reporting ||
2338 		    (td->o.group_reporting && last_ts != td->groupid))) {
2339 			idx = 0;
2340 			j++;
2341 		}
2342 
2343 		last_ts = td->groupid;
2344 
2345 		ts = &threadstats[j];
2346 
2347 		ts->clat_percentiles = td->o.clat_percentiles;
2348 		ts->lat_percentiles = td->o.lat_percentiles;
2349 		ts->slat_percentiles = td->o.slat_percentiles;
2350 		ts->percentile_precision = td->o.percentile_precision;
2351 		memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2352 		opt_lists[j] = &td->opt_list;
2353 
2354 		idx++;
2355 		ts->members++;
2356 
2357 		if (ts->groupid == -1) {
2358 			/*
2359 			 * These are per-group shared already
2360 			 */
2361 			snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2362 			if (td->o.description)
2363 				snprintf(ts->description,
2364 					 sizeof(ts->description), "%s",
2365 					 td->o.description);
2366 			else
2367 				memset(ts->description, 0, FIO_JOBDESC_SIZE);
2368 
2369 			/*
2370 			 * If multiple entries in this group, this is
2371 			 * the first member.
2372 			 */
2373 			ts->thread_number = td->thread_number;
2374 			ts->groupid = td->groupid;
2375 
2376 			/*
2377 			 * first pid in group, not very useful...
2378 			 */
2379 			ts->pid = td->pid;
2380 
2381 			ts->kb_base = td->o.kb_base;
2382 			ts->unit_base = td->o.unit_base;
2383 			ts->sig_figs = td->o.sig_figs;
2384 			ts->unified_rw_rep = td->o.unified_rw_rep;
2385 		} else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2386 			log_info("fio: kb_base differs for jobs in group, using"
2387 				 " %u as the base\n", ts->kb_base);
2388 			kb_base_warned = true;
2389 		} else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2390 			log_info("fio: unit_base differs for jobs in group, using"
2391 				 " %u as the base\n", ts->unit_base);
2392 			unit_base_warned = true;
2393 		}
2394 
2395 		ts->continue_on_error = td->o.continue_on_error;
2396 		ts->total_err_count += td->total_err_count;
2397 		ts->first_error = td->first_error;
2398 		if (!ts->error) {
2399 			if (!td->error && td->o.continue_on_error &&
2400 			    td->first_error) {
2401 				ts->error = td->first_error;
2402 				snprintf(ts->verror, sizeof(ts->verror), "%s",
2403 					 td->verror);
2404 			} else  if (td->error) {
2405 				ts->error = td->error;
2406 				snprintf(ts->verror, sizeof(ts->verror), "%s",
2407 					 td->verror);
2408 			}
2409 		}
2410 
2411 		ts->latency_depth = td->latency_qd;
2412 		ts->latency_target = td->o.latency_target;
2413 		ts->latency_percentile = td->o.latency_percentile;
2414 		ts->latency_window = td->o.latency_window;
2415 
2416 		ts->nr_block_infos = td->ts.nr_block_infos;
2417 		for (k = 0; k < ts->nr_block_infos; k++)
2418 			ts->block_infos[k] = td->ts.block_infos[k];
2419 
2420 		sum_thread_stats(ts, &td->ts, idx == 1);
2421 
2422 		if (td->o.ss_dur) {
2423 			ts->ss_state = td->ss.state;
2424 			ts->ss_dur = td->ss.dur;
2425 			ts->ss_head = td->ss.head;
2426 			ts->ss_bw_data = td->ss.bw_data;
2427 			ts->ss_iops_data = td->ss.iops_data;
2428 			ts->ss_limit.u.f = td->ss.limit;
2429 			ts->ss_slope.u.f = td->ss.slope;
2430 			ts->ss_deviation.u.f = td->ss.deviation;
2431 			ts->ss_criterion.u.f = td->ss.criterion;
2432 		}
2433 		else
2434 			ts->ss_dur = ts->ss_state = 0;
2435 	}
2436 
2437 	for (i = 0; i < nr_ts; i++) {
2438 		unsigned long long bw;
2439 
2440 		ts = &threadstats[i];
2441 		if (ts->groupid == -1)
2442 			continue;
2443 		rs = &runstats[ts->groupid];
2444 		rs->kb_base = ts->kb_base;
2445 		rs->unit_base = ts->unit_base;
2446 		rs->sig_figs = ts->sig_figs;
2447 		rs->unified_rw_rep |= ts->unified_rw_rep;
2448 
2449 		for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2450 			if (!ts->runtime[j])
2451 				continue;
2452 			if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2453 				rs->min_run[j] = ts->runtime[j];
2454 			if (ts->runtime[j] > rs->max_run[j])
2455 				rs->max_run[j] = ts->runtime[j];
2456 
2457 			bw = 0;
2458 			if (ts->runtime[j])
2459 				bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2460 			if (bw < rs->min_bw[j])
2461 				rs->min_bw[j] = bw;
2462 			if (bw > rs->max_bw[j])
2463 				rs->max_bw[j] = bw;
2464 
2465 			rs->iobytes[j] += ts->io_bytes[j];
2466 		}
2467 	}
2468 
2469 	for (i = 0; i < groupid + 1; i++) {
2470 		int ddir;
2471 
2472 		rs = &runstats[i];
2473 
2474 		for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2475 			if (rs->max_run[ddir])
2476 				rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2477 						rs->max_run[ddir];
2478 		}
2479 	}
2480 
2481 	for (i = 0; i < FIO_OUTPUT_NR; i++)
2482 		buf_output_init(&output[i]);
2483 
2484 	/*
2485 	 * don't overwrite last signal output
2486 	 */
2487 	if (output_format & FIO_OUTPUT_NORMAL)
2488 		log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2489 	if (output_format & FIO_OUTPUT_JSON) {
2490 		struct thread_data *global;
2491 		char time_buf[32];
2492 		struct timeval now;
2493 		unsigned long long ms_since_epoch;
2494 		time_t tv_sec;
2495 
2496 		gettimeofday(&now, NULL);
2497 		ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2498 		                 (unsigned long long)(now.tv_usec) / 1000;
2499 
2500 		tv_sec = now.tv_sec;
2501 		os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2502 		if (time_buf[strlen(time_buf) - 1] == '\n')
2503 			time_buf[strlen(time_buf) - 1] = '\0';
2504 
2505 		root = json_create_object();
2506 		json_object_add_value_string(root, "fio version", fio_version_string);
2507 		json_object_add_value_int(root, "timestamp", now.tv_sec);
2508 		json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2509 		json_object_add_value_string(root, "time", time_buf);
2510 		global = get_global_options();
2511 		json_add_job_opts(root, "global options", &global->opt_list);
2512 		array = json_create_array();
2513 		json_object_add_value_array(root, "jobs", array);
2514 	}
2515 
2516 	if (is_backend)
2517 		fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2518 
2519 	for (i = 0; i < nr_ts; i++) {
2520 		ts = &threadstats[i];
2521 		rs = &runstats[ts->groupid];
2522 
2523 		if (is_backend) {
2524 			fio_server_send_job_options(opt_lists[i], i);
2525 			fio_server_send_ts(ts, rs);
2526 		} else {
2527 			if (output_format & FIO_OUTPUT_TERSE)
2528 				show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2529 			if (output_format & FIO_OUTPUT_JSON) {
2530 				struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2531 				json_array_add_value_object(array, tmp);
2532 			}
2533 			if (output_format & FIO_OUTPUT_NORMAL)
2534 				show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2535 		}
2536 	}
2537 	if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2538 		/* disk util stats, if any */
2539 		show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2540 
2541 		show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2542 
2543 		json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2544 		log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2545 		json_free_object(root);
2546 	}
2547 
2548 	for (i = 0; i < groupid + 1; i++) {
2549 		rs = &runstats[i];
2550 
2551 		rs->groupid = i;
2552 		if (is_backend)
2553 			fio_server_send_gs(rs);
2554 		else if (output_format & FIO_OUTPUT_NORMAL)
2555 			show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2556 	}
2557 
2558 	if (is_backend)
2559 		fio_server_send_du();
2560 	else if (output_format & FIO_OUTPUT_NORMAL) {
2561 		show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2562 		show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2563 	}
2564 
2565 	for (i = 0; i < FIO_OUTPUT_NR; i++) {
2566 		struct buf_output *out = &output[i];
2567 
2568 		log_info_buf(out->buf, out->buflen);
2569 		buf_output_free(out);
2570 	}
2571 
2572 	fio_idle_prof_cleanup();
2573 
2574 	log_info_flush();
2575 	free(runstats);
2576 	free(threadstats);
2577 	free(opt_lists);
2578 }
2579 
__show_running_run_stats(void)2580 int __show_running_run_stats(void)
2581 {
2582 	struct thread_data *td;
2583 	unsigned long long *rt;
2584 	struct timespec ts;
2585 	int i;
2586 
2587 	fio_sem_down(stat_sem);
2588 
2589 	rt = malloc(thread_number * sizeof(unsigned long long));
2590 	fio_gettime(&ts, NULL);
2591 
2592 	for_each_td(td, i) {
2593 		td->update_rusage = 1;
2594 		for_each_rw_ddir(ddir) {
2595 			td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2596 		}
2597 		td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2598 
2599 		rt[i] = mtime_since(&td->start, &ts);
2600 		if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2601 			td->ts.runtime[DDIR_READ] += rt[i];
2602 		if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2603 			td->ts.runtime[DDIR_WRITE] += rt[i];
2604 		if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2605 			td->ts.runtime[DDIR_TRIM] += rt[i];
2606 	}
2607 
2608 	for_each_td(td, i) {
2609 		if (td->runstate >= TD_EXITED)
2610 			continue;
2611 		if (td->rusage_sem) {
2612 			td->update_rusage = 1;
2613 			fio_sem_down(td->rusage_sem);
2614 		}
2615 		td->update_rusage = 0;
2616 	}
2617 
2618 	__show_run_stats();
2619 
2620 	for_each_td(td, i) {
2621 		if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2622 			td->ts.runtime[DDIR_READ] -= rt[i];
2623 		if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2624 			td->ts.runtime[DDIR_WRITE] -= rt[i];
2625 		if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2626 			td->ts.runtime[DDIR_TRIM] -= rt[i];
2627 	}
2628 
2629 	free(rt);
2630 	fio_sem_up(stat_sem);
2631 
2632 	return 0;
2633 }
2634 
2635 static bool status_file_disabled;
2636 
2637 #define FIO_STATUS_FILE		"fio-dump-status"
2638 
check_status_file(void)2639 static int check_status_file(void)
2640 {
2641 	struct stat sb;
2642 	const char *temp_dir;
2643 	char fio_status_file_path[PATH_MAX];
2644 
2645 	if (status_file_disabled)
2646 		return 0;
2647 
2648 	temp_dir = getenv("TMPDIR");
2649 	if (temp_dir == NULL) {
2650 		temp_dir = getenv("TEMP");
2651 		if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2652 			temp_dir = NULL;
2653 	}
2654 	if (temp_dir == NULL)
2655 		temp_dir = "/tmp";
2656 #ifdef __COVERITY__
2657 	__coverity_tainted_data_sanitize__(temp_dir);
2658 #endif
2659 
2660 	snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2661 
2662 	if (stat(fio_status_file_path, &sb))
2663 		return 0;
2664 
2665 	if (unlink(fio_status_file_path) < 0) {
2666 		log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2667 							strerror(errno));
2668 		log_err("fio: disabling status file updates\n");
2669 		status_file_disabled = true;
2670 	}
2671 
2672 	return 1;
2673 }
2674 
check_for_running_stats(void)2675 void check_for_running_stats(void)
2676 {
2677 	if (check_status_file()) {
2678 		show_running_run_stats();
2679 		return;
2680 	}
2681 }
2682 
add_stat_sample(struct io_stat * is,unsigned long long data)2683 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2684 {
2685 	double val = data;
2686 	double delta;
2687 
2688 	if (data > is->max_val)
2689 		is->max_val = data;
2690 	if (data < is->min_val)
2691 		is->min_val = data;
2692 
2693 	delta = val - is->mean.u.f;
2694 	if (delta) {
2695 		is->mean.u.f += delta / (is->samples + 1.0);
2696 		is->S.u.f += delta * (val - is->mean.u.f);
2697 	}
2698 
2699 	is->samples++;
2700 }
2701 
2702 /*
2703  * Return a struct io_logs, which is added to the tail of the log
2704  * list for 'iolog'.
2705  */
get_new_log(struct io_log * iolog)2706 static struct io_logs *get_new_log(struct io_log *iolog)
2707 {
2708 	size_t new_samples;
2709 	struct io_logs *cur_log;
2710 
2711 	/*
2712 	 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2713 	 * forever
2714 	 */
2715 	if (!iolog->cur_log_max) {
2716 		new_samples = iolog->td->o.log_entries;
2717 	} else {
2718 		new_samples = iolog->cur_log_max * 2;
2719 		if (new_samples > MAX_LOG_ENTRIES)
2720 			new_samples = MAX_LOG_ENTRIES;
2721 	}
2722 
2723 	cur_log = smalloc(sizeof(*cur_log));
2724 	if (cur_log) {
2725 		INIT_FLIST_HEAD(&cur_log->list);
2726 		cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2727 		if (cur_log->log) {
2728 			cur_log->nr_samples = 0;
2729 			cur_log->max_samples = new_samples;
2730 			flist_add_tail(&cur_log->list, &iolog->io_logs);
2731 			iolog->cur_log_max = new_samples;
2732 			return cur_log;
2733 		}
2734 		sfree(cur_log);
2735 	}
2736 
2737 	return NULL;
2738 }
2739 
2740 /*
2741  * Add and return a new log chunk, or return current log if big enough
2742  */
regrow_log(struct io_log * iolog)2743 static struct io_logs *regrow_log(struct io_log *iolog)
2744 {
2745 	struct io_logs *cur_log;
2746 	int i;
2747 
2748 	if (!iolog || iolog->disabled)
2749 		goto disable;
2750 
2751 	cur_log = iolog_cur_log(iolog);
2752 	if (!cur_log) {
2753 		cur_log = get_new_log(iolog);
2754 		if (!cur_log)
2755 			return NULL;
2756 	}
2757 
2758 	if (cur_log->nr_samples < cur_log->max_samples)
2759 		return cur_log;
2760 
2761 	/*
2762 	 * No room for a new sample. If we're compressing on the fly, flush
2763 	 * out the current chunk
2764 	 */
2765 	if (iolog->log_gz) {
2766 		if (iolog_cur_flush(iolog, cur_log)) {
2767 			log_err("fio: failed flushing iolog! Will stop logging.\n");
2768 			return NULL;
2769 		}
2770 	}
2771 
2772 	/*
2773 	 * Get a new log array, and add to our list
2774 	 */
2775 	cur_log = get_new_log(iolog);
2776 	if (!cur_log) {
2777 		log_err("fio: failed extending iolog! Will stop logging.\n");
2778 		return NULL;
2779 	}
2780 
2781 	if (!iolog->pending || !iolog->pending->nr_samples)
2782 		return cur_log;
2783 
2784 	/*
2785 	 * Flush pending items to new log
2786 	 */
2787 	for (i = 0; i < iolog->pending->nr_samples; i++) {
2788 		struct io_sample *src, *dst;
2789 
2790 		src = get_sample(iolog, iolog->pending, i);
2791 		dst = get_sample(iolog, cur_log, i);
2792 		memcpy(dst, src, log_entry_sz(iolog));
2793 	}
2794 	cur_log->nr_samples = iolog->pending->nr_samples;
2795 
2796 	iolog->pending->nr_samples = 0;
2797 	return cur_log;
2798 disable:
2799 	if (iolog)
2800 		iolog->disabled = true;
2801 	return NULL;
2802 }
2803 
regrow_logs(struct thread_data * td)2804 void regrow_logs(struct thread_data *td)
2805 {
2806 	regrow_log(td->slat_log);
2807 	regrow_log(td->clat_log);
2808 	regrow_log(td->clat_hist_log);
2809 	regrow_log(td->lat_log);
2810 	regrow_log(td->bw_log);
2811 	regrow_log(td->iops_log);
2812 	td->flags &= ~TD_F_REGROW_LOGS;
2813 }
2814 
regrow_agg_logs(void)2815 void regrow_agg_logs(void)
2816 {
2817 	enum fio_ddir ddir;
2818 
2819 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2820 		regrow_log(agg_io_log[ddir]);
2821 }
2822 
get_cur_log(struct io_log * iolog)2823 static struct io_logs *get_cur_log(struct io_log *iolog)
2824 {
2825 	struct io_logs *cur_log;
2826 
2827 	cur_log = iolog_cur_log(iolog);
2828 	if (!cur_log) {
2829 		cur_log = get_new_log(iolog);
2830 		if (!cur_log)
2831 			return NULL;
2832 	}
2833 
2834 	if (cur_log->nr_samples < cur_log->max_samples)
2835 		return cur_log;
2836 
2837 	/*
2838 	 * Out of space. If we're in IO offload mode, or we're not doing
2839 	 * per unit logging (hence logging happens outside of the IO thread
2840 	 * as well), add a new log chunk inline. If we're doing inline
2841 	 * submissions, flag 'td' as needing a log regrow and we'll take
2842 	 * care of it on the submission side.
2843 	 */
2844 	if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2845 	    !per_unit_log(iolog))
2846 		return regrow_log(iolog);
2847 
2848 	if (iolog->td)
2849 		iolog->td->flags |= TD_F_REGROW_LOGS;
2850 	if (iolog->pending)
2851 		assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2852 	return iolog->pending;
2853 }
2854 
__add_log_sample(struct io_log * iolog,union io_sample_data data,enum fio_ddir ddir,unsigned long long bs,unsigned long t,uint64_t offset,unsigned int priority)2855 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2856 			     enum fio_ddir ddir, unsigned long long bs,
2857 			     unsigned long t, uint64_t offset,
2858 			     unsigned int priority)
2859 {
2860 	struct io_logs *cur_log;
2861 
2862 	if (iolog->disabled)
2863 		return;
2864 	if (flist_empty(&iolog->io_logs))
2865 		iolog->avg_last[ddir] = t;
2866 
2867 	cur_log = get_cur_log(iolog);
2868 	if (cur_log) {
2869 		struct io_sample *s;
2870 
2871 		s = get_sample(iolog, cur_log, cur_log->nr_samples);
2872 
2873 		s->data = data;
2874 		s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2875 		io_sample_set_ddir(iolog, s, ddir);
2876 		s->bs = bs;
2877 		s->priority = priority;
2878 
2879 		if (iolog->log_offset) {
2880 			struct io_sample_offset *so = (void *) s;
2881 
2882 			so->offset = offset;
2883 		}
2884 
2885 		cur_log->nr_samples++;
2886 		return;
2887 	}
2888 
2889 	iolog->disabled = true;
2890 }
2891 
reset_io_stat(struct io_stat * ios)2892 static inline void reset_io_stat(struct io_stat *ios)
2893 {
2894 	ios->min_val = -1ULL;
2895 	ios->max_val = ios->samples = 0;
2896 	ios->mean.u.f = ios->S.u.f = 0;
2897 }
2898 
reset_io_stats(struct thread_data * td)2899 void reset_io_stats(struct thread_data *td)
2900 {
2901 	struct thread_stat *ts = &td->ts;
2902 	int i, j, k;
2903 
2904 	for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2905 		reset_io_stat(&ts->clat_high_prio_stat[i]);
2906 		reset_io_stat(&ts->clat_low_prio_stat[i]);
2907 		reset_io_stat(&ts->clat_stat[i]);
2908 		reset_io_stat(&ts->slat_stat[i]);
2909 		reset_io_stat(&ts->lat_stat[i]);
2910 		reset_io_stat(&ts->bw_stat[i]);
2911 		reset_io_stat(&ts->iops_stat[i]);
2912 
2913 		ts->io_bytes[i] = 0;
2914 		ts->runtime[i] = 0;
2915 		ts->total_io_u[i] = 0;
2916 		ts->short_io_u[i] = 0;
2917 		ts->drop_io_u[i] = 0;
2918 
2919 		for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2920 			ts->io_u_plat_high_prio[i][j] = 0;
2921 			ts->io_u_plat_low_prio[i][j] = 0;
2922 			if (!i)
2923 				ts->io_u_sync_plat[j] = 0;
2924 		}
2925 	}
2926 
2927 	for (i = 0; i < FIO_LAT_CNT; i++)
2928 		for (j = 0; j < DDIR_RWDIR_CNT; j++)
2929 			for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2930 				ts->io_u_plat[i][j][k] = 0;
2931 
2932 	ts->total_io_u[DDIR_SYNC] = 0;
2933 
2934 	for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2935 		ts->io_u_map[i] = 0;
2936 		ts->io_u_submit[i] = 0;
2937 		ts->io_u_complete[i] = 0;
2938 	}
2939 
2940 	for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2941 		ts->io_u_lat_n[i] = 0;
2942 	for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2943 		ts->io_u_lat_u[i] = 0;
2944 	for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2945 		ts->io_u_lat_m[i] = 0;
2946 
2947 	ts->total_submit = 0;
2948 	ts->total_complete = 0;
2949 	ts->nr_zone_resets = 0;
2950 	ts->cachehit = ts->cachemiss = 0;
2951 }
2952 
__add_stat_to_log(struct io_log * iolog,enum fio_ddir ddir,unsigned long elapsed,bool log_max)2953 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2954 			      unsigned long elapsed, bool log_max)
2955 {
2956 	/*
2957 	 * Note an entry in the log. Use the mean from the logged samples,
2958 	 * making sure to properly round up. Only write a log entry if we
2959 	 * had actual samples done.
2960 	 */
2961 	if (iolog->avg_window[ddir].samples) {
2962 		union io_sample_data data;
2963 
2964 		if (log_max)
2965 			data.val = iolog->avg_window[ddir].max_val;
2966 		else
2967 			data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2968 
2969 		__add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2970 	}
2971 
2972 	reset_io_stat(&iolog->avg_window[ddir]);
2973 }
2974 
_add_stat_to_log(struct io_log * iolog,unsigned long elapsed,bool log_max)2975 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2976 			     bool log_max)
2977 {
2978 	int ddir;
2979 
2980 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2981 		__add_stat_to_log(iolog, ddir, elapsed, log_max);
2982 }
2983 
add_log_sample(struct thread_data * td,struct io_log * iolog,union io_sample_data data,enum fio_ddir ddir,unsigned long long bs,uint64_t offset,unsigned int ioprio)2984 static unsigned long add_log_sample(struct thread_data *td,
2985 				    struct io_log *iolog,
2986 				    union io_sample_data data,
2987 				    enum fio_ddir ddir, unsigned long long bs,
2988 				    uint64_t offset, unsigned int ioprio)
2989 {
2990 	unsigned long elapsed, this_window;
2991 
2992 	if (!ddir_rw(ddir))
2993 		return 0;
2994 
2995 	elapsed = mtime_since_now(&td->epoch);
2996 
2997 	/*
2998 	 * If no time averaging, just add the log sample.
2999 	 */
3000 	if (!iolog->avg_msec) {
3001 		__add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3002 				 ioprio);
3003 		return 0;
3004 	}
3005 
3006 	/*
3007 	 * Add the sample. If the time period has passed, then
3008 	 * add that entry to the log and clear.
3009 	 */
3010 	add_stat_sample(&iolog->avg_window[ddir], data.val);
3011 
3012 	/*
3013 	 * If period hasn't passed, adding the above sample is all we
3014 	 * need to do.
3015 	 */
3016 	this_window = elapsed - iolog->avg_last[ddir];
3017 	if (elapsed < iolog->avg_last[ddir])
3018 		return iolog->avg_last[ddir] - elapsed;
3019 	else if (this_window < iolog->avg_msec) {
3020 		unsigned long diff = iolog->avg_msec - this_window;
3021 
3022 		if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3023 			return diff;
3024 	}
3025 
3026 	__add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3027 
3028 	iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3029 
3030 	return iolog->avg_msec;
3031 }
3032 
finalize_logs(struct thread_data * td,bool unit_logs)3033 void finalize_logs(struct thread_data *td, bool unit_logs)
3034 {
3035 	unsigned long elapsed;
3036 
3037 	elapsed = mtime_since_now(&td->epoch);
3038 
3039 	if (td->clat_log && unit_logs)
3040 		_add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3041 	if (td->slat_log && unit_logs)
3042 		_add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3043 	if (td->lat_log && unit_logs)
3044 		_add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3045 	if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3046 		_add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3047 	if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3048 		_add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3049 }
3050 
add_agg_sample(union io_sample_data data,enum fio_ddir ddir,unsigned long long bs)3051 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3052 		    unsigned long long bs)
3053 {
3054 	struct io_log *iolog;
3055 
3056 	if (!ddir_rw(ddir))
3057 		return;
3058 
3059 	iolog = agg_io_log[ddir];
3060 	__add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3061 }
3062 
add_sync_clat_sample(struct thread_stat * ts,unsigned long long nsec)3063 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3064 {
3065 	unsigned int idx = plat_val_to_idx(nsec);
3066 	assert(idx < FIO_IO_U_PLAT_NR);
3067 
3068 	ts->io_u_sync_plat[idx]++;
3069 	add_stat_sample(&ts->sync_stat, nsec);
3070 }
3071 
add_lat_percentile_sample(struct thread_stat * ts,unsigned long long nsec,enum fio_ddir ddir,enum fio_lat lat)3072 static inline void add_lat_percentile_sample(struct thread_stat *ts,
3073 					     unsigned long long nsec,
3074 					     enum fio_ddir ddir,
3075 					     enum fio_lat lat)
3076 {
3077 	unsigned int idx = plat_val_to_idx(nsec);
3078 	assert(idx < FIO_IO_U_PLAT_NR);
3079 
3080 	ts->io_u_plat[lat][ddir][idx]++;
3081 }
3082 
add_lat_percentile_prio_sample(struct thread_stat * ts,unsigned long long nsec,enum fio_ddir ddir,bool high_prio)3083 static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
3084 						  unsigned long long nsec,
3085 						  enum fio_ddir ddir,
3086 						  bool high_prio)
3087 {
3088 	unsigned int idx = plat_val_to_idx(nsec);
3089 
3090 	if (!high_prio)
3091 		ts->io_u_plat_low_prio[ddir][idx]++;
3092 	else
3093 		ts->io_u_plat_high_prio[ddir][idx]++;
3094 }
3095 
add_clat_sample(struct thread_data * td,enum fio_ddir ddir,unsigned long long nsec,unsigned long long bs,uint64_t offset,unsigned int ioprio,bool high_prio)3096 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3097 		     unsigned long long nsec, unsigned long long bs,
3098 		     uint64_t offset, unsigned int ioprio, bool high_prio)
3099 {
3100 	const bool needs_lock = td_async_processing(td);
3101 	unsigned long elapsed, this_window;
3102 	struct thread_stat *ts = &td->ts;
3103 	struct io_log *iolog = td->clat_hist_log;
3104 
3105 	if (needs_lock)
3106 		__td_io_u_lock(td);
3107 
3108 	add_stat_sample(&ts->clat_stat[ddir], nsec);
3109 
3110 	/*
3111 	 * When lat_percentiles=1 (default 0), the reported high/low priority
3112 	 * percentiles and stats are used for describing total latency values,
3113 	 * even though the variable names themselves start with clat_.
3114 	 *
3115 	 * Because of the above definition, add a prio stat sample only when
3116 	 * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3117 	 * when lat_percentiles=1.
3118 	 */
3119 	if (!ts->lat_percentiles) {
3120 		if (high_prio)
3121 			add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3122 		else
3123 			add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3124 	}
3125 
3126 	if (td->clat_log)
3127 		add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3128 			       offset, ioprio);
3129 
3130 	if (ts->clat_percentiles) {
3131 		/*
3132 		 * Because of the above definition, add a prio lat percentile
3133 		 * sample only when lat_percentiles=0. add_lat_sample() will add
3134 		 * the prio lat percentile sample when lat_percentiles=1.
3135 		 */
3136 		add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3137 		if (!ts->lat_percentiles)
3138 			add_lat_percentile_prio_sample(ts, nsec, ddir,
3139 						       high_prio);
3140 	}
3141 
3142 	if (iolog && iolog->hist_msec) {
3143 		struct io_hist *hw = &iolog->hist_window[ddir];
3144 
3145 		hw->samples++;
3146 		elapsed = mtime_since_now(&td->epoch);
3147 		if (!hw->hist_last)
3148 			hw->hist_last = elapsed;
3149 		this_window = elapsed - hw->hist_last;
3150 
3151 		if (this_window >= iolog->hist_msec) {
3152 			uint64_t *io_u_plat;
3153 			struct io_u_plat_entry *dst;
3154 
3155 			/*
3156 			 * Make a byte-for-byte copy of the latency histogram
3157 			 * stored in td->ts.io_u_plat[ddir], recording it in a
3158 			 * log sample. Note that the matching call to free() is
3159 			 * located in iolog.c after printing this sample to the
3160 			 * log file.
3161 			 */
3162 			io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3163 			dst = malloc(sizeof(struct io_u_plat_entry));
3164 			memcpy(&(dst->io_u_plat), io_u_plat,
3165 				FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3166 			flist_add(&dst->list, &hw->list);
3167 			__add_log_sample(iolog, sample_plat(dst), ddir, bs,
3168 					 elapsed, offset, ioprio);
3169 
3170 			/*
3171 			 * Update the last time we recorded as being now, minus
3172 			 * any drift in time we encountered before actually
3173 			 * making the record.
3174 			 */
3175 			hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3176 			hw->samples = 0;
3177 		}
3178 	}
3179 
3180 	if (needs_lock)
3181 		__td_io_u_unlock(td);
3182 }
3183 
add_slat_sample(struct thread_data * td,enum fio_ddir ddir,unsigned long long nsec,unsigned long long bs,uint64_t offset,unsigned int ioprio)3184 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3185 		     unsigned long long nsec, unsigned long long bs,
3186 		     uint64_t offset, unsigned int ioprio)
3187 {
3188 	const bool needs_lock = td_async_processing(td);
3189 	struct thread_stat *ts = &td->ts;
3190 
3191 	if (!ddir_rw(ddir))
3192 		return;
3193 
3194 	if (needs_lock)
3195 		__td_io_u_lock(td);
3196 
3197 	add_stat_sample(&ts->slat_stat[ddir], nsec);
3198 
3199 	if (td->slat_log)
3200 		add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3201 			       offset, ioprio);
3202 
3203 	if (ts->slat_percentiles)
3204 		add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3205 
3206 	if (needs_lock)
3207 		__td_io_u_unlock(td);
3208 }
3209 
add_lat_sample(struct thread_data * td,enum fio_ddir ddir,unsigned long long nsec,unsigned long long bs,uint64_t offset,unsigned int ioprio,bool high_prio)3210 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3211 		    unsigned long long nsec, unsigned long long bs,
3212 		    uint64_t offset, unsigned int ioprio, bool high_prio)
3213 {
3214 	const bool needs_lock = td_async_processing(td);
3215 	struct thread_stat *ts = &td->ts;
3216 
3217 	if (!ddir_rw(ddir))
3218 		return;
3219 
3220 	if (needs_lock)
3221 		__td_io_u_lock(td);
3222 
3223 	add_stat_sample(&ts->lat_stat[ddir], nsec);
3224 
3225 	if (td->lat_log)
3226 		add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3227 			       offset, ioprio);
3228 
3229 	/*
3230 	 * When lat_percentiles=1 (default 0), the reported high/low priority
3231 	 * percentiles and stats are used for describing total latency values,
3232 	 * even though the variable names themselves start with clat_.
3233 	 *
3234 	 * Because of the above definition, add a prio stat and prio lat
3235 	 * percentile sample only when lat_percentiles=1. add_clat_sample() will
3236 	 * add the prio stat and prio lat percentile sample when
3237 	 * lat_percentiles=0.
3238 	 */
3239 	if (ts->lat_percentiles) {
3240 		add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3241 		add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3242 		if (high_prio)
3243 			add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3244 		else
3245 			add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3246 
3247 	}
3248 	if (needs_lock)
3249 		__td_io_u_unlock(td);
3250 }
3251 
add_bw_sample(struct thread_data * td,struct io_u * io_u,unsigned int bytes,unsigned long long spent)3252 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3253 		   unsigned int bytes, unsigned long long spent)
3254 {
3255 	const bool needs_lock = td_async_processing(td);
3256 	struct thread_stat *ts = &td->ts;
3257 	unsigned long rate;
3258 
3259 	if (spent)
3260 		rate = (unsigned long) (bytes * 1000000ULL / spent);
3261 	else
3262 		rate = 0;
3263 
3264 	if (needs_lock)
3265 		__td_io_u_lock(td);
3266 
3267 	add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3268 
3269 	if (td->bw_log)
3270 		add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3271 			       bytes, io_u->offset, io_u->ioprio);
3272 
3273 	td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3274 
3275 	if (needs_lock)
3276 		__td_io_u_unlock(td);
3277 }
3278 
__add_samples(struct thread_data * td,struct timespec * parent_tv,struct timespec * t,unsigned int avg_time,uint64_t * this_io_bytes,uint64_t * stat_io_bytes,struct io_stat * stat,struct io_log * log,bool is_kb)3279 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3280 			 struct timespec *t, unsigned int avg_time,
3281 			 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3282 			 struct io_stat *stat, struct io_log *log,
3283 			 bool is_kb)
3284 {
3285 	const bool needs_lock = td_async_processing(td);
3286 	unsigned long spent, rate;
3287 	enum fio_ddir ddir;
3288 	unsigned long next, next_log;
3289 
3290 	next_log = avg_time;
3291 
3292 	spent = mtime_since(parent_tv, t);
3293 	if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3294 		return avg_time - spent;
3295 
3296 	if (needs_lock)
3297 		__td_io_u_lock(td);
3298 
3299 	/*
3300 	 * Compute both read and write rates for the interval.
3301 	 */
3302 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3303 		uint64_t delta;
3304 
3305 		delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3306 		if (!delta)
3307 			continue; /* No entries for interval */
3308 
3309 		if (spent) {
3310 			if (is_kb)
3311 				rate = delta * 1000 / spent / 1024; /* KiB/s */
3312 			else
3313 				rate = (delta * 1000) / spent;
3314 		} else
3315 			rate = 0;
3316 
3317 		add_stat_sample(&stat[ddir], rate);
3318 
3319 		if (log) {
3320 			unsigned long long bs = 0;
3321 
3322 			if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3323 				bs = td->o.min_bs[ddir];
3324 
3325 			next = add_log_sample(td, log, sample_val(rate), ddir,
3326 					      bs, 0, 0);
3327 			next_log = min(next_log, next);
3328 		}
3329 
3330 		stat_io_bytes[ddir] = this_io_bytes[ddir];
3331 	}
3332 
3333 	*parent_tv = *t;
3334 
3335 	if (needs_lock)
3336 		__td_io_u_unlock(td);
3337 
3338 	if (spent <= avg_time)
3339 		next = avg_time;
3340 	else
3341 		next = avg_time - (1 + spent - avg_time);
3342 
3343 	return min(next, next_log);
3344 }
3345 
add_bw_samples(struct thread_data * td,struct timespec * t)3346 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3347 {
3348 	return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3349 				td->this_io_bytes, td->stat_io_bytes,
3350 				td->ts.bw_stat, td->bw_log, true);
3351 }
3352 
add_iops_sample(struct thread_data * td,struct io_u * io_u,unsigned int bytes)3353 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3354 		     unsigned int bytes)
3355 {
3356 	const bool needs_lock = td_async_processing(td);
3357 	struct thread_stat *ts = &td->ts;
3358 
3359 	if (needs_lock)
3360 		__td_io_u_lock(td);
3361 
3362 	add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3363 
3364 	if (td->iops_log)
3365 		add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3366 			       bytes, io_u->offset, io_u->ioprio);
3367 
3368 	td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3369 
3370 	if (needs_lock)
3371 		__td_io_u_unlock(td);
3372 }
3373 
add_iops_samples(struct thread_data * td,struct timespec * t)3374 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3375 {
3376 	return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3377 				td->this_io_blocks, td->stat_io_blocks,
3378 				td->ts.iops_stat, td->iops_log, false);
3379 }
3380 
3381 /*
3382  * Returns msecs to next event
3383  */
calc_log_samples(void)3384 int calc_log_samples(void)
3385 {
3386 	struct thread_data *td;
3387 	unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3388 	struct timespec now;
3389 	int i;
3390 	long elapsed_time = 0;
3391 
3392 	fio_gettime(&now, NULL);
3393 
3394 	for_each_td(td, i) {
3395 		elapsed_time = mtime_since_now(&td->epoch);
3396 
3397 		if (!td->o.stats)
3398 			continue;
3399 		if (in_ramp_time(td) ||
3400 		    !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3401 			next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3402 			continue;
3403 		}
3404 		if (!td->bw_log ||
3405 			(td->bw_log && !per_unit_log(td->bw_log))) {
3406 			tmp = add_bw_samples(td, &now);
3407 
3408 			if (td->bw_log)
3409 				log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3410 		}
3411 		if (!td->iops_log ||
3412 			(td->iops_log && !per_unit_log(td->iops_log))) {
3413 			tmp = add_iops_samples(td, &now);
3414 
3415 			if (td->iops_log)
3416 				log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3417 		}
3418 
3419 		if (tmp < next)
3420 			next = tmp;
3421 	}
3422 
3423 	/* if log_avg_msec_min has not been changed, set it to 0 */
3424 	if (log_avg_msec_min == -1U)
3425 		log_avg_msec_min = 0;
3426 
3427 	if (log_avg_msec_min == 0)
3428 		next_mod = elapsed_time;
3429 	else
3430 		next_mod = elapsed_time % log_avg_msec_min;
3431 
3432 	/* correction to keep the time on the log avg msec boundary */
3433 	next = min(next, (log_avg_msec_min - next_mod));
3434 
3435 	return next == ~0U ? 0 : next;
3436 }
3437 
stat_init(void)3438 void stat_init(void)
3439 {
3440 	stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3441 }
3442 
stat_exit(void)3443 void stat_exit(void)
3444 {
3445 	/*
3446 	 * When we have the mutex, we know out-of-band access to it
3447 	 * have ended.
3448 	 */
3449 	fio_sem_down(stat_sem);
3450 	fio_sem_remove(stat_sem);
3451 }
3452 
3453 /*
3454  * Called from signal handler. Wake up status thread.
3455  */
show_running_run_stats(void)3456 void show_running_run_stats(void)
3457 {
3458 	helper_do_stat();
3459 }
3460 
io_u_block_info(struct thread_data * td,struct io_u * io_u)3461 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3462 {
3463 	/* Ignore io_u's which span multiple blocks--they will just get
3464 	 * inaccurate counts. */
3465 	int idx = (io_u->offset - io_u->file->file_offset)
3466 			/ td->o.bs[DDIR_TRIM];
3467 	uint32_t *info = &td->ts.block_infos[idx];
3468 	assert(idx < td->ts.nr_block_infos);
3469 	return info;
3470 }
3471 
3472