xref: /linux/include/linux/usb.h (revision 562be61b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54  * @urb_list: urbs queued to this endpoint; maintained by usbcore
55  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56  *	with one or more transfer descriptors (TDs) per urb
57  * @ep_dev: ep_device for sysfs info
58  * @extra: descriptors following this endpoint in the configuration
59  * @extralen: how many bytes of "extra" are valid
60  * @enabled: URBs may be submitted to this endpoint
61  * @streams: number of USB-3 streams allocated on the endpoint
62  *
63  * USB requests are always queued to a given endpoint, identified by a
64  * descriptor within an active interface in a given USB configuration.
65  */
66 struct usb_host_endpoint {
67 	struct usb_endpoint_descriptor		desc;
68 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
69 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
70 	struct list_head		urb_list;
71 	void				*hcpriv;
72 	struct ep_device		*ep_dev;	/* For sysfs info */
73 
74 	unsigned char *extra;   /* Extra descriptors */
75 	int extralen;
76 	int enabled;
77 	int streams;
78 };
79 
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 	struct usb_interface_descriptor	desc;
83 
84 	int extralen;
85 	unsigned char *extra;   /* Extra descriptors */
86 
87 	/* array of desc.bNumEndpoints endpoints associated with this
88 	 * interface setting.  these will be in no particular order.
89 	 */
90 	struct usb_host_endpoint *endpoint;
91 
92 	char *string;		/* iInterface string, if present */
93 };
94 
95 enum usb_interface_condition {
96 	USB_INTERFACE_UNBOUND = 0,
97 	USB_INTERFACE_BINDING,
98 	USB_INTERFACE_BOUND,
99 	USB_INTERFACE_UNBINDING,
100 };
101 
102 int __must_check
103 usb_find_common_endpoints(struct usb_host_interface *alt,
104 		struct usb_endpoint_descriptor **bulk_in,
105 		struct usb_endpoint_descriptor **bulk_out,
106 		struct usb_endpoint_descriptor **int_in,
107 		struct usb_endpoint_descriptor **int_out);
108 
109 int __must_check
110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 		struct usb_endpoint_descriptor **bulk_in,
112 		struct usb_endpoint_descriptor **bulk_out,
113 		struct usb_endpoint_descriptor **int_in,
114 		struct usb_endpoint_descriptor **int_out);
115 
116 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 		struct usb_endpoint_descriptor **bulk_in)
119 {
120 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121 }
122 
123 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 		struct usb_endpoint_descriptor **bulk_out)
126 {
127 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128 }
129 
130 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)131 usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 		struct usb_endpoint_descriptor **int_in)
133 {
134 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135 }
136 
137 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)138 usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 		struct usb_endpoint_descriptor **int_out)
140 {
141 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142 }
143 
144 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 		struct usb_endpoint_descriptor **bulk_in)
147 {
148 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149 }
150 
151 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 		struct usb_endpoint_descriptor **bulk_out)
154 {
155 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156 }
157 
158 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 		struct usb_endpoint_descriptor **int_in)
161 {
162 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163 }
164 
165 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 		struct usb_endpoint_descriptor **int_out)
168 {
169 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170 }
171 
172 enum usb_wireless_status {
173 	USB_WIRELESS_STATUS_NA = 0,
174 	USB_WIRELESS_STATUS_DISCONNECTED,
175 	USB_WIRELESS_STATUS_CONNECTED,
176 };
177 
178 /**
179  * struct usb_interface - what usb device drivers talk to
180  * @altsetting: array of interface structures, one for each alternate
181  *	setting that may be selected.  Each one includes a set of
182  *	endpoint configurations.  They will be in no particular order.
183  * @cur_altsetting: the current altsetting.
184  * @num_altsetting: number of altsettings defined.
185  * @intf_assoc: interface association descriptor
186  * @minor: the minor number assigned to this interface, if this
187  *	interface is bound to a driver that uses the USB major number.
188  *	If this interface does not use the USB major, this field should
189  *	be unused.  The driver should set this value in the probe()
190  *	function of the driver, after it has been assigned a minor
191  *	number from the USB core by calling usb_register_dev().
192  * @condition: binding state of the interface: not bound, binding
193  *	(in probe()), bound to a driver, or unbinding (in disconnect())
194  * @sysfs_files_created: sysfs attributes exist
195  * @ep_devs_created: endpoint child pseudo-devices exist
196  * @unregistering: flag set when the interface is being unregistered
197  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198  *	capability during autosuspend.
199  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200  *	has been deferred.
201  * @needs_binding: flag set when the driver should be re-probed or unbound
202  *	following a reset or suspend operation it doesn't support.
203  * @authorized: This allows to (de)authorize individual interfaces instead
204  *	a whole device in contrast to the device authorization.
205  * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206  *	the emitter is connected.
207  * @wireless_status_work: Used for scheduling wireless status changes
208  *	from atomic context.
209  * @dev: driver model's view of this device
210  * @usb_dev: if an interface is bound to the USB major, this will point
211  *	to the sysfs representation for that device.
212  * @reset_ws: Used for scheduling resets from atomic context.
213  * @resetting_device: USB core reset the device, so use alt setting 0 as
214  *	current; needs bandwidth alloc after reset.
215  *
216  * USB device drivers attach to interfaces on a physical device.  Each
217  * interface encapsulates a single high level function, such as feeding
218  * an audio stream to a speaker or reporting a change in a volume control.
219  * Many USB devices only have one interface.  The protocol used to talk to
220  * an interface's endpoints can be defined in a usb "class" specification,
221  * or by a product's vendor.  The (default) control endpoint is part of
222  * every interface, but is never listed among the interface's descriptors.
223  *
224  * The driver that is bound to the interface can use standard driver model
225  * calls such as dev_get_drvdata() on the dev member of this structure.
226  *
227  * Each interface may have alternate settings.  The initial configuration
228  * of a device sets altsetting 0, but the device driver can change
229  * that setting using usb_set_interface().  Alternate settings are often
230  * used to control the use of periodic endpoints, such as by having
231  * different endpoints use different amounts of reserved USB bandwidth.
232  * All standards-conformant USB devices that use isochronous endpoints
233  * will use them in non-default settings.
234  *
235  * The USB specification says that alternate setting numbers must run from
236  * 0 to one less than the total number of alternate settings.  But some
237  * devices manage to mess this up, and the structures aren't necessarily
238  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
239  * look up an alternate setting in the altsetting array based on its number.
240  */
241 struct usb_interface {
242 	/* array of alternate settings for this interface,
243 	 * stored in no particular order */
244 	struct usb_host_interface *altsetting;
245 
246 	struct usb_host_interface *cur_altsetting;	/* the currently
247 					 * active alternate setting */
248 	unsigned num_altsetting;	/* number of alternate settings */
249 
250 	/* If there is an interface association descriptor then it will list
251 	 * the associated interfaces */
252 	struct usb_interface_assoc_descriptor *intf_assoc;
253 
254 	int minor;			/* minor number this interface is
255 					 * bound to */
256 	enum usb_interface_condition condition;		/* state of binding */
257 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
258 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
259 	unsigned unregistering:1;	/* unregistration is in progress */
260 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
261 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
262 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
263 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
264 	unsigned authorized:1;		/* used for interface authorization */
265 	enum usb_wireless_status wireless_status;
266 	struct work_struct wireless_status_work;
267 
268 	struct device dev;		/* interface specific device info */
269 	struct device *usb_dev;
270 	struct work_struct reset_ws;	/* for resets in atomic context */
271 };
272 
273 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
274 
usb_get_intfdata(struct usb_interface * intf)275 static inline void *usb_get_intfdata(struct usb_interface *intf)
276 {
277 	return dev_get_drvdata(&intf->dev);
278 }
279 
280 /**
281  * usb_set_intfdata() - associate driver-specific data with an interface
282  * @intf: USB interface
283  * @data: driver data
284  *
285  * Drivers can use this function in their probe() callbacks to associate
286  * driver-specific data with an interface.
287  *
288  * Note that there is generally no need to clear the driver-data pointer even
289  * if some drivers do so for historical or implementation-specific reasons.
290  */
usb_set_intfdata(struct usb_interface * intf,void * data)291 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292 {
293 	dev_set_drvdata(&intf->dev, data);
294 }
295 
296 struct usb_interface *usb_get_intf(struct usb_interface *intf);
297 void usb_put_intf(struct usb_interface *intf);
298 
299 /* Hard limit */
300 #define USB_MAXENDPOINTS	30
301 /* this maximum is arbitrary */
302 #define USB_MAXINTERFACES	32
303 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
304 
305 bool usb_check_bulk_endpoints(
306 		const struct usb_interface *intf, const u8 *ep_addrs);
307 bool usb_check_int_endpoints(
308 		const struct usb_interface *intf, const u8 *ep_addrs);
309 
310 /*
311  * USB Resume Timer: Every Host controller driver should drive the resume
312  * signalling on the bus for the amount of time defined by this macro.
313  *
314  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315  *
316  * Note that the USB Specification states we should drive resume for *at least*
317  * 20 ms, but it doesn't give an upper bound. This creates two possible
318  * situations which we want to avoid:
319  *
320  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321  * us to fail USB Electrical Tests, thus failing Certification
322  *
323  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324  * and while we can argue that's against the USB Specification, we don't have
325  * control over which devices a certification laboratory will be using for
326  * certification. If CertLab uses a device which was tested against Windows and
327  * that happens to have relaxed resume signalling rules, we might fall into
328  * situations where we fail interoperability and electrical tests.
329  *
330  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331  * should cope with both LPJ calibration errors and devices not following every
332  * detail of the USB Specification.
333  */
334 #define USB_RESUME_TIMEOUT	40 /* ms */
335 
336 /**
337  * struct usb_interface_cache - long-term representation of a device interface
338  * @num_altsetting: number of altsettings defined.
339  * @ref: reference counter.
340  * @altsetting: variable-length array of interface structures, one for
341  *	each alternate setting that may be selected.  Each one includes a
342  *	set of endpoint configurations.  They will be in no particular order.
343  *
344  * These structures persist for the lifetime of a usb_device, unlike
345  * struct usb_interface (which persists only as long as its configuration
346  * is installed).  The altsetting arrays can be accessed through these
347  * structures at any time, permitting comparison of configurations and
348  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349  */
350 struct usb_interface_cache {
351 	unsigned num_altsetting;	/* number of alternate settings */
352 	struct kref ref;		/* reference counter */
353 
354 	/* variable-length array of alternate settings for this interface,
355 	 * stored in no particular order */
356 	struct usb_host_interface altsetting[];
357 };
358 #define	ref_to_usb_interface_cache(r) \
359 		container_of(r, struct usb_interface_cache, ref)
360 #define	altsetting_to_usb_interface_cache(a) \
361 		container_of(a, struct usb_interface_cache, altsetting[0])
362 
363 /**
364  * struct usb_host_config - representation of a device's configuration
365  * @desc: the device's configuration descriptor.
366  * @string: pointer to the cached version of the iConfiguration string, if
367  *	present for this configuration.
368  * @intf_assoc: list of any interface association descriptors in this config
369  * @interface: array of pointers to usb_interface structures, one for each
370  *	interface in the configuration.  The number of interfaces is stored
371  *	in desc.bNumInterfaces.  These pointers are valid only while the
372  *	configuration is active.
373  * @intf_cache: array of pointers to usb_interface_cache structures, one
374  *	for each interface in the configuration.  These structures exist
375  *	for the entire life of the device.
376  * @extra: pointer to buffer containing all extra descriptors associated
377  *	with this configuration (those preceding the first interface
378  *	descriptor).
379  * @extralen: length of the extra descriptors buffer.
380  *
381  * USB devices may have multiple configurations, but only one can be active
382  * at any time.  Each encapsulates a different operational environment;
383  * for example, a dual-speed device would have separate configurations for
384  * full-speed and high-speed operation.  The number of configurations
385  * available is stored in the device descriptor as bNumConfigurations.
386  *
387  * A configuration can contain multiple interfaces.  Each corresponds to
388  * a different function of the USB device, and all are available whenever
389  * the configuration is active.  The USB standard says that interfaces
390  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391  * of devices get this wrong.  In addition, the interface array is not
392  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
393  * look up an interface entry based on its number.
394  *
395  * Device drivers should not attempt to activate configurations.  The choice
396  * of which configuration to install is a policy decision based on such
397  * considerations as available power, functionality provided, and the user's
398  * desires (expressed through userspace tools).  However, drivers can call
399  * usb_reset_configuration() to reinitialize the current configuration and
400  * all its interfaces.
401  */
402 struct usb_host_config {
403 	struct usb_config_descriptor	desc;
404 
405 	char *string;		/* iConfiguration string, if present */
406 
407 	/* List of any Interface Association Descriptors in this
408 	 * configuration. */
409 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410 
411 	/* the interfaces associated with this configuration,
412 	 * stored in no particular order */
413 	struct usb_interface *interface[USB_MAXINTERFACES];
414 
415 	/* Interface information available even when this is not the
416 	 * active configuration */
417 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418 
419 	unsigned char *extra;   /* Extra descriptors */
420 	int extralen;
421 };
422 
423 /* USB2.0 and USB3.0 device BOS descriptor set */
424 struct usb_host_bos {
425 	struct usb_bos_descriptor	*desc;
426 
427 	struct usb_ext_cap_descriptor	*ext_cap;
428 	struct usb_ss_cap_descriptor	*ss_cap;
429 	struct usb_ssp_cap_descriptor	*ssp_cap;
430 	struct usb_ss_container_id_descriptor	*ss_id;
431 	struct usb_ptm_cap_descriptor	*ptm_cap;
432 };
433 
434 int __usb_get_extra_descriptor(char *buffer, unsigned size,
435 	unsigned char type, void **ptr, size_t min);
436 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
437 				__usb_get_extra_descriptor((ifpoint)->extra, \
438 				(ifpoint)->extralen, \
439 				type, (void **)ptr, sizeof(**(ptr)))
440 
441 /* ----------------------------------------------------------------------- */
442 
443 /*
444  * Allocated per bus (tree of devices) we have:
445  */
446 struct usb_bus {
447 	struct device *controller;	/* host side hardware */
448 	struct device *sysdev;		/* as seen from firmware or bus */
449 	int busnum;			/* Bus number (in order of reg) */
450 	const char *bus_name;		/* stable id (PCI slot_name etc) */
451 	u8 uses_pio_for_control;	/*
452 					 * Does the host controller use PIO
453 					 * for control transfers?
454 					 */
455 	u8 otg_port;			/* 0, or number of OTG/HNP port */
456 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
457 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
458 	unsigned no_stop_on_short:1;    /*
459 					 * Quirk: some controllers don't stop
460 					 * the ep queue on a short transfer
461 					 * with the URB_SHORT_NOT_OK flag set.
462 					 */
463 	unsigned no_sg_constraint:1;	/* no sg constraint */
464 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
465 
466 	int devnum_next;		/* Next open device number in
467 					 * round-robin allocation */
468 	struct mutex devnum_next_mutex; /* devnum_next mutex */
469 
470 	DECLARE_BITMAP(devmap, 128);	/* USB device number allocation bitmap */
471 	struct usb_device *root_hub;	/* Root hub */
472 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
473 
474 	int bandwidth_allocated;	/* on this bus: how much of the time
475 					 * reserved for periodic (intr/iso)
476 					 * requests is used, on average?
477 					 * Units: microseconds/frame.
478 					 * Limits: Full/low speed reserve 90%,
479 					 * while high speed reserves 80%.
480 					 */
481 	int bandwidth_int_reqs;		/* number of Interrupt requests */
482 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
483 
484 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
485 
486 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
487 	struct mon_bus *mon_bus;	/* non-null when associated */
488 	int monitored;			/* non-zero when monitored */
489 #endif
490 };
491 
492 struct usb_dev_state;
493 
494 /* ----------------------------------------------------------------------- */
495 
496 struct usb_tt;
497 
498 enum usb_port_connect_type {
499 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
500 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
501 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
502 	USB_PORT_NOT_USED,
503 };
504 
505 /*
506  * USB port quirks.
507  */
508 
509 /* For the given port, prefer the old (faster) enumeration scheme. */
510 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
511 
512 /* Decrease TRSTRCY to 10ms during device enumeration. */
513 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
514 
515 /*
516  * USB 2.0 Link Power Management (LPM) parameters.
517  */
518 struct usb2_lpm_parameters {
519 	/* Best effort service latency indicate how long the host will drive
520 	 * resume on an exit from L1.
521 	 */
522 	unsigned int besl;
523 
524 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
525 	 * When the timer counts to zero, the parent hub will initiate a LPM
526 	 * transition to L1.
527 	 */
528 	int timeout;
529 };
530 
531 /*
532  * USB 3.0 Link Power Management (LPM) parameters.
533  *
534  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
535  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
536  * All three are stored in nanoseconds.
537  */
538 struct usb3_lpm_parameters {
539 	/*
540 	 * Maximum exit latency (MEL) for the host to send a packet to the
541 	 * device (either a Ping for isoc endpoints, or a data packet for
542 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
543 	 * in the path to transition the links to U0.
544 	 */
545 	unsigned int mel;
546 	/*
547 	 * Maximum exit latency for a device-initiated LPM transition to bring
548 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
549 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
550 	 */
551 	unsigned int pel;
552 
553 	/*
554 	 * The System Exit Latency (SEL) includes PEL, and three other
555 	 * latencies.  After a device initiates a U0 transition, it will take
556 	 * some time from when the device sends the ERDY to when it will finally
557 	 * receive the data packet.  Basically, SEL should be the worse-case
558 	 * latency from when a device starts initiating a U0 transition to when
559 	 * it will get data.
560 	 */
561 	unsigned int sel;
562 	/*
563 	 * The idle timeout value that is currently programmed into the parent
564 	 * hub for this device.  When the timer counts to zero, the parent hub
565 	 * will initiate an LPM transition to either U1 or U2.
566 	 */
567 	int timeout;
568 };
569 
570 /**
571  * struct usb_device - kernel's representation of a USB device
572  * @devnum: device number; address on a USB bus
573  * @devpath: device ID string for use in messages (e.g., /port/...)
574  * @route: tree topology hex string for use with xHCI
575  * @state: device state: configured, not attached, etc.
576  * @speed: device speed: high/full/low (or error)
577  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
578  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
579  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
580  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
581  * @ttport: device port on that tt hub
582  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
583  * @parent: our hub, unless we're the root
584  * @bus: bus we're part of
585  * @ep0: endpoint 0 data (default control pipe)
586  * @dev: generic device interface
587  * @descriptor: USB device descriptor
588  * @bos: USB device BOS descriptor set
589  * @config: all of the device's configs
590  * @actconfig: the active configuration
591  * @ep_in: array of IN endpoints
592  * @ep_out: array of OUT endpoints
593  * @rawdescriptors: raw descriptors for each config
594  * @bus_mA: Current available from the bus
595  * @portnum: parent port number (origin 1)
596  * @level: number of USB hub ancestors
597  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
598  * @can_submit: URBs may be submitted
599  * @persist_enabled:  USB_PERSIST enabled for this device
600  * @reset_in_progress: the device is being reset
601  * @have_langid: whether string_langid is valid
602  * @authorized: policy has said we can use it;
603  *	(user space) policy determines if we authorize this device to be
604  *	used or not. By default, wired USB devices are authorized.
605  *	WUSB devices are not, until we authorize them from user space.
606  *	FIXME -- complete doc
607  * @authenticated: Crypto authentication passed
608  * @lpm_capable: device supports LPM
609  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
610  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
611  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
612  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
613  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
614  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
615  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
616  * @string_langid: language ID for strings
617  * @product: iProduct string, if present (static)
618  * @manufacturer: iManufacturer string, if present (static)
619  * @serial: iSerialNumber string, if present (static)
620  * @filelist: usbfs files that are open to this device
621  * @maxchild: number of ports if hub
622  * @quirks: quirks of the whole device
623  * @urbnum: number of URBs submitted for the whole device
624  * @active_duration: total time device is not suspended
625  * @connect_time: time device was first connected
626  * @do_remote_wakeup:  remote wakeup should be enabled
627  * @reset_resume: needs reset instead of resume
628  * @port_is_suspended: the upstream port is suspended (L2 or U3)
629  * @slot_id: Slot ID assigned by xHCI
630  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
631  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
632  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
633  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
634  *	to keep track of the number of functions that require USB 3.0 Link Power
635  *	Management to be disabled for this usb_device.  This count should only
636  *	be manipulated by those functions, with the bandwidth_mutex is held.
637  * @hub_delay: cached value consisting of:
638  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
639  *	Will be used as wValue for SetIsochDelay requests.
640  * @use_generic_driver: ask driver core to reprobe using the generic driver.
641  *
642  * Notes:
643  * Usbcore drivers should not set usbdev->state directly.  Instead use
644  * usb_set_device_state().
645  */
646 struct usb_device {
647 	int		devnum;
648 	char		devpath[16];
649 	u32		route;
650 	enum usb_device_state	state;
651 	enum usb_device_speed	speed;
652 	unsigned int		rx_lanes;
653 	unsigned int		tx_lanes;
654 	enum usb_ssp_rate	ssp_rate;
655 
656 	struct usb_tt	*tt;
657 	int		ttport;
658 
659 	unsigned int toggle[2];
660 
661 	struct usb_device *parent;
662 	struct usb_bus *bus;
663 	struct usb_host_endpoint ep0;
664 
665 	struct device dev;
666 
667 	struct usb_device_descriptor descriptor;
668 	struct usb_host_bos *bos;
669 	struct usb_host_config *config;
670 
671 	struct usb_host_config *actconfig;
672 	struct usb_host_endpoint *ep_in[16];
673 	struct usb_host_endpoint *ep_out[16];
674 
675 	char **rawdescriptors;
676 
677 	unsigned short bus_mA;
678 	u8 portnum;
679 	u8 level;
680 	u8 devaddr;
681 
682 	unsigned can_submit:1;
683 	unsigned persist_enabled:1;
684 	unsigned reset_in_progress:1;
685 	unsigned have_langid:1;
686 	unsigned authorized:1;
687 	unsigned authenticated:1;
688 	unsigned lpm_capable:1;
689 	unsigned lpm_devinit_allow:1;
690 	unsigned usb2_hw_lpm_capable:1;
691 	unsigned usb2_hw_lpm_besl_capable:1;
692 	unsigned usb2_hw_lpm_enabled:1;
693 	unsigned usb2_hw_lpm_allowed:1;
694 	unsigned usb3_lpm_u1_enabled:1;
695 	unsigned usb3_lpm_u2_enabled:1;
696 	int string_langid;
697 
698 	/* static strings from the device */
699 	char *product;
700 	char *manufacturer;
701 	char *serial;
702 
703 	struct list_head filelist;
704 
705 	int maxchild;
706 
707 	u32 quirks;
708 	atomic_t urbnum;
709 
710 	unsigned long active_duration;
711 
712 	unsigned long connect_time;
713 
714 	unsigned do_remote_wakeup:1;
715 	unsigned reset_resume:1;
716 	unsigned port_is_suspended:1;
717 
718 	int slot_id;
719 	struct usb2_lpm_parameters l1_params;
720 	struct usb3_lpm_parameters u1_params;
721 	struct usb3_lpm_parameters u2_params;
722 	unsigned lpm_disable_count;
723 
724 	u16 hub_delay;
725 	unsigned use_generic_driver:1;
726 };
727 
728 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
729 
__intf_to_usbdev(struct usb_interface * intf)730 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
731 {
732 	return to_usb_device(intf->dev.parent);
733 }
__intf_to_usbdev_const(const struct usb_interface * intf)734 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
735 {
736 	return to_usb_device((const struct device *)intf->dev.parent);
737 }
738 
739 #define interface_to_usbdev(intf)					\
740 	_Generic((intf),						\
741 		 const struct usb_interface *: __intf_to_usbdev_const,	\
742 		 struct usb_interface *: __intf_to_usbdev)(intf)
743 
744 extern struct usb_device *usb_get_dev(struct usb_device *dev);
745 extern void usb_put_dev(struct usb_device *dev);
746 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
747 	int port1);
748 
749 /**
750  * usb_hub_for_each_child - iterate over all child devices on the hub
751  * @hdev:  USB device belonging to the usb hub
752  * @port1: portnum associated with child device
753  * @child: child device pointer
754  */
755 #define usb_hub_for_each_child(hdev, port1, child) \
756 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
757 			port1 <= hdev->maxchild; \
758 			child = usb_hub_find_child(hdev, ++port1)) \
759 		if (!child) continue; else
760 
761 /* USB device locking */
762 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
763 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
764 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
765 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
766 extern int usb_lock_device_for_reset(struct usb_device *udev,
767 				     const struct usb_interface *iface);
768 
769 /* USB port reset for device reinitialization */
770 extern int usb_reset_device(struct usb_device *dev);
771 extern void usb_queue_reset_device(struct usb_interface *dev);
772 
773 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
774 
775 #ifdef CONFIG_ACPI
776 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
777 	bool enable);
778 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
779 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
780 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)781 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
782 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)783 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
784 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)785 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
786 	{ return 0; }
787 #endif
788 
789 /* USB autosuspend and autoresume */
790 #ifdef CONFIG_PM
791 extern void usb_enable_autosuspend(struct usb_device *udev);
792 extern void usb_disable_autosuspend(struct usb_device *udev);
793 
794 extern int usb_autopm_get_interface(struct usb_interface *intf);
795 extern void usb_autopm_put_interface(struct usb_interface *intf);
796 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
797 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
798 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
799 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
800 
usb_mark_last_busy(struct usb_device * udev)801 static inline void usb_mark_last_busy(struct usb_device *udev)
802 {
803 	pm_runtime_mark_last_busy(&udev->dev);
804 }
805 
806 #else
807 
usb_enable_autosuspend(struct usb_device * udev)808 static inline int usb_enable_autosuspend(struct usb_device *udev)
809 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)810 static inline int usb_disable_autosuspend(struct usb_device *udev)
811 { return 0; }
812 
usb_autopm_get_interface(struct usb_interface * intf)813 static inline int usb_autopm_get_interface(struct usb_interface *intf)
814 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)815 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
816 { return 0; }
817 
usb_autopm_put_interface(struct usb_interface * intf)818 static inline void usb_autopm_put_interface(struct usb_interface *intf)
819 { }
usb_autopm_put_interface_async(struct usb_interface * intf)820 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
821 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)822 static inline void usb_autopm_get_interface_no_resume(
823 		struct usb_interface *intf)
824 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)825 static inline void usb_autopm_put_interface_no_suspend(
826 		struct usb_interface *intf)
827 { }
usb_mark_last_busy(struct usb_device * udev)828 static inline void usb_mark_last_busy(struct usb_device *udev)
829 { }
830 #endif
831 
832 extern int usb_disable_lpm(struct usb_device *udev);
833 extern void usb_enable_lpm(struct usb_device *udev);
834 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
835 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
836 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
837 
838 extern int usb_disable_ltm(struct usb_device *udev);
839 extern void usb_enable_ltm(struct usb_device *udev);
840 
usb_device_supports_ltm(struct usb_device * udev)841 static inline bool usb_device_supports_ltm(struct usb_device *udev)
842 {
843 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
844 		return false;
845 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
846 }
847 
usb_device_no_sg_constraint(struct usb_device * udev)848 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
849 {
850 	return udev && udev->bus && udev->bus->no_sg_constraint;
851 }
852 
853 
854 /*-------------------------------------------------------------------------*/
855 
856 /* for drivers using iso endpoints */
857 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
858 
859 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
860 extern int usb_alloc_streams(struct usb_interface *interface,
861 		struct usb_host_endpoint **eps, unsigned int num_eps,
862 		unsigned int num_streams, gfp_t mem_flags);
863 
864 /* Reverts a group of bulk endpoints back to not using stream IDs. */
865 extern int usb_free_streams(struct usb_interface *interface,
866 		struct usb_host_endpoint **eps, unsigned int num_eps,
867 		gfp_t mem_flags);
868 
869 /* used these for multi-interface device registration */
870 extern int usb_driver_claim_interface(struct usb_driver *driver,
871 			struct usb_interface *iface, void *data);
872 
873 /**
874  * usb_interface_claimed - returns true iff an interface is claimed
875  * @iface: the interface being checked
876  *
877  * Return: %true (nonzero) iff the interface is claimed, else %false
878  * (zero).
879  *
880  * Note:
881  * Callers must own the driver model's usb bus readlock.  So driver
882  * probe() entries don't need extra locking, but other call contexts
883  * may need to explicitly claim that lock.
884  *
885  */
usb_interface_claimed(struct usb_interface * iface)886 static inline int usb_interface_claimed(struct usb_interface *iface)
887 {
888 	return (iface->dev.driver != NULL);
889 }
890 
891 extern void usb_driver_release_interface(struct usb_driver *driver,
892 			struct usb_interface *iface);
893 
894 int usb_set_wireless_status(struct usb_interface *iface,
895 			enum usb_wireless_status status);
896 
897 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
898 					 const struct usb_device_id *id);
899 extern int usb_match_one_id(struct usb_interface *interface,
900 			    const struct usb_device_id *id);
901 
902 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
903 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
904 		int minor);
905 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
906 		unsigned ifnum);
907 extern struct usb_host_interface *usb_altnum_to_altsetting(
908 		const struct usb_interface *intf, unsigned int altnum);
909 extern struct usb_host_interface *usb_find_alt_setting(
910 		struct usb_host_config *config,
911 		unsigned int iface_num,
912 		unsigned int alt_num);
913 
914 /* port claiming functions */
915 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
916 		struct usb_dev_state *owner);
917 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
918 		struct usb_dev_state *owner);
919 
920 /**
921  * usb_make_path - returns stable device path in the usb tree
922  * @dev: the device whose path is being constructed
923  * @buf: where to put the string
924  * @size: how big is "buf"?
925  *
926  * Return: Length of the string (> 0) or negative if size was too small.
927  *
928  * Note:
929  * This identifier is intended to be "stable", reflecting physical paths in
930  * hardware such as physical bus addresses for host controllers or ports on
931  * USB hubs.  That makes it stay the same until systems are physically
932  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
933  * controllers.  Adding and removing devices, including virtual root hubs
934  * in host controller driver modules, does not change these path identifiers;
935  * neither does rebooting or re-enumerating.  These are more useful identifiers
936  * than changeable ("unstable") ones like bus numbers or device addresses.
937  *
938  * With a partial exception for devices connected to USB 2.0 root hubs, these
939  * identifiers are also predictable.  So long as the device tree isn't changed,
940  * plugging any USB device into a given hub port always gives it the same path.
941  * Because of the use of "companion" controllers, devices connected to ports on
942  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
943  * high speed, and a different one if they are full or low speed.
944  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)945 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
946 {
947 	int actual;
948 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
949 			  dev->devpath);
950 	return (actual >= (int)size) ? -1 : actual;
951 }
952 
953 /*-------------------------------------------------------------------------*/
954 
955 #define USB_DEVICE_ID_MATCH_DEVICE \
956 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
957 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
958 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
959 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
960 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
961 #define USB_DEVICE_ID_MATCH_DEV_INFO \
962 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
963 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
964 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
965 #define USB_DEVICE_ID_MATCH_INT_INFO \
966 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
967 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
968 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
969 
970 /**
971  * USB_DEVICE - macro used to describe a specific usb device
972  * @vend: the 16 bit USB Vendor ID
973  * @prod: the 16 bit USB Product ID
974  *
975  * This macro is used to create a struct usb_device_id that matches a
976  * specific device.
977  */
978 #define USB_DEVICE(vend, prod) \
979 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
980 	.idVendor = (vend), \
981 	.idProduct = (prod)
982 /**
983  * USB_DEVICE_VER - describe a specific usb device with a version range
984  * @vend: the 16 bit USB Vendor ID
985  * @prod: the 16 bit USB Product ID
986  * @lo: the bcdDevice_lo value
987  * @hi: the bcdDevice_hi value
988  *
989  * This macro is used to create a struct usb_device_id that matches a
990  * specific device, with a version range.
991  */
992 #define USB_DEVICE_VER(vend, prod, lo, hi) \
993 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
994 	.idVendor = (vend), \
995 	.idProduct = (prod), \
996 	.bcdDevice_lo = (lo), \
997 	.bcdDevice_hi = (hi)
998 
999 /**
1000  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1001  * @vend: the 16 bit USB Vendor ID
1002  * @prod: the 16 bit USB Product ID
1003  * @cl: bInterfaceClass value
1004  *
1005  * This macro is used to create a struct usb_device_id that matches a
1006  * specific interface class of devices.
1007  */
1008 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1009 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1010 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1011 	.idVendor = (vend), \
1012 	.idProduct = (prod), \
1013 	.bInterfaceClass = (cl)
1014 
1015 /**
1016  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1017  * @vend: the 16 bit USB Vendor ID
1018  * @prod: the 16 bit USB Product ID
1019  * @pr: bInterfaceProtocol value
1020  *
1021  * This macro is used to create a struct usb_device_id that matches a
1022  * specific interface protocol of devices.
1023  */
1024 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1025 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1026 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1027 	.idVendor = (vend), \
1028 	.idProduct = (prod), \
1029 	.bInterfaceProtocol = (pr)
1030 
1031 /**
1032  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1033  * @vend: the 16 bit USB Vendor ID
1034  * @prod: the 16 bit USB Product ID
1035  * @num: bInterfaceNumber value
1036  *
1037  * This macro is used to create a struct usb_device_id that matches a
1038  * specific interface number of devices.
1039  */
1040 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1041 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1042 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1043 	.idVendor = (vend), \
1044 	.idProduct = (prod), \
1045 	.bInterfaceNumber = (num)
1046 
1047 /**
1048  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1049  * @cl: bDeviceClass value
1050  * @sc: bDeviceSubClass value
1051  * @pr: bDeviceProtocol value
1052  *
1053  * This macro is used to create a struct usb_device_id that matches a
1054  * specific class of devices.
1055  */
1056 #define USB_DEVICE_INFO(cl, sc, pr) \
1057 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1058 	.bDeviceClass = (cl), \
1059 	.bDeviceSubClass = (sc), \
1060 	.bDeviceProtocol = (pr)
1061 
1062 /**
1063  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1064  * @cl: bInterfaceClass value
1065  * @sc: bInterfaceSubClass value
1066  * @pr: bInterfaceProtocol value
1067  *
1068  * This macro is used to create a struct usb_device_id that matches a
1069  * specific class of interfaces.
1070  */
1071 #define USB_INTERFACE_INFO(cl, sc, pr) \
1072 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1073 	.bInterfaceClass = (cl), \
1074 	.bInterfaceSubClass = (sc), \
1075 	.bInterfaceProtocol = (pr)
1076 
1077 /**
1078  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1079  * @vend: the 16 bit USB Vendor ID
1080  * @prod: the 16 bit USB Product ID
1081  * @cl: bInterfaceClass value
1082  * @sc: bInterfaceSubClass value
1083  * @pr: bInterfaceProtocol value
1084  *
1085  * This macro is used to create a struct usb_device_id that matches a
1086  * specific device with a specific class of interfaces.
1087  *
1088  * This is especially useful when explicitly matching devices that have
1089  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1090  */
1091 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1092 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1093 		| USB_DEVICE_ID_MATCH_DEVICE, \
1094 	.idVendor = (vend), \
1095 	.idProduct = (prod), \
1096 	.bInterfaceClass = (cl), \
1097 	.bInterfaceSubClass = (sc), \
1098 	.bInterfaceProtocol = (pr)
1099 
1100 /**
1101  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1102  * @vend: the 16 bit USB Vendor ID
1103  * @cl: bInterfaceClass value
1104  * @sc: bInterfaceSubClass value
1105  * @pr: bInterfaceProtocol value
1106  *
1107  * This macro is used to create a struct usb_device_id that matches a
1108  * specific vendor with a specific class of interfaces.
1109  *
1110  * This is especially useful when explicitly matching devices that have
1111  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1112  */
1113 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1114 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1115 		| USB_DEVICE_ID_MATCH_VENDOR, \
1116 	.idVendor = (vend), \
1117 	.bInterfaceClass = (cl), \
1118 	.bInterfaceSubClass = (sc), \
1119 	.bInterfaceProtocol = (pr)
1120 
1121 /* ----------------------------------------------------------------------- */
1122 
1123 /* Stuff for dynamic usb ids */
1124 struct usb_dynids {
1125 	spinlock_t lock;
1126 	struct list_head list;
1127 };
1128 
1129 struct usb_dynid {
1130 	struct list_head node;
1131 	struct usb_device_id id;
1132 };
1133 
1134 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1135 				const struct usb_device_id *id_table,
1136 				struct device_driver *driver,
1137 				const char *buf, size_t count);
1138 
1139 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1140 
1141 /**
1142  * struct usb_driver - identifies USB interface driver to usbcore
1143  * @name: The driver name should be unique among USB drivers,
1144  *	and should normally be the same as the module name.
1145  * @probe: Called to see if the driver is willing to manage a particular
1146  *	interface on a device.  If it is, probe returns zero and uses
1147  *	usb_set_intfdata() to associate driver-specific data with the
1148  *	interface.  It may also use usb_set_interface() to specify the
1149  *	appropriate altsetting.  If unwilling to manage the interface,
1150  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1151  *	negative errno value.
1152  * @disconnect: Called when the interface is no longer accessible, usually
1153  *	because its device has been (or is being) disconnected or the
1154  *	driver module is being unloaded.
1155  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1156  *	the "usbfs" filesystem.  This lets devices provide ways to
1157  *	expose information to user space regardless of where they
1158  *	do (or don't) show up otherwise in the filesystem.
1159  * @suspend: Called when the device is going to be suspended by the
1160  *	system either from system sleep or runtime suspend context. The
1161  *	return value will be ignored in system sleep context, so do NOT
1162  *	try to continue using the device if suspend fails in this case.
1163  *	Instead, let the resume or reset-resume routine recover from
1164  *	the failure.
1165  * @resume: Called when the device is being resumed by the system.
1166  * @reset_resume: Called when the suspended device has been reset instead
1167  *	of being resumed.
1168  * @pre_reset: Called by usb_reset_device() when the device is about to be
1169  *	reset.  This routine must not return until the driver has no active
1170  *	URBs for the device, and no more URBs may be submitted until the
1171  *	post_reset method is called.
1172  * @post_reset: Called by usb_reset_device() after the device
1173  *	has been reset
1174  * @id_table: USB drivers use ID table to support hotplugging.
1175  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1176  *	or your driver's probe function will never get called.
1177  * @dev_groups: Attributes attached to the device that will be created once it
1178  *	is bound to the driver.
1179  * @dynids: used internally to hold the list of dynamically added device
1180  *	ids for this driver.
1181  * @driver: The driver-model core driver structure.
1182  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1183  *	added to this driver by preventing the sysfs file from being created.
1184  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1185  *	for interfaces bound to this driver.
1186  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1187  *	endpoints before calling the driver's disconnect method.
1188  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1189  *	to initiate lower power link state transitions when an idle timeout
1190  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1191  *
1192  * USB interface drivers must provide a name, probe() and disconnect()
1193  * methods, and an id_table.  Other driver fields are optional.
1194  *
1195  * The id_table is used in hotplugging.  It holds a set of descriptors,
1196  * and specialized data may be associated with each entry.  That table
1197  * is used by both user and kernel mode hotplugging support.
1198  *
1199  * The probe() and disconnect() methods are called in a context where
1200  * they can sleep, but they should avoid abusing the privilege.  Most
1201  * work to connect to a device should be done when the device is opened,
1202  * and undone at the last close.  The disconnect code needs to address
1203  * concurrency issues with respect to open() and close() methods, as
1204  * well as forcing all pending I/O requests to complete (by unlinking
1205  * them as necessary, and blocking until the unlinks complete).
1206  */
1207 struct usb_driver {
1208 	const char *name;
1209 
1210 	int (*probe) (struct usb_interface *intf,
1211 		      const struct usb_device_id *id);
1212 
1213 	void (*disconnect) (struct usb_interface *intf);
1214 
1215 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1216 			void *buf);
1217 
1218 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1219 	int (*resume) (struct usb_interface *intf);
1220 	int (*reset_resume)(struct usb_interface *intf);
1221 
1222 	int (*pre_reset)(struct usb_interface *intf);
1223 	int (*post_reset)(struct usb_interface *intf);
1224 
1225 	const struct usb_device_id *id_table;
1226 	const struct attribute_group **dev_groups;
1227 
1228 	struct usb_dynids dynids;
1229 	struct device_driver driver;
1230 	unsigned int no_dynamic_id:1;
1231 	unsigned int supports_autosuspend:1;
1232 	unsigned int disable_hub_initiated_lpm:1;
1233 	unsigned int soft_unbind:1;
1234 };
1235 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
1236 
1237 /**
1238  * struct usb_device_driver - identifies USB device driver to usbcore
1239  * @name: The driver name should be unique among USB drivers,
1240  *	and should normally be the same as the module name.
1241  * @match: If set, used for better device/driver matching.
1242  * @probe: Called to see if the driver is willing to manage a particular
1243  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1244  *	to associate driver-specific data with the device.  If unwilling
1245  *	to manage the device, return a negative errno value.
1246  * @disconnect: Called when the device is no longer accessible, usually
1247  *	because it has been (or is being) disconnected or the driver's
1248  *	module is being unloaded.
1249  * @suspend: Called when the device is going to be suspended by the system.
1250  * @resume: Called when the device is being resumed by the system.
1251  * @choose_configuration: If non-NULL, called instead of the default
1252  *	usb_choose_configuration(). If this returns an error then we'll go
1253  *	on to call the normal usb_choose_configuration().
1254  * @dev_groups: Attributes attached to the device that will be created once it
1255  *	is bound to the driver.
1256  * @driver: The driver-model core driver structure.
1257  * @id_table: used with @match() to select better matching driver at
1258  * 	probe() time.
1259  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1260  *	for devices bound to this driver.
1261  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1262  *	resume and suspend functions will be called in addition to the driver's
1263  *	own, so this part of the setup does not need to be replicated.
1264  *
1265  * USB drivers must provide all the fields listed above except driver,
1266  * match, and id_table.
1267  */
1268 struct usb_device_driver {
1269 	const char *name;
1270 
1271 	bool (*match) (struct usb_device *udev);
1272 	int (*probe) (struct usb_device *udev);
1273 	void (*disconnect) (struct usb_device *udev);
1274 
1275 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1276 	int (*resume) (struct usb_device *udev, pm_message_t message);
1277 
1278 	int (*choose_configuration) (struct usb_device *udev);
1279 
1280 	const struct attribute_group **dev_groups;
1281 	struct device_driver driver;
1282 	const struct usb_device_id *id_table;
1283 	unsigned int supports_autosuspend:1;
1284 	unsigned int generic_subclass:1;
1285 };
1286 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1287 		driver)
1288 
1289 /**
1290  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1291  * @name: the usb class device name for this driver.  Will show up in sysfs.
1292  * @devnode: Callback to provide a naming hint for a possible
1293  *	device node to create.
1294  * @fops: pointer to the struct file_operations of this driver.
1295  * @minor_base: the start of the minor range for this driver.
1296  *
1297  * This structure is used for the usb_register_dev() and
1298  * usb_deregister_dev() functions, to consolidate a number of the
1299  * parameters used for them.
1300  */
1301 struct usb_class_driver {
1302 	char *name;
1303 	char *(*devnode)(const struct device *dev, umode_t *mode);
1304 	const struct file_operations *fops;
1305 	int minor_base;
1306 };
1307 
1308 /*
1309  * use these in module_init()/module_exit()
1310  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1311  */
1312 extern int usb_register_driver(struct usb_driver *, struct module *,
1313 			       const char *);
1314 
1315 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1316 #define usb_register(driver) \
1317 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1318 
1319 extern void usb_deregister(struct usb_driver *);
1320 
1321 /**
1322  * module_usb_driver() - Helper macro for registering a USB driver
1323  * @__usb_driver: usb_driver struct
1324  *
1325  * Helper macro for USB drivers which do not do anything special in module
1326  * init/exit. This eliminates a lot of boilerplate. Each module may only
1327  * use this macro once, and calling it replaces module_init() and module_exit()
1328  */
1329 #define module_usb_driver(__usb_driver) \
1330 	module_driver(__usb_driver, usb_register, \
1331 		       usb_deregister)
1332 
1333 extern int usb_register_device_driver(struct usb_device_driver *,
1334 			struct module *);
1335 extern void usb_deregister_device_driver(struct usb_device_driver *);
1336 
1337 extern int usb_register_dev(struct usb_interface *intf,
1338 			    struct usb_class_driver *class_driver);
1339 extern void usb_deregister_dev(struct usb_interface *intf,
1340 			       struct usb_class_driver *class_driver);
1341 
1342 extern int usb_disabled(void);
1343 
1344 /* ----------------------------------------------------------------------- */
1345 
1346 /*
1347  * URB support, for asynchronous request completions
1348  */
1349 
1350 /*
1351  * urb->transfer_flags:
1352  *
1353  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1354  */
1355 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1356 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1357 					 * slot in the schedule */
1358 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1359 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1360 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1361 					 * needed */
1362 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1363 
1364 /* The following flags are used internally by usbcore and HCDs */
1365 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1366 #define URB_DIR_OUT		0
1367 #define URB_DIR_MASK		URB_DIR_IN
1368 
1369 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1370 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1371 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1372 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1373 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1374 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1375 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1376 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1377 
1378 struct usb_iso_packet_descriptor {
1379 	unsigned int offset;
1380 	unsigned int length;		/* expected length */
1381 	unsigned int actual_length;
1382 	int status;
1383 };
1384 
1385 struct urb;
1386 
1387 struct usb_anchor {
1388 	struct list_head urb_list;
1389 	wait_queue_head_t wait;
1390 	spinlock_t lock;
1391 	atomic_t suspend_wakeups;
1392 	unsigned int poisoned:1;
1393 };
1394 
init_usb_anchor(struct usb_anchor * anchor)1395 static inline void init_usb_anchor(struct usb_anchor *anchor)
1396 {
1397 	memset(anchor, 0, sizeof(*anchor));
1398 	INIT_LIST_HEAD(&anchor->urb_list);
1399 	init_waitqueue_head(&anchor->wait);
1400 	spin_lock_init(&anchor->lock);
1401 }
1402 
1403 typedef void (*usb_complete_t)(struct urb *);
1404 
1405 /**
1406  * struct urb - USB Request Block
1407  * @urb_list: For use by current owner of the URB.
1408  * @anchor_list: membership in the list of an anchor
1409  * @anchor: to anchor URBs to a common mooring
1410  * @ep: Points to the endpoint's data structure.  Will eventually
1411  *	replace @pipe.
1412  * @pipe: Holds endpoint number, direction, type, and more.
1413  *	Create these values with the eight macros available;
1414  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1415  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1416  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1417  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1418  *	is a different endpoint (and pipe) from "out" endpoint two.
1419  *	The current configuration controls the existence, type, and
1420  *	maximum packet size of any given endpoint.
1421  * @stream_id: the endpoint's stream ID for bulk streams
1422  * @dev: Identifies the USB device to perform the request.
1423  * @status: This is read in non-iso completion functions to get the
1424  *	status of the particular request.  ISO requests only use it
1425  *	to tell whether the URB was unlinked; detailed status for
1426  *	each frame is in the fields of the iso_frame-desc.
1427  * @transfer_flags: A variety of flags may be used to affect how URB
1428  *	submission, unlinking, or operation are handled.  Different
1429  *	kinds of URB can use different flags.
1430  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1431  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1432  *	(however, do not leave garbage in transfer_buffer even then).
1433  *	This buffer must be suitable for DMA; allocate it with
1434  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1435  *	of this buffer will be modified.  This buffer is used for the data
1436  *	stage of control transfers.
1437  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1438  *	the device driver is saying that it provided this DMA address,
1439  *	which the host controller driver should use in preference to the
1440  *	transfer_buffer.
1441  * @sg: scatter gather buffer list, the buffer size of each element in
1442  * 	the list (except the last) must be divisible by the endpoint's
1443  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1444  * @num_mapped_sgs: (internal) number of mapped sg entries
1445  * @num_sgs: number of entries in the sg list
1446  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1447  *	be broken up into chunks according to the current maximum packet
1448  *	size for the endpoint, which is a function of the configuration
1449  *	and is encoded in the pipe.  When the length is zero, neither
1450  *	transfer_buffer nor transfer_dma is used.
1451  * @actual_length: This is read in non-iso completion functions, and
1452  *	it tells how many bytes (out of transfer_buffer_length) were
1453  *	transferred.  It will normally be the same as requested, unless
1454  *	either an error was reported or a short read was performed.
1455  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1456  *	short reads be reported as errors.
1457  * @setup_packet: Only used for control transfers, this points to eight bytes
1458  *	of setup data.  Control transfers always start by sending this data
1459  *	to the device.  Then transfer_buffer is read or written, if needed.
1460  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1461  *	this field; setup_packet must point to a valid buffer.
1462  * @start_frame: Returns the initial frame for isochronous transfers.
1463  * @number_of_packets: Lists the number of ISO transfer buffers.
1464  * @interval: Specifies the polling interval for interrupt or isochronous
1465  *	transfers.  The units are frames (milliseconds) for full and low
1466  *	speed devices, and microframes (1/8 millisecond) for highspeed
1467  *	and SuperSpeed devices.
1468  * @error_count: Returns the number of ISO transfers that reported errors.
1469  * @context: For use in completion functions.  This normally points to
1470  *	request-specific driver context.
1471  * @complete: Completion handler. This URB is passed as the parameter to the
1472  *	completion function.  The completion function may then do what
1473  *	it likes with the URB, including resubmitting or freeing it.
1474  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1475  *	collect the transfer status for each buffer.
1476  *
1477  * This structure identifies USB transfer requests.  URBs must be allocated by
1478  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1479  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1480  * are submitted using usb_submit_urb(), and pending requests may be canceled
1481  * using usb_unlink_urb() or usb_kill_urb().
1482  *
1483  * Data Transfer Buffers:
1484  *
1485  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1486  * taken from the general page pool.  That is provided by transfer_buffer
1487  * (control requests also use setup_packet), and host controller drivers
1488  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1489  * mapping operations can be expensive on some platforms (perhaps using a dma
1490  * bounce buffer or talking to an IOMMU),
1491  * although they're cheap on commodity x86 and ppc hardware.
1492  *
1493  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1494  * which tells the host controller driver that no such mapping is needed for
1495  * the transfer_buffer since
1496  * the device driver is DMA-aware.  For example, a device driver might
1497  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1498  * When this transfer flag is provided, host controller drivers will
1499  * attempt to use the dma address found in the transfer_dma
1500  * field rather than determining a dma address themselves.
1501  *
1502  * Note that transfer_buffer must still be set if the controller
1503  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1504  * to root hub. If you have to transfer between highmem zone and the device
1505  * on such controller, create a bounce buffer or bail out with an error.
1506  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1507  * capable, assign NULL to it, so that usbmon knows not to use the value.
1508  * The setup_packet must always be set, so it cannot be located in highmem.
1509  *
1510  * Initialization:
1511  *
1512  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1513  * zero), and complete fields.  All URBs must also initialize
1514  * transfer_buffer and transfer_buffer_length.  They may provide the
1515  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1516  * to be treated as errors; that flag is invalid for write requests.
1517  *
1518  * Bulk URBs may
1519  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1520  * should always terminate with a short packet, even if it means adding an
1521  * extra zero length packet.
1522  *
1523  * Control URBs must provide a valid pointer in the setup_packet field.
1524  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1525  * beforehand.
1526  *
1527  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1528  * or, for highspeed devices, 125 microsecond units)
1529  * to poll for transfers.  After the URB has been submitted, the interval
1530  * field reflects how the transfer was actually scheduled.
1531  * The polling interval may be more frequent than requested.
1532  * For example, some controllers have a maximum interval of 32 milliseconds,
1533  * while others support intervals of up to 1024 milliseconds.
1534  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1535  * endpoints, as well as high speed interrupt endpoints, the encoding of
1536  * the transfer interval in the endpoint descriptor is logarithmic.
1537  * Device drivers must convert that value to linear units themselves.)
1538  *
1539  * If an isochronous endpoint queue isn't already running, the host
1540  * controller will schedule a new URB to start as soon as bandwidth
1541  * utilization allows.  If the queue is running then a new URB will be
1542  * scheduled to start in the first transfer slot following the end of the
1543  * preceding URB, if that slot has not already expired.  If the slot has
1544  * expired (which can happen when IRQ delivery is delayed for a long time),
1545  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1546  * is clear then the URB will be scheduled to start in the expired slot,
1547  * implying that some of its packets will not be transferred; if the flag
1548  * is set then the URB will be scheduled in the first unexpired slot,
1549  * breaking the queue's synchronization.  Upon URB completion, the
1550  * start_frame field will be set to the (micro)frame number in which the
1551  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1552  * and can go from as low as 256 to as high as 65536 frames.
1553  *
1554  * Isochronous URBs have a different data transfer model, in part because
1555  * the quality of service is only "best effort".  Callers provide specially
1556  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1557  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1558  * URBs are normally queued, submitted by drivers to arrange that
1559  * transfers are at least double buffered, and then explicitly resubmitted
1560  * in completion handlers, so
1561  * that data (such as audio or video) streams at as constant a rate as the
1562  * host controller scheduler can support.
1563  *
1564  * Completion Callbacks:
1565  *
1566  * The completion callback is made in_interrupt(), and one of the first
1567  * things that a completion handler should do is check the status field.
1568  * The status field is provided for all URBs.  It is used to report
1569  * unlinked URBs, and status for all non-ISO transfers.  It should not
1570  * be examined before the URB is returned to the completion handler.
1571  *
1572  * The context field is normally used to link URBs back to the relevant
1573  * driver or request state.
1574  *
1575  * When the completion callback is invoked for non-isochronous URBs, the
1576  * actual_length field tells how many bytes were transferred.  This field
1577  * is updated even when the URB terminated with an error or was unlinked.
1578  *
1579  * ISO transfer status is reported in the status and actual_length fields
1580  * of the iso_frame_desc array, and the number of errors is reported in
1581  * error_count.  Completion callbacks for ISO transfers will normally
1582  * (re)submit URBs to ensure a constant transfer rate.
1583  *
1584  * Note that even fields marked "public" should not be touched by the driver
1585  * when the urb is owned by the hcd, that is, since the call to
1586  * usb_submit_urb() till the entry into the completion routine.
1587  */
1588 struct urb {
1589 	/* private: usb core and host controller only fields in the urb */
1590 	struct kref kref;		/* reference count of the URB */
1591 	int unlinked;			/* unlink error code */
1592 	void *hcpriv;			/* private data for host controller */
1593 	atomic_t use_count;		/* concurrent submissions counter */
1594 	atomic_t reject;		/* submissions will fail */
1595 
1596 	/* public: documented fields in the urb that can be used by drivers */
1597 	struct list_head urb_list;	/* list head for use by the urb's
1598 					 * current owner */
1599 	struct list_head anchor_list;	/* the URB may be anchored */
1600 	struct usb_anchor *anchor;
1601 	struct usb_device *dev;		/* (in) pointer to associated device */
1602 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1603 	unsigned int pipe;		/* (in) pipe information */
1604 	unsigned int stream_id;		/* (in) stream ID */
1605 	int status;			/* (return) non-ISO status */
1606 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1607 	void *transfer_buffer;		/* (in) associated data buffer */
1608 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1609 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1610 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1611 	int num_sgs;			/* (in) number of entries in the sg list */
1612 	u32 transfer_buffer_length;	/* (in) data buffer length */
1613 	u32 actual_length;		/* (return) actual transfer length */
1614 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1615 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1616 	int start_frame;		/* (modify) start frame (ISO) */
1617 	int number_of_packets;		/* (in) number of ISO packets */
1618 	int interval;			/* (modify) transfer interval
1619 					 * (INT/ISO) */
1620 	int error_count;		/* (return) number of ISO errors */
1621 	void *context;			/* (in) context for completion */
1622 	usb_complete_t complete;	/* (in) completion routine */
1623 	struct usb_iso_packet_descriptor iso_frame_desc[];
1624 					/* (in) ISO ONLY */
1625 };
1626 
1627 /* ----------------------------------------------------------------------- */
1628 
1629 /**
1630  * usb_fill_control_urb - initializes a control urb
1631  * @urb: pointer to the urb to initialize.
1632  * @dev: pointer to the struct usb_device for this urb.
1633  * @pipe: the endpoint pipe
1634  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1635  *	suitable for DMA.
1636  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1637  *	suitable for DMA.
1638  * @buffer_length: length of the transfer buffer
1639  * @complete_fn: pointer to the usb_complete_t function
1640  * @context: what to set the urb context to.
1641  *
1642  * Initializes a control urb with the proper information needed to submit
1643  * it to a device.
1644  *
1645  * The transfer buffer and the setup_packet buffer will most likely be filled
1646  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1647  * allocating it via kmalloc() or equivalent, even for very small buffers.
1648  * If the buffers are embedded in a bigger structure, there is a risk that
1649  * the buffer itself, the previous fields and/or the next fields are corrupted
1650  * due to cache incoherencies; or slowed down if they are evicted from the
1651  * cache. For more information, check &struct urb.
1652  *
1653  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1654 static inline void usb_fill_control_urb(struct urb *urb,
1655 					struct usb_device *dev,
1656 					unsigned int pipe,
1657 					unsigned char *setup_packet,
1658 					void *transfer_buffer,
1659 					int buffer_length,
1660 					usb_complete_t complete_fn,
1661 					void *context)
1662 {
1663 	urb->dev = dev;
1664 	urb->pipe = pipe;
1665 	urb->setup_packet = setup_packet;
1666 	urb->transfer_buffer = transfer_buffer;
1667 	urb->transfer_buffer_length = buffer_length;
1668 	urb->complete = complete_fn;
1669 	urb->context = context;
1670 }
1671 
1672 /**
1673  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1674  * @urb: pointer to the urb to initialize.
1675  * @dev: pointer to the struct usb_device for this urb.
1676  * @pipe: the endpoint pipe
1677  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1678  *	suitable for DMA.
1679  * @buffer_length: length of the transfer buffer
1680  * @complete_fn: pointer to the usb_complete_t function
1681  * @context: what to set the urb context to.
1682  *
1683  * Initializes a bulk urb with the proper information needed to submit it
1684  * to a device.
1685  *
1686  * Refer to usb_fill_control_urb() for a description of the requirements for
1687  * transfer_buffer.
1688  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1689 static inline void usb_fill_bulk_urb(struct urb *urb,
1690 				     struct usb_device *dev,
1691 				     unsigned int pipe,
1692 				     void *transfer_buffer,
1693 				     int buffer_length,
1694 				     usb_complete_t complete_fn,
1695 				     void *context)
1696 {
1697 	urb->dev = dev;
1698 	urb->pipe = pipe;
1699 	urb->transfer_buffer = transfer_buffer;
1700 	urb->transfer_buffer_length = buffer_length;
1701 	urb->complete = complete_fn;
1702 	urb->context = context;
1703 }
1704 
1705 /**
1706  * usb_fill_int_urb - macro to help initialize a interrupt urb
1707  * @urb: pointer to the urb to initialize.
1708  * @dev: pointer to the struct usb_device for this urb.
1709  * @pipe: the endpoint pipe
1710  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1711  *	suitable for DMA.
1712  * @buffer_length: length of the transfer buffer
1713  * @complete_fn: pointer to the usb_complete_t function
1714  * @context: what to set the urb context to.
1715  * @interval: what to set the urb interval to, encoded like
1716  *	the endpoint descriptor's bInterval value.
1717  *
1718  * Initializes a interrupt urb with the proper information needed to submit
1719  * it to a device.
1720  *
1721  * Refer to usb_fill_control_urb() for a description of the requirements for
1722  * transfer_buffer.
1723  *
1724  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1725  * encoding of the endpoint interval, and express polling intervals in
1726  * microframes (eight per millisecond) rather than in frames (one per
1727  * millisecond).
1728  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1729 static inline void usb_fill_int_urb(struct urb *urb,
1730 				    struct usb_device *dev,
1731 				    unsigned int pipe,
1732 				    void *transfer_buffer,
1733 				    int buffer_length,
1734 				    usb_complete_t complete_fn,
1735 				    void *context,
1736 				    int interval)
1737 {
1738 	urb->dev = dev;
1739 	urb->pipe = pipe;
1740 	urb->transfer_buffer = transfer_buffer;
1741 	urb->transfer_buffer_length = buffer_length;
1742 	urb->complete = complete_fn;
1743 	urb->context = context;
1744 
1745 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1746 		/* make sure interval is within allowed range */
1747 		interval = clamp(interval, 1, 16);
1748 
1749 		urb->interval = 1 << (interval - 1);
1750 	} else {
1751 		urb->interval = interval;
1752 	}
1753 
1754 	urb->start_frame = -1;
1755 }
1756 
1757 extern void usb_init_urb(struct urb *urb);
1758 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1759 extern void usb_free_urb(struct urb *urb);
1760 #define usb_put_urb usb_free_urb
1761 extern struct urb *usb_get_urb(struct urb *urb);
1762 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1763 extern int usb_unlink_urb(struct urb *urb);
1764 extern void usb_kill_urb(struct urb *urb);
1765 extern void usb_poison_urb(struct urb *urb);
1766 extern void usb_unpoison_urb(struct urb *urb);
1767 extern void usb_block_urb(struct urb *urb);
1768 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1769 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1770 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1771 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1772 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1773 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1774 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1775 extern void usb_unanchor_urb(struct urb *urb);
1776 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1777 					 unsigned int timeout);
1778 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1779 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1780 extern int usb_anchor_empty(struct usb_anchor *anchor);
1781 
1782 #define usb_unblock_urb	usb_unpoison_urb
1783 
1784 /**
1785  * usb_urb_dir_in - check if an URB describes an IN transfer
1786  * @urb: URB to be checked
1787  *
1788  * Return: 1 if @urb describes an IN transfer (device-to-host),
1789  * otherwise 0.
1790  */
usb_urb_dir_in(struct urb * urb)1791 static inline int usb_urb_dir_in(struct urb *urb)
1792 {
1793 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1794 }
1795 
1796 /**
1797  * usb_urb_dir_out - check if an URB describes an OUT transfer
1798  * @urb: URB to be checked
1799  *
1800  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1801  * otherwise 0.
1802  */
usb_urb_dir_out(struct urb * urb)1803 static inline int usb_urb_dir_out(struct urb *urb)
1804 {
1805 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1806 }
1807 
1808 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1809 int usb_urb_ep_type_check(const struct urb *urb);
1810 
1811 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1812 	gfp_t mem_flags, dma_addr_t *dma);
1813 void usb_free_coherent(struct usb_device *dev, size_t size,
1814 	void *addr, dma_addr_t dma);
1815 
1816 /*-------------------------------------------------------------------*
1817  *                         SYNCHRONOUS CALL SUPPORT                  *
1818  *-------------------------------------------------------------------*/
1819 
1820 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1821 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1822 	void *data, __u16 size, int timeout);
1823 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1824 	void *data, int len, int *actual_length, int timeout);
1825 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1826 	void *data, int len, int *actual_length,
1827 	int timeout);
1828 
1829 /* wrappers around usb_control_msg() for the most common standard requests */
1830 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1831 			 __u8 requesttype, __u16 value, __u16 index,
1832 			 const void *data, __u16 size, int timeout,
1833 			 gfp_t memflags);
1834 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1835 			 __u8 requesttype, __u16 value, __u16 index,
1836 			 void *data, __u16 size, int timeout,
1837 			 gfp_t memflags);
1838 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1839 	unsigned char descindex, void *buf, int size);
1840 extern int usb_get_status(struct usb_device *dev,
1841 	int recip, int type, int target, void *data);
1842 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1843 static inline int usb_get_std_status(struct usb_device *dev,
1844 	int recip, int target, void *data)
1845 {
1846 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1847 		data);
1848 }
1849 
usb_get_ptm_status(struct usb_device * dev,void * data)1850 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1851 {
1852 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1853 		0, data);
1854 }
1855 
1856 extern int usb_string(struct usb_device *dev, int index,
1857 	char *buf, size_t size);
1858 extern char *usb_cache_string(struct usb_device *udev, int index);
1859 
1860 /* wrappers that also update important state inside usbcore */
1861 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1862 extern int usb_reset_configuration(struct usb_device *dev);
1863 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1864 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1865 
1866 /* this request isn't really synchronous, but it belongs with the others */
1867 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1868 
1869 /* choose and set configuration for device */
1870 extern int usb_choose_configuration(struct usb_device *udev);
1871 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1872 
1873 /*
1874  * timeouts, in milliseconds, used for sending/receiving control messages
1875  * they typically complete within a few frames (msec) after they're issued
1876  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1877  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1878  */
1879 #define USB_CTRL_GET_TIMEOUT	5000
1880 #define USB_CTRL_SET_TIMEOUT	5000
1881 
1882 
1883 /**
1884  * struct usb_sg_request - support for scatter/gather I/O
1885  * @status: zero indicates success, else negative errno
1886  * @bytes: counts bytes transferred.
1887  *
1888  * These requests are initialized using usb_sg_init(), and then are used
1889  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1890  * members of the request object aren't for driver access.
1891  *
1892  * The status and bytecount values are valid only after usb_sg_wait()
1893  * returns.  If the status is zero, then the bytecount matches the total
1894  * from the request.
1895  *
1896  * After an error completion, drivers may need to clear a halt condition
1897  * on the endpoint.
1898  */
1899 struct usb_sg_request {
1900 	int			status;
1901 	size_t			bytes;
1902 
1903 	/* private:
1904 	 * members below are private to usbcore,
1905 	 * and are not provided for driver access!
1906 	 */
1907 	spinlock_t		lock;
1908 
1909 	struct usb_device	*dev;
1910 	int			pipe;
1911 
1912 	int			entries;
1913 	struct urb		**urbs;
1914 
1915 	int			count;
1916 	struct completion	complete;
1917 };
1918 
1919 int usb_sg_init(
1920 	struct usb_sg_request	*io,
1921 	struct usb_device	*dev,
1922 	unsigned		pipe,
1923 	unsigned		period,
1924 	struct scatterlist	*sg,
1925 	int			nents,
1926 	size_t			length,
1927 	gfp_t			mem_flags
1928 );
1929 void usb_sg_cancel(struct usb_sg_request *io);
1930 void usb_sg_wait(struct usb_sg_request *io);
1931 
1932 
1933 /* ----------------------------------------------------------------------- */
1934 
1935 /*
1936  * For various legacy reasons, Linux has a small cookie that's paired with
1937  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1938  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1939  * an unsigned int encoded as:
1940  *
1941  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1942  *					 1 = Device-to-Host [In] ...
1943  *					like endpoint bEndpointAddress)
1944  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1945  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1946  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1947  *					 10 = control, 11 = bulk)
1948  *
1949  * Given the device address and endpoint descriptor, pipes are redundant.
1950  */
1951 
1952 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1953 /* (yet ... they're the values used by usbfs) */
1954 #define PIPE_ISOCHRONOUS		0
1955 #define PIPE_INTERRUPT			1
1956 #define PIPE_CONTROL			2
1957 #define PIPE_BULK			3
1958 
1959 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1960 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1961 
1962 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1963 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1964 
1965 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1966 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1967 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1968 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1969 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1970 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1971 static inline unsigned int __create_pipe(struct usb_device *dev,
1972 		unsigned int endpoint)
1973 {
1974 	return (dev->devnum << 8) | (endpoint << 15);
1975 }
1976 
1977 /* Create various pipes... */
1978 #define usb_sndctrlpipe(dev, endpoint)	\
1979 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1980 #define usb_rcvctrlpipe(dev, endpoint)	\
1981 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1982 #define usb_sndisocpipe(dev, endpoint)	\
1983 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1984 #define usb_rcvisocpipe(dev, endpoint)	\
1985 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1986 #define usb_sndbulkpipe(dev, endpoint)	\
1987 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1988 #define usb_rcvbulkpipe(dev, endpoint)	\
1989 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1990 #define usb_sndintpipe(dev, endpoint)	\
1991 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1992 #define usb_rcvintpipe(dev, endpoint)	\
1993 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1994 
1995 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1996 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1997 {
1998 	struct usb_host_endpoint **eps;
1999 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2000 	return eps[usb_pipeendpoint(pipe)];
2001 }
2002 
usb_maxpacket(struct usb_device * udev,int pipe)2003 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2004 {
2005 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2006 
2007 	if (!ep)
2008 		return 0;
2009 
2010 	/* NOTE:  only 0x07ff bits are for packet size... */
2011 	return usb_endpoint_maxp(&ep->desc);
2012 }
2013 
2014 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2015 static inline int usb_translate_errors(int error_code)
2016 {
2017 	switch (error_code) {
2018 	case 0:
2019 	case -ENOMEM:
2020 	case -ENODEV:
2021 	case -EOPNOTSUPP:
2022 		return error_code;
2023 	default:
2024 		return -EIO;
2025 	}
2026 }
2027 
2028 /* Events from the usb core */
2029 #define USB_DEVICE_ADD		0x0001
2030 #define USB_DEVICE_REMOVE	0x0002
2031 #define USB_BUS_ADD		0x0003
2032 #define USB_BUS_REMOVE		0x0004
2033 extern void usb_register_notify(struct notifier_block *nb);
2034 extern void usb_unregister_notify(struct notifier_block *nb);
2035 
2036 /* debugfs stuff */
2037 extern struct dentry *usb_debug_root;
2038 
2039 /* LED triggers */
2040 enum usb_led_event {
2041 	USB_LED_EVENT_HOST = 0,
2042 	USB_LED_EVENT_GADGET = 1,
2043 };
2044 
2045 #ifdef CONFIG_USB_LED_TRIG
2046 extern void usb_led_activity(enum usb_led_event ev);
2047 #else
usb_led_activity(enum usb_led_event ev)2048 static inline void usb_led_activity(enum usb_led_event ev) {}
2049 #endif
2050 
2051 #endif  /* __KERNEL__ */
2052 
2053 #endif
2054