1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MCOperandInfo and MCInstrDesc classes, which 10 // are used to describe target instructions and their operands. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_MC_MCINSTRDESC_H 15 #define LLVM_MC_MCINSTRDESC_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/MC/MCRegister.h" 20 21 namespace llvm { 22 class MCRegisterInfo; 23 24 class MCInst; 25 26 //===----------------------------------------------------------------------===// 27 // Machine Operand Flags and Description 28 //===----------------------------------------------------------------------===// 29 30 namespace MCOI { 31 /// Operand constraints. These are encoded in 16 bits with one of the 32 /// low-order 3 bits specifying that a constraint is present and the 33 /// corresponding high-order hex digit specifying the constraint value. 34 /// This allows for a maximum of 3 constraints. 35 enum OperandConstraint { 36 TIED_TO = 0, // Must be allocated the same register as specified value. 37 EARLY_CLOBBER // If present, operand is an early clobber register. 38 }; 39 40 // Define a macro to produce each constraint value. 41 #define MCOI_TIED_TO(op) \ 42 ((1 << MCOI::TIED_TO) | ((op) << (4 + MCOI::TIED_TO * 4))) 43 44 #define MCOI_EARLY_CLOBBER \ 45 (1 << MCOI::EARLY_CLOBBER) 46 47 /// These are flags set on operands, but should be considered 48 /// private, all access should go through the MCOperandInfo accessors. 49 /// See the accessors for a description of what these are. 50 enum OperandFlags { 51 LookupPtrRegClass = 0, 52 Predicate, 53 OptionalDef, 54 BranchTarget 55 }; 56 57 /// Operands are tagged with one of the values of this enum. 58 enum OperandType { 59 OPERAND_UNKNOWN = 0, 60 OPERAND_IMMEDIATE = 1, 61 OPERAND_REGISTER = 2, 62 OPERAND_MEMORY = 3, 63 OPERAND_PCREL = 4, 64 65 OPERAND_FIRST_GENERIC = 6, 66 OPERAND_GENERIC_0 = 6, 67 OPERAND_GENERIC_1 = 7, 68 OPERAND_GENERIC_2 = 8, 69 OPERAND_GENERIC_3 = 9, 70 OPERAND_GENERIC_4 = 10, 71 OPERAND_GENERIC_5 = 11, 72 OPERAND_LAST_GENERIC = 11, 73 74 OPERAND_FIRST_GENERIC_IMM = 12, 75 OPERAND_GENERIC_IMM_0 = 12, 76 OPERAND_LAST_GENERIC_IMM = 12, 77 78 OPERAND_FIRST_TARGET = 13, 79 }; 80 81 } // namespace MCOI 82 83 /// This holds information about one operand of a machine instruction, 84 /// indicating the register class for register operands, etc. 85 class MCOperandInfo { 86 public: 87 /// This specifies the register class enumeration of the operand 88 /// if the operand is a register. If isLookupPtrRegClass is set, then this is 89 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to 90 /// get a dynamic register class. 91 int16_t RegClass; 92 93 /// These are flags from the MCOI::OperandFlags enum. 94 uint8_t Flags; 95 96 /// Information about the type of the operand. 97 uint8_t OperandType; 98 99 /// Operand constraints (see OperandConstraint enum). 100 uint16_t Constraints; 101 102 /// Set if this operand is a pointer value and it requires a callback 103 /// to look up its register class. isLookupPtrRegClass()104 bool isLookupPtrRegClass() const { 105 return Flags & (1 << MCOI::LookupPtrRegClass); 106 } 107 108 /// Set if this is one of the operands that made up of the predicate 109 /// operand that controls an isPredicable() instruction. isPredicate()110 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } 111 112 /// Set if this operand is a optional def. isOptionalDef()113 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } 114 115 /// Set if this operand is a branch target. isBranchTarget()116 bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); } 117 isGenericType()118 bool isGenericType() const { 119 return OperandType >= MCOI::OPERAND_FIRST_GENERIC && 120 OperandType <= MCOI::OPERAND_LAST_GENERIC; 121 } 122 getGenericTypeIndex()123 unsigned getGenericTypeIndex() const { 124 assert(isGenericType() && "non-generic types don't have an index"); 125 return OperandType - MCOI::OPERAND_FIRST_GENERIC; 126 } 127 isGenericImm()128 bool isGenericImm() const { 129 return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM && 130 OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM; 131 } 132 getGenericImmIndex()133 unsigned getGenericImmIndex() const { 134 assert(isGenericImm() && "non-generic immediates don't have an index"); 135 return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM; 136 } 137 }; 138 139 //===----------------------------------------------------------------------===// 140 // Machine Instruction Flags and Description 141 //===----------------------------------------------------------------------===// 142 143 namespace MCID { 144 /// These should be considered private to the implementation of the 145 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, 146 /// not use these directly. These all correspond to bitfields in the 147 /// MCInstrDesc::Flags field. 148 enum Flag { 149 PreISelOpcode = 0, 150 Variadic, 151 HasOptionalDef, 152 Pseudo, 153 Meta, 154 Return, 155 EHScopeReturn, 156 Call, 157 Barrier, 158 Terminator, 159 Branch, 160 IndirectBranch, 161 Compare, 162 MoveImm, 163 MoveReg, 164 Bitcast, 165 Select, 166 DelaySlot, 167 FoldableAsLoad, 168 MayLoad, 169 MayStore, 170 MayRaiseFPException, 171 Predicable, 172 NotDuplicable, 173 UnmodeledSideEffects, 174 Commutable, 175 ConvertibleTo3Addr, 176 UsesCustomInserter, 177 HasPostISelHook, 178 Rematerializable, 179 CheapAsAMove, 180 ExtraSrcRegAllocReq, 181 ExtraDefRegAllocReq, 182 RegSequence, 183 ExtractSubreg, 184 InsertSubreg, 185 Convergent, 186 Add, 187 Trap, 188 VariadicOpsAreDefs, 189 Authenticated, 190 }; 191 } // namespace MCID 192 193 /// Describe properties that are true of each instruction in the target 194 /// description file. This captures information about side effects, register 195 /// use and many other things. There is one instance of this struct for each 196 /// target instruction class, and the MachineInstr class points to this struct 197 /// directly to describe itself. 198 class MCInstrDesc { 199 public: 200 // FIXME: Disable copies and moves. 201 // Do not allow MCInstrDescs to be copied or moved. They should only exist in 202 // the <Target>Insts table because they rely on knowing their own address to 203 // find other information elsewhere in the same table. 204 205 unsigned short Opcode; // The opcode number 206 unsigned short NumOperands; // Num of args (may be more if variable_ops) 207 unsigned char NumDefs; // Num of args that are definitions 208 unsigned char Size; // Number of bytes in encoding. 209 unsigned short SchedClass; // enum identifying instr sched class 210 unsigned char NumImplicitUses; // Num of regs implicitly used 211 unsigned char NumImplicitDefs; // Num of regs implicitly defined 212 uint64_t Flags; // Flags identifying machine instr class 213 uint64_t TSFlags; // Target Specific Flag values 214 const MCPhysReg *ImplicitOps; // List of implicit uses followed by defs 215 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands 216 217 /// Returns the value of the specified operand constraint if 218 /// it is present. Returns -1 if it is not present. getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)219 int getOperandConstraint(unsigned OpNum, 220 MCOI::OperandConstraint Constraint) const { 221 if (OpNum < NumOperands && 222 (operands()[OpNum].Constraints & (1 << Constraint))) { 223 unsigned ValuePos = 4 + Constraint * 4; 224 return (int)(operands()[OpNum].Constraints >> ValuePos) & 0x0f; 225 } 226 return -1; 227 } 228 229 /// Return the opcode number for this descriptor. getOpcode()230 unsigned getOpcode() const { return Opcode; } 231 232 /// Return the number of declared MachineOperands for this 233 /// MachineInstruction. Note that variadic (isVariadic() returns true) 234 /// instructions may have additional operands at the end of the list, and note 235 /// that the machine instruction may include implicit register def/uses as 236 /// well. getNumOperands()237 unsigned getNumOperands() const { return NumOperands; } 238 239 using const_opInfo_iterator = const MCOperandInfo *; 240 opInfo_begin()241 const_opInfo_iterator opInfo_begin() const { return OpInfo; } opInfo_end()242 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; } 243 operands()244 ArrayRef<MCOperandInfo> operands() const { 245 return ArrayRef(OpInfo, NumOperands); 246 } 247 248 /// Return the number of MachineOperands that are register 249 /// definitions. Register definitions always occur at the start of the 250 /// machine operand list. This is the number of "outs" in the .td file, 251 /// and does not include implicit defs. getNumDefs()252 unsigned getNumDefs() const { return NumDefs; } 253 254 /// Return flags of this instruction. getFlags()255 uint64_t getFlags() const { return Flags; } 256 257 /// \returns true if this instruction is emitted before instruction selection 258 /// and should be legalized/regbankselected/selected. isPreISelOpcode()259 bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); } 260 261 /// Return true if this instruction can have a variable number of 262 /// operands. In this case, the variable operands will be after the normal 263 /// operands but before the implicit definitions and uses (if any are 264 /// present). isVariadic()265 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } 266 267 /// Set if this instruction has an optional definition, e.g. 268 /// ARM instructions which can set condition code if 's' bit is set. hasOptionalDef()269 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } 270 271 /// Return true if this is a pseudo instruction that doesn't 272 /// correspond to a real machine instruction. isPseudo()273 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } 274 275 /// Return true if this is a meta instruction that doesn't 276 /// produce any output in the form of executable instructions. isMetaInstruction()277 bool isMetaInstruction() const { return Flags & (1ULL << MCID::Meta); } 278 279 /// Return true if the instruction is a return. isReturn()280 bool isReturn() const { return Flags & (1ULL << MCID::Return); } 281 282 /// Return true if the instruction is an add instruction. isAdd()283 bool isAdd() const { return Flags & (1ULL << MCID::Add); } 284 285 /// Return true if this instruction is a trap. isTrap()286 bool isTrap() const { return Flags & (1ULL << MCID::Trap); } 287 288 /// Return true if the instruction is a register to register move. isMoveReg()289 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } 290 291 /// Return true if the instruction is a call. isCall()292 bool isCall() const { return Flags & (1ULL << MCID::Call); } 293 294 /// Returns true if the specified instruction stops control flow 295 /// from executing the instruction immediately following it. Examples include 296 /// unconditional branches and return instructions. isBarrier()297 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } 298 299 /// Returns true if this instruction part of the terminator for 300 /// a basic block. Typically this is things like return and branch 301 /// instructions. 302 /// 303 /// Various passes use this to insert code into the bottom of a basic block, 304 /// but before control flow occurs. isTerminator()305 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } 306 307 /// Returns true if this is a conditional, unconditional, or 308 /// indirect branch. Predicates below can be used to discriminate between 309 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 310 /// get more information. isBranch()311 bool isBranch() const { return Flags & (1ULL << MCID::Branch); } 312 313 /// Return true if this is an indirect branch, such as a 314 /// branch through a register. isIndirectBranch()315 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } 316 317 /// Return true if this is a branch which may fall 318 /// through to the next instruction or may transfer control flow to some other 319 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 320 /// information about this branch. isConditionalBranch()321 bool isConditionalBranch() const { 322 return isBranch() && !isBarrier() && !isIndirectBranch(); 323 } 324 325 /// Return true if this is a branch which always 326 /// transfers control flow to some other block. The 327 /// TargetInstrInfo::analyzeBranch method can be used to get more information 328 /// about this branch. isUnconditionalBranch()329 bool isUnconditionalBranch() const { 330 return isBranch() && isBarrier() && !isIndirectBranch(); 331 } 332 333 /// Return true if this is a branch or an instruction which directly 334 /// writes to the program counter. Considered 'may' affect rather than 335 /// 'does' affect as things like predication are not taken into account. 336 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; 337 338 /// Return true if this instruction has a predicate operand 339 /// that controls execution. It may be set to 'always', or may be set to other 340 /// values. There are various methods in TargetInstrInfo that can be used to 341 /// control and modify the predicate in this instruction. isPredicable()342 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } 343 344 /// Return true if this instruction is a comparison. isCompare()345 bool isCompare() const { return Flags & (1ULL << MCID::Compare); } 346 347 /// Return true if this instruction is a move immediate 348 /// (including conditional moves) instruction. isMoveImmediate()349 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } 350 351 /// Return true if this instruction is a bitcast instruction. isBitcast()352 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } 353 354 /// Return true if this is a select instruction. isSelect()355 bool isSelect() const { return Flags & (1ULL << MCID::Select); } 356 357 /// Return true if this instruction cannot be safely 358 /// duplicated. For example, if the instruction has a unique labels attached 359 /// to it, duplicating it would cause multiple definition errors. isNotDuplicable()360 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } 361 362 /// Returns true if the specified instruction has a delay slot which 363 /// must be filled by the code generator. hasDelaySlot()364 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } 365 366 /// Return true for instructions that can be folded as memory operands 367 /// in other instructions. The most common use for this is instructions that 368 /// are simple loads from memory that don't modify the loaded value in any 369 /// way, but it can also be used for instructions that can be expressed as 370 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be 371 /// folded when it is beneficial. This should only be set on instructions 372 /// that return a value in their only virtual register definition. canFoldAsLoad()373 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } 374 375 /// Return true if this instruction behaves 376 /// the same way as the generic REG_SEQUENCE instructions. 377 /// E.g., on ARM, 378 /// dX VMOVDRR rY, rZ 379 /// is equivalent to 380 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 381 /// 382 /// Note that for the optimizers to be able to take advantage of 383 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 384 /// override accordingly. isRegSequenceLike()385 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } 386 387 /// Return true if this instruction behaves 388 /// the same way as the generic EXTRACT_SUBREG instructions. 389 /// E.g., on ARM, 390 /// rX, rY VMOVRRD dZ 391 /// is equivalent to two EXTRACT_SUBREG: 392 /// rX = EXTRACT_SUBREG dZ, ssub_0 393 /// rY = EXTRACT_SUBREG dZ, ssub_1 394 /// 395 /// Note that for the optimizers to be able to take advantage of 396 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 397 /// override accordingly. isExtractSubregLike()398 bool isExtractSubregLike() const { 399 return Flags & (1ULL << MCID::ExtractSubreg); 400 } 401 402 /// Return true if this instruction behaves 403 /// the same way as the generic INSERT_SUBREG instructions. 404 /// E.g., on ARM, 405 /// dX = VSETLNi32 dY, rZ, Imm 406 /// is equivalent to a INSERT_SUBREG: 407 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 408 /// 409 /// Note that for the optimizers to be able to take advantage of 410 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 411 /// override accordingly. isInsertSubregLike()412 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } 413 414 415 /// Return true if this instruction is convergent. 416 /// 417 /// Convergent instructions may not be made control-dependent on any 418 /// additional values. isConvergent()419 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } 420 421 /// Return true if variadic operands of this instruction are definitions. variadicOpsAreDefs()422 bool variadicOpsAreDefs() const { 423 return Flags & (1ULL << MCID::VariadicOpsAreDefs); 424 } 425 426 /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx 427 /// from ARMv8.3, which perform loads/branches with authentication). 428 /// 429 /// An authenticated instruction may fail in an ABI-defined manner when 430 /// operating on an invalid signed pointer. isAuthenticated()431 bool isAuthenticated() const { 432 return Flags & (1ULL << MCID::Authenticated); 433 } 434 435 //===--------------------------------------------------------------------===// 436 // Side Effect Analysis 437 //===--------------------------------------------------------------------===// 438 439 /// Return true if this instruction could possibly read memory. 440 /// Instructions with this flag set are not necessarily simple load 441 /// instructions, they may load a value and modify it, for example. mayLoad()442 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } 443 444 /// Return true if this instruction could possibly modify memory. 445 /// Instructions with this flag set are not necessarily simple store 446 /// instructions, they may store a modified value based on their operands, or 447 /// may not actually modify anything, for example. mayStore()448 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } 449 450 /// Return true if this instruction may raise a floating-point exception. mayRaiseFPException()451 bool mayRaiseFPException() const { 452 return Flags & (1ULL << MCID::MayRaiseFPException); 453 } 454 455 /// Return true if this instruction has side 456 /// effects that are not modeled by other flags. This does not return true 457 /// for instructions whose effects are captured by: 458 /// 459 /// 1. Their operand list and implicit definition/use list. Register use/def 460 /// info is explicit for instructions. 461 /// 2. Memory accesses. Use mayLoad/mayStore. 462 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. 463 /// 464 /// Examples of side effects would be modifying 'invisible' machine state like 465 /// a control register, flushing a cache, modifying a register invisible to 466 /// LLVM, etc. hasUnmodeledSideEffects()467 bool hasUnmodeledSideEffects() const { 468 return Flags & (1ULL << MCID::UnmodeledSideEffects); 469 } 470 471 //===--------------------------------------------------------------------===// 472 // Flags that indicate whether an instruction can be modified by a method. 473 //===--------------------------------------------------------------------===// 474 475 /// Return true if this may be a 2- or 3-address instruction (of the 476 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are 477 /// exchanged. If this flag is set, then the 478 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 479 /// instruction. 480 /// 481 /// Note that this flag may be set on instructions that are only commutable 482 /// sometimes. In these cases, the call to commuteInstruction will fail. 483 /// Also note that some instructions require non-trivial modification to 484 /// commute them. isCommutable()485 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } 486 487 /// Return true if this is a 2-address instruction which can be changed 488 /// into a 3-address instruction if needed. Doing this transformation can be 489 /// profitable in the register allocator, because it means that the 490 /// instruction can use a 2-address form if possible, but degrade into a less 491 /// efficient form if the source and dest register cannot be assigned to the 492 /// same register. For example, this allows the x86 backend to turn a "shl 493 /// reg, 3" instruction into an LEA instruction, which is the same speed as 494 /// the shift but has bigger code size. 495 /// 496 /// If this returns true, then the target must implement the 497 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 498 /// is allowed to fail if the transformation isn't valid for this specific 499 /// instruction (e.g. shl reg, 4 on x86). 500 /// isConvertibleTo3Addr()501 bool isConvertibleTo3Addr() const { 502 return Flags & (1ULL << MCID::ConvertibleTo3Addr); 503 } 504 505 /// Return true if this instruction requires custom insertion support 506 /// when the DAG scheduler is inserting it into a machine basic block. If 507 /// this is true for the instruction, it basically means that it is a pseudo 508 /// instruction used at SelectionDAG time that is expanded out into magic code 509 /// by the target when MachineInstrs are formed. 510 /// 511 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 512 /// is used to insert this into the MachineBasicBlock. usesCustomInsertionHook()513 bool usesCustomInsertionHook() const { 514 return Flags & (1ULL << MCID::UsesCustomInserter); 515 } 516 517 /// Return true if this instruction requires *adjustment* after 518 /// instruction selection by calling a target hook. For example, this can be 519 /// used to fill in ARM 's' optional operand depending on whether the 520 /// conditional flag register is used. hasPostISelHook()521 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } 522 523 /// Returns true if this instruction is a candidate for remat. This 524 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. 525 /// 526 /// If this flag is set, the isReallyTriviallyReMaterializable() 527 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify 528 /// the instruction is really rematable. isRematerializable()529 bool isRematerializable() const { 530 return Flags & (1ULL << MCID::Rematerializable); 531 } 532 533 /// Returns true if this instruction has the same cost (or less) than a 534 /// move instruction. This is useful during certain types of optimizations 535 /// (e.g., remat during two-address conversion or machine licm) where we would 536 /// like to remat or hoist the instruction, but not if it costs more than 537 /// moving the instruction into the appropriate register. Note, we are not 538 /// marking copies from and to the same register class with this flag. 539 /// 540 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove 541 /// for different subtargets. isAsCheapAsAMove()542 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } 543 544 /// Returns true if this instruction source operands have special 545 /// register allocation requirements that are not captured by the operand 546 /// register classes. e.g. ARM::STRD's two source registers must be an even / 547 /// odd pair, ARM::STM registers have to be in ascending order. Post-register 548 /// allocation passes should not attempt to change allocations for sources of 549 /// instructions with this flag. hasExtraSrcRegAllocReq()550 bool hasExtraSrcRegAllocReq() const { 551 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); 552 } 553 554 /// Returns true if this instruction def operands have special register 555 /// allocation requirements that are not captured by the operand register 556 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, 557 /// ARM::LDM registers have to be in ascending order. Post-register 558 /// allocation passes should not attempt to change allocations for definitions 559 /// of instructions with this flag. hasExtraDefRegAllocReq()560 bool hasExtraDefRegAllocReq() const { 561 return Flags & (1ULL << MCID::ExtraDefRegAllocReq); 562 } 563 564 /// Return a list of registers that are potentially read by any 565 /// instance of this machine instruction. For example, on X86, the "adc" 566 /// instruction adds two register operands and adds the carry bit in from the 567 /// flags register. In this case, the instruction is marked as implicitly 568 /// reading the flags. Likewise, the variable shift instruction on X86 is 569 /// marked as implicitly reading the 'CL' register, which it always does. implicit_uses()570 ArrayRef<MCPhysReg> implicit_uses() const { 571 return {ImplicitOps, NumImplicitUses}; 572 } 573 574 /// Return a list of registers that are potentially written by any 575 /// instance of this machine instruction. For example, on X86, many 576 /// instructions implicitly set the flags register. In this case, they are 577 /// marked as setting the FLAGS. Likewise, many instructions always deposit 578 /// their result in a physical register. For example, the X86 divide 579 /// instruction always deposits the quotient and remainder in the EAX/EDX 580 /// registers. For that instruction, this will return a list containing the 581 /// EAX/EDX/EFLAGS registers. implicit_defs()582 ArrayRef<MCPhysReg> implicit_defs() const { 583 return {ImplicitOps + NumImplicitUses, NumImplicitDefs}; 584 } 585 586 /// Return true if this instruction implicitly 587 /// uses the specified physical register. hasImplicitUseOfPhysReg(unsigned Reg)588 bool hasImplicitUseOfPhysReg(unsigned Reg) const { 589 return is_contained(implicit_uses(), Reg); 590 } 591 592 /// Return true if this instruction implicitly 593 /// defines the specified physical register. 594 bool hasImplicitDefOfPhysReg(unsigned Reg, 595 const MCRegisterInfo *MRI = nullptr) const; 596 597 /// Return the scheduling class for this instruction. The 598 /// scheduling class is an index into the InstrItineraryData table. This 599 /// returns zero if there is no known scheduling information for the 600 /// instruction. getSchedClass()601 unsigned getSchedClass() const { return SchedClass; } 602 603 /// Return the number of bytes in the encoding of this instruction, 604 /// or zero if the encoding size cannot be known from the opcode. getSize()605 unsigned getSize() const { return Size; } 606 607 /// Find the index of the first operand in the 608 /// operand list that is used to represent the predicate. It returns -1 if 609 /// none is found. findFirstPredOperandIdx()610 int findFirstPredOperandIdx() const { 611 if (isPredicable()) { 612 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 613 if (operands()[i].isPredicate()) 614 return i; 615 } 616 return -1; 617 } 618 619 /// Return true if this instruction defines the specified physical 620 /// register, either explicitly or implicitly. 621 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, 622 const MCRegisterInfo &RI) const; 623 }; 624 625 } // end namespace llvm 626 627 #endif 628