xref: /openbsd/gnu/llvm/llvm/include/llvm/MC/MCInstrDesc.h (revision d415bd75)
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/MCRegister.h"
20 
21 namespace llvm {
22 class MCRegisterInfo;
23 
24 class MCInst;
25 
26 //===----------------------------------------------------------------------===//
27 // Machine Operand Flags and Description
28 //===----------------------------------------------------------------------===//
29 
30 namespace MCOI {
31 /// Operand constraints. These are encoded in 16 bits with one of the
32 /// low-order 3 bits specifying that a constraint is present and the
33 /// corresponding high-order hex digit specifying the constraint value.
34 /// This allows for a maximum of 3 constraints.
35 enum OperandConstraint {
36   TIED_TO = 0,  // Must be allocated the same register as specified value.
37   EARLY_CLOBBER // If present, operand is an early clobber register.
38 };
39 
40 // Define a macro to produce each constraint value.
41 #define MCOI_TIED_TO(op) \
42   ((1 << MCOI::TIED_TO) | ((op) << (4 + MCOI::TIED_TO * 4)))
43 
44 #define MCOI_EARLY_CLOBBER \
45   (1 << MCOI::EARLY_CLOBBER)
46 
47 /// These are flags set on operands, but should be considered
48 /// private, all access should go through the MCOperandInfo accessors.
49 /// See the accessors for a description of what these are.
50 enum OperandFlags {
51   LookupPtrRegClass = 0,
52   Predicate,
53   OptionalDef,
54   BranchTarget
55 };
56 
57 /// Operands are tagged with one of the values of this enum.
58 enum OperandType {
59   OPERAND_UNKNOWN = 0,
60   OPERAND_IMMEDIATE = 1,
61   OPERAND_REGISTER = 2,
62   OPERAND_MEMORY = 3,
63   OPERAND_PCREL = 4,
64 
65   OPERAND_FIRST_GENERIC = 6,
66   OPERAND_GENERIC_0 = 6,
67   OPERAND_GENERIC_1 = 7,
68   OPERAND_GENERIC_2 = 8,
69   OPERAND_GENERIC_3 = 9,
70   OPERAND_GENERIC_4 = 10,
71   OPERAND_GENERIC_5 = 11,
72   OPERAND_LAST_GENERIC = 11,
73 
74   OPERAND_FIRST_GENERIC_IMM = 12,
75   OPERAND_GENERIC_IMM_0 = 12,
76   OPERAND_LAST_GENERIC_IMM = 12,
77 
78   OPERAND_FIRST_TARGET = 13,
79 };
80 
81 } // namespace MCOI
82 
83 /// This holds information about one operand of a machine instruction,
84 /// indicating the register class for register operands, etc.
85 class MCOperandInfo {
86 public:
87   /// This specifies the register class enumeration of the operand
88   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
89   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
90   /// get a dynamic register class.
91   int16_t RegClass;
92 
93   /// These are flags from the MCOI::OperandFlags enum.
94   uint8_t Flags;
95 
96   /// Information about the type of the operand.
97   uint8_t OperandType;
98 
99   /// Operand constraints (see OperandConstraint enum).
100   uint16_t Constraints;
101 
102   /// Set if this operand is a pointer value and it requires a callback
103   /// to look up its register class.
isLookupPtrRegClass()104   bool isLookupPtrRegClass() const {
105     return Flags & (1 << MCOI::LookupPtrRegClass);
106   }
107 
108   /// Set if this is one of the operands that made up of the predicate
109   /// operand that controls an isPredicable() instruction.
isPredicate()110   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
111 
112   /// Set if this operand is a optional def.
isOptionalDef()113   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
114 
115   /// Set if this operand is a branch target.
isBranchTarget()116   bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); }
117 
isGenericType()118   bool isGenericType() const {
119     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
120            OperandType <= MCOI::OPERAND_LAST_GENERIC;
121   }
122 
getGenericTypeIndex()123   unsigned getGenericTypeIndex() const {
124     assert(isGenericType() && "non-generic types don't have an index");
125     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
126   }
127 
isGenericImm()128   bool isGenericImm() const {
129     return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
130            OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
131   }
132 
getGenericImmIndex()133   unsigned getGenericImmIndex() const {
134     assert(isGenericImm() && "non-generic immediates don't have an index");
135     return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
136   }
137 };
138 
139 //===----------------------------------------------------------------------===//
140 // Machine Instruction Flags and Description
141 //===----------------------------------------------------------------------===//
142 
143 namespace MCID {
144 /// These should be considered private to the implementation of the
145 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
146 /// not use these directly.  These all correspond to bitfields in the
147 /// MCInstrDesc::Flags field.
148 enum Flag {
149   PreISelOpcode = 0,
150   Variadic,
151   HasOptionalDef,
152   Pseudo,
153   Meta,
154   Return,
155   EHScopeReturn,
156   Call,
157   Barrier,
158   Terminator,
159   Branch,
160   IndirectBranch,
161   Compare,
162   MoveImm,
163   MoveReg,
164   Bitcast,
165   Select,
166   DelaySlot,
167   FoldableAsLoad,
168   MayLoad,
169   MayStore,
170   MayRaiseFPException,
171   Predicable,
172   NotDuplicable,
173   UnmodeledSideEffects,
174   Commutable,
175   ConvertibleTo3Addr,
176   UsesCustomInserter,
177   HasPostISelHook,
178   Rematerializable,
179   CheapAsAMove,
180   ExtraSrcRegAllocReq,
181   ExtraDefRegAllocReq,
182   RegSequence,
183   ExtractSubreg,
184   InsertSubreg,
185   Convergent,
186   Add,
187   Trap,
188   VariadicOpsAreDefs,
189   Authenticated,
190 };
191 } // namespace MCID
192 
193 /// Describe properties that are true of each instruction in the target
194 /// description file.  This captures information about side effects, register
195 /// use and many other things.  There is one instance of this struct for each
196 /// target instruction class, and the MachineInstr class points to this struct
197 /// directly to describe itself.
198 class MCInstrDesc {
199 public:
200   // FIXME: Disable copies and moves.
201   // Do not allow MCInstrDescs to be copied or moved. They should only exist in
202   // the <Target>Insts table because they rely on knowing their own address to
203   // find other information elsewhere in the same table.
204 
205   unsigned short Opcode;         // The opcode number
206   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
207   unsigned char NumDefs;         // Num of args that are definitions
208   unsigned char Size;            // Number of bytes in encoding.
209   unsigned short SchedClass;     // enum identifying instr sched class
210   unsigned char NumImplicitUses; // Num of regs implicitly used
211   unsigned char NumImplicitDefs; // Num of regs implicitly defined
212   uint64_t Flags;                // Flags identifying machine instr class
213   uint64_t TSFlags;              // Target Specific Flag values
214   const MCPhysReg *ImplicitOps;  // List of implicit uses followed by defs
215   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
216 
217   /// Returns the value of the specified operand constraint if
218   /// it is present. Returns -1 if it is not present.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)219   int getOperandConstraint(unsigned OpNum,
220                            MCOI::OperandConstraint Constraint) const {
221     if (OpNum < NumOperands &&
222         (operands()[OpNum].Constraints & (1 << Constraint))) {
223       unsigned ValuePos = 4 + Constraint * 4;
224       return (int)(operands()[OpNum].Constraints >> ValuePos) & 0x0f;
225     }
226     return -1;
227   }
228 
229   /// Return the opcode number for this descriptor.
getOpcode()230   unsigned getOpcode() const { return Opcode; }
231 
232   /// Return the number of declared MachineOperands for this
233   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
234   /// instructions may have additional operands at the end of the list, and note
235   /// that the machine instruction may include implicit register def/uses as
236   /// well.
getNumOperands()237   unsigned getNumOperands() const { return NumOperands; }
238 
239   using const_opInfo_iterator = const MCOperandInfo *;
240 
opInfo_begin()241   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
opInfo_end()242   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
243 
operands()244   ArrayRef<MCOperandInfo> operands() const {
245     return ArrayRef(OpInfo, NumOperands);
246   }
247 
248   /// Return the number of MachineOperands that are register
249   /// definitions.  Register definitions always occur at the start of the
250   /// machine operand list.  This is the number of "outs" in the .td file,
251   /// and does not include implicit defs.
getNumDefs()252   unsigned getNumDefs() const { return NumDefs; }
253 
254   /// Return flags of this instruction.
getFlags()255   uint64_t getFlags() const { return Flags; }
256 
257   /// \returns true if this instruction is emitted before instruction selection
258   /// and should be legalized/regbankselected/selected.
isPreISelOpcode()259   bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); }
260 
261   /// Return true if this instruction can have a variable number of
262   /// operands.  In this case, the variable operands will be after the normal
263   /// operands but before the implicit definitions and uses (if any are
264   /// present).
isVariadic()265   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
266 
267   /// Set if this instruction has an optional definition, e.g.
268   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()269   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
270 
271   /// Return true if this is a pseudo instruction that doesn't
272   /// correspond to a real machine instruction.
isPseudo()273   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
274 
275   /// Return true if this is a meta instruction that doesn't
276   /// produce any output in the form of executable instructions.
isMetaInstruction()277   bool isMetaInstruction() const { return Flags & (1ULL << MCID::Meta); }
278 
279   /// Return true if the instruction is a return.
isReturn()280   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
281 
282   /// Return true if the instruction is an add instruction.
isAdd()283   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
284 
285   /// Return true if this instruction is a trap.
isTrap()286   bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
287 
288   /// Return true if the instruction is a register to register move.
isMoveReg()289   bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
290 
291   ///  Return true if the instruction is a call.
isCall()292   bool isCall() const { return Flags & (1ULL << MCID::Call); }
293 
294   /// Returns true if the specified instruction stops control flow
295   /// from executing the instruction immediately following it.  Examples include
296   /// unconditional branches and return instructions.
isBarrier()297   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
298 
299   /// Returns true if this instruction part of the terminator for
300   /// a basic block.  Typically this is things like return and branch
301   /// instructions.
302   ///
303   /// Various passes use this to insert code into the bottom of a basic block,
304   /// but before control flow occurs.
isTerminator()305   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
306 
307   /// Returns true if this is a conditional, unconditional, or
308   /// indirect branch.  Predicates below can be used to discriminate between
309   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
310   /// get more information.
isBranch()311   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
312 
313   /// Return true if this is an indirect branch, such as a
314   /// branch through a register.
isIndirectBranch()315   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
316 
317   /// Return true if this is a branch which may fall
318   /// through to the next instruction or may transfer control flow to some other
319   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
320   /// information about this branch.
isConditionalBranch()321   bool isConditionalBranch() const {
322     return isBranch() && !isBarrier() && !isIndirectBranch();
323   }
324 
325   /// Return true if this is a branch which always
326   /// transfers control flow to some other block.  The
327   /// TargetInstrInfo::analyzeBranch method can be used to get more information
328   /// about this branch.
isUnconditionalBranch()329   bool isUnconditionalBranch() const {
330     return isBranch() && isBarrier() && !isIndirectBranch();
331   }
332 
333   /// Return true if this is a branch or an instruction which directly
334   /// writes to the program counter. Considered 'may' affect rather than
335   /// 'does' affect as things like predication are not taken into account.
336   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
337 
338   /// Return true if this instruction has a predicate operand
339   /// that controls execution. It may be set to 'always', or may be set to other
340   /// values. There are various methods in TargetInstrInfo that can be used to
341   /// control and modify the predicate in this instruction.
isPredicable()342   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
343 
344   /// Return true if this instruction is a comparison.
isCompare()345   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
346 
347   /// Return true if this instruction is a move immediate
348   /// (including conditional moves) instruction.
isMoveImmediate()349   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
350 
351   /// Return true if this instruction is a bitcast instruction.
isBitcast()352   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
353 
354   /// Return true if this is a select instruction.
isSelect()355   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
356 
357   /// Return true if this instruction cannot be safely
358   /// duplicated.  For example, if the instruction has a unique labels attached
359   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()360   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
361 
362   /// Returns true if the specified instruction has a delay slot which
363   /// must be filled by the code generator.
hasDelaySlot()364   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
365 
366   /// Return true for instructions that can be folded as memory operands
367   /// in other instructions. The most common use for this is instructions that
368   /// are simple loads from memory that don't modify the loaded value in any
369   /// way, but it can also be used for instructions that can be expressed as
370   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
371   /// folded when it is beneficial.  This should only be set on instructions
372   /// that return a value in their only virtual register definition.
canFoldAsLoad()373   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
374 
375   /// Return true if this instruction behaves
376   /// the same way as the generic REG_SEQUENCE instructions.
377   /// E.g., on ARM,
378   /// dX VMOVDRR rY, rZ
379   /// is equivalent to
380   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
381   ///
382   /// Note that for the optimizers to be able to take advantage of
383   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
384   /// override accordingly.
isRegSequenceLike()385   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
386 
387   /// Return true if this instruction behaves
388   /// the same way as the generic EXTRACT_SUBREG instructions.
389   /// E.g., on ARM,
390   /// rX, rY VMOVRRD dZ
391   /// is equivalent to two EXTRACT_SUBREG:
392   /// rX = EXTRACT_SUBREG dZ, ssub_0
393   /// rY = EXTRACT_SUBREG dZ, ssub_1
394   ///
395   /// Note that for the optimizers to be able to take advantage of
396   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
397   /// override accordingly.
isExtractSubregLike()398   bool isExtractSubregLike() const {
399     return Flags & (1ULL << MCID::ExtractSubreg);
400   }
401 
402   /// Return true if this instruction behaves
403   /// the same way as the generic INSERT_SUBREG instructions.
404   /// E.g., on ARM,
405   /// dX = VSETLNi32 dY, rZ, Imm
406   /// is equivalent to a INSERT_SUBREG:
407   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
408   ///
409   /// Note that for the optimizers to be able to take advantage of
410   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
411   /// override accordingly.
isInsertSubregLike()412   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
413 
414 
415   /// Return true if this instruction is convergent.
416   ///
417   /// Convergent instructions may not be made control-dependent on any
418   /// additional values.
isConvergent()419   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
420 
421   /// Return true if variadic operands of this instruction are definitions.
variadicOpsAreDefs()422   bool variadicOpsAreDefs() const {
423     return Flags & (1ULL << MCID::VariadicOpsAreDefs);
424   }
425 
426   /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx
427   /// from ARMv8.3, which perform loads/branches with authentication).
428   ///
429   /// An authenticated instruction may fail in an ABI-defined manner when
430   /// operating on an invalid signed pointer.
isAuthenticated()431   bool isAuthenticated() const {
432     return Flags & (1ULL << MCID::Authenticated);
433   }
434 
435   //===--------------------------------------------------------------------===//
436   // Side Effect Analysis
437   //===--------------------------------------------------------------------===//
438 
439   /// Return true if this instruction could possibly read memory.
440   /// Instructions with this flag set are not necessarily simple load
441   /// instructions, they may load a value and modify it, for example.
mayLoad()442   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
443 
444   /// Return true if this instruction could possibly modify memory.
445   /// Instructions with this flag set are not necessarily simple store
446   /// instructions, they may store a modified value based on their operands, or
447   /// may not actually modify anything, for example.
mayStore()448   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
449 
450   /// Return true if this instruction may raise a floating-point exception.
mayRaiseFPException()451   bool mayRaiseFPException() const {
452     return Flags & (1ULL << MCID::MayRaiseFPException);
453   }
454 
455   /// Return true if this instruction has side
456   /// effects that are not modeled by other flags.  This does not return true
457   /// for instructions whose effects are captured by:
458   ///
459   ///  1. Their operand list and implicit definition/use list.  Register use/def
460   ///     info is explicit for instructions.
461   ///  2. Memory accesses.  Use mayLoad/mayStore.
462   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
463   ///
464   /// Examples of side effects would be modifying 'invisible' machine state like
465   /// a control register, flushing a cache, modifying a register invisible to
466   /// LLVM, etc.
hasUnmodeledSideEffects()467   bool hasUnmodeledSideEffects() const {
468     return Flags & (1ULL << MCID::UnmodeledSideEffects);
469   }
470 
471   //===--------------------------------------------------------------------===//
472   // Flags that indicate whether an instruction can be modified by a method.
473   //===--------------------------------------------------------------------===//
474 
475   /// Return true if this may be a 2- or 3-address instruction (of the
476   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
477   /// exchanged.  If this flag is set, then the
478   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
479   /// instruction.
480   ///
481   /// Note that this flag may be set on instructions that are only commutable
482   /// sometimes.  In these cases, the call to commuteInstruction will fail.
483   /// Also note that some instructions require non-trivial modification to
484   /// commute them.
isCommutable()485   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
486 
487   /// Return true if this is a 2-address instruction which can be changed
488   /// into a 3-address instruction if needed.  Doing this transformation can be
489   /// profitable in the register allocator, because it means that the
490   /// instruction can use a 2-address form if possible, but degrade into a less
491   /// efficient form if the source and dest register cannot be assigned to the
492   /// same register.  For example, this allows the x86 backend to turn a "shl
493   /// reg, 3" instruction into an LEA instruction, which is the same speed as
494   /// the shift but has bigger code size.
495   ///
496   /// If this returns true, then the target must implement the
497   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
498   /// is allowed to fail if the transformation isn't valid for this specific
499   /// instruction (e.g. shl reg, 4 on x86).
500   ///
isConvertibleTo3Addr()501   bool isConvertibleTo3Addr() const {
502     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
503   }
504 
505   /// Return true if this instruction requires custom insertion support
506   /// when the DAG scheduler is inserting it into a machine basic block.  If
507   /// this is true for the instruction, it basically means that it is a pseudo
508   /// instruction used at SelectionDAG time that is expanded out into magic code
509   /// by the target when MachineInstrs are formed.
510   ///
511   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
512   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()513   bool usesCustomInsertionHook() const {
514     return Flags & (1ULL << MCID::UsesCustomInserter);
515   }
516 
517   /// Return true if this instruction requires *adjustment* after
518   /// instruction selection by calling a target hook. For example, this can be
519   /// used to fill in ARM 's' optional operand depending on whether the
520   /// conditional flag register is used.
hasPostISelHook()521   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
522 
523   /// Returns true if this instruction is a candidate for remat. This
524   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
525   ///
526   /// If this flag is set, the isReallyTriviallyReMaterializable()
527   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
528   /// the instruction is really rematable.
isRematerializable()529   bool isRematerializable() const {
530     return Flags & (1ULL << MCID::Rematerializable);
531   }
532 
533   /// Returns true if this instruction has the same cost (or less) than a
534   /// move instruction. This is useful during certain types of optimizations
535   /// (e.g., remat during two-address conversion or machine licm) where we would
536   /// like to remat or hoist the instruction, but not if it costs more than
537   /// moving the instruction into the appropriate register. Note, we are not
538   /// marking copies from and to the same register class with this flag.
539   ///
540   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
541   /// for different subtargets.
isAsCheapAsAMove()542   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
543 
544   /// Returns true if this instruction source operands have special
545   /// register allocation requirements that are not captured by the operand
546   /// register classes. e.g. ARM::STRD's two source registers must be an even /
547   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
548   /// allocation passes should not attempt to change allocations for sources of
549   /// instructions with this flag.
hasExtraSrcRegAllocReq()550   bool hasExtraSrcRegAllocReq() const {
551     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
552   }
553 
554   /// Returns true if this instruction def operands have special register
555   /// allocation requirements that are not captured by the operand register
556   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
557   /// ARM::LDM registers have to be in ascending order.  Post-register
558   /// allocation passes should not attempt to change allocations for definitions
559   /// of instructions with this flag.
hasExtraDefRegAllocReq()560   bool hasExtraDefRegAllocReq() const {
561     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
562   }
563 
564   /// Return a list of registers that are potentially read by any
565   /// instance of this machine instruction.  For example, on X86, the "adc"
566   /// instruction adds two register operands and adds the carry bit in from the
567   /// flags register.  In this case, the instruction is marked as implicitly
568   /// reading the flags.  Likewise, the variable shift instruction on X86 is
569   /// marked as implicitly reading the 'CL' register, which it always does.
implicit_uses()570   ArrayRef<MCPhysReg> implicit_uses() const {
571     return {ImplicitOps, NumImplicitUses};
572   }
573 
574   /// Return a list of registers that are potentially written by any
575   /// instance of this machine instruction.  For example, on X86, many
576   /// instructions implicitly set the flags register.  In this case, they are
577   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
578   /// their result in a physical register.  For example, the X86 divide
579   /// instruction always deposits the quotient and remainder in the EAX/EDX
580   /// registers.  For that instruction, this will return a list containing the
581   /// EAX/EDX/EFLAGS registers.
implicit_defs()582   ArrayRef<MCPhysReg> implicit_defs() const {
583     return {ImplicitOps + NumImplicitUses, NumImplicitDefs};
584   }
585 
586   /// Return true if this instruction implicitly
587   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)588   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
589     return is_contained(implicit_uses(), Reg);
590   }
591 
592   /// Return true if this instruction implicitly
593   /// defines the specified physical register.
594   bool hasImplicitDefOfPhysReg(unsigned Reg,
595                                const MCRegisterInfo *MRI = nullptr) const;
596 
597   /// Return the scheduling class for this instruction.  The
598   /// scheduling class is an index into the InstrItineraryData table.  This
599   /// returns zero if there is no known scheduling information for the
600   /// instruction.
getSchedClass()601   unsigned getSchedClass() const { return SchedClass; }
602 
603   /// Return the number of bytes in the encoding of this instruction,
604   /// or zero if the encoding size cannot be known from the opcode.
getSize()605   unsigned getSize() const { return Size; }
606 
607   /// Find the index of the first operand in the
608   /// operand list that is used to represent the predicate. It returns -1 if
609   /// none is found.
findFirstPredOperandIdx()610   int findFirstPredOperandIdx() const {
611     if (isPredicable()) {
612       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
613         if (operands()[i].isPredicate())
614           return i;
615     }
616     return -1;
617   }
618 
619   /// Return true if this instruction defines the specified physical
620   /// register, either explicitly or implicitly.
621   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
622                        const MCRegisterInfo &RI) const;
623 };
624 
625 } // end namespace llvm
626 
627 #endif
628