xref: /netbsd/sys/uvm/uvm_fault.c (revision bd9f53c8)
1 /*	$NetBSD: uvm_fault.c,v 1.233 2023/07/17 12:55:37 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28  */
29 
30 /*
31  * uvm_fault.c: fault handler
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.233 2023/07/17 12:55:37 riastradh Exp $");
36 
37 #include "opt_uvmhist.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/kernel.h>
43 #include <sys/mman.h>
44 
45 #include <uvm/uvm.h>
46 #include <uvm/uvm_pdpolicy.h>
47 #include <uvm/uvm_rndsource.h>
48 
49 /*
50  *
51  * a word on page faults:
52  *
53  * types of page faults we handle:
54  *
55  * CASE 1: upper layer faults                   CASE 2: lower layer faults
56  *
57  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
58  *    read/write1     write>1                  read/write   +-cow_write/zero
59  *         |             |                         |        |
60  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
61  * amap |  V  |       |  ---------> new |          |        | |  ^  |
62  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
63  *                                                 |        |    |
64  *      +-----+       +-----+                   +--|--+     | +--|--+
65  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
66  *      +-----+       +-----+                   +-----+       +-----+
67  *
68  * d/c = don't care
69  *
70  *   case [0]: layerless fault
71  *	no amap or uobj is present.   this is an error.
72  *
73  *   case [1]: upper layer fault [anon active]
74  *     1A: [read] or [write with anon->an_ref == 1]
75  *		I/O takes place in upper level anon and uobj is not touched.
76  *     1B: [write with anon->an_ref > 1]
77  *		new anon is alloc'd and data is copied off ["COW"]
78  *
79  *   case [2]: lower layer fault [uobj]
80  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
81  *		I/O takes place directly in object.
82  *     2B: [write to copy_on_write] or [read on NULL uobj]
83  *		data is "promoted" from uobj to a new anon.
84  *		if uobj is null, then we zero fill.
85  *
86  * we follow the standard UVM locking protocol ordering:
87  *
88  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
89  * we hold a PG_BUSY page if we unlock for I/O
90  *
91  *
92  * the code is structured as follows:
93  *
94  *     - init the "IN" params in the ufi structure
95  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
96  *     - do lookups [locks maps], check protection, handle needs_copy
97  *     - check for case 0 fault (error)
98  *     - establish "range" of fault
99  *     - if we have an amap lock it and extract the anons
100  *     - if sequential advice deactivate pages behind us
101  *     - at the same time check pmap for unmapped areas and anon for pages
102  *	 that we could map in (and do map it if found)
103  *     - check object for resident pages that we could map in
104  *     - if (case 2) goto Case2
105  *     - >>> handle case 1
106  *           - ensure source anon is resident in RAM
107  *           - if case 1B alloc new anon and copy from source
108  *           - map the correct page in
109  *   Case2:
110  *     - >>> handle case 2
111  *           - ensure source page is resident (if uobj)
112  *           - if case 2B alloc new anon and copy from source (could be zero
113  *		fill if uobj == NULL)
114  *           - map the correct page in
115  *     - done!
116  *
117  * note on paging:
118  *   if we have to do I/O we place a PG_BUSY page in the correct object,
119  * unlock everything, and do the I/O.   when I/O is done we must reverify
120  * the state of the world before assuming that our data structures are
121  * valid.   [because mappings could change while the map is unlocked]
122  *
123  *  alternative 1: unbusy the page in question and restart the page fault
124  *    from the top (ReFault).   this is easy but does not take advantage
125  *    of the information that we already have from our previous lookup,
126  *    although it is possible that the "hints" in the vm_map will help here.
127  *
128  * alternative 2: the system already keeps track of a "version" number of
129  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
130  *    mapping) you bump the version number up by one...]   so, we can save
131  *    the version number of the map before we release the lock and start I/O.
132  *    then when I/O is done we can relock and check the version numbers
133  *    to see if anything changed.    this might save us some over 1 because
134  *    we don't have to unbusy the page and may be less compares(?).
135  *
136  * alternative 3: put in backpointers or a way to "hold" part of a map
137  *    in place while I/O is in progress.   this could be complex to
138  *    implement (especially with structures like amap that can be referenced
139  *    by multiple map entries, and figuring out what should wait could be
140  *    complex as well...).
141  *
142  * we use alternative 2.  given that we are multi-threaded now we may want
143  * to reconsider the choice.
144  */
145 
146 /*
147  * local data structures
148  */
149 
150 struct uvm_advice {
151 	int advice;
152 	int nback;
153 	int nforw;
154 };
155 
156 /*
157  * page range array:
158  * note: index in array must match "advice" value
159  * XXX: borrowed numbers from freebsd.   do they work well for us?
160  */
161 
162 static const struct uvm_advice uvmadvice[] = {
163 	{ UVM_ADV_NORMAL, 3, 4 },
164 	{ UVM_ADV_RANDOM, 0, 0 },
165 	{ UVM_ADV_SEQUENTIAL, 8, 7},
166 };
167 
168 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
169 
170 /*
171  * private prototypes
172  */
173 
174 /*
175  * inline functions
176  */
177 
178 /*
179  * uvmfault_anonflush: try and deactivate pages in specified anons
180  *
181  * => does not have to deactivate page if it is busy
182  */
183 
184 static inline void
uvmfault_anonflush(struct vm_anon ** anons,int n)185 uvmfault_anonflush(struct vm_anon **anons, int n)
186 {
187 	int lcv;
188 	struct vm_page *pg;
189 
190 	for (lcv = 0; lcv < n; lcv++) {
191 		if (anons[lcv] == NULL)
192 			continue;
193 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
194 		pg = anons[lcv]->an_page;
195 		if (pg && (pg->flags & PG_BUSY) == 0) {
196 			uvm_pagelock(pg);
197 			uvm_pagedeactivate(pg);
198 			uvm_pageunlock(pg);
199 		}
200 	}
201 }
202 
203 /*
204  * normal functions
205  */
206 
207 /*
208  * uvmfault_amapcopy: clear "needs_copy" in a map.
209  *
210  * => called with VM data structures unlocked (usually, see below)
211  * => we get a write lock on the maps and clear needs_copy for a VA
212  * => if we are out of RAM we sleep (waiting for more)
213  */
214 
215 static void
uvmfault_amapcopy(struct uvm_faultinfo * ufi)216 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
217 {
218 	for (;;) {
219 
220 		/*
221 		 * no mapping?  give up.
222 		 */
223 
224 		if (uvmfault_lookup(ufi, true) == false)
225 			return;
226 
227 		/*
228 		 * copy if needed.
229 		 */
230 
231 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
232 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
233 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
234 
235 		/*
236 		 * didn't work?  must be out of RAM.   unlock and sleep.
237 		 */
238 
239 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
240 			uvmfault_unlockmaps(ufi, true);
241 			uvm_wait("fltamapcopy");
242 			continue;
243 		}
244 
245 		/*
246 		 * got it!   unlock and return.
247 		 */
248 
249 		uvmfault_unlockmaps(ufi, true);
250 		return;
251 	}
252 	/*NOTREACHED*/
253 }
254 
255 /*
256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
257  * page in that anon.
258  *
259  * => Map, amap and thus anon should be locked by caller.
260  * => If we fail, we unlock everything and error is returned.
261  * => If we are successful, return with everything still locked.
262  * => We do not move the page on the queues [gets moved later].  If we
263  *    allocate a new page [we_own], it gets put on the queues.  Either way,
264  *    the result is that the page is on the queues at return time
265  * => For pages which are on loan from a uvm_object (and thus are not owned
266  *    by the anon): if successful, return with the owning object locked.
267  *    The caller must unlock this object when it unlocks everything else.
268  */
269 
270 int
uvmfault_anonget(struct uvm_faultinfo * ufi,struct vm_amap * amap,struct vm_anon * anon)271 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
272     struct vm_anon *anon)
273 {
274 	struct vm_page *pg;
275 	krw_t lock_type;
276 	int error;
277 
278 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
279 	KASSERT(rw_lock_held(anon->an_lock));
280 	KASSERT(anon->an_lock == amap->am_lock);
281 
282 	/* Increment the counters.*/
283 	cpu_count(CPU_COUNT_FLTANGET, 1);
284 	if (anon->an_page) {
285 		curlwp->l_ru.ru_minflt++;
286 	} else {
287 		curlwp->l_ru.ru_majflt++;
288 	}
289 	error = 0;
290 
291 	/*
292 	 * Loop until we get the anon data, or fail.
293 	 */
294 
295 	for (;;) {
296 		bool we_own, locked;
297 		/*
298 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
299 		 */
300 		we_own = false;
301 		pg = anon->an_page;
302 
303 		/*
304 		 * If there is a resident page and it is loaned, then anon
305 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
306 		 * identify and lock the real owner of the page.
307 		 */
308 
309 		if (pg && pg->loan_count)
310 			pg = uvm_anon_lockloanpg(anon);
311 
312 		/*
313 		 * Is page resident?  Make sure it is not busy/released.
314 		 */
315 
316 		lock_type = rw_lock_op(anon->an_lock);
317 		if (pg) {
318 
319 			/*
320 			 * at this point, if the page has a uobject [meaning
321 			 * we have it on loan], then that uobject is locked
322 			 * by us!   if the page is busy, we drop all the
323 			 * locks (including uobject) and try again.
324 			 */
325 
326 			if ((pg->flags & PG_BUSY) == 0) {
327 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
328 				return 0;
329 			}
330 			cpu_count(CPU_COUNT_FLTPGWAIT, 1);
331 
332 			/*
333 			 * The last unlock must be an atomic unlock and wait
334 			 * on the owner of page.
335 			 */
336 
337 			if (pg->uobject) {
338 				/* Owner of page is UVM object. */
339 				uvmfault_unlockall(ufi, amap, NULL);
340 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
341 				    0,0,0);
342 				uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
343 			} else {
344 				/* Owner of page is anon. */
345 				uvmfault_unlockall(ufi, NULL, NULL);
346 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 				    0,0,0);
348 				uvm_pagewait(pg, anon->an_lock, "anonget2");
349 			}
350 		} else {
351 #if defined(VMSWAP)
352 			/*
353 			 * No page, therefore allocate one.  A write lock is
354 			 * required for this.  If the caller didn't supply
355 			 * one, fail now and have them retry.
356 			 */
357 
358 			if (lock_type == RW_READER) {
359 				return ENOLCK;
360 			}
361 			pg = uvm_pagealloc(NULL,
362 			    ufi != NULL ? ufi->orig_rvaddr : 0,
363 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
364 			if (pg == NULL) {
365 				/* Out of memory.  Wait a little. */
366 				uvmfault_unlockall(ufi, amap, NULL);
367 				cpu_count(CPU_COUNT_FLTNORAM, 1);
368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
369 				    0,0,0);
370 				if (!uvm_reclaimable()) {
371 					return ENOMEM;
372 				}
373 				uvm_wait("flt_noram1");
374 			} else {
375 				/* PG_BUSY bit is set. */
376 				we_own = true;
377 				uvmfault_unlockall(ufi, amap, NULL);
378 
379 				/*
380 				 * Pass a PG_BUSY+PG_FAKE clean page into
381 				 * the uvm_swap_get() function with all data
382 				 * structures unlocked.  Note that it is OK
383 				 * to read an_swslot here, because we hold
384 				 * PG_BUSY on the page.
385 				 */
386 				cpu_count(CPU_COUNT_PAGEINS, 1);
387 				error = uvm_swap_get(pg, anon->an_swslot,
388 				    PGO_SYNCIO);
389 
390 				/*
391 				 * We clean up after the I/O below in the
392 				 * 'we_own' case.
393 				 */
394 			}
395 #else
396 			panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 		}
399 
400 		/*
401 		 * Re-lock the map and anon.
402 		 */
403 
404 		locked = uvmfault_relock(ufi);
405 		if (locked || we_own) {
406 			rw_enter(anon->an_lock, lock_type);
407 		}
408 
409 		/*
410 		 * If we own the page (i.e. we set PG_BUSY), then we need
411 		 * to clean up after the I/O.  There are three cases to
412 		 * consider:
413 		 *
414 		 * 1) Page was released during I/O: free anon and ReFault.
415 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
416 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
417 		 *    case (i.e. drop anon lock if not locked).
418 		 */
419 
420 		if (we_own) {
421 			KASSERT(lock_type == RW_WRITER);
422 #if defined(VMSWAP)
423 			if (error) {
424 
425 				/*
426 				 * Remove the swap slot from the anon and
427 				 * mark the anon as having no real slot.
428 				 * Do not free the swap slot, thus preventing
429 				 * it from being used again.
430 				 */
431 
432 				if (anon->an_swslot > 0) {
433 					uvm_swap_markbad(anon->an_swslot, 1);
434 				}
435 				anon->an_swslot = SWSLOT_BAD;
436 
437 				if ((pg->flags & PG_RELEASED) != 0) {
438 					goto released;
439 				}
440 
441 				/*
442 				 * Note: page was never !PG_BUSY, so it
443 				 * cannot be mapped and thus no need to
444 				 * pmap_page_protect() it.
445 				 */
446 
447 				uvm_pagefree(pg);
448 
449 				if (locked) {
450 					uvmfault_unlockall(ufi, NULL, NULL);
451 				}
452 				rw_exit(anon->an_lock);
453 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 				return error;
455 			}
456 
457 			if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 				KASSERT(anon->an_ref == 0);
460 
461 				/*
462 				 * Released while we had unlocked amap.
463 				 */
464 
465 				if (locked) {
466 					uvmfault_unlockall(ufi, NULL, NULL);
467 				}
468 				uvm_anon_release(anon);
469 
470 				if (error) {
471 					UVMHIST_LOG(maphist,
472 					    "<- ERROR/RELEASED", 0,0,0,0);
473 					return error;
474 				}
475 
476 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 				return ERESTART;
478 			}
479 
480 			/*
481 			 * We have successfully read the page, activate it.
482 			 */
483 
484 			uvm_pagelock(pg);
485 			uvm_pageactivate(pg);
486 			uvm_pagewakeup(pg);
487 			uvm_pageunlock(pg);
488 			pg->flags &= ~(PG_BUSY|PG_FAKE);
489 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
490 			UVM_PAGE_OWN(pg, NULL);
491 #else
492 			panic("%s: we_own", __func__);
493 #endif /* defined(VMSWAP) */
494 		}
495 
496 		/*
497 		 * We were not able to re-lock the map - restart the fault.
498 		 */
499 
500 		if (!locked) {
501 			if (we_own) {
502 				rw_exit(anon->an_lock);
503 			}
504 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
505 			return ERESTART;
506 		}
507 
508 		/*
509 		 * Verify that no one has touched the amap and moved
510 		 * the anon on us.
511 		 */
512 
513 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
514 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
515 
516 			uvmfault_unlockall(ufi, amap, NULL);
517 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
518 			return ERESTART;
519 		}
520 
521 		/*
522 		 * Retry..
523 		 */
524 
525 		cpu_count(CPU_COUNT_FLTANRETRY, 1);
526 		continue;
527 	}
528 	/*NOTREACHED*/
529 }
530 
531 /*
532  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
533  *
534  *	1. allocate an anon and a page.
535  *	2. fill its contents.
536  *	3. put it into amap.
537  *
538  * => if we fail (result != 0) we unlock everything.
539  * => on success, return a new locked anon via 'nanon'.
540  *    (*nanon)->an_page will be a resident, locked, dirty page.
541  * => it's caller's responsibility to put the promoted nanon->an_page to the
542  *    page queue.
543  */
544 
545 static int
uvmfault_promote(struct uvm_faultinfo * ufi,struct vm_anon * oanon,struct vm_page * uobjpage,struct vm_anon ** nanon,struct vm_anon ** spare)546 uvmfault_promote(struct uvm_faultinfo *ufi,
547     struct vm_anon *oanon,
548     struct vm_page *uobjpage,
549     struct vm_anon **nanon, /* OUT: allocated anon */
550     struct vm_anon **spare)
551 {
552 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
553 	struct uvm_object *uobj;
554 	struct vm_anon *anon;
555 	struct vm_page *pg;
556 	struct vm_page *opg;
557 	int error;
558 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
559 
560 	if (oanon) {
561 		/* anon COW */
562 		opg = oanon->an_page;
563 		KASSERT(opg != NULL);
564 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
565 	} else if (uobjpage != PGO_DONTCARE) {
566 		/* object-backed COW */
567 		opg = uobjpage;
568 		KASSERT(rw_lock_held(opg->uobject->vmobjlock));
569 	} else {
570 		/* ZFOD */
571 		opg = NULL;
572 	}
573 	if (opg != NULL) {
574 		uobj = opg->uobject;
575 	} else {
576 		uobj = NULL;
577 	}
578 
579 	KASSERT(amap != NULL);
580 	KASSERT(uobjpage != NULL);
581 	KASSERT(rw_write_held(amap->am_lock));
582 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
583 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
584 
585 	if (*spare != NULL) {
586 		anon = *spare;
587 		*spare = NULL;
588 	} else {
589 		anon = uvm_analloc();
590 	}
591 	if (anon) {
592 
593 		/*
594 		 * The new anon is locked.
595 		 *
596 		 * if opg == NULL, we want a zero'd, dirty page,
597 		 * so have uvm_pagealloc() do that for us.
598 		 */
599 
600 		KASSERT(anon->an_lock == NULL);
601 		anon->an_lock = amap->am_lock;
602 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
603 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
604 		if (pg == NULL) {
605 			anon->an_lock = NULL;
606 		}
607 	} else {
608 		pg = NULL;
609 	}
610 
611 	/*
612 	 * out of memory resources?
613 	 */
614 
615 	if (pg == NULL) {
616 		/* save anon for the next try. */
617 		if (anon != NULL) {
618 			*spare = anon;
619 		}
620 
621 		/* unlock and fail ... */
622 		uvmfault_unlockall(ufi, amap, uobj);
623 		if (!uvm_reclaimable()) {
624 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
625 			cpu_count(CPU_COUNT_FLTNOANON, 1);
626 			error = ENOMEM;
627 			goto done;
628 		}
629 
630 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
631 		cpu_count(CPU_COUNT_FLTNORAM, 1);
632 		uvm_wait("flt_noram5");
633 		error = ERESTART;
634 		goto done;
635 	}
636 
637 	/* copy page [pg now dirty] */
638 	if (opg) {
639 		uvm_pagecopy(opg, pg);
640 	}
641 	KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
642 
643 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
644 	    oanon != NULL);
645 
646 	/*
647 	 * from this point on am_lock won't be dropped until the page is
648 	 * entered, so it's safe to unbusy the page up front.
649 	 *
650 	 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
651 	 */
652 
653 	pg = anon->an_page;
654 	pg->flags &= ~(PG_BUSY|PG_FAKE);
655 	UVM_PAGE_OWN(pg, NULL);
656 
657 	*nanon = anon;
658 	error = 0;
659 done:
660 	return error;
661 }
662 
663 /*
664  * Update statistics after fault resolution.
665  * - maxrss
666  */
667 void
uvmfault_update_stats(struct uvm_faultinfo * ufi)668 uvmfault_update_stats(struct uvm_faultinfo *ufi)
669 {
670 	struct vm_map		*map;
671 	struct vmspace 		*vm;
672 	struct proc		*p;
673 	vsize_t			 res;
674 
675 	map = ufi->orig_map;
676 
677 	p = curproc;
678 	KASSERT(p != NULL);
679 	vm = p->p_vmspace;
680 
681 	if (&vm->vm_map != map)
682 		return;
683 
684 	res = pmap_resident_count(map->pmap);
685 	if (vm->vm_rssmax < res)
686 		vm->vm_rssmax = res;
687 }
688 
689 /*
690  *   F A U L T   -   m a i n   e n t r y   p o i n t
691  */
692 
693 /*
694  * uvm_fault: page fault handler
695  *
696  * => called from MD code to resolve a page fault
697  * => VM data structures usually should be unlocked.   however, it is
698  *	possible to call here with the main map locked if the caller
699  *	gets a write lock, sets it recursive, and then calls us (c.f.
700  *	uvm_map_pageable).   this should be avoided because it keeps
701  *	the map locked off during I/O.
702  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
703  */
704 
705 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
706 			 ~VM_PROT_WRITE : VM_PROT_ALL)
707 
708 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
709 #define UVM_FAULT_WIRE		(1 << 0)
710 #define UVM_FAULT_MAXPROT	(1 << 1)
711 
712 struct uvm_faultctx {
713 
714 	/*
715 	 * the following members are set up by uvm_fault_check() and
716 	 * read-only after that.
717 	 *
718 	 * note that narrow is used by uvm_fault_check() to change
719 	 * the behaviour after ERESTART.
720 	 *
721 	 * most of them might change after RESTART if the underlying
722 	 * map entry has been changed behind us.  an exception is
723 	 * wire_paging, which does never change.
724 	 */
725 	vm_prot_t access_type;
726 	vaddr_t startva;
727 	int npages;
728 	int centeridx;
729 	bool narrow;		/* work on a single requested page only */
730 	bool wire_mapping;	/* request a PMAP_WIRED mapping
731 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
732 	bool wire_paging;	/* request uvm_pagewire
733 				   (true for UVM_FAULT_WIRE) */
734 	bool cow_now;		/* VM_PROT_WRITE is actually requested
735 				   (ie. should break COW and page loaning) */
736 
737 	/*
738 	 * enter_prot is set up by uvm_fault_check() and clamped
739 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
740 	 * of !cow_now.
741 	 */
742 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
743 
744 	/*
745 	 * the following member is for uvmfault_promote() and ERESTART.
746 	 */
747 	struct vm_anon *anon_spare;
748 
749 	/*
750 	 * the following is actually a uvm_fault_lower() internal.
751 	 * it's here merely for debugging.
752 	 * (or due to the mechanical separation of the function?)
753 	 */
754 	bool promote;
755 
756 	/*
757 	 * type of lock to acquire on objects in both layers.
758 	 */
759 	krw_t lower_lock_type;
760 	krw_t upper_lock_type;
761 };
762 
763 static inline int	uvm_fault_check(
764 			    struct uvm_faultinfo *, struct uvm_faultctx *,
765 			    struct vm_anon ***, bool);
766 
767 static int		uvm_fault_upper(
768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
769 			    struct vm_anon **);
770 static inline int	uvm_fault_upper_lookup(
771 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
772 			    struct vm_anon **, struct vm_page **);
773 static inline void	uvm_fault_upper_neighbor(
774 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
775 			    vaddr_t, struct vm_page *, bool);
776 static inline int	uvm_fault_upper_loan(
777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
778 			    struct vm_anon *, struct uvm_object **);
779 static inline int	uvm_fault_upper_promote(
780 			    struct uvm_faultinfo *, struct uvm_faultctx *,
781 			    struct uvm_object *, struct vm_anon *);
782 static inline int	uvm_fault_upper_direct(
783 			    struct uvm_faultinfo *, struct uvm_faultctx *,
784 			    struct uvm_object *, struct vm_anon *);
785 static int		uvm_fault_upper_enter(
786 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
787 			    struct uvm_object *, struct vm_anon *,
788 			    struct vm_page *, struct vm_anon *);
789 static inline void	uvm_fault_upper_done(
790 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
791 			    struct vm_anon *, struct vm_page *);
792 
793 static int		uvm_fault_lower(
794 			    struct uvm_faultinfo *, struct uvm_faultctx *,
795 			    struct vm_page **);
796 static inline void	uvm_fault_lower_lookup(
797 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
798 			    struct vm_page **);
799 static inline void	uvm_fault_lower_neighbor(
800 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
801 			    vaddr_t, struct vm_page *);
802 static inline int	uvm_fault_lower_io(
803 			    struct uvm_faultinfo *, struct uvm_faultctx *,
804 			    struct uvm_object **, struct vm_page **);
805 static inline int	uvm_fault_lower_direct(
806 			    struct uvm_faultinfo *, struct uvm_faultctx *,
807 			    struct uvm_object *, struct vm_page *);
808 static inline int	uvm_fault_lower_direct_loan(
809 			    struct uvm_faultinfo *, struct uvm_faultctx *,
810 			    struct uvm_object *, struct vm_page **,
811 			    struct vm_page **);
812 static inline int	uvm_fault_lower_promote(
813 			    struct uvm_faultinfo *, struct uvm_faultctx *,
814 			    struct uvm_object *, struct vm_page *);
815 static int		uvm_fault_lower_enter(
816 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
817 			    struct uvm_object *,
818 			    struct vm_anon *, struct vm_page *);
819 static inline void	uvm_fault_lower_done(
820 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
821 			    struct uvm_object *, struct vm_page *);
822 
823 int
uvm_fault_internal(struct vm_map * orig_map,vaddr_t vaddr,vm_prot_t access_type,int fault_flag)824 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
825     vm_prot_t access_type, int fault_flag)
826 {
827 	struct uvm_faultinfo ufi;
828 	struct uvm_faultctx flt = {
829 		.access_type = access_type,
830 
831 		/* don't look for neighborhood * pages on "wire" fault */
832 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
833 
834 		/* "wire" fault causes wiring of both mapping and paging */
835 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
836 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
837 
838 		/*
839 		 * default lock type to acquire on upper & lower layer
840 		 * objects: reader.  this can be upgraded at any point
841 		 * during the fault from read -> write and uvm_faultctx
842 		 * changed to match, but is never downgraded write -> read.
843 		 */
844 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
845 		.upper_lock_type = RW_WRITER,
846 		.lower_lock_type = RW_WRITER,
847 #else
848 		.upper_lock_type = RW_READER,
849 		.lower_lock_type = RW_READER,
850 #endif
851 	};
852 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
853 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
854 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
855 	int error;
856 
857 	UVMHIST_FUNC(__func__);
858 	UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
859 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
860 
861 	/* Don't count anything until user interaction is possible */
862 	kpreempt_disable();
863 	if (__predict_true(start_init_exec)) {
864 		struct cpu_info *ci = curcpu();
865 		CPU_COUNT(CPU_COUNT_NFAULT, 1);
866 		/* Don't flood RNG subsystem with samples. */
867 		if (++(ci->ci_faultrng) == 503) {
868 			ci->ci_faultrng = 0;
869 			rnd_add_uint32(&uvm_fault_rndsource,
870 			    sizeof(vaddr_t) == sizeof(uint32_t) ?
871 			    (uint32_t)vaddr : sizeof(vaddr_t) ==
872 			    sizeof(uint64_t) ?
873 			    (uint32_t)vaddr :
874 			    (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
875 		}
876 	}
877 	kpreempt_enable();
878 
879 	/*
880 	 * init the IN parameters in the ufi
881 	 */
882 
883 	ufi.orig_map = orig_map;
884 	ufi.orig_rvaddr = trunc_page(vaddr);
885 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
886 
887 	error = ERESTART;
888 	while (error == ERESTART) { /* ReFault: */
889 		anons = anons_store;
890 		pages = pages_store;
891 
892 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
893 		if (error != 0)
894 			continue;
895 
896 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
897 		if (error != 0)
898 			continue;
899 
900 		if (pages[flt.centeridx] == PGO_DONTCARE)
901 			error = uvm_fault_upper(&ufi, &flt, anons);
902 		else {
903 			struct uvm_object * const uobj =
904 			    ufi.entry->object.uvm_obj;
905 
906 			if (uobj && uobj->pgops->pgo_fault != NULL) {
907 				/*
908 				 * invoke "special" fault routine.
909 				 */
910 				rw_enter(uobj->vmobjlock, RW_WRITER);
911 				/* locked: maps(read), amap(if there), uobj */
912 				error = uobj->pgops->pgo_fault(&ufi,
913 				    flt.startva, pages, flt.npages,
914 				    flt.centeridx, flt.access_type,
915 				    PGO_LOCKED|PGO_SYNCIO);
916 
917 				/*
918 				 * locked: nothing, pgo_fault has unlocked
919 				 * everything
920 				 */
921 
922 				/*
923 				 * object fault routine responsible for
924 				 * pmap_update().
925 				 */
926 
927 				/*
928 				 * Wake up the pagedaemon if the fault method
929 				 * failed for lack of memory but some can be
930 				 * reclaimed.
931 				 */
932 				if (error == ENOMEM && uvm_reclaimable()) {
933 					uvm_wait("pgo_fault");
934 					error = ERESTART;
935 				}
936 			} else {
937 				error = uvm_fault_lower(&ufi, &flt, pages);
938 			}
939 		}
940 	}
941 
942 	if (flt.anon_spare != NULL) {
943 		flt.anon_spare->an_ref--;
944 		KASSERT(flt.anon_spare->an_ref == 0);
945 		KASSERT(flt.anon_spare->an_lock == NULL);
946 		uvm_anfree(flt.anon_spare);
947 	}
948 	return error;
949 }
950 
951 /*
952  * uvm_fault_check: check prot, handle needs-copy, etc.
953  *
954  *	1. lookup entry.
955  *	2. check protection.
956  *	3. adjust fault condition (mainly for simulated fault).
957  *	4. handle needs-copy (lazy amap copy).
958  *	5. establish range of interest for neighbor fault (aka pre-fault).
959  *	6. look up anons (if amap exists).
960  *	7. flush pages (if MADV_SEQUENTIAL)
961  *
962  * => called with nothing locked.
963  * => if we fail (result != 0) we unlock everything.
964  * => initialize/adjust many members of flt.
965  */
966 
967 static int
uvm_fault_check(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_anon *** ranons,bool maxprot)968 uvm_fault_check(
969 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
970 	struct vm_anon ***ranons, bool maxprot)
971 {
972 	struct vm_amap *amap;
973 	struct uvm_object *uobj;
974 	vm_prot_t check_prot;
975 	int nback, nforw;
976 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
977 
978 	/*
979 	 * lookup and lock the maps
980 	 */
981 
982 	if (uvmfault_lookup(ufi, false) == false) {
983 		UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
984 		    0,0,0);
985 		return EFAULT;
986 	}
987 	/* locked: maps(read) */
988 
989 #ifdef DIAGNOSTIC
990 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
991 		printf("Page fault on non-pageable map:\n");
992 		printf("ufi->map = %p\n", ufi->map);
993 		printf("ufi->orig_map = %p\n", ufi->orig_map);
994 		printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
995 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
996 	}
997 #endif
998 
999 	/*
1000 	 * check protection
1001 	 */
1002 
1003 	check_prot = maxprot ?
1004 	    ufi->entry->max_protection : ufi->entry->protection;
1005 	if ((check_prot & flt->access_type) != flt->access_type) {
1006 		UVMHIST_LOG(maphist,
1007 		    "<- protection failure (prot=%#jx, access=%#jx)",
1008 		    ufi->entry->protection, flt->access_type, 0, 0);
1009 		uvmfault_unlockmaps(ufi, false);
1010 		return EFAULT;
1011 	}
1012 
1013 	/*
1014 	 * "enter_prot" is the protection we want to enter the page in at.
1015 	 * for certain pages (e.g. copy-on-write pages) this protection can
1016 	 * be more strict than ufi->entry->protection.  "wired" means either
1017 	 * the entry is wired or we are fault-wiring the pg.
1018 	 */
1019 
1020 	flt->enter_prot = ufi->entry->protection;
1021 	if (VM_MAPENT_ISWIRED(ufi->entry)) {
1022 		flt->wire_mapping = true;
1023 		flt->wire_paging = true;
1024 		flt->narrow = true;
1025 	}
1026 
1027 	if (flt->wire_mapping) {
1028 		flt->access_type = flt->enter_prot; /* full access for wired */
1029 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1030 	} else {
1031 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1032 	}
1033 
1034 	if (flt->wire_paging) {
1035 		/* wiring pages requires a write lock. */
1036 		flt->upper_lock_type = RW_WRITER;
1037 		flt->lower_lock_type = RW_WRITER;
1038 	}
1039 
1040 	flt->promote = false;
1041 
1042 	/*
1043 	 * handle "needs_copy" case.   if we need to copy the amap we will
1044 	 * have to drop our readlock and relock it with a write lock.  (we
1045 	 * need a write lock to change anything in a map entry [e.g.
1046 	 * needs_copy]).
1047 	 */
1048 
1049 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1050 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1051 			KASSERT(!maxprot);
1052 			/* need to clear */
1053 			UVMHIST_LOG(maphist,
1054 			    "  need to clear needs_copy and refault",0,0,0,0);
1055 			uvmfault_unlockmaps(ufi, false);
1056 			uvmfault_amapcopy(ufi);
1057 			cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1058 			return ERESTART;
1059 
1060 		} else {
1061 
1062 			/*
1063 			 * ensure that we pmap_enter page R/O since
1064 			 * needs_copy is still true
1065 			 */
1066 
1067 			flt->enter_prot &= ~VM_PROT_WRITE;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * identify the players
1073 	 */
1074 
1075 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
1076 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
1077 
1078 	/*
1079 	 * check for a case 0 fault.  if nothing backing the entry then
1080 	 * error now.
1081 	 */
1082 
1083 	if (amap == NULL && uobj == NULL) {
1084 		uvmfault_unlockmaps(ufi, false);
1085 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1086 		return EFAULT;
1087 	}
1088 
1089 	/*
1090 	 * for a case 2B fault waste no time on adjacent pages because
1091 	 * they are likely already entered.
1092 	 */
1093 
1094 	if (uobj != NULL && amap != NULL &&
1095 	    (flt->access_type & VM_PROT_WRITE) != 0) {
1096 		/* wide fault (!narrow) */
1097 		flt->narrow = true;
1098 	}
1099 
1100 	/*
1101 	 * establish range of interest based on advice from mapper
1102 	 * and then clip to fit map entry.   note that we only want
1103 	 * to do this the first time through the fault.   if we
1104 	 * ReFault we will disable this by setting "narrow" to true.
1105 	 */
1106 
1107 	if (flt->narrow == false) {
1108 
1109 		/* wide fault (!narrow) */
1110 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
1111 			 ufi->entry->advice);
1112 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
1113 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1114 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1115 		/*
1116 		 * note: "-1" because we don't want to count the
1117 		 * faulting page as forw
1118 		 */
1119 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1120 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
1121 			     PAGE_SHIFT) - 1);
1122 		flt->npages = nback + nforw + 1;
1123 		flt->centeridx = nback;
1124 
1125 		flt->narrow = true;	/* ensure only once per-fault */
1126 
1127 	} else {
1128 
1129 		/* narrow fault! */
1130 		nback = nforw = 0;
1131 		flt->startva = ufi->orig_rvaddr;
1132 		flt->npages = 1;
1133 		flt->centeridx = 0;
1134 
1135 	}
1136 	/* offset from entry's start to pgs' start */
1137 	const voff_t eoff = flt->startva - ufi->entry->start;
1138 
1139 	/* locked: maps(read) */
1140 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1141 		    flt->narrow, nback, nforw, flt->startva);
1142 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
1143 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1144 
1145 	/*
1146 	 * guess at the most suitable lock types to acquire.
1147 	 * if we've got an amap then lock it and extract current anons.
1148 	 */
1149 
1150 	if (amap) {
1151 		if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1152 			/*
1153 			 * the amap isn't shared.  get a writer lock to
1154 			 * avoid the cost of upgrading the lock later if
1155 			 * needed.
1156 			 *
1157 			 * XXX nice for PostgreSQL, but consider threads.
1158 			 */
1159 			flt->upper_lock_type = RW_WRITER;
1160 		} else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1161 			/*
1162 			 * assume we're about to COW.
1163 			 */
1164 			flt->upper_lock_type = RW_WRITER;
1165 		}
1166 		amap_lock(amap, flt->upper_lock_type);
1167 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1168 	} else {
1169 		if ((flt->access_type & VM_PROT_WRITE) != 0) {
1170 			/*
1171 			 * we are about to dirty the object and that
1172 			 * requires a write lock.
1173 			 */
1174 			flt->lower_lock_type = RW_WRITER;
1175 		}
1176 		*ranons = NULL;	/* to be safe */
1177 	}
1178 
1179 	/* locked: maps(read), amap(if there) */
1180 	KASSERT(amap == NULL ||
1181 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1182 
1183 	/*
1184 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1185 	 * now and then forget about them (for the rest of the fault).
1186 	 */
1187 
1188 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1189 
1190 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1191 		    0,0,0,0);
1192 		/* flush back-page anons? */
1193 		if (amap)
1194 			uvmfault_anonflush(*ranons, nback);
1195 
1196 		/*
1197 		 * flush object?  change lock type to RW_WRITER, to avoid
1198 		 * excessive competition between read/write locks if many
1199 		 * threads doing "sequential access".
1200 		 */
1201 		if (uobj) {
1202 			voff_t uoff;
1203 
1204 			flt->lower_lock_type = RW_WRITER;
1205 			uoff = ufi->entry->offset + eoff;
1206 			rw_enter(uobj->vmobjlock, RW_WRITER);
1207 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1208 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1209 		}
1210 
1211 		/* now forget about the backpages */
1212 		if (amap)
1213 			*ranons += nback;
1214 		flt->startva += (nback << PAGE_SHIFT);
1215 		flt->npages -= nback;
1216 		flt->centeridx = 0;
1217 	}
1218 	/*
1219 	 * => startva is fixed
1220 	 * => npages is fixed
1221 	 */
1222 	KASSERT(flt->startva <= ufi->orig_rvaddr);
1223 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1224 	    flt->startva + (flt->npages << PAGE_SHIFT));
1225 	return 0;
1226 }
1227 
1228 /*
1229  * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1230  */
1231 
1232 static inline int
uvm_fault_upper_upgrade(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_amap * amap,struct uvm_object * uobj)1233 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1234     struct vm_amap *amap, struct uvm_object *uobj)
1235 {
1236 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1237 
1238 	KASSERT(amap != NULL);
1239 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1240 
1241 	/*
1242 	 * fast path.
1243 	 */
1244 
1245 	if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1246 		return 0;
1247 	}
1248 
1249 	/*
1250 	 * otherwise try for the upgrade.  if we don't get it, unlock
1251 	 * everything, restart the fault and next time around get a writer
1252 	 * lock.
1253 	 */
1254 
1255 	flt->upper_lock_type = RW_WRITER;
1256 	if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1257 		uvmfault_unlockall(ufi, amap, uobj);
1258 		cpu_count(CPU_COUNT_FLTNOUP, 1);
1259 		UVMHIST_LOG(maphist, "  !upgrade upper", 0, 0,0,0);
1260 		return ERESTART;
1261 	}
1262 	cpu_count(CPU_COUNT_FLTUP, 1);
1263 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1264 	return 0;
1265 }
1266 
1267 /*
1268  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1269  *
1270  * iterate range of interest:
1271  *	1. check if h/w mapping exists.  if yes, we don't care
1272  *	2. check if anon exists.  if not, page is lower.
1273  *	3. if anon exists, enter h/w mapping for neighbors.
1274  *
1275  * => called with amap locked (if exists).
1276  */
1277 
1278 static int
uvm_fault_upper_lookup(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct vm_anon ** anons,struct vm_page ** pages)1279 uvm_fault_upper_lookup(
1280 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1281 	struct vm_anon **anons, struct vm_page **pages)
1282 {
1283 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1284 	int lcv;
1285 	vaddr_t currva;
1286 	bool shadowed __unused;
1287 	bool entered;
1288 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1289 
1290 	/* locked: maps(read), amap(if there) */
1291 	KASSERT(amap == NULL ||
1292 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1293 
1294 	/*
1295 	 * map in the backpages and frontpages we found in the amap in hopes
1296 	 * of preventing future faults.    we also init the pages[] array as
1297 	 * we go.
1298 	 */
1299 
1300 	currva = flt->startva;
1301 	shadowed = false;
1302 	entered = false;
1303 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1304 		/*
1305 		 * unmapped or center page.   check if any anon at this level.
1306 		 */
1307 		if (amap == NULL || anons[lcv] == NULL) {
1308 			pages[lcv] = NULL;
1309 			continue;
1310 		}
1311 
1312 		/*
1313 		 * check for present page and map if possible.
1314 		 */
1315 
1316 		pages[lcv] = PGO_DONTCARE;
1317 		if (lcv == flt->centeridx) {	/* save center for later! */
1318 			shadowed = true;
1319 			continue;
1320 		}
1321 
1322 		struct vm_anon *anon = anons[lcv];
1323 		struct vm_page *pg = anon->an_page;
1324 
1325 		KASSERT(anon->an_lock == amap->am_lock);
1326 
1327 		/*
1328 		 * ignore loaned and busy pages.
1329 		 * don't play with VAs that are already mapped.
1330 		 */
1331 
1332 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1333 		    !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1334 			uvm_fault_upper_neighbor(ufi, flt, currva,
1335 			    pg, anon->an_ref > 1);
1336 			entered = true;
1337 		}
1338 	}
1339 	if (entered) {
1340 		pmap_update(ufi->orig_map->pmap);
1341 	}
1342 
1343 	/* locked: maps(read), amap(if there) */
1344 	KASSERT(amap == NULL ||
1345 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1346 	/* (shadowed == true) if there is an anon at the faulting address */
1347 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
1348 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1349 
1350 	return 0;
1351 }
1352 
1353 /*
1354  * uvm_fault_upper_neighbor: enter single upper neighbor page.
1355  *
1356  * => called with amap and anon locked.
1357  */
1358 
1359 static void
uvm_fault_upper_neighbor(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,vaddr_t currva,struct vm_page * pg,bool readonly)1360 uvm_fault_upper_neighbor(
1361 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1362 	vaddr_t currva, struct vm_page *pg, bool readonly)
1363 {
1364 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1365 
1366 	/* locked: amap, anon */
1367 
1368 	KASSERT(pg->uobject == NULL);
1369 	KASSERT(pg->uanon != NULL);
1370 	KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1371 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1372 
1373 	/*
1374 	 * there wasn't a direct fault on the page, so avoid the cost of
1375 	 * activating it.
1376 	 */
1377 
1378 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1379 		uvm_pagelock(pg);
1380 		uvm_pageenqueue(pg);
1381 		uvm_pageunlock(pg);
1382 	}
1383 
1384 	UVMHIST_LOG(maphist,
1385 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1386 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1387 	cpu_count(CPU_COUNT_FLTNAMAP, 1);
1388 
1389 	/*
1390 	 * Since this page isn't the page that's actually faulting,
1391 	 * ignore pmap_enter() failures; it's not critical that we
1392 	 * enter these right now.
1393 	 */
1394 
1395 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1396 	    VM_PAGE_TO_PHYS(pg),
1397 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1398 	    flt->enter_prot,
1399 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1400 }
1401 
1402 /*
1403  * uvm_fault_upper: handle upper fault.
1404  *
1405  *	1. acquire anon lock.
1406  *	2. get anon.  let uvmfault_anonget do the dirty work.
1407  *	3. handle loan.
1408  *	4. dispatch direct or promote handlers.
1409  */
1410 
1411 static int
uvm_fault_upper(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_anon ** anons)1412 uvm_fault_upper(
1413 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1414 	struct vm_anon **anons)
1415 {
1416 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1417 	struct vm_anon * const anon = anons[flt->centeridx];
1418 	struct uvm_object *uobj;
1419 	int error;
1420 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1421 
1422 	/* locked: maps(read), amap, anon */
1423 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1424 	KASSERT(anon->an_lock == amap->am_lock);
1425 
1426 	/*
1427 	 * handle case 1: fault on an anon in our amap
1428 	 */
1429 
1430 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
1431 	    (uintptr_t)anon, 0, 0, 0);
1432 
1433 	/*
1434 	 * no matter if we have case 1A or case 1B we are going to need to
1435 	 * have the anon's memory resident.   ensure that now.
1436 	 */
1437 
1438 	/*
1439 	 * let uvmfault_anonget do the dirty work.
1440 	 * if it fails (!OK) it will unlock everything for us.
1441 	 * if it succeeds, locks are still valid and locked.
1442 	 * also, if it is OK, then the anon's page is on the queues.
1443 	 * if the page is on loan from a uvm_object, then anonget will
1444 	 * lock that object for us if it does not fail.
1445 	 */
1446  retry:
1447 	error = uvmfault_anonget(ufi, amap, anon);
1448 	switch (error) {
1449 	case 0:
1450 		break;
1451 
1452 	case ERESTART:
1453 		return ERESTART;
1454 
1455 	case EAGAIN:
1456 		kpause("fltagain1", false, hz/2, NULL);
1457 		return ERESTART;
1458 
1459 	case ENOLCK:
1460 		/* it needs a write lock: retry */
1461 		error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1462 		if (error != 0) {
1463 			return error;
1464 		}
1465 		KASSERT(rw_write_held(amap->am_lock));
1466 		goto retry;
1467 
1468 	default:
1469 		return error;
1470 	}
1471 
1472 	/*
1473 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1474 	 */
1475 
1476 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1477 
1478 	/* locked: maps(read), amap, anon, uobj(if one) */
1479 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1480 	KASSERT(anon->an_lock == amap->am_lock);
1481 	KASSERT(uobj == NULL ||
1482 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1483 
1484 	/*
1485 	 * special handling for loaned pages
1486 	 */
1487 
1488 	if (anon->an_page->loan_count) {
1489 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1490 		if (error != 0)
1491 			return error;
1492 	}
1493 
1494 	/*
1495 	 * if we are case 1B then we will need to allocate a new blank
1496 	 * anon to transfer the data into.   note that we have a lock
1497 	 * on anon, so no one can busy or release the page until we are done.
1498 	 * also note that the ref count can't drop to zero here because
1499 	 * it is > 1 and we are only dropping one ref.
1500 	 *
1501 	 * in the (hopefully very rare) case that we are out of RAM we
1502 	 * will unlock, wait for more RAM, and refault.
1503 	 *
1504 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1505 	 */
1506 
1507 	if (flt->cow_now && anon->an_ref > 1) {
1508 		flt->promote = true;
1509 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1510 	} else {
1511 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1512 	}
1513 	return error;
1514 }
1515 
1516 /*
1517  * uvm_fault_upper_loan: handle loaned upper page.
1518  *
1519  *	1. if not cow'ing now, simply adjust flt->enter_prot.
1520  *	2. if cow'ing now, and if ref count is 1, break loan.
1521  */
1522 
1523 static int
uvm_fault_upper_loan(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_anon * anon,struct uvm_object ** ruobj)1524 uvm_fault_upper_loan(
1525 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1526 	struct vm_anon *anon, struct uvm_object **ruobj)
1527 {
1528 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1529 	int error = 0;
1530 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1531 
1532 	if (!flt->cow_now) {
1533 
1534 		/*
1535 		 * for read faults on loaned pages we just cap the
1536 		 * protection at read-only.
1537 		 */
1538 
1539 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1540 
1541 	} else {
1542 		/*
1543 		 * note that we can't allow writes into a loaned page!
1544 		 *
1545 		 * if we have a write fault on a loaned page in an
1546 		 * anon then we need to look at the anon's ref count.
1547 		 * if it is greater than one then we are going to do
1548 		 * a normal copy-on-write fault into a new anon (this
1549 		 * is not a problem).  however, if the reference count
1550 		 * is one (a case where we would normally allow a
1551 		 * write directly to the page) then we need to kill
1552 		 * the loan before we continue.
1553 		 */
1554 
1555 		/* >1 case is already ok */
1556 		if (anon->an_ref == 1) {
1557 			/* breaking loan requires a write lock. */
1558 			error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1559 			if (error != 0) {
1560 				return error;
1561 			}
1562 			KASSERT(rw_write_held(amap->am_lock));
1563 
1564 			error = uvm_loanbreak_anon(anon, *ruobj);
1565 			if (error != 0) {
1566 				uvmfault_unlockall(ufi, amap, *ruobj);
1567 				uvm_wait("flt_noram2");
1568 				return ERESTART;
1569 			}
1570 			/* if we were a loan receiver uobj is gone */
1571 			if (*ruobj)
1572 				*ruobj = NULL;
1573 		}
1574 	}
1575 	return error;
1576 }
1577 
1578 /*
1579  * uvm_fault_upper_promote: promote upper page.
1580  *
1581  *	1. call uvmfault_promote.
1582  *	2. enqueue page.
1583  *	3. deref.
1584  *	4. pass page to uvm_fault_upper_enter.
1585  */
1586 
1587 static int
uvm_fault_upper_promote(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_anon * anon)1588 uvm_fault_upper_promote(
1589 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1590 	struct uvm_object *uobj, struct vm_anon *anon)
1591 {
1592 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1593 	struct vm_anon * const oanon = anon;
1594 	struct vm_page *pg;
1595 	int error;
1596 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1597 
1598 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1599 	cpu_count(CPU_COUNT_FLT_ACOW, 1);
1600 
1601 	/* promoting requires a write lock. */
1602 	error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1603 	if (error != 0) {
1604 		return error;
1605 	}
1606 	KASSERT(rw_write_held(amap->am_lock));
1607 
1608 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1609 	    &flt->anon_spare);
1610 	switch (error) {
1611 	case 0:
1612 		break;
1613 	case ERESTART:
1614 		return ERESTART;
1615 	default:
1616 		return error;
1617 	}
1618 	pg = anon->an_page;
1619 
1620 	KASSERT(anon->an_lock == oanon->an_lock);
1621 	KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1622 
1623 	/* deref: can not drop to zero here by defn! */
1624 	KASSERT(oanon->an_ref > 1);
1625 	oanon->an_ref--;
1626 
1627 	/*
1628 	 * note: oanon is still locked, as is the new anon.  we
1629 	 * need to check for this later when we unlock oanon; if
1630 	 * oanon != anon, we'll have to unlock anon, too.
1631 	 */
1632 
1633 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1634 }
1635 
1636 /*
1637  * uvm_fault_upper_direct: handle direct fault.
1638  */
1639 
1640 static int
uvm_fault_upper_direct(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_anon * anon)1641 uvm_fault_upper_direct(
1642 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1643 	struct uvm_object *uobj, struct vm_anon *anon)
1644 {
1645 	struct vm_anon * const oanon = anon;
1646 	struct vm_page *pg;
1647 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1648 
1649 	cpu_count(CPU_COUNT_FLT_ANON, 1);
1650 	pg = anon->an_page;
1651 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1652 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1653 
1654 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1655 }
1656 
1657 /*
1658  * uvm_fault_upper_enter: enter h/w mapping of upper page.
1659  */
1660 
1661 static int
uvm_fault_upper_enter(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_anon * anon,struct vm_page * pg,struct vm_anon * oanon)1662 uvm_fault_upper_enter(
1663 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1664 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1665 	struct vm_anon *oanon)
1666 {
1667 	struct pmap *pmap = ufi->orig_map->pmap;
1668 	vaddr_t va = ufi->orig_rvaddr;
1669 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1670 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1671 
1672 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
1673 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1674 	KASSERT(anon->an_lock == amap->am_lock);
1675 	KASSERT(oanon->an_lock == amap->am_lock);
1676 	KASSERT(uobj == NULL ||
1677 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1678 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1679 
1680 	/*
1681 	 * now map the page in.
1682 	 */
1683 
1684 	UVMHIST_LOG(maphist,
1685 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1686 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1687 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1688 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1689 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1690 
1691 		/*
1692 		 * If pmap_enter() fails, it must not leave behind an existing
1693 		 * pmap entry.  In particular, a now-stale entry for a different
1694 		 * page would leave the pmap inconsistent with the vm_map.
1695 		 * This is not to imply that pmap_enter() should remove an
1696 		 * existing mapping in such a situation (since that could create
1697 		 * different problems, eg. if the existing mapping is wired),
1698 		 * but rather that the pmap should be designed such that it
1699 		 * never needs to fail when the new mapping is replacing an
1700 		 * existing mapping and the new page has no existing mappings.
1701 		 *
1702 		 * XXX This can't be asserted safely any more because many
1703 		 * LWPs and/or many processes could simultaneously fault on
1704 		 * the same VA and some might succeed.
1705 		 */
1706 
1707 		/* KASSERT(!pmap_extract(pmap, va, NULL)); */
1708 
1709 		/*
1710 		 * ensure that the page is queued in the case that
1711 		 * we just promoted.
1712 		 */
1713 
1714 		uvm_pagelock(pg);
1715 		uvm_pageenqueue(pg);
1716 		uvm_pageunlock(pg);
1717 
1718 		/*
1719 		 * No need to undo what we did; we can simply think of
1720 		 * this as the pmap throwing away the mapping information.
1721 		 *
1722 		 * We do, however, have to go through the ReFault path,
1723 		 * as the map may change while we're asleep.
1724 		 */
1725 
1726 		uvmfault_unlockall(ufi, amap, uobj);
1727 		if (!uvm_reclaimable()) {
1728 			UVMHIST_LOG(maphist,
1729 			    "<- failed.  out of VM",0,0,0,0);
1730 			/* XXX instrumentation */
1731 			return ENOMEM;
1732 		}
1733 		/* XXX instrumentation */
1734 		uvm_wait("flt_pmfail1");
1735 		return ERESTART;
1736 	}
1737 
1738 	uvm_fault_upper_done(ufi, flt, anon, pg);
1739 
1740 	/*
1741 	 * done case 1!  finish up by unlocking everything and returning success
1742 	 */
1743 
1744 	pmap_update(pmap);
1745 	uvmfault_unlockall(ufi, amap, uobj);
1746 	return 0;
1747 }
1748 
1749 /*
1750  * uvm_fault_upper_done: queue upper center page.
1751  */
1752 
1753 static void
uvm_fault_upper_done(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct vm_anon * anon,struct vm_page * pg)1754 uvm_fault_upper_done(
1755 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1756 	struct vm_anon *anon, struct vm_page *pg)
1757 {
1758 	const bool wire_paging = flt->wire_paging;
1759 
1760 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1761 
1762 	/*
1763 	 * ... update the page queues.
1764 	 */
1765 
1766 	if (wire_paging) {
1767 		uvm_pagelock(pg);
1768 		uvm_pagewire(pg);
1769 		uvm_pageunlock(pg);
1770 
1771 		/*
1772 		 * since the now-wired page cannot be paged out,
1773 		 * release its swap resources for others to use.
1774 		 * and since an anon with no swap cannot be clean,
1775 		 * mark it dirty now.
1776 		 */
1777 
1778 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1779 		uvm_anon_dropswap(anon);
1780 	} else if (uvmpdpol_pageactivate_p(pg)) {
1781 		/*
1782 		 * avoid re-activating the page unless needed,
1783 		 * to avoid false sharing on multiprocessor.
1784 		 */
1785 
1786 		uvm_pagelock(pg);
1787 		uvm_pageactivate(pg);
1788 		uvm_pageunlock(pg);
1789 	}
1790 }
1791 
1792 /*
1793  * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1794  */
1795 
1796 static inline int
uvm_fault_lower_upgrade(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_amap * amap,struct uvm_object * uobj,struct vm_page * uobjpage)1797 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1798     struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1799 {
1800 
1801 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1802 
1803 	KASSERT(uobj != NULL);
1804 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1805 
1806 	/*
1807 	 * fast path.
1808 	 */
1809 
1810 	if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1811 		return 0;
1812 	}
1813 
1814 	/*
1815 	 * otherwise try for the upgrade.  if we don't get it, unlock
1816 	 * everything, restart the fault and next time around get a writer
1817 	 * lock.
1818 	 */
1819 
1820 	flt->lower_lock_type = RW_WRITER;
1821 	if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1822 		uvmfault_unlockall(ufi, amap, uobj);
1823 		cpu_count(CPU_COUNT_FLTNOUP, 1);
1824 		UVMHIST_LOG(maphist, "  !upgrade lower", 0, 0,0,0);
1825 		return ERESTART;
1826 	}
1827 	cpu_count(CPU_COUNT_FLTUP, 1);
1828 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1829 	return 0;
1830 }
1831 
1832 /*
1833  * uvm_fault_lower: handle lower fault.
1834  *
1835  *	1. check uobj
1836  *	1.1. if null, ZFOD.
1837  *	1.2. if not null, look up unnmapped neighbor pages.
1838  *	2. for center page, check if promote.
1839  *	2.1. ZFOD always needs promotion.
1840  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1841  *	3. if uobj is not ZFOD and page is not found, do i/o.
1842  *	4. dispatch either direct / promote fault.
1843  */
1844 
1845 static int
uvm_fault_lower(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct vm_page ** pages)1846 uvm_fault_lower(
1847 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1848 	struct vm_page **pages)
1849 {
1850 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1851 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1852 	struct vm_page *uobjpage;
1853 	int error;
1854 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1855 
1856 	/*
1857 	 * now, if the desired page is not shadowed by the amap and we have
1858 	 * a backing object that does not have a special fault routine, then
1859 	 * we ask (with pgo_get) the object for resident pages that we care
1860 	 * about and attempt to map them in.  we do not let pgo_get block
1861 	 * (PGO_LOCKED).
1862 	 */
1863 
1864 	if (uobj == NULL) {
1865 		/* zero fill; don't care neighbor pages */
1866 		uobjpage = NULL;
1867 	} else {
1868 		uvm_fault_lower_lookup(ufi, flt, pages);
1869 		uobjpage = pages[flt->centeridx];
1870 	}
1871 
1872 	/*
1873 	 * note that at this point we are done with any front or back pages.
1874 	 * we are now going to focus on the center page (i.e. the one we've
1875 	 * faulted on).  if we have faulted on the upper (anon) layer
1876 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1877 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1878 	 * layer [i.e. case 2] and the page was both present and available,
1879 	 * then we've got a pointer to it as "uobjpage" and we've already
1880 	 * made it BUSY.
1881 	 */
1882 
1883 	/*
1884 	 * locked:
1885 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1886 	 */
1887 	KASSERT(amap == NULL ||
1888 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1889 	KASSERT(uobj == NULL ||
1890 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1891 
1892 	/*
1893 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1894 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1895 	 * have a backing object, check and see if we are going to promote
1896 	 * the data up to an anon during the fault.
1897 	 */
1898 
1899 	if (uobj == NULL) {
1900 		uobjpage = PGO_DONTCARE;
1901 		flt->promote = true;		/* always need anon here */
1902 	} else {
1903 		KASSERT(uobjpage != PGO_DONTCARE);
1904 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1905 	}
1906 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
1907 	    flt->promote, (uobj == NULL), 0,0);
1908 
1909 	/*
1910 	 * if uobjpage is not null then we do not need to do I/O to get the
1911 	 * uobjpage.
1912 	 *
1913 	 * if uobjpage is null, then we need to unlock and ask the pager to
1914 	 * get the data for us.   once we have the data, we need to reverify
1915 	 * the state the world.   we are currently not holding any resources.
1916 	 */
1917 
1918 	if (uobjpage) {
1919 		/* update rusage counters */
1920 		curlwp->l_ru.ru_minflt++;
1921 	} else {
1922 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1923 		if (error != 0)
1924 			return error;
1925 	}
1926 
1927 	/*
1928 	 * locked:
1929 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1930 	 */
1931 	KASSERT(amap == NULL ||
1932 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1933 	KASSERT(uobj == NULL ||
1934 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1935 
1936 	/*
1937 	 * notes:
1938 	 *  - at this point uobjpage can not be NULL
1939 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1940 	 *  for it above)
1941 	 *  - at this point uobjpage could be waited on (handle later)
1942 	 *  - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1943 	 */
1944 
1945 	KASSERT(uobjpage != NULL);
1946 	KASSERT(uobj == NULL ||
1947 	    uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1948 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1949 	    uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1950 
1951 	if (!flt->promote) {
1952 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1953 	} else {
1954 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1955 	}
1956 	return error;
1957 }
1958 
1959 /*
1960  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1961  *
1962  *	1. get on-memory pages.
1963  *	2. if failed, give up (get only center page later).
1964  *	3. if succeeded, enter h/w mapping of neighbor pages.
1965  */
1966 
1967 static void
uvm_fault_lower_lookup(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct vm_page ** pages)1968 uvm_fault_lower_lookup(
1969 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1970 	struct vm_page **pages)
1971 {
1972 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1973 	int lcv, gotpages;
1974 	vaddr_t currva;
1975 	bool entered;
1976 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1977 
1978 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1979 
1980 	/*
1981 	 * Locked: maps(read), amap(if there), uobj
1982 	 */
1983 
1984 	cpu_count(CPU_COUNT_FLTLGET, 1);
1985 	gotpages = flt->npages;
1986 	(void) uobj->pgops->pgo_get(uobj,
1987 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1988 	    pages, &gotpages, flt->centeridx,
1989 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1990 	    PGO_LOCKED);
1991 
1992 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1993 
1994 	/*
1995 	 * check for pages to map, if we got any
1996 	 */
1997 
1998 	if (gotpages == 0) {
1999 		pages[flt->centeridx] = NULL;
2000 		return;
2001 	}
2002 
2003 	entered = false;
2004 	currva = flt->startva;
2005 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2006 		struct vm_page *curpg;
2007 
2008 		curpg = pages[lcv];
2009 		if (curpg == NULL || curpg == PGO_DONTCARE) {
2010 			continue;
2011 		}
2012 
2013 		/*
2014 		 * in the case of tmpfs, the pages might be from a different
2015 		 * uvm_object.  just make sure that they have the same lock.
2016 		 */
2017 
2018 		KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2019 		KASSERT((curpg->flags & PG_BUSY) == 0);
2020 
2021 		/*
2022 		 * leave the centre page for later.  don't screw with
2023 		 * existing mappings (needless & expensive).
2024 		 */
2025 
2026 		if (lcv == flt->centeridx) {
2027 			UVMHIST_LOG(maphist, "  got uobjpage (%#jx) "
2028 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
2029 		} else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2030 			uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2031 			entered = true;
2032 		}
2033 	}
2034 	if (entered) {
2035 		pmap_update(ufi->orig_map->pmap);
2036 	}
2037 }
2038 
2039 /*
2040  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2041  */
2042 
2043 static void
uvm_fault_lower_neighbor(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,vaddr_t currva,struct vm_page * pg)2044 uvm_fault_lower_neighbor(
2045 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2046 	vaddr_t currva, struct vm_page *pg)
2047 {
2048 	const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2049 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2050 
2051 	/* locked: maps(read), amap(if there), uobj */
2052 
2053 	/*
2054 	 * calling pgo_get with PGO_LOCKED returns us pages which
2055 	 * are neither busy nor released, so we don't need to check
2056 	 * for this.  we can just directly enter the pages.
2057 	 *
2058 	 * there wasn't a direct fault on the page, so avoid the cost of
2059 	 * activating it.
2060 	 */
2061 
2062 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2063 		uvm_pagelock(pg);
2064 		uvm_pageenqueue(pg);
2065 		uvm_pageunlock(pg);
2066 	}
2067 
2068 	UVMHIST_LOG(maphist,
2069 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2070 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2071 	cpu_count(CPU_COUNT_FLTNOMAP, 1);
2072 
2073 	/*
2074 	 * Since this page isn't the page that's actually faulting,
2075 	 * ignore pmap_enter() failures; it's not critical that we
2076 	 * enter these right now.
2077 	 * NOTE: page can't be waited on or PG_RELEASED because we've
2078 	 * held the lock the whole time we've had the handle.
2079 	 */
2080 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
2081 	KASSERT((pg->flags & PG_RELEASED) == 0);
2082 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2083 	    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2084 	KASSERT((pg->flags & PG_BUSY) == 0);
2085 	KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2086 
2087 	const vm_prot_t mapprot =
2088 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2089 	    flt->enter_prot & MASK(ufi->entry);
2090 	const u_int mapflags =
2091 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2092 	(void) pmap_enter(ufi->orig_map->pmap, currva,
2093 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2094 }
2095 
2096 /*
2097  * uvm_fault_lower_io: get lower page from backing store.
2098  *
2099  *	1. unlock everything, because i/o will block.
2100  *	2. call pgo_get.
2101  *	3. if failed, recover.
2102  *	4. if succeeded, relock everything and verify things.
2103  */
2104 
2105 static int
uvm_fault_lower_io(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object ** ruobj,struct vm_page ** ruobjpage)2106 uvm_fault_lower_io(
2107 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2108 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
2109 {
2110 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2111 	struct uvm_object *uobj = *ruobj;
2112 	struct vm_page *pg;
2113 	bool locked;
2114 	int gotpages;
2115 	int error;
2116 	voff_t uoff;
2117 	vm_prot_t access_type;
2118 	int advice;
2119 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2120 
2121 	/* update rusage counters */
2122 	curlwp->l_ru.ru_majflt++;
2123 
2124 	/* grab everything we need from the entry before we unlock */
2125 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2126 	access_type = flt->access_type & MASK(ufi->entry);
2127 	advice = ufi->entry->advice;
2128 
2129 	/* Locked: maps(read), amap(if there), uobj */
2130 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2131 
2132 	/* Upgrade to a write lock if needed. */
2133 	error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2134 	if (error != 0) {
2135 		return error;
2136 	}
2137 	uvmfault_unlockall(ufi, amap, NULL);
2138 
2139 	/* Locked: uobj(write) */
2140 	KASSERT(rw_write_held(uobj->vmobjlock));
2141 
2142 	cpu_count(CPU_COUNT_FLTGET, 1);
2143 	gotpages = 1;
2144 	pg = NULL;
2145 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2146 	    0, access_type, advice, PGO_SYNCIO);
2147 	/* locked: pg(if no error) */
2148 
2149 	/*
2150 	 * recover from I/O
2151 	 */
2152 
2153 	if (error) {
2154 		if (error == EAGAIN) {
2155 			UVMHIST_LOG(maphist,
2156 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
2157 			kpause("fltagain2", false, hz/2, NULL);
2158 			return ERESTART;
2159 		}
2160 
2161 #if 0
2162 		KASSERT(error != ERESTART);
2163 #else
2164 		/* XXXUEBS don't re-fault? */
2165 		if (error == ERESTART)
2166 			error = EIO;
2167 #endif
2168 
2169 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2170 		    error, 0,0,0);
2171 		return error;
2172 	}
2173 
2174 	/*
2175 	 * re-verify the state of the world by first trying to relock
2176 	 * the maps.  always relock the object.
2177 	 */
2178 
2179 	locked = uvmfault_relock(ufi);
2180 	if (locked && amap)
2181 		amap_lock(amap, flt->upper_lock_type);
2182 
2183 	/* might be changed */
2184 	uobj = pg->uobject;
2185 
2186 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2187 	KASSERT((pg->flags & PG_BUSY) != 0);
2188 	KASSERT(flt->lower_lock_type == RW_WRITER);
2189 
2190 	uvm_pagelock(pg);
2191 	uvm_pageactivate(pg);
2192 	uvm_pageunlock(pg);
2193 
2194 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
2195 	/* locked(!locked): uobj, pg */
2196 
2197 	/*
2198 	 * verify that the page has not be released and re-verify
2199 	 * that amap slot is still free.   if there is a problem,
2200 	 * we unlock and clean up.
2201 	 */
2202 
2203 	if ((pg->flags & PG_RELEASED) != 0 ||
2204 	    (locked && amap && amap_lookup(&ufi->entry->aref,
2205 	      ufi->orig_rvaddr - ufi->entry->start))) {
2206 		if (locked)
2207 			uvmfault_unlockall(ufi, amap, NULL);
2208 		locked = false;
2209 	}
2210 
2211 	/*
2212 	 * unbusy/release the page.
2213 	 */
2214 
2215 	if ((pg->flags & PG_RELEASED) == 0) {
2216 		pg->flags &= ~PG_BUSY;
2217 		uvm_pagelock(pg);
2218 		uvm_pagewakeup(pg);
2219 		uvm_pageunlock(pg);
2220 		UVM_PAGE_OWN(pg, NULL);
2221 	} else {
2222 		cpu_count(CPU_COUNT_FLTPGRELE, 1);
2223 		uvm_pagefree(pg);
2224 	}
2225 
2226 	/*
2227 	 * didn't get the lock?   retry.
2228 	 */
2229 
2230 	if (locked == false) {
2231 		UVMHIST_LOG(maphist,
2232 		    "  wasn't able to relock after fault: retry",
2233 		    0,0,0,0);
2234 		rw_exit(uobj->vmobjlock);
2235 		return ERESTART;
2236 	}
2237 
2238 	/*
2239 	 * we have the data in pg.  we are holding object lock (so the page
2240 	 * can't be released on us).
2241 	 */
2242 
2243 	/* locked: maps(read), amap(if !null), uobj */
2244 
2245 	*ruobj = uobj;
2246 	*ruobjpage = pg;
2247 	return 0;
2248 }
2249 
2250 /*
2251  * uvm_fault_lower_direct: fault lower center page
2252  *
2253  *	1. adjust flt->enter_prot.
2254  *	2. if page is loaned, resolve.
2255  */
2256 
2257 int
uvm_fault_lower_direct(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_page * uobjpage)2258 uvm_fault_lower_direct(
2259 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2260 	struct uvm_object *uobj, struct vm_page *uobjpage)
2261 {
2262 	struct vm_page *pg;
2263 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2264 
2265 	/*
2266 	 * we are not promoting.   if the mapping is COW ensure that we
2267 	 * don't give more access than we should (e.g. when doing a read
2268 	 * fault on a COPYONWRITE mapping we want to map the COW page in
2269 	 * R/O even though the entry protection could be R/W).
2270 	 *
2271 	 * set "pg" to the page we want to map in (uobjpage, usually)
2272 	 */
2273 
2274 	cpu_count(CPU_COUNT_FLT_OBJ, 1);
2275 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2276 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2277 		flt->enter_prot &= ~VM_PROT_WRITE;
2278 	pg = uobjpage;		/* map in the actual object */
2279 
2280 	KASSERT(uobjpage != PGO_DONTCARE);
2281 
2282 	/*
2283 	 * we are faulting directly on the page.   be careful
2284 	 * about writing to loaned pages...
2285 	 */
2286 
2287 	if (uobjpage->loan_count) {
2288 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2289 	}
2290 	KASSERT(pg == uobjpage);
2291 	KASSERT((pg->flags & PG_BUSY) == 0);
2292 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2293 }
2294 
2295 /*
2296  * uvm_fault_lower_direct_loan: resolve loaned page.
2297  *
2298  *	1. if not cow'ing, adjust flt->enter_prot.
2299  *	2. if cow'ing, break loan.
2300  */
2301 
2302 static int
uvm_fault_lower_direct_loan(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_page ** rpg,struct vm_page ** ruobjpage)2303 uvm_fault_lower_direct_loan(
2304 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2305 	struct uvm_object *uobj, struct vm_page **rpg,
2306 	struct vm_page **ruobjpage)
2307 {
2308 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2309 	struct vm_page *pg;
2310 	struct vm_page *uobjpage = *ruobjpage;
2311 	int error;
2312 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2313 
2314 	if (!flt->cow_now) {
2315 		/* read fault: cap the protection at readonly */
2316 		/* cap! */
2317 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2318 	} else {
2319 		/*
2320 		 * write fault: must break the loan here.  to do this
2321 		 * we need a write lock on the object.
2322 		 */
2323 
2324 		error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2325 		if (error != 0) {
2326 			return error;
2327 		}
2328 		KASSERT(rw_write_held(uobj->vmobjlock));
2329 
2330 		pg = uvm_loanbreak(uobjpage);
2331 		if (pg == NULL) {
2332 
2333 			uvmfault_unlockall(ufi, amap, uobj);
2334 			UVMHIST_LOG(maphist,
2335 			  "  out of RAM breaking loan, waiting",
2336 			  0,0,0,0);
2337 			cpu_count(CPU_COUNT_FLTNORAM, 1);
2338 			uvm_wait("flt_noram4");
2339 			return ERESTART;
2340 		}
2341 		*rpg = pg;
2342 		*ruobjpage = pg;
2343 
2344 		/*
2345 		 * drop ownership of page while still holding object lock,
2346 		 * which won't be dropped until the page is entered.
2347 		 */
2348 
2349 		uvm_pagelock(pg);
2350 		uvm_pagewakeup(pg);
2351 		uvm_pageunlock(pg);
2352 		pg->flags &= ~PG_BUSY;
2353 		UVM_PAGE_OWN(pg, NULL);
2354 	}
2355 	return 0;
2356 }
2357 
2358 /*
2359  * uvm_fault_lower_promote: promote lower page.
2360  *
2361  *	1. call uvmfault_promote.
2362  *	2. fill in data.
2363  *	3. if not ZFOD, dispose old page.
2364  */
2365 
2366 int
uvm_fault_lower_promote(struct uvm_faultinfo * ufi,struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_page * uobjpage)2367 uvm_fault_lower_promote(
2368 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2369 	struct uvm_object *uobj, struct vm_page *uobjpage)
2370 {
2371 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2372 	struct vm_anon *anon;
2373 	struct vm_page *pg;
2374 	int error;
2375 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2376 
2377 	KASSERT(amap != NULL);
2378 
2379 	/* promoting requires a write lock. */
2380 	error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2381 	if (error != 0) {
2382 		return error;
2383 	}
2384 	KASSERT(rw_write_held(amap->am_lock));
2385 	KASSERT(uobj == NULL ||
2386 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2387 
2388 	/*
2389 	 * If we are going to promote the data to an anon we
2390 	 * allocate a blank anon here and plug it into our amap.
2391 	 */
2392 	error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2393 	switch (error) {
2394 	case 0:
2395 		break;
2396 	case ERESTART:
2397 		return ERESTART;
2398 	default:
2399 		return error;
2400 	}
2401 
2402 	pg = anon->an_page;
2403 
2404 	/*
2405 	 * Fill in the data.
2406 	 */
2407 
2408 	if (uobjpage != PGO_DONTCARE) {
2409 		cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2410 
2411 		/*
2412 		 * promote to shared amap?  make sure all sharing
2413 		 * procs see it
2414 		 */
2415 
2416 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2417 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2418 			/*
2419 			 * XXX: PAGE MIGHT BE WIRED!
2420 			 */
2421 		}
2422 
2423 		UVMHIST_LOG(maphist,
2424 		    "  promote uobjpage %#jx to anon/page %#jx/%#jx",
2425 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2426 
2427 	} else {
2428 		cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2429 
2430 		/*
2431 		 * Page is zero'd and marked dirty by
2432 		 * uvmfault_promote().
2433 		 */
2434 
2435 		UVMHIST_LOG(maphist,"  zero fill anon/page %#jx/%#jx",
2436 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2437 	}
2438 
2439 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2440 }
2441 
2442 /*
2443  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2444  * from the lower page.
2445  */
2446 
2447 int
uvm_fault_lower_enter(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_anon * anon,struct vm_page * pg)2448 uvm_fault_lower_enter(
2449 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2450 	struct uvm_object *uobj,
2451 	struct vm_anon *anon, struct vm_page *pg)
2452 {
2453 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2454 	const bool readonly = uvm_pagereadonly_p(pg);
2455 	int error;
2456 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2457 
2458 	/*
2459 	 * Locked:
2460 	 *
2461 	 *	maps(read), amap(if !null), uobj(if !null),
2462 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
2463 	 *
2464 	 * anon must be write locked (promotion).  uobj can be either.
2465 	 *
2466 	 * Note: pg is either the uobjpage or the new page in the new anon.
2467 	 */
2468 
2469 	KASSERT(amap == NULL ||
2470 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2471 	KASSERT(uobj == NULL ||
2472 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2473 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2474 
2475 	/*
2476 	 * note that pg can't be PG_RELEASED or PG_BUSY since we did
2477 	 * not drop the object lock since the last time we checked.
2478 	 */
2479 
2480 	KASSERT((pg->flags & PG_RELEASED) == 0);
2481 	KASSERT((pg->flags & PG_BUSY) == 0);
2482 
2483 	/*
2484 	 * all resources are present.   we can now map it in and free our
2485 	 * resources.
2486 	 */
2487 
2488 	UVMHIST_LOG(maphist,
2489 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2490 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2491 	    (uintptr_t)pg, flt->promote);
2492 	KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2493 	    "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2494 	    "entry=%p map=%p orig_rvaddr=%p pg=%p",
2495 	    flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2496 	    UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2497 	    (void *)ufi->orig_rvaddr, pg);
2498 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2499 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2500 	    VM_PAGE_TO_PHYS(pg),
2501 	    readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2502 	    flt->access_type | PMAP_CANFAIL |
2503 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2504 
2505 		/*
2506 		 * No need to undo what we did; we can simply think of
2507 		 * this as the pmap throwing away the mapping information.
2508 		 *
2509 		 * We do, however, have to go through the ReFault path,
2510 		 * as the map may change while we're asleep.
2511 		 */
2512 
2513 		/*
2514 		 * ensure that the page is queued in the case that
2515 		 * we just promoted the page.
2516 		 */
2517 
2518 		if (anon != NULL) {
2519 			uvm_pagelock(pg);
2520 			uvm_pageenqueue(pg);
2521 			uvm_pagewakeup(pg);
2522 			uvm_pageunlock(pg);
2523 		}
2524 
2525 		uvmfault_unlockall(ufi, amap, uobj);
2526 		if (!uvm_reclaimable()) {
2527 			UVMHIST_LOG(maphist,
2528 			    "<- failed.  out of VM",0,0,0,0);
2529 			/* XXX instrumentation */
2530 			error = ENOMEM;
2531 			return error;
2532 		}
2533 		/* XXX instrumentation */
2534 		uvm_wait("flt_pmfail2");
2535 		return ERESTART;
2536 	}
2537 
2538 	uvm_fault_lower_done(ufi, flt, uobj, pg);
2539 	pmap_update(ufi->orig_map->pmap);
2540 	uvmfault_unlockall(ufi, amap, uobj);
2541 
2542 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2543 	return 0;
2544 }
2545 
2546 /*
2547  * uvm_fault_lower_done: queue lower center page.
2548  */
2549 
2550 void
uvm_fault_lower_done(struct uvm_faultinfo * ufi,const struct uvm_faultctx * flt,struct uvm_object * uobj,struct vm_page * pg)2551 uvm_fault_lower_done(
2552 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2553 	struct uvm_object *uobj, struct vm_page *pg)
2554 {
2555 
2556 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2557 
2558 	if (flt->wire_paging) {
2559 		uvm_pagelock(pg);
2560 		uvm_pagewire(pg);
2561 		uvm_pageunlock(pg);
2562 		if (pg->flags & PG_AOBJ) {
2563 
2564 			/*
2565 			 * since the now-wired page cannot be paged out,
2566 			 * release its swap resources for others to use.
2567 			 * since an aobj page with no swap cannot be clean,
2568 			 * mark it dirty now.
2569 			 *
2570 			 * use pg->uobject here.  if the page is from a
2571 			 * tmpfs vnode, the pages are backed by its UAO and
2572 			 * not the vnode.
2573 			 */
2574 
2575 			KASSERT(uobj != NULL);
2576 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2577 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2578 			uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2579 		}
2580 	} else if (uvmpdpol_pageactivate_p(pg)) {
2581 		/*
2582 		 * avoid re-activating the page unless needed,
2583 		 * to avoid false sharing on multiprocessor.
2584 		 */
2585 
2586 		uvm_pagelock(pg);
2587 		uvm_pageactivate(pg);
2588 		uvm_pageunlock(pg);
2589 	}
2590 }
2591 
2592 
2593 /*
2594  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2595  *
2596  * => map may be read-locked by caller, but MUST NOT be write-locked.
2597  * => if map is read-locked, any operations which may cause map to
2598  *	be write-locked in uvm_fault() must be taken care of by
2599  *	the caller.  See uvm_map_pageable().
2600  */
2601 
2602 int
uvm_fault_wire(struct vm_map * map,vaddr_t start,vaddr_t end,vm_prot_t access_type,int maxprot)2603 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2604     vm_prot_t access_type, int maxprot)
2605 {
2606 	vaddr_t va;
2607 	int error;
2608 
2609 	/*
2610 	 * now fault it in a page at a time.   if the fault fails then we have
2611 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2612 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2613 	 */
2614 
2615 	/*
2616 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2617 	 * wiring the last page in the address space, though.
2618 	 */
2619 	if (start > end) {
2620 		return EFAULT;
2621 	}
2622 
2623 	for (va = start; va < end; va += PAGE_SIZE) {
2624 		error = uvm_fault_internal(map, va, access_type,
2625 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2626 		if (error) {
2627 			if (va != start) {
2628 				uvm_fault_unwire(map, start, va);
2629 			}
2630 			return error;
2631 		}
2632 	}
2633 	return 0;
2634 }
2635 
2636 /*
2637  * uvm_fault_unwire(): unwire range of virtual space.
2638  */
2639 
2640 void
uvm_fault_unwire(struct vm_map * map,vaddr_t start,vaddr_t end)2641 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2642 {
2643 	vm_map_lock_read(map);
2644 	uvm_fault_unwire_locked(map, start, end);
2645 	vm_map_unlock_read(map);
2646 }
2647 
2648 /*
2649  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2650  *
2651  * => map must be at least read-locked.
2652  */
2653 
2654 void
uvm_fault_unwire_locked(struct vm_map * map,vaddr_t start,vaddr_t end)2655 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2656 {
2657 	struct vm_map_entry *entry, *oentry;
2658 	pmap_t pmap = vm_map_pmap(map);
2659 	vaddr_t va;
2660 	paddr_t pa;
2661 	struct vm_page *pg;
2662 
2663 	/*
2664 	 * we assume that the area we are unwiring has actually been wired
2665 	 * in the first place.   this means that we should be able to extract
2666 	 * the PAs from the pmap.   we also lock out the page daemon so that
2667 	 * we can call uvm_pageunwire.
2668 	 */
2669 
2670 	/*
2671 	 * find the beginning map entry for the region.
2672 	 */
2673 
2674 	KASSERT(start >= vm_map_min(map));
2675 	KASSERT(end <= vm_map_max(map));
2676 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2677 		panic("uvm_fault_unwire_locked: address not in map");
2678 
2679 	oentry = NULL;
2680 	for (va = start; va < end; va += PAGE_SIZE) {
2681 
2682 		/*
2683 		 * find the map entry for the current address.
2684 		 */
2685 
2686 		KASSERT(va >= entry->start);
2687 		while (va >= entry->end) {
2688 			KASSERT(entry->next != &map->header);
2689 			KASSERT(entry->next->start <= entry->end);
2690 			entry = entry->next;
2691 		}
2692 
2693 		/*
2694 		 * lock it.
2695 		 */
2696 
2697 		if (entry != oentry) {
2698 			if (oentry != NULL) {
2699 				uvm_map_unlock_entry(oentry);
2700 			}
2701 			uvm_map_lock_entry(entry, RW_WRITER);
2702 			oentry = entry;
2703 		}
2704 
2705 		/*
2706 		 * if the entry is no longer wired, tell the pmap.
2707 		 */
2708 
2709 		if (!pmap_extract(pmap, va, &pa))
2710 			continue;
2711 
2712 		if (VM_MAPENT_ISWIRED(entry) == 0)
2713 			pmap_unwire(pmap, va);
2714 
2715 		pg = PHYS_TO_VM_PAGE(pa);
2716 		if (pg) {
2717 			uvm_pagelock(pg);
2718 			uvm_pageunwire(pg);
2719 			uvm_pageunlock(pg);
2720 		}
2721 	}
2722 
2723 	if (oentry != NULL) {
2724 		uvm_map_unlock_entry(entry);
2725 	}
2726 }
2727