xref: /openbsd/sys/uvm/uvm_pdaemon.c (revision 82673a18)
1 /*	$OpenBSD: uvm_pdaemon.c,v 1.114 2024/05/01 12:54:27 mpi Exp $	*/
2 /*	$NetBSD: uvm_pdaemon.c,v 1.23 2000/08/20 10:24:14 bjh21 Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
38  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_pdaemon.c: the page daemon
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/pool.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/mount.h>
76 #include <sys/atomic.h>
77 
78 #ifdef HIBERNATE
79 #include <sys/hibernate.h>
80 #endif
81 
82 #include <uvm/uvm.h>
83 
84 #include "drm.h"
85 
86 #if NDRM > 0
87 extern void drmbackoff(long);
88 #endif
89 
90 /*
91  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
92  * in a pass thru the inactive list when swap is full.  the value should be
93  * "small"... if it's too large we'll cycle the active pages thru the inactive
94  * queue too quickly to for them to be referenced and avoid being freed.
95  */
96 
97 #define UVMPD_NUMDIRTYREACTS 16
98 
99 
100 /*
101  * local prototypes
102  */
103 
104 struct rwlock	*uvmpd_trylockowner(struct vm_page *);
105 void		uvmpd_scan(struct uvm_pmalloc *, struct uvm_constraint_range *);
106 void		uvmpd_scan_inactive(struct uvm_pmalloc *,
107 		    struct uvm_constraint_range *, struct pglist *);
108 void		uvmpd_tune(void);
109 void		uvmpd_drop(struct pglist *);
110 int		uvmpd_dropswap(struct vm_page *);
111 
112 /*
113  * uvm_wait: wait (sleep) for the page daemon to free some pages
114  *
115  * => should be called with all locks released
116  * => should _not_ be called by the page daemon (to avoid deadlock)
117  */
118 
119 void
uvm_wait(const char * wmsg)120 uvm_wait(const char *wmsg)
121 {
122 	uint64_t timo = INFSLP;
123 
124 #ifdef DIAGNOSTIC
125 	if (curproc == &proc0)
126 		panic("%s: cannot sleep for memory during boot", __func__);
127 #endif
128 
129 	/*
130 	 * check for page daemon going to sleep (waiting for itself)
131 	 */
132 	if (curproc == uvm.pagedaemon_proc) {
133 		printf("uvm_wait emergency bufbackoff\n");
134 		if (bufbackoff(NULL, 4) == 0)
135 			return;
136 		/*
137 		 * now we have a problem: the pagedaemon wants to go to
138 		 * sleep until it frees more memory.   but how can it
139 		 * free more memory if it is asleep?  that is a deadlock.
140 		 * we have two options:
141 		 *  [1] panic now
142 		 *  [2] put a timeout on the sleep, thus causing the
143 		 *      pagedaemon to only pause (rather than sleep forever)
144 		 *
145 		 * note that option [2] will only help us if we get lucky
146 		 * and some other process on the system breaks the deadlock
147 		 * by exiting or freeing memory (thus allowing the pagedaemon
148 		 * to continue).  for now we panic if DEBUG is defined,
149 		 * otherwise we hope for the best with option [2] (better
150 		 * yet, this should never happen in the first place!).
151 		 */
152 
153 		printf("pagedaemon: deadlock detected!\n");
154 		timo = MSEC_TO_NSEC(125);	/* set timeout */
155 #if defined(DEBUG)
156 		/* DEBUG: panic so we can debug it */
157 		panic("pagedaemon deadlock");
158 #endif
159 	}
160 
161 	uvm_lock_fpageq();
162 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
163 	msleep_nsec(&uvmexp.free, &uvm.fpageqlock, PVM | PNORELOCK, wmsg, timo);
164 }
165 
166 /*
167  * uvmpd_tune: tune paging parameters
168  */
169 void
uvmpd_tune(void)170 uvmpd_tune(void)
171 {
172 	int val;
173 
174 	val = uvmexp.npages / 30;
175 
176 	/* XXX:  what are these values good for? */
177 	val = max(val, (16*1024) >> PAGE_SHIFT);
178 
179 	/* Make sure there's always a user page free. */
180 	if (val < uvmexp.reserve_kernel + 1)
181 		val = uvmexp.reserve_kernel + 1;
182 	uvmexp.freemin = val;
183 
184 	/* Calculate free target. */
185 	val = (uvmexp.freemin * 4) / 3;
186 	if (val <= uvmexp.freemin)
187 		val = uvmexp.freemin + 1;
188 	uvmexp.freetarg = val;
189 
190 	uvmexp.wiredmax = uvmexp.npages / 3;
191 }
192 
193 /*
194  * Indicate to the page daemon that a nowait call failed and it should
195  * recover at least some memory in the most restricted region (assumed
196  * to be dma_constraint).
197  */
198 volatile int uvm_nowait_failed;
199 
200 /*
201  * uvm_pageout: the main loop for the pagedaemon
202  */
203 void
uvm_pageout(void * arg)204 uvm_pageout(void *arg)
205 {
206 	struct uvm_constraint_range constraint;
207 	struct uvm_pmalloc *pma;
208 	int free;
209 
210 	/* ensure correct priority and set paging parameters... */
211 	uvm.pagedaemon_proc = curproc;
212 	(void) spl0();
213 	uvmpd_tune();
214 
215 	for (;;) {
216 		long size;
217 
218 		uvm_lock_fpageq();
219 		if (!uvm_nowait_failed && TAILQ_EMPTY(&uvm.pmr_control.allocs)) {
220 			msleep_nsec(&uvm.pagedaemon, &uvm.fpageqlock, PVM,
221 			    "pgdaemon", INFSLP);
222 			uvmexp.pdwoke++;
223 		}
224 
225 		if ((pma = TAILQ_FIRST(&uvm.pmr_control.allocs)) != NULL) {
226 			pma->pm_flags |= UVM_PMA_BUSY;
227 			constraint = pma->pm_constraint;
228 		} else {
229 			if (uvm_nowait_failed) {
230 				/*
231 				 * XXX realistically, this is what our
232 				 * nowait callers probably care about
233 				 */
234 				constraint = dma_constraint;
235 				uvm_nowait_failed = 0;
236 			} else
237 				constraint = no_constraint;
238 		}
239 		free = uvmexp.free - BUFPAGES_DEFICIT;
240 		uvm_unlock_fpageq();
241 
242 		/*
243 		 * now lock page queues and recompute inactive count
244 		 */
245 		uvm_lock_pageq();
246 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
247 		if (uvmexp.inactarg <= uvmexp.freetarg) {
248 			uvmexp.inactarg = uvmexp.freetarg + 1;
249 		}
250 		uvm_unlock_pageq();
251 
252 		/* Reclaim pages from the buffer cache if possible. */
253 		size = 0;
254 		if (pma != NULL)
255 			size += pma->pm_size >> PAGE_SHIFT;
256 		if (free < uvmexp.freetarg)
257 			size += uvmexp.freetarg - free;
258 		if (size == 0)
259 			size = 16; /* XXX */
260 
261 		(void) bufbackoff(&constraint, size * 2);
262 #if NDRM > 0
263 		drmbackoff(size * 2);
264 #endif
265 		uvm_pmr_cache_drain();
266 
267 		/*
268 		 * scan if needed
269 		 */
270 		uvm_lock_pageq();
271 		free = uvmexp.free - BUFPAGES_DEFICIT;
272 		if (pma != NULL || (free < uvmexp.freetarg) ||
273 		    ((uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg)) {
274 			uvmpd_scan(pma, &constraint);
275 		}
276 
277 		/*
278 		 * if there's any free memory to be had,
279 		 * wake up any waiters.
280 		 */
281 		uvm_lock_fpageq();
282 		if (uvmexp.free > uvmexp.reserve_kernel ||
283 		    uvmexp.paging == 0) {
284 			wakeup(&uvmexp.free);
285 		}
286 
287 		if (pma != NULL) {
288 			/*
289 			 * XXX If UVM_PMA_FREED isn't set, no pages
290 			 * were freed.  Should we set UVM_PMA_FAIL in
291 			 * that case?
292 			 */
293 			pma->pm_flags &= ~UVM_PMA_BUSY;
294 			if (pma->pm_flags & UVM_PMA_FREED) {
295 				pma->pm_flags &= ~UVM_PMA_LINKED;
296 				TAILQ_REMOVE(&uvm.pmr_control.allocs, pma,
297 				    pmq);
298 				wakeup(pma);
299 			}
300 		}
301 		uvm_unlock_fpageq();
302 
303 		/*
304 		 * scan done.  unlock page queues (the only lock we are holding)
305 		 */
306 		uvm_unlock_pageq();
307 
308 		sched_pause(yield);
309 	}
310 	/*NOTREACHED*/
311 }
312 
313 
314 /*
315  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
316  */
317 void
uvm_aiodone_daemon(void * arg)318 uvm_aiodone_daemon(void *arg)
319 {
320 	int s, free;
321 	struct buf *bp, *nbp;
322 
323 	uvm.aiodoned_proc = curproc;
324 
325 	for (;;) {
326 		/*
327 		 * Check for done aio structures. If we've got structures to
328 		 * process, do so. Otherwise sleep while avoiding races.
329 		 */
330 		mtx_enter(&uvm.aiodoned_lock);
331 		while ((bp = TAILQ_FIRST(&uvm.aio_done)) == NULL)
332 			msleep_nsec(&uvm.aiodoned, &uvm.aiodoned_lock,
333 			    PVM, "aiodoned", INFSLP);
334 		/* Take the list for ourselves. */
335 		TAILQ_INIT(&uvm.aio_done);
336 		mtx_leave(&uvm.aiodoned_lock);
337 
338 		/* process each i/o that's done. */
339 		free = uvmexp.free;
340 		while (bp != NULL) {
341 			if (bp->b_flags & B_PDAEMON) {
342 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
343 			}
344 			nbp = TAILQ_NEXT(bp, b_freelist);
345 			s = splbio();	/* b_iodone must by called at splbio */
346 			(*bp->b_iodone)(bp);
347 			splx(s);
348 			bp = nbp;
349 
350 			sched_pause(yield);
351 		}
352 		uvm_lock_fpageq();
353 		wakeup(free <= uvmexp.reserve_kernel ? &uvm.pagedaemon :
354 		    &uvmexp.free);
355 		uvm_unlock_fpageq();
356 	}
357 }
358 
359 /*
360  * uvmpd_trylockowner: trylock the page's owner.
361  *
362  * => return the locked rwlock on success.  otherwise, return NULL.
363  */
364 struct rwlock *
uvmpd_trylockowner(struct vm_page * pg)365 uvmpd_trylockowner(struct vm_page *pg)
366 {
367 
368 	struct uvm_object *uobj = pg->uobject;
369 	struct rwlock *slock;
370 
371 	if (uobj != NULL) {
372 		slock = uobj->vmobjlock;
373 	} else {
374 		struct vm_anon *anon = pg->uanon;
375 
376 		KASSERT(anon != NULL);
377 		slock = anon->an_lock;
378 	}
379 
380 	if (rw_enter(slock, RW_WRITE|RW_NOSLEEP)) {
381 		return NULL;
382 	}
383 
384 	return slock;
385 }
386 
387 /*
388  * uvmpd_dropswap: free any swap allocated to this page.
389  *
390  * => called with owner locked.
391  * => return 1 if a page had an associated slot.
392  */
393 int
uvmpd_dropswap(struct vm_page * pg)394 uvmpd_dropswap(struct vm_page *pg)
395 {
396 	struct vm_anon *anon = pg->uanon;
397 	int slot, result = 0;
398 
399 	if ((pg->pg_flags & PQ_ANON) && anon->an_swslot) {
400 		uvm_swap_free(anon->an_swslot, 1);
401 		anon->an_swslot = 0;
402 		result = 1;
403 	} else if (pg->pg_flags & PQ_AOBJ) {
404 		slot = uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
405 		if (slot)
406 			result = 1;
407 	}
408 
409 	return result;
410 }
411 
412 /*
413  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
414  *
415  * => called with page queues locked
416  * => we work on meeting our free target by converting inactive pages
417  *    into free pages.
418  * => we handle the building of swap-backed clusters
419  * => we return TRUE if we are exiting because we met our target
420  */
421 void
uvmpd_scan_inactive(struct uvm_pmalloc * pma,struct uvm_constraint_range * constraint,struct pglist * pglst)422 uvmpd_scan_inactive(struct uvm_pmalloc *pma,
423     struct uvm_constraint_range *constraint, struct pglist *pglst)
424 {
425 	int free, result;
426 	struct vm_page *p, *nextpg;
427 	struct uvm_object *uobj;
428 	struct vm_page *pps[SWCLUSTPAGES], **ppsp;
429 	int npages;
430 	struct vm_page *swpps[SWCLUSTPAGES]; 	/* XXX: see below */
431 	struct rwlock *slock;
432 	int swnpages, swcpages;				/* XXX: see below */
433 	int swslot;
434 	struct vm_anon *anon;
435 	boolean_t swap_backed;
436 	vaddr_t start;
437 	int dirtyreacts;
438 	paddr_t paddr;
439 
440 	/*
441 	 * swslot is non-zero if we are building a swap cluster.  we want
442 	 * to stay in the loop while we have a page to scan or we have
443 	 * a swap-cluster to build.
444 	 */
445 	swslot = 0;
446 	swnpages = swcpages = 0;
447 	dirtyreacts = 0;
448 	p = NULL;
449 
450 	/* Start with the first page on the list that fit in `constraint' */
451 	TAILQ_FOREACH(p, pglst, pageq) {
452 		paddr = atop(VM_PAGE_TO_PHYS(p));
453 		if (paddr >= constraint->ucr_low &&
454 		    paddr < constraint->ucr_high)
455 			break;
456 	}
457 
458 	for (; p != NULL || swslot != 0; p = nextpg) {
459 		/*
460 		 * note that p can be NULL iff we have traversed the whole
461 		 * list and need to do one final swap-backed clustered pageout.
462 		 */
463 		uobj = NULL;
464 		anon = NULL;
465 		if (p) {
466 			/*
467 			 * see if we've met our target
468 			 */
469 			free = uvmexp.free - BUFPAGES_DEFICIT;
470 			if (((pma == NULL || (pma->pm_flags & UVM_PMA_FREED)) &&
471 			    (free + uvmexp.paging >= uvmexp.freetarg << 2)) ||
472 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
473 				if (swslot == 0) {
474 					/* exit now if no swap-i/o pending */
475 					break;
476 				}
477 
478 				/* set p to null to signal final swap i/o */
479 				p = NULL;
480 				nextpg = NULL;
481 			}
482 		}
483 		if (p) {	/* if (we have a new page to consider) */
484 			/*
485 			 * we are below target and have a new page to consider.
486 			 */
487 			uvmexp.pdscans++;
488 			nextpg = TAILQ_NEXT(p, pageq);
489 
490 			anon = p->uanon;
491 			uobj = p->uobject;
492 
493 			/*
494 			 * first we attempt to lock the object that this page
495 			 * belongs to.  if our attempt fails we skip on to
496 			 * the next page (no harm done).  it is important to
497 			 * "try" locking the object as we are locking in the
498 			 * wrong order (pageq -> object) and we don't want to
499 			 * deadlock.
500 			 */
501 			slock = uvmpd_trylockowner(p);
502 			if (slock == NULL) {
503 				continue;
504 			}
505 
506 			/*
507 			 * move referenced pages back to active queue
508 			 * and skip to next page.
509 			 */
510 			if (pmap_is_referenced(p)) {
511 				uvm_pageactivate(p);
512 				rw_exit(slock);
513 				uvmexp.pdreact++;
514 				continue;
515 			}
516 
517 			if (p->pg_flags & PG_BUSY) {
518 				rw_exit(slock);
519 				uvmexp.pdbusy++;
520 				continue;
521 			}
522 
523 			/* does the page belong to an object? */
524 			if (uobj != NULL) {
525 				uvmexp.pdobscan++;
526 			} else {
527 				KASSERT(anon != NULL);
528 				uvmexp.pdanscan++;
529 			}
530 
531 			/*
532 			 * we now have the page queues locked.
533 			 * the page is not busy.   if the page is clean we
534 			 * can free it now and continue.
535 			 */
536 			if (p->pg_flags & PG_CLEAN) {
537 				if (p->pg_flags & PQ_SWAPBACKED) {
538 					/* this page now lives only in swap */
539 					atomic_inc_int(&uvmexp.swpgonly);
540 				}
541 
542 				/* zap all mappings with pmap_page_protect... */
543 				pmap_page_protect(p, PROT_NONE);
544 				uvm_pagefree(p);
545 				uvmexp.pdfreed++;
546 
547 				if (anon) {
548 
549 					/*
550 					 * an anonymous page can only be clean
551 					 * if it has backing store assigned.
552 					 */
553 
554 					KASSERT(anon->an_swslot != 0);
555 
556 					/* remove from object */
557 					anon->an_page = NULL;
558 				}
559 				rw_exit(slock);
560 				continue;
561 			}
562 
563 			/*
564 			 * this page is dirty, skip it if we'll have met our
565 			 * free target when all the current pageouts complete.
566 			 */
567 			if ((pma == NULL || (pma->pm_flags & UVM_PMA_FREED)) &&
568 			    (free + uvmexp.paging > uvmexp.freetarg << 2)) {
569 				rw_exit(slock);
570 				continue;
571 			}
572 
573 			/*
574 			 * this page is dirty, but we can't page it out
575 			 * since all pages in swap are only in swap.
576 			 * reactivate it so that we eventually cycle
577 			 * all pages thru the inactive queue.
578 			 */
579 			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfull()) {
580 				dirtyreacts++;
581 				uvm_pageactivate(p);
582 				rw_exit(slock);
583 				continue;
584 			}
585 
586 			/*
587 			 * if the page is swap-backed and dirty and swap space
588 			 * is full, free any swap allocated to the page
589 			 * so that other pages can be paged out.
590 			 */
591 			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfilled())
592 				uvmpd_dropswap(p);
593 
594 			/*
595 			 * the page we are looking at is dirty.   we must
596 			 * clean it before it can be freed.  to do this we
597 			 * first mark the page busy so that no one else will
598 			 * touch the page.   we write protect all the mappings
599 			 * of the page so that no one touches it while it is
600 			 * in I/O.
601 			 */
602 
603 			swap_backed = ((p->pg_flags & PQ_SWAPBACKED) != 0);
604 			atomic_setbits_int(&p->pg_flags, PG_BUSY);
605 			UVM_PAGE_OWN(p, "scan_inactive");
606 			pmap_page_protect(p, PROT_READ);
607 			uvmexp.pgswapout++;
608 
609 			/*
610 			 * for swap-backed pages we need to (re)allocate
611 			 * swap space.
612 			 */
613 			if (swap_backed) {
614 				/* free old swap slot (if any) */
615 				uvmpd_dropswap(p);
616 
617 				/* start new cluster (if necessary) */
618 				if (swslot == 0) {
619 					swnpages = SWCLUSTPAGES;
620 					swslot = uvm_swap_alloc(&swnpages,
621 					    TRUE);
622 					if (swslot == 0) {
623 						/* no swap?  give up! */
624 						atomic_clearbits_int(
625 						    &p->pg_flags,
626 						    PG_BUSY);
627 						UVM_PAGE_OWN(p, NULL);
628 						rw_exit(slock);
629 						continue;
630 					}
631 					swcpages = 0;	/* cluster is empty */
632 				}
633 
634 				/* add block to cluster */
635 				swpps[swcpages] = p;
636 				if (anon)
637 					anon->an_swslot = swslot + swcpages;
638 				else
639 					uao_set_swslot(uobj,
640 					    p->offset >> PAGE_SHIFT,
641 					    swslot + swcpages);
642 				swcpages++;
643 				rw_exit(slock);
644 
645 				/* cluster not full yet? */
646 				if (swcpages < swnpages)
647 					continue;
648 			}
649 		} else {
650 			/* if p == NULL we must be doing a last swap i/o */
651 			swap_backed = TRUE;
652 		}
653 
654 		/*
655 		 * now consider doing the pageout.
656 		 *
657 		 * for swap-backed pages, we do the pageout if we have either
658 		 * filled the cluster (in which case (swnpages == swcpages) or
659 		 * run out of pages (p == NULL).
660 		 *
661 		 * for object pages, we always do the pageout.
662 		 */
663 		if (swap_backed) {
664 			/* starting I/O now... set up for it */
665 			npages = swcpages;
666 			ppsp = swpps;
667 			/* for swap-backed pages only */
668 			start = (vaddr_t) swslot;
669 
670 			/* if this is final pageout we could have a few
671 			 * extra swap blocks */
672 			if (swcpages < swnpages) {
673 				uvm_swap_free(swslot + swcpages,
674 				    (swnpages - swcpages));
675 			}
676 		} else {
677 			/* normal object pageout */
678 			ppsp = pps;
679 			npages = sizeof(pps) / sizeof(struct vm_page *);
680 			/* not looked at because PGO_ALLPAGES is set */
681 			start = 0;
682 		}
683 
684 		/*
685 		 * now do the pageout.
686 		 *
687 		 * for swap_backed pages we have already built the cluster.
688 		 * for !swap_backed pages, uvm_pager_put will call the object's
689 		 * "make put cluster" function to build a cluster on our behalf.
690 		 *
691 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
692 		 * it to free the cluster pages for us on a successful I/O (it
693 		 * always does this for un-successful I/O requests).  this
694 		 * allows us to do clustered pageout without having to deal
695 		 * with cluster pages at this level.
696 		 *
697 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
698 		 *  IN: locked: page queues
699 		 * OUT: locked:
700 		 *     !locked: pageqs
701 		 */
702 
703 		uvmexp.pdpageouts++;
704 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
705 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
706 
707 		/*
708 		 * if we did i/o to swap, zero swslot to indicate that we are
709 		 * no longer building a swap-backed cluster.
710 		 */
711 
712 		if (swap_backed)
713 			swslot = 0;		/* done with this cluster */
714 
715 		/*
716 		 * first, we check for VM_PAGER_PEND which means that the
717 		 * async I/O is in progress and the async I/O done routine
718 		 * will clean up after us.   in this case we move on to the
719 		 * next page.
720 		 *
721 		 * there is a very remote chance that the pending async i/o can
722 		 * finish _before_ we get here.   if that happens, our page "p"
723 		 * may no longer be on the inactive queue.   so we verify this
724 		 * when determining the next page (starting over at the head if
725 		 * we've lost our inactive page).
726 		 */
727 
728 		if (result == VM_PAGER_PEND) {
729 			uvmexp.paging += npages;
730 			uvm_lock_pageq();
731 			uvmexp.pdpending++;
732 			if (p) {
733 				if (p->pg_flags & PQ_INACTIVE)
734 					nextpg = TAILQ_NEXT(p, pageq);
735 				else
736 					nextpg = TAILQ_FIRST(pglst);
737 			} else {
738 				nextpg = NULL;
739 			}
740 			continue;
741 		}
742 
743 		/* clean up "p" if we have one */
744 		if (p) {
745 			/*
746 			 * the I/O request to "p" is done and uvm_pager_put
747 			 * has freed any cluster pages it may have allocated
748 			 * during I/O.  all that is left for us to do is
749 			 * clean up page "p" (which is still PG_BUSY).
750 			 *
751 			 * our result could be one of the following:
752 			 *   VM_PAGER_OK: successful pageout
753 			 *
754 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
755 			 *     to next page
756 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
757 			 *     "reactivate" page to get it out of the way (it
758 			 *     will eventually drift back into the inactive
759 			 *     queue for a retry).
760 			 *   VM_PAGER_UNLOCK: should never see this as it is
761 			 *     only valid for "get" operations
762 			 */
763 
764 			/* relock p's object: page queues not lock yet, so
765 			 * no need for "try" */
766 
767 			/* !swap_backed case: already locked... */
768 			if (swap_backed) {
769 				rw_enter(slock, RW_WRITE);
770 			}
771 
772 #ifdef DIAGNOSTIC
773 			if (result == VM_PAGER_UNLOCK)
774 				panic("pagedaemon: pageout returned "
775 				    "invalid 'unlock' code");
776 #endif
777 
778 			/* handle PG_WANTED now */
779 			if (p->pg_flags & PG_WANTED)
780 				wakeup(p);
781 
782 			atomic_clearbits_int(&p->pg_flags, PG_BUSY|PG_WANTED);
783 			UVM_PAGE_OWN(p, NULL);
784 
785 			/* released during I/O? Can only happen for anons */
786 			if (p->pg_flags & PG_RELEASED) {
787 				KASSERT(anon != NULL);
788 				/*
789 				 * remove page so we can get nextpg,
790 				 * also zero out anon so we don't use
791 				 * it after the free.
792 				 */
793 				anon->an_page = NULL;
794 				p->uanon = NULL;
795 
796 				rw_exit(anon->an_lock);
797 				uvm_anfree(anon);	/* kills anon */
798 				pmap_page_protect(p, PROT_NONE);
799 				anon = NULL;
800 				uvm_lock_pageq();
801 				nextpg = TAILQ_NEXT(p, pageq);
802 				/* free released page */
803 				uvm_pagefree(p);
804 			} else {	/* page was not released during I/O */
805 				uvm_lock_pageq();
806 				nextpg = TAILQ_NEXT(p, pageq);
807 				if (result != VM_PAGER_OK) {
808 					/* pageout was a failure... */
809 					if (result != VM_PAGER_AGAIN)
810 						uvm_pageactivate(p);
811 					pmap_clear_reference(p);
812 					/* XXXCDC: if (swap_backed) FREE p's
813 					 * swap block? */
814 				} else {
815 					/* pageout was a success... */
816 					pmap_clear_reference(p);
817 					pmap_clear_modify(p);
818 					atomic_setbits_int(&p->pg_flags,
819 					    PG_CLEAN);
820 				}
821 			}
822 
823 			/*
824 			 * drop object lock (if there is an object left).   do
825 			 * a safety check of nextpg to make sure it is on the
826 			 * inactive queue (it should be since PG_BUSY pages on
827 			 * the inactive queue can't be re-queued [note: not
828 			 * true for active queue]).
829 			 */
830 			rw_exit(slock);
831 
832 			if (nextpg && (nextpg->pg_flags & PQ_INACTIVE) == 0) {
833 				nextpg = TAILQ_FIRST(pglst);	/* reload! */
834 			}
835 		} else {
836 			/*
837 			 * if p is null in this loop, make sure it stays null
838 			 * in the next loop.
839 			 */
840 			nextpg = NULL;
841 
842 			/*
843 			 * lock page queues here just so they're always locked
844 			 * at the end of the loop.
845 			 */
846 			uvm_lock_pageq();
847 		}
848 	}
849 }
850 
851 /*
852  * uvmpd_scan: scan the page queues and attempt to meet our targets.
853  *
854  * => called with pageq's locked
855  */
856 
857 void
uvmpd_scan(struct uvm_pmalloc * pma,struct uvm_constraint_range * constraint)858 uvmpd_scan(struct uvm_pmalloc *pma, struct uvm_constraint_range *constraint)
859 {
860 	int free, inactive_shortage, swap_shortage, pages_freed;
861 	struct vm_page *p, *nextpg;
862 	struct rwlock *slock;
863 	paddr_t paddr;
864 
865 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
866 
867 	uvmexp.pdrevs++;		/* counter */
868 
869 	/*
870 	 * get current "free" page count
871 	 */
872 	free = uvmexp.free - BUFPAGES_DEFICIT;
873 
874 #ifdef __HAVE_PMAP_COLLECT
875 	/*
876 	 * swap out some processes if we are below our free target.
877 	 * we need to unlock the page queues for this.
878 	 */
879 	if (free < uvmexp.freetarg) {
880 		uvmexp.pdswout++;
881 		uvm_unlock_pageq();
882 		uvm_swapout_threads();
883 		uvm_lock_pageq();
884 	}
885 #endif
886 
887 	/*
888 	 * now we want to work on meeting our targets.   first we work on our
889 	 * free target by converting inactive pages into free pages.  then
890 	 * we work on meeting our inactive target by converting active pages
891 	 * to inactive ones.
892 	 */
893 
894 	pages_freed = uvmexp.pdfreed;
895 	(void) uvmpd_scan_inactive(pma, constraint, &uvm.page_inactive);
896 	pages_freed = uvmexp.pdfreed - pages_freed;
897 
898 	/*
899 	 * we have done the scan to get free pages.   now we work on meeting
900 	 * our inactive target.
901 	 */
902 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive - BUFPAGES_INACT;
903 
904 	/*
905 	 * detect if we're not going to be able to page anything out
906 	 * until we free some swap resources from active pages.
907 	 */
908 	free = uvmexp.free - BUFPAGES_DEFICIT;
909 	swap_shortage = 0;
910 	if (free < uvmexp.freetarg && uvm_swapisfilled() && !uvm_swapisfull() &&
911 	    pages_freed == 0) {
912 		swap_shortage = uvmexp.freetarg - free;
913 	}
914 
915 	for (p = TAILQ_FIRST(&uvm.page_active);
916 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
917 	     p = nextpg) {
918 		nextpg = TAILQ_NEXT(p, pageq);
919 		if (p->pg_flags & PG_BUSY) {
920 			continue;
921 		}
922 
923 		/*
924 		 * skip this page if it doesn't match the constraint.
925 		 */
926 		paddr = atop(VM_PAGE_TO_PHYS(p));
927 		if (paddr < constraint->ucr_low &&
928 		    paddr >= constraint->ucr_high)
929 			continue;
930 
931 		/*
932 		 * lock the page's owner.
933 		 */
934 		slock = uvmpd_trylockowner(p);
935 		if (slock == NULL) {
936 			continue;
937 		}
938 
939 		/*
940 		 * skip this page if it's busy.
941 		 */
942 		if ((p->pg_flags & PG_BUSY) != 0) {
943 			rw_exit(slock);
944 			continue;
945 		}
946 
947 		/*
948 		 * if there's a shortage of swap, free any swap allocated
949 		 * to this page so that other pages can be paged out.
950 		 */
951 		if (swap_shortage > 0) {
952 			if (uvmpd_dropswap(p)) {
953 				atomic_clearbits_int(&p->pg_flags, PG_CLEAN);
954 				swap_shortage--;
955 			}
956 		}
957 
958 		/*
959 		 * deactivate this page if there's a shortage of
960 		 * inactive pages.
961 		 */
962 		if (inactive_shortage > 0) {
963 			pmap_page_protect(p, PROT_NONE);
964 			/* no need to check wire_count as pg is "active" */
965 			uvm_pagedeactivate(p);
966 			uvmexp.pddeact++;
967 			inactive_shortage--;
968 		}
969 
970 		/*
971 		 * we're done with this page.
972 		 */
973 		rw_exit(slock);
974 	}
975 }
976 
977 #ifdef HIBERNATE
978 
979 /*
980  * uvmpd_drop: drop clean pages from list
981  */
982 void
uvmpd_drop(struct pglist * pglst)983 uvmpd_drop(struct pglist *pglst)
984 {
985 	struct vm_page *p, *nextpg;
986 
987 	for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
988 		nextpg = TAILQ_NEXT(p, pageq);
989 
990 		if (p->pg_flags & PQ_ANON || p->uobject == NULL)
991 			continue;
992 
993 		if (p->pg_flags & PG_BUSY)
994 			continue;
995 
996 		if (p->pg_flags & PG_CLEAN) {
997 			struct uvm_object * uobj = p->uobject;
998 
999 			rw_enter(uobj->vmobjlock, RW_WRITE);
1000 			uvm_lock_pageq();
1001 			/*
1002 			 * we now have the page queues locked.
1003 			 * the page is not busy.   if the page is clean we
1004 			 * can free it now and continue.
1005 			 */
1006 			if (p->pg_flags & PG_CLEAN) {
1007 				if (p->pg_flags & PQ_SWAPBACKED) {
1008 					/* this page now lives only in swap */
1009 					atomic_inc_int(&uvmexp.swpgonly);
1010 				}
1011 
1012 				/* zap all mappings with pmap_page_protect... */
1013 				pmap_page_protect(p, PROT_NONE);
1014 				uvm_pagefree(p);
1015 			}
1016 			uvm_unlock_pageq();
1017 			rw_exit(uobj->vmobjlock);
1018 		}
1019 	}
1020 }
1021 
1022 void
uvmpd_hibernate(void)1023 uvmpd_hibernate(void)
1024 {
1025 	uvmpd_drop(&uvm.page_inactive);
1026 	uvmpd_drop(&uvm.page_active);
1027 }
1028 
1029 #endif
1030