1 /* $OpenBSD: key.c,v 1.20 2022/04/21 17:50:29 millert Exp $ */
2
3 /*-
4 * Copyright (c) 1991, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1991, 1993, 1994, 1995, 1996
7 * Keith Bostic. All rights reserved.
8 *
9 * See the LICENSE file for redistribution information.
10 */
11
12 #include "config.h"
13
14 #include <sys/queue.h>
15 #include <sys/time.h>
16
17 #include <bitstring.h>
18 #include <ctype.h>
19 #include <errno.h>
20 #include <limits.h>
21 #include <locale.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26
27 #include "common.h"
28 #include "../vi/vi.h"
29
30 #define MAXIMUM(a, b) (((a) > (b)) ? (a) : (b))
31
32 static int v_event_append(SCR *, EVENT *);
33 static int v_event_grow(SCR *, int);
34 static int v_key_cmp(const void *, const void *);
35 static void v_keyval(SCR *, int, scr_keyval_t);
36 static void v_sync(SCR *, int);
37
38 /*
39 * !!!
40 * Historic vi always used:
41 *
42 * ^D: autoindent deletion
43 * ^H: last character deletion
44 * ^W: last word deletion
45 * ^Q: quote the next character (if not used in flow control).
46 * ^V: quote the next character
47 *
48 * regardless of the user's choices for these characters. The user's erase
49 * and kill characters worked in addition to these characters. Nvi wires
50 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
51 * and VWERASE characters described by the user's termios structure.
52 *
53 * Ex was not consistent with this scheme, as it historically ran in tty
54 * cooked mode. This meant that the scroll command and autoindent erase
55 * characters were mapped to the user's EOF character, and the character
56 * and word deletion characters were the user's tty character and word
57 * deletion characters. This implementation makes it all consistent, as
58 * described above for vi.
59 *
60 * !!!
61 * This means that all screens share a special key set.
62 */
63 KEYLIST keylist[] = {
64 {K_BACKSLASH, '\\'}, /* \ */
65 {K_CARAT, '^'}, /* ^ */
66 {K_CNTRLD, '\004'}, /* ^D */
67 {K_CNTRLR, '\022'}, /* ^R */
68 {K_CNTRLT, '\024'}, /* ^T */
69 {K_CNTRLZ, '\032'}, /* ^Z */
70 {K_COLON, ':'}, /* : */
71 {K_CR, '\r'}, /* \r */
72 {K_ESCAPE, '\033'}, /* ^[ */
73 {K_FORMFEED, '\f'}, /* \f */
74 {K_HEXCHAR, '\030'}, /* ^X */
75 {K_NL, '\n'}, /* \n */
76 {K_RIGHTBRACE, '}'}, /* } */
77 {K_RIGHTPAREN, ')'}, /* ) */
78 {K_TAB, '\t'}, /* \t */
79 {K_VERASE, '\b'}, /* \b */
80 {K_VKILL, '\025'}, /* ^U */
81 {K_VLNEXT, '\021'}, /* ^Q */
82 {K_VLNEXT, '\026'}, /* ^V */
83 {K_VWERASE, '\027'}, /* ^W */
84 {K_ZERO, '0'}, /* 0 */
85
86 #define ADDITIONAL_CHARACTERS 4
87 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */
88 {K_NOTUSED, 0},
89 {K_NOTUSED, 0},
90 {K_NOTUSED, 0},
91 };
92 static int nkeylist =
93 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
94
95 /*
96 * v_key_init --
97 * Initialize the special key lookup table.
98 *
99 * PUBLIC: int v_key_init(SCR *);
100 */
101 int
v_key_init(SCR * sp)102 v_key_init(SCR *sp)
103 {
104 u_int ch;
105 GS *gp;
106 KEYLIST *kp;
107 int cnt;
108
109 gp = sp->gp;
110
111 /*
112 * XXX
113 * 8-bit only, for now. Recompilation should get you any 8-bit
114 * character set, as long as nul isn't a character.
115 */
116 (void)setlocale(LC_ALL, "");
117 v_key_ilookup(sp);
118
119 v_keyval(sp, K_CNTRLD, KEY_VEOF);
120 v_keyval(sp, K_VERASE, KEY_VERASE);
121 v_keyval(sp, K_VKILL, KEY_VKILL);
122 v_keyval(sp, K_VWERASE, KEY_VWERASE);
123
124 /* Sort the special key list. */
125 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
126
127 /* Initialize the fast lookup table. */
128 for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
129 if (gp->max_special < kp->value)
130 gp->max_special = kp->value;
131 if (kp->ch <= MAX_FAST_KEY)
132 gp->special_key[kp->ch] = kp->value;
133 }
134
135 /* Find a non-printable character to use as a message separator. */
136 for (ch = 1; ch <= MAX_CHAR_T; ++ch)
137 if (!isprint(ch)) {
138 gp->noprint = ch;
139 break;
140 }
141 if (ch != gp->noprint) {
142 msgq(sp, M_ERR, "No non-printable character found");
143 return (1);
144 }
145 return (0);
146 }
147
148 /*
149 * v_keyval --
150 * Set key values.
151 *
152 * We've left some open slots in the keylist table, and if these values exist,
153 * we put them into place. Note, they may reset (or duplicate) values already
154 * in the table, so we check for that first.
155 */
156 static void
v_keyval(SCR * sp,int val,scr_keyval_t name)157 v_keyval(SCR *sp, int val, scr_keyval_t name)
158 {
159 KEYLIST *kp;
160 CHAR_T ch;
161 int dne;
162
163 /* Get the key's value from the screen. */
164 if (sp->gp->scr_keyval(sp, name, &ch, &dne))
165 return;
166 if (dne)
167 return;
168
169 /* Check for duplication. */
170 for (kp = keylist; kp->value != K_NOTUSED; ++kp)
171 if (kp->ch == ch) {
172 kp->value = val;
173 return;
174 }
175
176 /* Add a new entry. */
177 if (kp->value == K_NOTUSED) {
178 keylist[nkeylist].ch = ch;
179 keylist[nkeylist].value = val;
180 ++nkeylist;
181 }
182 }
183
184 /*
185 * v_key_ilookup --
186 * Build the fast-lookup key display array.
187 *
188 * PUBLIC: void v_key_ilookup(SCR *);
189 */
190 void
v_key_ilookup(SCR * sp)191 v_key_ilookup(SCR *sp)
192 {
193 CHAR_T ch, *p, *t;
194 GS *gp;
195 size_t len;
196
197 for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
198 for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
199 len = gp->cname[ch].len = sp->clen; len--;)
200 *p++ = *t++;
201 }
202
203 /*
204 * v_key_len --
205 * Return the length of the string that will display the key.
206 * This routine is the backup for the KEY_LEN() macro.
207 *
208 * PUBLIC: size_t v_key_len(SCR *, CHAR_T);
209 */
210 size_t
v_key_len(SCR * sp,CHAR_T ch)211 v_key_len(SCR *sp, CHAR_T ch)
212 {
213 (void)v_key_name(sp, ch);
214 return (sp->clen);
215 }
216
217 /*
218 * v_key_name --
219 * Return the string that will display the key. This routine
220 * is the backup for the KEY_NAME() macro.
221 *
222 * PUBLIC: CHAR_T *v_key_name(SCR *, CHAR_T);
223 */
224 CHAR_T *
v_key_name(SCR * sp,CHAR_T ch)225 v_key_name(SCR *sp, CHAR_T ch)
226 {
227 static const CHAR_T hexdigit[] = "0123456789abcdef";
228 static const CHAR_T octdigit[] = "01234567";
229 CHAR_T *chp, mask;
230 size_t len;
231 int cnt, shift;
232
233 /* See if the character was explicitly declared printable or not. */
234 if ((chp = O_STR(sp, O_PRINT)) != NULL)
235 for (; *chp != '\0'; ++chp)
236 if (*chp == ch)
237 goto pr;
238 if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
239 for (; *chp != '\0'; ++chp)
240 if (*chp == ch)
241 goto nopr;
242
243 /*
244 * Historical (ARPA standard) mappings. Printable characters are left
245 * alone. Control characters less than 0x20 are represented as '^'
246 * followed by the character offset from the '@' character in the ASCII
247 * character set. Del (0x7f) is represented as '^' followed by '?'.
248 *
249 * XXX
250 * The following code depends on the current locale being identical to
251 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm
252 * told that this is a reasonable assumption...
253 *
254 * XXX
255 * This code will only work with CHAR_T's that are multiples of 8-bit
256 * bytes.
257 *
258 * XXX
259 * NB: There's an assumption here that all printable characters take
260 * up a single column on the screen. This is not always correct.
261 */
262 if (isprint(ch)) {
263 pr: sp->cname[0] = ch;
264 len = 1;
265 goto done;
266 }
267 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
268 sp->cname[0] = '^';
269 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
270 len = 2;
271 } else if (O_ISSET(sp, O_OCTAL)) {
272 #define BITS (sizeof(CHAR_T) * 8)
273 #define SHIFT (BITS - BITS % 3)
274 #define TOPMASK (BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
275 sp->cname[0] = '\\';
276 sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
277 shift = SHIFT - 3;
278 for (len = 2, mask = 7 << (SHIFT - 3),
279 cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
280 sp->cname[len++] = octdigit[(ch & mask) >> shift];
281 } else {
282 sp->cname[0] = '\\';
283 sp->cname[1] = 'x';
284 for (len = 2, chp = (u_int8_t *)&ch,
285 cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
286 sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
287 sp->cname[len++] = hexdigit[*chp & 0x0f];
288 }
289 }
290 done: sp->cname[sp->clen = len] = '\0';
291 return (sp->cname);
292 }
293
294 /*
295 * v_key_val --
296 * Fill in the value for a key. This routine is the backup
297 * for the KEY_VAL() macro.
298 *
299 * PUBLIC: int v_key_val(SCR *, CHAR_T);
300 */
301 int
v_key_val(SCR * sp,CHAR_T ch)302 v_key_val(SCR *sp, CHAR_T ch)
303 {
304 KEYLIST k, *kp;
305
306 k.ch = ch;
307 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
308 return (kp == NULL ? K_NOTUSED : kp->value);
309 }
310
311 /*
312 * v_event_push --
313 * Push events/keys onto the front of the buffer.
314 *
315 * There is a single input buffer in ex/vi. Characters are put onto the
316 * end of the buffer by the terminal input routines, and pushed onto the
317 * front of the buffer by various other functions in ex/vi. Each key has
318 * an associated flag value, which indicates if it has already been quoted,
319 * and if it is the result of a mapping or an abbreviation.
320 *
321 * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int);
322 */
323 int
v_event_push(SCR * sp,EVENT * p_evp,CHAR_T * p_s,size_t nitems,u_int flags)324 v_event_push(SCR *sp, EVENT *p_evp, CHAR_T *p_s, size_t nitems, u_int flags)
325 {
326 EVENT *evp;
327 GS *gp;
328 size_t total;
329
330 /* If we have room, stuff the items into the buffer. */
331 gp = sp->gp;
332 if (nitems <= gp->i_next ||
333 (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
334 if (gp->i_cnt != 0)
335 gp->i_next -= nitems;
336 goto copy;
337 }
338
339 /*
340 * If there are currently items in the queue, shift them up,
341 * leaving some extra room. Get enough space plus a little
342 * extra.
343 */
344 #define TERM_PUSH_SHIFT 30
345 total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
346 if (total >= gp->i_nelem && v_event_grow(sp, MAXIMUM(total, 64)))
347 return (1);
348 if (gp->i_cnt)
349 MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
350 gp->i_event + gp->i_next, gp->i_cnt);
351 gp->i_next = TERM_PUSH_SHIFT;
352
353 /* Put the new items into the queue. */
354 copy: gp->i_cnt += nitems;
355 for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
356 if (p_evp != NULL)
357 *evp = *p_evp++;
358 else {
359 evp->e_event = E_CHARACTER;
360 evp->e_c = *p_s++;
361 evp->e_value = KEY_VAL(sp, evp->e_c);
362 F_INIT(&evp->e_ch, flags);
363 }
364 }
365 return (0);
366 }
367
368 /*
369 * v_event_append --
370 * Append events onto the tail of the buffer.
371 */
372 static int
v_event_append(SCR * sp,EVENT * argp)373 v_event_append(SCR *sp, EVENT *argp)
374 {
375 CHAR_T *s; /* Characters. */
376 EVENT *evp;
377 GS *gp;
378 size_t nevents; /* Number of events. */
379
380 /* Grow the buffer as necessary. */
381 nevents = argp->e_event == E_STRING ? argp->e_len : 1;
382 gp = sp->gp;
383 if (gp->i_event == NULL ||
384 nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
385 v_event_grow(sp, MAXIMUM(nevents, 64));
386 evp = gp->i_event + gp->i_next + gp->i_cnt;
387 gp->i_cnt += nevents;
388
389 /* Transform strings of characters into single events. */
390 if (argp->e_event == E_STRING)
391 for (s = argp->e_csp; nevents--; ++evp) {
392 evp->e_event = E_CHARACTER;
393 evp->e_c = *s++;
394 evp->e_value = KEY_VAL(sp, evp->e_c);
395 evp->e_flags = 0;
396 }
397 else
398 *evp = *argp;
399 return (0);
400 }
401
402 /* Remove events from the queue. */
403 #define QREM(len) { \
404 if ((gp->i_cnt -= (len)) == 0) \
405 gp->i_next = 0; \
406 else \
407 gp->i_next += (len); \
408 }
409
410 /*
411 * v_event_get --
412 * Return the next event.
413 *
414 * !!!
415 * The flag EC_NODIGIT probably needs some explanation. First, the idea of
416 * mapping keys is that one or more keystrokes act like a function key.
417 * What's going on is that vi is reading a number, and the character following
418 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the
419 * user is entering the z command, a valid command is "z40+", and we don't want
420 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
421 * into "z40xxx". However, if the user enters "35x", we want to put all of the
422 * characters through the mapping code.
423 *
424 * Historical practice is a bit muddled here. (Surprise!) It always permitted
425 * mapping digits as long as they weren't the first character of the map, e.g.
426 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9
427 * (the digit 0 was a special case as it doesn't indicate the start of a count)
428 * as the first character of the map, but then ignored those mappings. While
429 * it's probably stupid to map digits, vi isn't your mother.
430 *
431 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
432 * end-of-digit without "looking" at the next character, i.e. leaving it as the
433 * user entered it. Presumably, the next term_key call will tell us how the
434 * user wants it handled.
435 *
436 * There is one more complication. Users might map keys to digits, and, as
437 * it's described above, the commands:
438 *
439 * :map g 1G
440 * d2g
441 *
442 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
443 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as
444 * before, otherwise, we pretend we haven't mapped the character, and return
445 * <end-of-digits>.
446 *
447 * Now that that's out of the way, let's talk about Energizer Bunny macros.
448 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's
449 * fairly easy to detect this example, because it's all internal to term_key.
450 * If we're expanding a macro and it gets big enough, at some point we can
451 * assume it's looping and kill it. The examples that are tough are the ones
452 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion
453 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then
454 * find the looping macro again. There is no way that we can detect this
455 * without doing a full parse of the command, because the character that might
456 * cause the loop (in this case 'x') may be a literal character, e.g. the map
457 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
458 *
459 * Historic vi tried to detect looping macros by disallowing obvious cases in
460 * the map command, maps that that ended with the same letter as they started
461 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
462 * too many times before keys were returned to the command parser. It didn't
463 * get many (most?) of the tricky cases right, however, and it was certainly
464 * possible to create macros that ran forever. And, even if it did figure out
465 * what was going on, the user was usually tossed into ex mode. Finally, any
466 * changes made before vi realized that the macro was recursing were left in
467 * place. We recover gracefully, but the only recourse the user has in an
468 * infinite macro loop is to interrupt.
469 *
470 * !!!
471 * It is historic practice that mapping characters to themselves as the first
472 * part of the mapped string was legal, and did not cause infinite loops, i.e.
473 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching
474 * characters were returned instead of being remapped.
475 *
476 * !!!
477 * It is also historic practice that the macro "map ] ]]^" caused a single ]
478 * keypress to behave as the command ]] (the ^ got the map past the vi check
479 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive.
480 * What happened was that, in the historic vi, maps were expanded as the keys
481 * were retrieved, but not all at once and not centrally. So, the keypress ]
482 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
483 * the ]] command code. The ]] command then retrieved a key without entering
484 * the mapping code. This could bite us anytime a user has a map that depends
485 * on secondary keys NOT being mapped. I can't see any possible way to make
486 * this work in here without the complete abandonment of Rationality Itself.
487 *
488 * XXX
489 * The final issue is recovery. It would be possible to undo all of the work
490 * that was done by the macro if we entered a record into the log so that we
491 * knew when the macro started, and, in fact, this might be worth doing at some
492 * point. Given that this might make the log grow unacceptably (consider that
493 * cursor keys are done with maps), for now we leave any changes made in place.
494 *
495 * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t);
496 */
497 int
v_event_get(SCR * sp,EVENT * argp,int timeout,u_int32_t flags)498 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
499 {
500 EVENT *evp, ev;
501 GS *gp;
502 SEQ *qp;
503 int init_nomap, ispartial, istimeout, remap_cnt;
504
505 gp = sp->gp;
506
507 /* If simply checking for interrupts, argp may be NULL. */
508 if (argp == NULL)
509 argp = &ev;
510
511 retry: istimeout = remap_cnt = 0;
512
513 /*
514 * If the queue isn't empty and we're timing out for characters,
515 * return immediately.
516 */
517 if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
518 return (0);
519
520 /*
521 * If the queue is empty, we're checking for interrupts, or we're
522 * timing out for characters, get more events.
523 */
524 if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
525 /*
526 * If we're reading new characters, check any scripting
527 * windows for input.
528 */
529 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
530 return (1);
531 loop: if (gp->scr_event(sp, argp,
532 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
533 return (1);
534 switch (argp->e_event) {
535 case E_ERR:
536 case E_SIGHUP:
537 case E_SIGTERM:
538 /*
539 * Fatal conditions cause the file to be synced to
540 * disk immediately.
541 */
542 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
543 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
544 return (1);
545 case E_TIMEOUT:
546 istimeout = 1;
547 break;
548 case E_INTERRUPT:
549 /* Set the global interrupt flag. */
550 F_SET(sp->gp, G_INTERRUPTED);
551
552 /*
553 * If the caller was interested in interrupts, return
554 * immediately.
555 */
556 if (LF_ISSET(EC_INTERRUPT))
557 return (0);
558 goto append;
559 default:
560 append: if (v_event_append(sp, argp))
561 return (1);
562 break;
563 }
564 }
565
566 /*
567 * If the caller was only interested in interrupts or timeouts, return
568 * immediately. (We may have gotten characters, and that's okay, they
569 * were queued up for later use.)
570 */
571 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
572 return (0);
573
574 newmap: evp = &gp->i_event[gp->i_next];
575
576 /*
577 * If the next event in the queue isn't a character event, return
578 * it, we're done.
579 */
580 if (evp->e_event != E_CHARACTER) {
581 *argp = *evp;
582 QREM(1);
583 return (0);
584 }
585
586 /*
587 * If the key isn't mappable because:
588 *
589 * + ... the timeout has expired
590 * + ... it's not a mappable key
591 * + ... neither the command or input map flags are set
592 * + ... there are no maps that can apply to it
593 *
594 * return it forthwith.
595 */
596 if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
597 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
598 (evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c)))
599 goto nomap;
600
601 /* Search the map. */
602 qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
603 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
604
605 /*
606 * If get a partial match, get more characters and retry the map.
607 * If time out without further characters, return the characters
608 * unmapped.
609 *
610 * !!!
611 * <escape> characters are a problem. Cursor keys start with <escape>
612 * characters, so there's almost always a map in place that begins with
613 * an <escape> character. If we timeout <escape> keys in the same way
614 * that we timeout other keys, the user will get a noticeable pause as
615 * they enter <escape> to terminate input mode. If key timeout is set
616 * for a slow link, users will get an even longer pause. Nvi used to
617 * simply timeout <escape> characters at 1/10th of a second, but this
618 * loses over PPP links where the latency is greater than 100Ms.
619 */
620 if (ispartial) {
621 if (O_ISSET(sp, O_TIMEOUT))
622 timeout = (evp->e_value == K_ESCAPE ?
623 O_VAL(sp, O_ESCAPETIME) :
624 O_VAL(sp, O_KEYTIME)) * 100;
625 else
626 timeout = 0;
627 goto loop;
628 }
629
630 /* If no map, return the character. */
631 if (qp == NULL) {
632 nomap: if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
633 goto not_digit;
634 *argp = *evp;
635 QREM(1);
636 return (0);
637 }
638
639 /*
640 * If looking for the end of a digit string, and the first character
641 * of the map is it, pretend we haven't seen the character.
642 */
643 if (LF_ISSET(EC_MAPNODIGIT) &&
644 qp->output != NULL && !isdigit(qp->output[0])) {
645 not_digit: argp->e_c = CH_NOT_DIGIT;
646 argp->e_value = K_NOTUSED;
647 argp->e_event = E_CHARACTER;
648 F_INIT(&argp->e_ch, 0);
649 return (0);
650 }
651
652 /* Find out if the initial segments are identical. */
653 if (qp->output != NULL) {
654 init_nomap =
655 !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
656 }
657
658 /* Delete the mapped characters from the queue. */
659 QREM(qp->ilen);
660
661 /* If keys mapped to nothing, go get more. */
662 if (qp->output == NULL)
663 goto retry;
664
665 /* If remapping characters... */
666 if (O_ISSET(sp, O_REMAP)) {
667 /*
668 * Periodically check for interrupts. Always check the first
669 * time through, because it's possible to set up a map that
670 * will return a character every time, but will expand to more,
671 * e.g. "map! a aaaa" will always return a 'a', but we'll never
672 * get anywhere useful.
673 */
674 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
675 (gp->scr_event(sp, &ev,
676 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
677 F_SET(sp->gp, G_INTERRUPTED);
678 argp->e_event = E_INTERRUPT;
679 return (0);
680 }
681
682 /*
683 * If an initial part of the characters mapped, they are not
684 * further remapped -- return the first one. Push the rest
685 * of the characters, or all of the characters if no initial
686 * part mapped, back on the queue.
687 */
688 if (init_nomap) {
689 if (v_event_push(sp, NULL, qp->output + qp->ilen,
690 qp->olen - qp->ilen, CH_MAPPED))
691 return (1);
692 if (v_event_push(sp, NULL,
693 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
694 return (1);
695 evp = &gp->i_event[gp->i_next];
696 goto nomap;
697 }
698 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
699 return (1);
700 goto newmap;
701 }
702
703 /* Else, push the characters on the queue and return one. */
704 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
705 return (1);
706
707 goto nomap;
708 }
709
710 /*
711 * v_sync --
712 * Walk the screen lists, sync'ing files to their backup copies.
713 */
714 static void
v_sync(SCR * sp,int flags)715 v_sync(SCR *sp, int flags)
716 {
717 GS *gp;
718
719 gp = sp->gp;
720 TAILQ_FOREACH(sp, &gp->dq, q)
721 rcv_sync(sp, flags);
722 TAILQ_FOREACH(sp, &gp->hq, q)
723 rcv_sync(sp, flags);
724 }
725
726 /*
727 * v_event_err --
728 * Unexpected event.
729 *
730 * PUBLIC: void v_event_err(SCR *, EVENT *);
731 */
732 void
v_event_err(SCR * sp,EVENT * evp)733 v_event_err(SCR *sp, EVENT *evp)
734 {
735 switch (evp->e_event) {
736 case E_CHARACTER:
737 msgq(sp, M_ERR, "Unexpected character event");
738 break;
739 case E_EOF:
740 msgq(sp, M_ERR, "Unexpected end-of-file event");
741 break;
742 case E_INTERRUPT:
743 msgq(sp, M_ERR, "Unexpected interrupt event");
744 break;
745 case E_QUIT:
746 msgq(sp, M_ERR, "Unexpected quit event");
747 break;
748 case E_REPAINT:
749 msgq(sp, M_ERR, "Unexpected repaint event");
750 break;
751 case E_STRING:
752 msgq(sp, M_ERR, "Unexpected string event");
753 break;
754 case E_TIMEOUT:
755 msgq(sp, M_ERR, "Unexpected timeout event");
756 break;
757 case E_WRESIZE:
758 msgq(sp, M_ERR, "Unexpected resize event");
759 break;
760 case E_WRITE:
761 msgq(sp, M_ERR, "Unexpected write event");
762 break;
763
764 /*
765 * Theoretically, none of these can occur, as they're handled at the
766 * top editor level.
767 */
768 case E_ERR:
769 case E_SIGHUP:
770 case E_SIGTERM:
771 default:
772 abort();
773 }
774
775 /* Free any allocated memory. */
776 free(evp->e_asp);
777 }
778
779 /*
780 * v_event_flush --
781 * Flush any flagged keys, returning if any keys were flushed.
782 *
783 * PUBLIC: int v_event_flush(SCR *, u_int);
784 */
785 int
v_event_flush(SCR * sp,u_int flags)786 v_event_flush(SCR *sp, u_int flags)
787 {
788 GS *gp;
789 int rval;
790
791 for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
792 F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
793 QREM(1);
794 return (rval);
795 }
796
797 /*
798 * v_event_grow --
799 * Grow the terminal queue.
800 */
801 static int
v_event_grow(SCR * sp,int add)802 v_event_grow(SCR *sp, int add)
803 {
804 GS *gp;
805 size_t new_nelem, olen;
806
807 gp = sp->gp;
808 new_nelem = gp->i_nelem + add;
809 olen = gp->i_nelem * sizeof(gp->i_event[0]);
810 BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
811 gp->i_nelem = olen / sizeof(gp->i_event[0]);
812 return (0);
813 }
814
815 /*
816 * v_key_cmp --
817 * Compare two keys for sorting.
818 */
819 static int
v_key_cmp(const void * ap,const void * bp)820 v_key_cmp(const void *ap, const void *bp)
821 {
822 return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
823 }
824