xref: /openbsd/gnu/usr.bin/binutils/gdb/valprint.c (revision 63addd46)
1 /* Print values for GDB, the GNU debugger.
2 
3    Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
5    Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37 
38 #include <errno.h>
39 
40 /* Prototypes for local functions */
41 
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 				int len, int *errnoptr);
44 
45 static void show_print (char *, int);
46 
47 static void set_print (char *, int);
48 
49 static void set_radix (char *, int);
50 
51 static void show_radix (char *, int);
52 
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54 
55 static void set_input_radix_1 (int, unsigned);
56 
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58 
59 static void set_output_radix_1 (int, unsigned);
60 
61 void _initialize_valprint (void);
62 
63 /* Maximum number of chars to print for a string pointer value or vector
64    contents, or UINT_MAX for no limit.  Note that "set print elements 0"
65    stores UINT_MAX in print_max, which displays in a show command as
66    "unlimited". */
67 
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value. */
70 
71 /* Default input and output radixes, and output format letter.  */
72 
73 unsigned input_radix = 10;
74 unsigned output_radix = 10;
75 int output_format = 0;
76 
77 /* Print repeat counts if there are more than this many repetitions of an
78    element in an array.  Referenced by the low level language dependent
79    print routines. */
80 
81 unsigned int repeat_count_threshold = 10;
82 
83 /* If nonzero, stops printing of char arrays at first null. */
84 
85 int stop_print_at_null;
86 
87 /* Controls pretty printing of structures. */
88 
89 int prettyprint_structs;
90 
91 /* Controls pretty printing of arrays.  */
92 
93 int prettyprint_arrays;
94 
95 /* If nonzero, causes unions inside structures or other unions to be
96    printed. */
97 
98 int unionprint;			/* Controls printing of nested unions.  */
99 
100 /* If nonzero, causes machine addresses to be printed in certain contexts. */
101 
102 int addressprint;		/* Controls printing of machine addresses */
103 
104 
105 /* Print data of type TYPE located at VALADDR (within GDB), which came from
106    the inferior at address ADDRESS, onto stdio stream STREAM according to
107    FORMAT (a letter, or 0 for natural format using TYPE).
108 
109    If DEREF_REF is nonzero, then dereference references, otherwise just print
110    them like pointers.
111 
112    The PRETTY parameter controls prettyprinting.
113 
114    If the data are a string pointer, returns the number of string characters
115    printed.
116 
117    FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
118    enhanced to be able to debug more than the single target it was compiled
119    for (specific CPU type and thus specific target byte ordering), then
120    either the print routines are going to have to take this into account,
121    or the data is going to have to be passed into here already converted
122    to the host byte ordering, whichever is more convenient. */
123 
124 
125 int
val_print(struct type * type,char * valaddr,int embedded_offset,CORE_ADDR address,struct ui_file * stream,int format,int deref_ref,int recurse,enum val_prettyprint pretty)126 val_print (struct type *type, char *valaddr, int embedded_offset,
127 	   CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
128 	   int recurse, enum val_prettyprint pretty)
129 {
130   struct type *real_type = check_typedef (type);
131   if (pretty == Val_pretty_default)
132     {
133       pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
134     }
135 
136   QUIT;
137 
138   /* Ensure that the type is complete and not just a stub.  If the type is
139      only a stub and we can't find and substitute its complete type, then
140      print appropriate string and return.  */
141 
142   if (TYPE_STUB (real_type))
143     {
144       fprintf_filtered (stream, "<incomplete type>");
145       gdb_flush (stream);
146       return (0);
147     }
148 
149   return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
150 			stream, format, deref_ref, recurse, pretty));
151 }
152 
153 /* Print the value VAL in C-ish syntax on stream STREAM.
154    FORMAT is a format-letter, or 0 for print in natural format of data type.
155    If the object printed is a string pointer, returns
156    the number of string bytes printed.  */
157 
158 int
value_print(struct value * val,struct ui_file * stream,int format,enum val_prettyprint pretty)159 value_print (struct value *val, struct ui_file *stream, int format,
160 	     enum val_prettyprint pretty)
161 {
162   if (val == 0)
163     {
164       printf_filtered ("<address of value unknown>");
165       return 0;
166     }
167   if (VALUE_OPTIMIZED_OUT (val))
168     {
169       printf_filtered ("<value optimized out>");
170       return 0;
171     }
172   return LA_VALUE_PRINT (val, stream, format, pretty);
173 }
174 
175 /* Called by various <lang>_val_print routines to print
176    TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
177    value.  STREAM is where to print the value.  */
178 
179 void
val_print_type_code_int(struct type * type,char * valaddr,struct ui_file * stream)180 val_print_type_code_int (struct type *type, char *valaddr,
181 			 struct ui_file *stream)
182 {
183   if (TYPE_LENGTH (type) > sizeof (LONGEST))
184     {
185       LONGEST val;
186 
187       if (TYPE_UNSIGNED (type)
188 	  && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
189 					    &val))
190 	{
191 	  print_longest (stream, 'u', 0, val);
192 	}
193       else
194 	{
195 	  /* Signed, or we couldn't turn an unsigned value into a
196 	     LONGEST.  For signed values, one could assume two's
197 	     complement (a reasonable assumption, I think) and do
198 	     better than this.  */
199 	  print_hex_chars (stream, (unsigned char *) valaddr,
200 			   TYPE_LENGTH (type));
201 	}
202     }
203   else
204     {
205       print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
206 		     unpack_long (type, valaddr));
207     }
208 }
209 
210 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
211    The raison d'etre of this function is to consolidate printing of
212    LONG_LONG's into this one function. The format chars b,h,w,g are
213    from print_scalar_formatted().  Numbers are printed using C
214    format.
215 
216    USE_C_FORMAT means to use C format in all cases.  Without it,
217    'o' and 'x' format do not include the standard C radix prefix
218    (leading 0 or 0x).
219 
220    Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
221    and was intended to request formating according to the current
222    language and would be used for most integers that GDB prints.  The
223    exceptional cases were things like protocols where the format of
224    the integer is a protocol thing, not a user-visible thing).  The
225    parameter remains to preserve the information of what things might
226    be printed with language-specific format, should we ever resurrect
227    that capability. */
228 
229 void
print_longest(struct ui_file * stream,int format,int use_c_format,LONGEST val_long)230 print_longest (struct ui_file *stream, int format, int use_c_format,
231 	       LONGEST val_long)
232 {
233   const char *val;
234 
235   switch (format)
236     {
237     case 'd':
238       val = int_string (val_long, 10, 1, 0, 1); break;
239     case 'u':
240       val = int_string (val_long, 10, 0, 0, 1); break;
241     case 'x':
242       val = int_string (val_long, 16, 0, 0, use_c_format); break;
243     case 'b':
244       val = int_string (val_long, 16, 0, 2, 1); break;
245     case 'h':
246       val = int_string (val_long, 16, 0, 4, 1); break;
247     case 'w':
248       val = int_string (val_long, 16, 0, 8, 1); break;
249     case 'g':
250       val = int_string (val_long, 16, 0, 16, 1); break;
251       break;
252     case 'o':
253       val = int_string (val_long, 8, 0, 0, use_c_format); break;
254     default:
255       internal_error (__FILE__, __LINE__, "failed internal consistency check");
256     }
257   fputs_filtered (val, stream);
258 }
259 
260 /* This used to be a macro, but I don't think it is called often enough
261    to merit such treatment.  */
262 /* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
263    arguments to a function, number in a value history, register number, etc.)
264    where the value must not be larger than can fit in an int.  */
265 
266 int
longest_to_int(LONGEST arg)267 longest_to_int (LONGEST arg)
268 {
269   /* Let the compiler do the work */
270   int rtnval = (int) arg;
271 
272   /* Check for overflows or underflows */
273   if (sizeof (LONGEST) > sizeof (int))
274     {
275       if (rtnval != arg)
276 	{
277 	  error ("Value out of range.");
278 	}
279     }
280   return (rtnval);
281 }
282 
283 /* Print a floating point value of type TYPE (not always a
284    TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
285 
286 void
print_floating(char * valaddr,struct type * type,struct ui_file * stream)287 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
288 {
289   DOUBLEST doub;
290   int inv;
291   const struct floatformat *fmt = NULL;
292   unsigned len = TYPE_LENGTH (type);
293 
294   /* If it is a floating-point, check for obvious problems.  */
295   if (TYPE_CODE (type) == TYPE_CODE_FLT)
296     fmt = floatformat_from_type (type);
297   if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
298     {
299       if (floatformat_is_negative (fmt, valaddr))
300 	fprintf_filtered (stream, "-");
301       fprintf_filtered (stream, "nan(");
302       fputs_filtered ("0x", stream);
303       fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
304       fprintf_filtered (stream, ")");
305       return;
306     }
307 
308   /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
309      isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
310      needs to be used as that takes care of any necessary type
311      conversions.  Such conversions are of course direct to DOUBLEST
312      and disregard any possible target floating point limitations.
313      For instance, a u64 would be converted and displayed exactly on a
314      host with 80 bit DOUBLEST but with loss of information on a host
315      with 64 bit DOUBLEST.  */
316 
317   doub = unpack_double (type, valaddr, &inv);
318   if (inv)
319     {
320       fprintf_filtered (stream, "<invalid float value>");
321       return;
322     }
323 
324   /* FIXME: kettenis/2001-01-20: The following code makes too much
325      assumptions about the host and target floating point format.  */
326 
327   /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
328      not necessarially be a TYPE_CODE_FLT, the below ignores that and
329      instead uses the type's length to determine the precision of the
330      floating-point value being printed.  */
331 
332   if (len < sizeof (double))
333       fprintf_filtered (stream, "%.9g", (double) doub);
334   else if (len == sizeof (double))
335       fprintf_filtered (stream, "%.17g", (double) doub);
336   else
337 #ifdef PRINTF_HAS_LONG_DOUBLE
338     fprintf_filtered (stream, "%.35Lg", doub);
339 #else
340     /* This at least wins with values that are representable as
341        doubles.  */
342     fprintf_filtered (stream, "%.17g", (double) doub);
343 #endif
344 }
345 
346 void
print_binary_chars(struct ui_file * stream,unsigned char * valaddr,unsigned len)347 print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
348 		    unsigned len)
349 {
350 
351 #define BITS_IN_BYTES 8
352 
353   unsigned char *p;
354   unsigned int i;
355   int b;
356 
357   /* Declared "int" so it will be signed.
358    * This ensures that right shift will shift in zeros.
359    */
360   const int mask = 0x080;
361 
362   /* FIXME: We should be not printing leading zeroes in most cases.  */
363 
364   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
365     {
366       for (p = valaddr;
367 	   p < valaddr + len;
368 	   p++)
369 	{
370 	  /* Every byte has 8 binary characters; peel off
371 	   * and print from the MSB end.
372 	   */
373 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
374 	    {
375 	      if (*p & (mask >> i))
376 		b = 1;
377 	      else
378 		b = 0;
379 
380 	      fprintf_filtered (stream, "%1d", b);
381 	    }
382 	}
383     }
384   else
385     {
386       for (p = valaddr + len - 1;
387 	   p >= valaddr;
388 	   p--)
389 	{
390 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
391 	    {
392 	      if (*p & (mask >> i))
393 		b = 1;
394 	      else
395 		b = 0;
396 
397 	      fprintf_filtered (stream, "%1d", b);
398 	    }
399 	}
400     }
401 }
402 
403 /* VALADDR points to an integer of LEN bytes.
404  * Print it in octal on stream or format it in buf.
405  */
406 void
print_octal_chars(struct ui_file * stream,unsigned char * valaddr,unsigned len)407 print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
408 {
409   unsigned char *p;
410   unsigned char octa1, octa2, octa3, carry;
411   int cycle;
412 
413   /* FIXME: We should be not printing leading zeroes in most cases.  */
414 
415 
416   /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
417    * the extra bits, which cycle every three bytes:
418    *
419    * Byte side:       0            1             2          3
420    *                         |             |            |            |
421    * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
422    *
423    * Octal side:   0   1   carry  3   4  carry ...
424    *
425    * Cycle number:    0             1            2
426    *
427    * But of course we are printing from the high side, so we have to
428    * figure out where in the cycle we are so that we end up with no
429    * left over bits at the end.
430    */
431 #define BITS_IN_OCTAL 3
432 #define HIGH_ZERO     0340
433 #define LOW_ZERO      0016
434 #define CARRY_ZERO    0003
435 #define HIGH_ONE      0200
436 #define MID_ONE       0160
437 #define LOW_ONE       0016
438 #define CARRY_ONE     0001
439 #define HIGH_TWO      0300
440 #define MID_TWO       0070
441 #define LOW_TWO       0007
442 
443   /* For 32 we start in cycle 2, with two bits and one bit carry;
444    * for 64 in cycle in cycle 1, with one bit and a two bit carry.
445    */
446   cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
447   carry = 0;
448 
449   fputs_filtered ("0", stream);
450   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
451     {
452       for (p = valaddr;
453 	   p < valaddr + len;
454 	   p++)
455 	{
456 	  switch (cycle)
457 	    {
458 	    case 0:
459 	      /* No carry in, carry out two bits.
460 	       */
461 	      octa1 = (HIGH_ZERO & *p) >> 5;
462 	      octa2 = (LOW_ZERO & *p) >> 2;
463 	      carry = (CARRY_ZERO & *p);
464 	      fprintf_filtered (stream, "%o", octa1);
465 	      fprintf_filtered (stream, "%o", octa2);
466 	      break;
467 
468 	    case 1:
469 	      /* Carry in two bits, carry out one bit.
470 	       */
471 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
472 	      octa2 = (MID_ONE & *p) >> 4;
473 	      octa3 = (LOW_ONE & *p) >> 1;
474 	      carry = (CARRY_ONE & *p);
475 	      fprintf_filtered (stream, "%o", octa1);
476 	      fprintf_filtered (stream, "%o", octa2);
477 	      fprintf_filtered (stream, "%o", octa3);
478 	      break;
479 
480 	    case 2:
481 	      /* Carry in one bit, no carry out.
482 	       */
483 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
484 	      octa2 = (MID_TWO & *p) >> 3;
485 	      octa3 = (LOW_TWO & *p);
486 	      carry = 0;
487 	      fprintf_filtered (stream, "%o", octa1);
488 	      fprintf_filtered (stream, "%o", octa2);
489 	      fprintf_filtered (stream, "%o", octa3);
490 	      break;
491 
492 	    default:
493 	      error ("Internal error in octal conversion;");
494 	    }
495 
496 	  cycle++;
497 	  cycle = cycle % BITS_IN_OCTAL;
498 	}
499     }
500   else
501     {
502       for (p = valaddr + len - 1;
503 	   p >= valaddr;
504 	   p--)
505 	{
506 	  switch (cycle)
507 	    {
508 	    case 0:
509 	      /* Carry out, no carry in */
510 	      octa1 = (HIGH_ZERO & *p) >> 5;
511 	      octa2 = (LOW_ZERO & *p) >> 2;
512 	      carry = (CARRY_ZERO & *p);
513 	      fprintf_filtered (stream, "%o", octa1);
514 	      fprintf_filtered (stream, "%o", octa2);
515 	      break;
516 
517 	    case 1:
518 	      /* Carry in, carry out */
519 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
520 	      octa2 = (MID_ONE & *p) >> 4;
521 	      octa3 = (LOW_ONE & *p) >> 1;
522 	      carry = (CARRY_ONE & *p);
523 	      fprintf_filtered (stream, "%o", octa1);
524 	      fprintf_filtered (stream, "%o", octa2);
525 	      fprintf_filtered (stream, "%o", octa3);
526 	      break;
527 
528 	    case 2:
529 	      /* Carry in, no carry out */
530 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
531 	      octa2 = (MID_TWO & *p) >> 3;
532 	      octa3 = (LOW_TWO & *p);
533 	      carry = 0;
534 	      fprintf_filtered (stream, "%o", octa1);
535 	      fprintf_filtered (stream, "%o", octa2);
536 	      fprintf_filtered (stream, "%o", octa3);
537 	      break;
538 
539 	    default:
540 	      error ("Internal error in octal conversion;");
541 	    }
542 
543 	  cycle++;
544 	  cycle = cycle % BITS_IN_OCTAL;
545 	}
546     }
547 
548 }
549 
550 /* VALADDR points to an integer of LEN bytes.
551  * Print it in decimal on stream or format it in buf.
552  */
553 void
print_decimal_chars(struct ui_file * stream,unsigned char * valaddr,unsigned len)554 print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
555 		     unsigned len)
556 {
557 #define TEN             10
558 #define TWO_TO_FOURTH   16
559 #define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
560 #define CARRY_LEFT( x ) ((x) % TEN)
561 #define SHIFT( x )      ((x) << 4)
562 #define START_P \
563         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
564 #define NOT_END_P \
565         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
566 #define NEXT_P \
567         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
568 #define LOW_NIBBLE(  x ) ( (x) & 0x00F)
569 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
570 
571   unsigned char *p;
572   unsigned char *digits;
573   int carry;
574   int decimal_len;
575   int i, j, decimal_digits;
576   int dummy;
577   int flip;
578 
579   /* Base-ten number is less than twice as many digits
580    * as the base 16 number, which is 2 digits per byte.
581    */
582   decimal_len = len * 2 * 2;
583   digits = xmalloc (decimal_len);
584 
585   for (i = 0; i < decimal_len; i++)
586     {
587       digits[i] = 0;
588     }
589 
590   /* Ok, we have an unknown number of bytes of data to be printed in
591    * decimal.
592    *
593    * Given a hex number (in nibbles) as XYZ, we start by taking X and
594    * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
595    * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
596    *
597    * The trick is that "digits" holds a base-10 number, but sometimes
598    * the individual digits are > 10.
599    *
600    * Outer loop is per nibble (hex digit) of input, from MSD end to
601    * LSD end.
602    */
603   decimal_digits = 0;		/* Number of decimal digits so far */
604   p = START_P;
605   flip = 0;
606   while (NOT_END_P)
607     {
608       /*
609        * Multiply current base-ten number by 16 in place.
610        * Each digit was between 0 and 9, now is between
611        * 0 and 144.
612        */
613       for (j = 0; j < decimal_digits; j++)
614 	{
615 	  digits[j] = SHIFT (digits[j]);
616 	}
617 
618       /* Take the next nibble off the input and add it to what
619        * we've got in the LSB position.  Bottom 'digit' is now
620        * between 0 and 159.
621        *
622        * "flip" is used to run this loop twice for each byte.
623        */
624       if (flip == 0)
625 	{
626 	  /* Take top nibble.
627 	   */
628 	  digits[0] += HIGH_NIBBLE (*p);
629 	  flip = 1;
630 	}
631       else
632 	{
633 	  /* Take low nibble and bump our pointer "p".
634 	   */
635 	  digits[0] += LOW_NIBBLE (*p);
636 	  NEXT_P;
637 	  flip = 0;
638 	}
639 
640       /* Re-decimalize.  We have to do this often enough
641        * that we don't overflow, but once per nibble is
642        * overkill.  Easier this way, though.  Note that the
643        * carry is often larger than 10 (e.g. max initial
644        * carry out of lowest nibble is 15, could bubble all
645        * the way up greater than 10).  So we have to do
646        * the carrying beyond the last current digit.
647        */
648       carry = 0;
649       for (j = 0; j < decimal_len - 1; j++)
650 	{
651 	  digits[j] += carry;
652 
653 	  /* "/" won't handle an unsigned char with
654 	   * a value that if signed would be negative.
655 	   * So extend to longword int via "dummy".
656 	   */
657 	  dummy = digits[j];
658 	  carry = CARRY_OUT (dummy);
659 	  digits[j] = CARRY_LEFT (dummy);
660 
661 	  if (j >= decimal_digits && carry == 0)
662 	    {
663 	      /*
664 	       * All higher digits are 0 and we
665 	       * no longer have a carry.
666 	       *
667 	       * Note: "j" is 0-based, "decimal_digits" is
668 	       *       1-based.
669 	       */
670 	      decimal_digits = j + 1;
671 	      break;
672 	    }
673 	}
674     }
675 
676   /* Ok, now "digits" is the decimal representation, with
677    * the "decimal_digits" actual digits.  Print!
678    */
679   for (i = decimal_digits - 1; i >= 0; i--)
680     {
681       fprintf_filtered (stream, "%1d", digits[i]);
682     }
683   xfree (digits);
684 }
685 
686 /* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
687 
688 void
print_hex_chars(struct ui_file * stream,unsigned char * valaddr,unsigned len)689 print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
690 {
691   unsigned char *p;
692 
693   /* FIXME: We should be not printing leading zeroes in most cases.  */
694 
695   fputs_filtered ("0x", stream);
696   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
697     {
698       for (p = valaddr;
699 	   p < valaddr + len;
700 	   p++)
701 	{
702 	  fprintf_filtered (stream, "%02x", *p);
703 	}
704     }
705   else
706     {
707       for (p = valaddr + len - 1;
708 	   p >= valaddr;
709 	   p--)
710 	{
711 	  fprintf_filtered (stream, "%02x", *p);
712 	}
713     }
714 }
715 
716 /* VALADDR points to a char integer of LEN bytes.  Print it out in appropriate language form on stream.
717    Omit any leading zero chars.  */
718 
719 void
print_char_chars(struct ui_file * stream,unsigned char * valaddr,unsigned len)720 print_char_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
721 {
722   unsigned char *p;
723 
724   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
725     {
726       p = valaddr;
727       while (p < valaddr + len - 1 && *p == 0)
728 	++p;
729 
730       while (p < valaddr + len)
731 	{
732 	  LA_EMIT_CHAR (*p, stream, '\'');
733 	  ++p;
734 	}
735     }
736   else
737     {
738       p = valaddr + len - 1;
739       while (p > valaddr && *p == 0)
740 	--p;
741 
742       while (p >= valaddr)
743 	{
744 	  LA_EMIT_CHAR (*p, stream, '\'');
745 	  --p;
746 	}
747     }
748 }
749 
750 /*  Called by various <lang>_val_print routines to print elements of an
751    array in the form "<elem1>, <elem2>, <elem3>, ...".
752 
753    (FIXME?)  Assumes array element separator is a comma, which is correct
754    for all languages currently handled.
755    (FIXME?)  Some languages have a notation for repeated array elements,
756    perhaps we should try to use that notation when appropriate.
757  */
758 
759 void
val_print_array_elements(struct type * type,char * valaddr,CORE_ADDR address,struct ui_file * stream,int format,int deref_ref,int recurse,enum val_prettyprint pretty,unsigned int i)760 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
761 			  struct ui_file *stream, int format, int deref_ref,
762 			  int recurse, enum val_prettyprint pretty,
763 			  unsigned int i)
764 {
765   unsigned int things_printed = 0;
766   unsigned len;
767   struct type *elttype;
768   unsigned eltlen;
769   /* Position of the array element we are examining to see
770      whether it is repeated.  */
771   unsigned int rep1;
772   /* Number of repetitions we have detected so far.  */
773   unsigned int reps;
774 
775   elttype = TYPE_TARGET_TYPE (type);
776   eltlen = TYPE_LENGTH (check_typedef (elttype));
777   len = TYPE_LENGTH (type) / eltlen;
778 
779   annotate_array_section_begin (i, elttype);
780 
781   for (; i < len && things_printed < print_max; i++)
782     {
783       if (i != 0)
784 	{
785 	  if (prettyprint_arrays)
786 	    {
787 	      fprintf_filtered (stream, ",\n");
788 	      print_spaces_filtered (2 + 2 * recurse, stream);
789 	    }
790 	  else
791 	    {
792 	      fprintf_filtered (stream, ", ");
793 	    }
794 	}
795       wrap_here (n_spaces (2 + 2 * recurse));
796 
797       rep1 = i + 1;
798       reps = 1;
799       while ((rep1 < len) &&
800 	     !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
801 	{
802 	  ++reps;
803 	  ++rep1;
804 	}
805 
806       if (reps > repeat_count_threshold)
807 	{
808 	  val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
809 		     deref_ref, recurse + 1, pretty);
810 	  annotate_elt_rep (reps);
811 	  fprintf_filtered (stream, " <repeats %u times>", reps);
812 	  annotate_elt_rep_end ();
813 
814 	  i = rep1 - 1;
815 	  things_printed += repeat_count_threshold;
816 	}
817       else
818 	{
819 	  val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
820 		     deref_ref, recurse + 1, pretty);
821 	  annotate_elt ();
822 	  things_printed++;
823 	}
824     }
825   annotate_array_section_end ();
826   if (i < len)
827     {
828       fprintf_filtered (stream, "...");
829     }
830 }
831 
832 /* Read LEN bytes of target memory at address MEMADDR, placing the
833    results in GDB's memory at MYADDR.  Returns a count of the bytes
834    actually read, and optionally an errno value in the location
835    pointed to by ERRNOPTR if ERRNOPTR is non-null. */
836 
837 /* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
838    function be eliminated.  */
839 
840 static int
partial_memory_read(CORE_ADDR memaddr,char * myaddr,int len,int * errnoptr)841 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
842 {
843   int nread;			/* Number of bytes actually read. */
844   int errcode;			/* Error from last read. */
845 
846   /* First try a complete read. */
847   errcode = target_read_memory (memaddr, myaddr, len);
848   if (errcode == 0)
849     {
850       /* Got it all. */
851       nread = len;
852     }
853   else
854     {
855       /* Loop, reading one byte at a time until we get as much as we can. */
856       for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
857 	{
858 	  errcode = target_read_memory (memaddr++, myaddr++, 1);
859 	}
860       /* If an error, the last read was unsuccessful, so adjust count. */
861       if (errcode != 0)
862 	{
863 	  nread--;
864 	}
865     }
866   if (errnoptr != NULL)
867     {
868       *errnoptr = errcode;
869     }
870   return (nread);
871 }
872 
873 /*  Print a string from the inferior, starting at ADDR and printing up to LEN
874    characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
875    stops at the first null byte, otherwise printing proceeds (including null
876    bytes) until either print_max or LEN characters have been printed,
877    whichever is smaller. */
878 
879 /* FIXME: Use target_read_string.  */
880 
881 int
val_print_string(CORE_ADDR addr,int len,int width,struct ui_file * stream)882 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
883 {
884   int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero. */
885   int errcode;			/* Errno returned from bad reads. */
886   unsigned int fetchlimit;	/* Maximum number of chars to print. */
887   unsigned int nfetch;		/* Chars to fetch / chars fetched. */
888   unsigned int chunksize;	/* Size of each fetch, in chars. */
889   char *buffer = NULL;		/* Dynamically growable fetch buffer. */
890   char *bufptr;			/* Pointer to next available byte in buffer. */
891   char *limit;			/* First location past end of fetch buffer. */
892   struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain. */
893   int found_nul;		/* Non-zero if we found the nul char */
894 
895   /* First we need to figure out the limit on the number of characters we are
896      going to attempt to fetch and print.  This is actually pretty simple.  If
897      LEN >= zero, then the limit is the minimum of LEN and print_max.  If
898      LEN is -1, then the limit is print_max.  This is true regardless of
899      whether print_max is zero, UINT_MAX (unlimited), or something in between,
900      because finding the null byte (or available memory) is what actually
901      limits the fetch. */
902 
903   fetchlimit = (len == -1 ? print_max : min (len, print_max));
904 
905   /* Now decide how large of chunks to try to read in one operation.  This
906      is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
907      so we might as well read them all in one operation.  If LEN is -1, we
908      are looking for a null terminator to end the fetching, so we might as
909      well read in blocks that are large enough to be efficient, but not so
910      large as to be slow if fetchlimit happens to be large.  So we choose the
911      minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
912      200 is way too big for remote debugging over a serial line.  */
913 
914   chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
915 
916   /* Loop until we either have all the characters to print, or we encounter
917      some error, such as bumping into the end of the address space. */
918 
919   found_nul = 0;
920   old_chain = make_cleanup (null_cleanup, 0);
921 
922   if (len > 0)
923     {
924       buffer = (char *) xmalloc (len * width);
925       bufptr = buffer;
926       old_chain = make_cleanup (xfree, buffer);
927 
928       nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
929 	/ width;
930       addr += nfetch * width;
931       bufptr += nfetch * width;
932     }
933   else if (len == -1)
934     {
935       unsigned long bufsize = 0;
936       do
937 	{
938 	  QUIT;
939 	  nfetch = min (chunksize, fetchlimit - bufsize);
940 
941 	  if (buffer == NULL)
942 	    buffer = (char *) xmalloc (nfetch * width);
943 	  else
944 	    {
945 	      discard_cleanups (old_chain);
946 	      buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
947 	    }
948 
949 	  old_chain = make_cleanup (xfree, buffer);
950 	  bufptr = buffer + bufsize * width;
951 	  bufsize += nfetch;
952 
953 	  /* Read as much as we can. */
954 	  nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
955 	    / width;
956 
957 	  /* Scan this chunk for the null byte that terminates the string
958 	     to print.  If found, we don't need to fetch any more.  Note
959 	     that bufptr is explicitly left pointing at the next character
960 	     after the null byte, or at the next character after the end of
961 	     the buffer. */
962 
963 	  limit = bufptr + nfetch * width;
964 	  while (bufptr < limit)
965 	    {
966 	      unsigned long c;
967 
968 	      c = extract_unsigned_integer (bufptr, width);
969 	      addr += width;
970 	      bufptr += width;
971 	      if (c == 0)
972 		{
973 		  /* We don't care about any error which happened after
974 		     the NULL terminator.  */
975 		  errcode = 0;
976 		  found_nul = 1;
977 		  break;
978 		}
979 	    }
980 	}
981       while (errcode == 0	/* no error */
982 	     && bufptr - buffer < fetchlimit * width	/* no overrun */
983 	     && !found_nul);	/* haven't found nul yet */
984     }
985   else
986     {				/* length of string is really 0! */
987       buffer = bufptr = NULL;
988       errcode = 0;
989     }
990 
991   /* bufptr and addr now point immediately beyond the last byte which we
992      consider part of the string (including a '\0' which ends the string).  */
993 
994   /* We now have either successfully filled the buffer to fetchlimit, or
995      terminated early due to an error or finding a null char when LEN is -1. */
996 
997   if (len == -1 && !found_nul)
998     {
999       char *peekbuf;
1000 
1001       /* We didn't find a null terminator we were looking for.  Attempt
1002          to peek at the next character.  If not successful, or it is not
1003          a null byte, then force ellipsis to be printed.  */
1004 
1005       peekbuf = (char *) alloca (width);
1006 
1007       if (target_read_memory (addr, peekbuf, width) == 0
1008 	  && extract_unsigned_integer (peekbuf, width) != 0)
1009 	force_ellipsis = 1;
1010     }
1011   else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1012     {
1013       /* Getting an error when we have a requested length, or fetching less
1014          than the number of characters actually requested, always make us
1015          print ellipsis. */
1016       force_ellipsis = 1;
1017     }
1018 
1019   QUIT;
1020 
1021   /* If we get an error before fetching anything, don't print a string.
1022      But if we fetch something and then get an error, print the string
1023      and then the error message.  */
1024   if (errcode == 0 || bufptr > buffer)
1025     {
1026       if (addressprint)
1027 	{
1028 	  fputs_filtered (" ", stream);
1029 	}
1030       LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1031     }
1032 
1033   if (errcode != 0)
1034     {
1035       if (errcode == EIO)
1036 	{
1037 	  fprintf_filtered (stream, " <Address ");
1038 	  print_address_numeric (addr, 1, stream);
1039 	  fprintf_filtered (stream, " out of bounds>");
1040 	}
1041       else
1042 	{
1043 	  fprintf_filtered (stream, " <Error reading address ");
1044 	  print_address_numeric (addr, 1, stream);
1045 	  fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1046 	}
1047     }
1048   gdb_flush (stream);
1049   do_cleanups (old_chain);
1050   return ((bufptr - buffer) / width);
1051 }
1052 
1053 
1054 /* Validate an input or output radix setting, and make sure the user
1055    knows what they really did here.  Radix setting is confusing, e.g.
1056    setting the input radix to "10" never changes it!  */
1057 
1058 static void
set_input_radix(char * args,int from_tty,struct cmd_list_element * c)1059 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1060 {
1061   set_input_radix_1 (from_tty, input_radix);
1062 }
1063 
1064 static void
set_input_radix_1(int from_tty,unsigned radix)1065 set_input_radix_1 (int from_tty, unsigned radix)
1066 {
1067   /* We don't currently disallow any input radix except 0 or 1, which don't
1068      make any mathematical sense.  In theory, we can deal with any input
1069      radix greater than 1, even if we don't have unique digits for every
1070      value from 0 to radix-1, but in practice we lose on large radix values.
1071      We should either fix the lossage or restrict the radix range more.
1072      (FIXME). */
1073 
1074   if (radix < 2)
1075     {
1076       /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1077          value.  */
1078       error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1079 	     radix);
1080     }
1081   input_radix = radix;
1082   if (from_tty)
1083     {
1084       printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1085 		       radix, radix, radix);
1086     }
1087 }
1088 
1089 static void
set_output_radix(char * args,int from_tty,struct cmd_list_element * c)1090 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1091 {
1092   set_output_radix_1 (from_tty, output_radix);
1093 }
1094 
1095 static void
set_output_radix_1(int from_tty,unsigned radix)1096 set_output_radix_1 (int from_tty, unsigned radix)
1097 {
1098   /* Validate the radix and disallow ones that we aren't prepared to
1099      handle correctly, leaving the radix unchanged. */
1100   switch (radix)
1101     {
1102     case 16:
1103       output_format = 'x';	/* hex */
1104       break;
1105     case 10:
1106       output_format = 0;	/* decimal */
1107       break;
1108     case 8:
1109       output_format = 'o';	/* octal */
1110       break;
1111     default:
1112       /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1113          value.  */
1114       error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1115 	     radix);
1116     }
1117   output_radix = radix;
1118   if (from_tty)
1119     {
1120       printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1121 		       radix, radix, radix);
1122     }
1123 }
1124 
1125 /* Set both the input and output radix at once.  Try to set the output radix
1126    first, since it has the most restrictive range.  An radix that is valid as
1127    an output radix is also valid as an input radix.
1128 
1129    It may be useful to have an unusual input radix.  If the user wishes to
1130    set an input radix that is not valid as an output radix, he needs to use
1131    the 'set input-radix' command. */
1132 
1133 static void
set_radix(char * arg,int from_tty)1134 set_radix (char *arg, int from_tty)
1135 {
1136   unsigned radix;
1137 
1138   radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1139   set_output_radix_1 (0, radix);
1140   set_input_radix_1 (0, radix);
1141   if (from_tty)
1142     {
1143       printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1144 		       radix, radix, radix);
1145     }
1146 }
1147 
1148 /* Show both the input and output radices. */
1149 
1150 static void
show_radix(char * arg,int from_tty)1151 show_radix (char *arg, int from_tty)
1152 {
1153   if (from_tty)
1154     {
1155       if (input_radix == output_radix)
1156 	{
1157 	  printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1158 			   input_radix, input_radix, input_radix);
1159 	}
1160       else
1161 	{
1162 	  printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1163 			   input_radix, input_radix, input_radix);
1164 	  printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1165 			   output_radix, output_radix, output_radix);
1166 	}
1167     }
1168 }
1169 
1170 
1171 static void
set_print(char * arg,int from_tty)1172 set_print (char *arg, int from_tty)
1173 {
1174   printf_unfiltered (
1175      "\"set print\" must be followed by the name of a print subcommand.\n");
1176   help_list (setprintlist, "set print ", -1, gdb_stdout);
1177 }
1178 
1179 static void
show_print(char * args,int from_tty)1180 show_print (char *args, int from_tty)
1181 {
1182   cmd_show_list (showprintlist, from_tty, "");
1183 }
1184 
1185 void
_initialize_valprint(void)1186 _initialize_valprint (void)
1187 {
1188   struct cmd_list_element *c;
1189 
1190   add_prefix_cmd ("print", no_class, set_print,
1191 		  "Generic command for setting how things print.",
1192 		  &setprintlist, "set print ", 0, &setlist);
1193   add_alias_cmd ("p", "print", no_class, 1, &setlist);
1194   /* prefer set print to set prompt */
1195   add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1196 
1197   add_prefix_cmd ("print", no_class, show_print,
1198 		  "Generic command for showing print settings.",
1199 		  &showprintlist, "show print ", 0, &showlist);
1200   add_alias_cmd ("p", "print", no_class, 1, &showlist);
1201   add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1202 
1203   deprecated_add_show_from_set
1204     (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1205 		  "Set limit on string chars or array elements to print.\n\
1206 \"set print elements 0\" causes there to be no limit.",
1207 		  &setprintlist),
1208      &showprintlist);
1209 
1210   deprecated_add_show_from_set
1211     (add_set_cmd ("null-stop", no_class, var_boolean,
1212 		  (char *) &stop_print_at_null,
1213 		  "Set printing of char arrays to stop at first null char.",
1214 		  &setprintlist),
1215      &showprintlist);
1216 
1217   deprecated_add_show_from_set
1218     (add_set_cmd ("repeats", no_class, var_uinteger,
1219 		  (char *) &repeat_count_threshold,
1220 		  "Set threshold for repeated print elements.\n\
1221 \"set print repeats 0\" causes all elements to be individually printed.",
1222 		  &setprintlist),
1223      &showprintlist);
1224 
1225   deprecated_add_show_from_set
1226     (add_set_cmd ("pretty", class_support, var_boolean,
1227 		  (char *) &prettyprint_structs,
1228 		  "Set prettyprinting of structures.",
1229 		  &setprintlist),
1230      &showprintlist);
1231 
1232   deprecated_add_show_from_set
1233     (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1234 		  "Set printing of unions interior to structures.",
1235 		  &setprintlist),
1236      &showprintlist);
1237 
1238   deprecated_add_show_from_set
1239     (add_set_cmd ("array", class_support, var_boolean,
1240 		  (char *) &prettyprint_arrays,
1241 		  "Set prettyprinting of arrays.",
1242 		  &setprintlist),
1243      &showprintlist);
1244 
1245   deprecated_add_show_from_set
1246     (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1247 		  "Set printing of addresses.",
1248 		  &setprintlist),
1249      &showprintlist);
1250 
1251   c = add_set_cmd ("input-radix", class_support, var_uinteger,
1252 		   (char *) &input_radix,
1253 		   "Set default input radix for entering numbers.",
1254 		   &setlist);
1255   deprecated_add_show_from_set (c, &showlist);
1256   set_cmd_sfunc (c, set_input_radix);
1257 
1258   c = add_set_cmd ("output-radix", class_support, var_uinteger,
1259 		   (char *) &output_radix,
1260 		   "Set default output radix for printing of values.",
1261 		   &setlist);
1262   deprecated_add_show_from_set (c, &showlist);
1263   set_cmd_sfunc (c, set_output_radix);
1264 
1265   /* The "set radix" and "show radix" commands are special in that
1266      they are like normal set and show commands but allow two normally
1267      independent variables to be either set or shown with a single
1268      command.  So the usual deprecated_add_set_cmd() and
1269      add_show_from_set() commands aren't really appropriate. */
1270   add_cmd ("radix", class_support, set_radix,
1271 	   "Set default input and output number radices.\n\
1272 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1273 Without an argument, sets both radices back to the default value of 10.",
1274 	   &setlist);
1275   add_cmd ("radix", class_support, show_radix,
1276 	   "Show the default input and output number radices.\n\
1277 Use 'show input-radix' or 'show output-radix' to independently show each.",
1278 	   &showlist);
1279 
1280   /* Give people the defaults which they are used to.  */
1281   prettyprint_structs = 0;
1282   prettyprint_arrays = 0;
1283   unionprint = 1;
1284   addressprint = 1;
1285   print_max = PRINT_MAX_DEFAULT;
1286 }
1287