1 /*	$NetBSD: kfd_events.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: kfd_events.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
27 
28 #include <linux/mm_types.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 #include <linux/uaccess.h>
34 #include <linux/mman.h>
35 #include <linux/memory.h>
36 #include "kfd_priv.h"
37 #include "kfd_events.h"
38 #include "kfd_iommu.h"
39 #include <linux/device.h>
40 
41 /*
42  * Wrapper around wait_queue_entry_t
43  */
44 struct kfd_event_waiter {
45 	wait_queue_entry_t wait;
46 	struct kfd_event *event; /* Event to wait for */
47 	bool activated;		 /* Becomes true when event is signaled */
48 };
49 
50 /*
51  * Each signal event needs a 64-bit signal slot where the signaler will write
52  * a 1 before sending an interrupt. (This is needed because some interrupts
53  * do not contain enough spare data bits to identify an event.)
54  * We get whole pages and map them to the process VA.
55  * Individual signal events use their event_id as slot index.
56  */
57 struct kfd_signal_page {
58 	uint64_t *kernel_address;
59 	uint64_t __user *user_address;
60 	bool need_to_free_pages;
61 };
62 
63 
page_slots(struct kfd_signal_page * page)64 static uint64_t *page_slots(struct kfd_signal_page *page)
65 {
66 	return page->kernel_address;
67 }
68 
allocate_signal_page(struct kfd_process * p)69 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
70 {
71 	void *backing_store;
72 	struct kfd_signal_page *page;
73 
74 	page = kzalloc(sizeof(*page), GFP_KERNEL);
75 	if (!page)
76 		return NULL;
77 
78 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
79 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
80 	if (!backing_store)
81 		goto fail_alloc_signal_store;
82 
83 	/* Initialize all events to unsignaled */
84 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
85 	       KFD_SIGNAL_EVENT_LIMIT * 8);
86 
87 	page->kernel_address = backing_store;
88 	page->need_to_free_pages = true;
89 	pr_debug("Allocated new event signal page at %p, for process %p\n",
90 			page, p);
91 
92 	return page;
93 
94 fail_alloc_signal_store:
95 	kfree(page);
96 	return NULL;
97 }
98 
allocate_event_notification_slot(struct kfd_process * p,struct kfd_event * ev)99 static int allocate_event_notification_slot(struct kfd_process *p,
100 					    struct kfd_event *ev)
101 {
102 	int id;
103 
104 	if (!p->signal_page) {
105 		p->signal_page = allocate_signal_page(p);
106 		if (!p->signal_page)
107 			return -ENOMEM;
108 		/* Oldest user mode expects 256 event slots */
109 		p->signal_mapped_size = 256*8;
110 	}
111 
112 	/*
113 	 * Compatibility with old user mode: Only use signal slots
114 	 * user mode has mapped, may be less than
115 	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
116 	 * of the event limit without breaking user mode.
117 	 */
118 	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
119 		       GFP_KERNEL);
120 	if (id < 0)
121 		return id;
122 
123 	ev->event_id = id;
124 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
125 
126 	return 0;
127 }
128 
129 /*
130  * Assumes that p->event_mutex is held and of course that p is not going
131  * away (current or locked).
132  */
lookup_event_by_id(struct kfd_process * p,uint32_t id)133 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
134 {
135 	return idr_find(&p->event_idr, id);
136 }
137 
138 /**
139  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
140  * @p:     Pointer to struct kfd_process
141  * @id:    ID to look up
142  * @bits:  Number of valid bits in @id
143  *
144  * Finds the first signaled event with a matching partial ID. If no
145  * matching signaled event is found, returns NULL. In that case the
146  * caller should assume that the partial ID is invalid and do an
147  * exhaustive search of all siglaned events.
148  *
149  * If multiple events with the same partial ID signal at the same
150  * time, they will be found one interrupt at a time, not necessarily
151  * in the same order the interrupts occurred. As long as the number of
152  * interrupts is correct, all signaled events will be seen by the
153  * driver.
154  */
lookup_signaled_event_by_partial_id(struct kfd_process * p,uint32_t id,uint32_t bits)155 static struct kfd_event *lookup_signaled_event_by_partial_id(
156 	struct kfd_process *p, uint32_t id, uint32_t bits)
157 {
158 	struct kfd_event *ev;
159 
160 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
161 		return NULL;
162 
163 	/* Fast path for the common case that @id is not a partial ID
164 	 * and we only need a single lookup.
165 	 */
166 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
167 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
168 			return NULL;
169 
170 		return idr_find(&p->event_idr, id);
171 	}
172 
173 	/* General case for partial IDs: Iterate over all matching IDs
174 	 * and find the first one that has signaled.
175 	 */
176 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
177 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
178 			continue;
179 
180 		ev = idr_find(&p->event_idr, id);
181 	}
182 
183 	return ev;
184 }
185 
create_signal_event(struct file * devkfd,struct kfd_process * p,struct kfd_event * ev)186 static int create_signal_event(struct file *devkfd,
187 				struct kfd_process *p,
188 				struct kfd_event *ev)
189 {
190 	int ret;
191 
192 	if (p->signal_mapped_size &&
193 	    p->signal_event_count == p->signal_mapped_size / 8) {
194 		if (!p->signal_event_limit_reached) {
195 			pr_warn("Signal event wasn't created because limit was reached\n");
196 			p->signal_event_limit_reached = true;
197 		}
198 		return -ENOSPC;
199 	}
200 
201 	ret = allocate_event_notification_slot(p, ev);
202 	if (ret) {
203 		pr_warn("Signal event wasn't created because out of kernel memory\n");
204 		return ret;
205 	}
206 
207 	p->signal_event_count++;
208 
209 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
210 	pr_debug("Signal event number %zu created with id %d, address %p\n",
211 			p->signal_event_count, ev->event_id,
212 			ev->user_signal_address);
213 
214 	return 0;
215 }
216 
create_other_event(struct kfd_process * p,struct kfd_event * ev)217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
218 {
219 	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
220 	 * intentional integer overflow to -1 without a compiler
221 	 * warning. idr_alloc treats a negative value as "maximum
222 	 * signed integer".
223 	 */
224 	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
225 			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
226 			   GFP_KERNEL);
227 
228 	if (id < 0)
229 		return id;
230 	ev->event_id = id;
231 
232 	return 0;
233 }
234 
kfd_event_init_process(struct kfd_process * p)235 void kfd_event_init_process(struct kfd_process *p)
236 {
237 	mutex_init(&p->event_mutex);
238 	idr_init(&p->event_idr);
239 	p->signal_page = NULL;
240 	p->signal_event_count = 0;
241 }
242 
destroy_event(struct kfd_process * p,struct kfd_event * ev)243 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
244 {
245 	struct kfd_event_waiter *waiter;
246 
247 	/* Wake up pending waiters. They will return failure */
248 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
249 		waiter->event = NULL;
250 	wake_up_all(&ev->wq);
251 
252 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
253 	    ev->type == KFD_EVENT_TYPE_DEBUG)
254 		p->signal_event_count--;
255 
256 	idr_remove(&p->event_idr, ev->event_id);
257 	kfree(ev);
258 }
259 
destroy_events(struct kfd_process * p)260 static void destroy_events(struct kfd_process *p)
261 {
262 	struct kfd_event *ev;
263 	uint32_t id;
264 
265 	idr_for_each_entry(&p->event_idr, ev, id)
266 		destroy_event(p, ev);
267 	idr_destroy(&p->event_idr);
268 }
269 
270 /*
271  * We assume that the process is being destroyed and there is no need to
272  * unmap the pages or keep bookkeeping data in order.
273  */
shutdown_signal_page(struct kfd_process * p)274 static void shutdown_signal_page(struct kfd_process *p)
275 {
276 	struct kfd_signal_page *page = p->signal_page;
277 
278 	if (page) {
279 		if (page->need_to_free_pages)
280 			free_pages((unsigned long)page->kernel_address,
281 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
282 		kfree(page);
283 	}
284 }
285 
kfd_event_free_process(struct kfd_process * p)286 void kfd_event_free_process(struct kfd_process *p)
287 {
288 	destroy_events(p);
289 	shutdown_signal_page(p);
290 }
291 
event_can_be_gpu_signaled(const struct kfd_event * ev)292 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
293 {
294 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
295 					ev->type == KFD_EVENT_TYPE_DEBUG;
296 }
297 
event_can_be_cpu_signaled(const struct kfd_event * ev)298 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
299 {
300 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
301 }
302 
kfd_event_page_set(struct kfd_process * p,void * kernel_address,uint64_t size)303 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
304 		       uint64_t size)
305 {
306 	struct kfd_signal_page *page;
307 
308 	if (p->signal_page)
309 		return -EBUSY;
310 
311 	page = kzalloc(sizeof(*page), GFP_KERNEL);
312 	if (!page)
313 		return -ENOMEM;
314 
315 	/* Initialize all events to unsignaled */
316 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
317 	       KFD_SIGNAL_EVENT_LIMIT * 8);
318 
319 	page->kernel_address = kernel_address;
320 
321 	p->signal_page = page;
322 	p->signal_mapped_size = size;
323 
324 	return 0;
325 }
326 
kfd_event_create(struct file * devkfd,struct kfd_process * p,uint32_t event_type,bool auto_reset,uint32_t node_id,uint32_t * event_id,uint32_t * event_trigger_data,uint64_t * event_page_offset,uint32_t * event_slot_index)327 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
328 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
329 		     uint32_t *event_id, uint32_t *event_trigger_data,
330 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
331 {
332 	int ret = 0;
333 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
334 
335 	if (!ev)
336 		return -ENOMEM;
337 
338 	ev->type = event_type;
339 	ev->auto_reset = auto_reset;
340 	ev->signaled = false;
341 
342 	init_waitqueue_head(&ev->wq);
343 
344 	*event_page_offset = 0;
345 
346 	mutex_lock(&p->event_mutex);
347 
348 	switch (event_type) {
349 	case KFD_EVENT_TYPE_SIGNAL:
350 	case KFD_EVENT_TYPE_DEBUG:
351 		ret = create_signal_event(devkfd, p, ev);
352 		if (!ret) {
353 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
354 			*event_slot_index = ev->event_id;
355 		}
356 		break;
357 	default:
358 		ret = create_other_event(p, ev);
359 		break;
360 	}
361 
362 	if (!ret) {
363 		*event_id = ev->event_id;
364 		*event_trigger_data = ev->event_id;
365 	} else {
366 		kfree(ev);
367 	}
368 
369 	mutex_unlock(&p->event_mutex);
370 
371 	return ret;
372 }
373 
374 /* Assumes that p is current. */
kfd_event_destroy(struct kfd_process * p,uint32_t event_id)375 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
376 {
377 	struct kfd_event *ev;
378 	int ret = 0;
379 
380 	mutex_lock(&p->event_mutex);
381 
382 	ev = lookup_event_by_id(p, event_id);
383 
384 	if (ev)
385 		destroy_event(p, ev);
386 	else
387 		ret = -EINVAL;
388 
389 	mutex_unlock(&p->event_mutex);
390 	return ret;
391 }
392 
set_event(struct kfd_event * ev)393 static void set_event(struct kfd_event *ev)
394 {
395 	struct kfd_event_waiter *waiter;
396 
397 	/* Auto reset if the list is non-empty and we're waking
398 	 * someone. waitqueue_active is safe here because we're
399 	 * protected by the p->event_mutex, which is also held when
400 	 * updating the wait queues in kfd_wait_on_events.
401 	 */
402 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
403 
404 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
405 		waiter->activated = true;
406 
407 	wake_up_all(&ev->wq);
408 }
409 
410 /* Assumes that p is current. */
kfd_set_event(struct kfd_process * p,uint32_t event_id)411 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
412 {
413 	int ret = 0;
414 	struct kfd_event *ev;
415 
416 	mutex_lock(&p->event_mutex);
417 
418 	ev = lookup_event_by_id(p, event_id);
419 
420 	if (ev && event_can_be_cpu_signaled(ev))
421 		set_event(ev);
422 	else
423 		ret = -EINVAL;
424 
425 	mutex_unlock(&p->event_mutex);
426 	return ret;
427 }
428 
reset_event(struct kfd_event * ev)429 static void reset_event(struct kfd_event *ev)
430 {
431 	ev->signaled = false;
432 }
433 
434 /* Assumes that p is current. */
kfd_reset_event(struct kfd_process * p,uint32_t event_id)435 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
436 {
437 	int ret = 0;
438 	struct kfd_event *ev;
439 
440 	mutex_lock(&p->event_mutex);
441 
442 	ev = lookup_event_by_id(p, event_id);
443 
444 	if (ev && event_can_be_cpu_signaled(ev))
445 		reset_event(ev);
446 	else
447 		ret = -EINVAL;
448 
449 	mutex_unlock(&p->event_mutex);
450 	return ret;
451 
452 }
453 
acknowledge_signal(struct kfd_process * p,struct kfd_event * ev)454 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
455 {
456 	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
457 }
458 
set_event_from_interrupt(struct kfd_process * p,struct kfd_event * ev)459 static void set_event_from_interrupt(struct kfd_process *p,
460 					struct kfd_event *ev)
461 {
462 	if (ev && event_can_be_gpu_signaled(ev)) {
463 		acknowledge_signal(p, ev);
464 		set_event(ev);
465 	}
466 }
467 
kfd_signal_event_interrupt(unsigned int pasid,uint32_t partial_id,uint32_t valid_id_bits)468 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
469 				uint32_t valid_id_bits)
470 {
471 	struct kfd_event *ev = NULL;
472 
473 	/*
474 	 * Because we are called from arbitrary context (workqueue) as opposed
475 	 * to process context, kfd_process could attempt to exit while we are
476 	 * running so the lookup function increments the process ref count.
477 	 */
478 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
479 
480 	if (!p)
481 		return; /* Presumably process exited. */
482 
483 	mutex_lock(&p->event_mutex);
484 
485 	if (valid_id_bits)
486 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
487 							 valid_id_bits);
488 	if (ev) {
489 		set_event_from_interrupt(p, ev);
490 	} else if (p->signal_page) {
491 		/*
492 		 * Partial ID lookup failed. Assume that the event ID
493 		 * in the interrupt payload was invalid and do an
494 		 * exhaustive search of signaled events.
495 		 */
496 		uint64_t *slots = page_slots(p->signal_page);
497 		uint32_t id;
498 
499 		if (valid_id_bits)
500 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
501 					     partial_id, valid_id_bits);
502 
503 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
504 			/* With relatively few events, it's faster to
505 			 * iterate over the event IDR
506 			 */
507 			idr_for_each_entry(&p->event_idr, ev, id) {
508 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
509 					break;
510 
511 				if (slots[id] != UNSIGNALED_EVENT_SLOT)
512 					set_event_from_interrupt(p, ev);
513 			}
514 		} else {
515 			/* With relatively many events, it's faster to
516 			 * iterate over the signal slots and lookup
517 			 * only signaled events from the IDR.
518 			 */
519 			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
520 				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
521 					ev = lookup_event_by_id(p, id);
522 					set_event_from_interrupt(p, ev);
523 				}
524 		}
525 	}
526 
527 	mutex_unlock(&p->event_mutex);
528 	kfd_unref_process(p);
529 }
530 
alloc_event_waiters(uint32_t num_events)531 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
532 {
533 	struct kfd_event_waiter *event_waiters;
534 	uint32_t i;
535 
536 	event_waiters = kmalloc_array(num_events,
537 					sizeof(struct kfd_event_waiter),
538 					GFP_KERNEL);
539 
540 	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
541 		init_wait(&event_waiters[i].wait);
542 		event_waiters[i].activated = false;
543 	}
544 
545 	return event_waiters;
546 }
547 
init_event_waiter_get_status(struct kfd_process * p,struct kfd_event_waiter * waiter,uint32_t event_id)548 static int init_event_waiter_get_status(struct kfd_process *p,
549 		struct kfd_event_waiter *waiter,
550 		uint32_t event_id)
551 {
552 	struct kfd_event *ev = lookup_event_by_id(p, event_id);
553 
554 	if (!ev)
555 		return -EINVAL;
556 
557 	waiter->event = ev;
558 	waiter->activated = ev->signaled;
559 	ev->signaled = ev->signaled && !ev->auto_reset;
560 
561 	return 0;
562 }
563 
init_event_waiter_add_to_waitlist(struct kfd_event_waiter * waiter)564 static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
565 {
566 	struct kfd_event *ev = waiter->event;
567 
568 	/* Only add to the wait list if we actually need to
569 	 * wait on this event.
570 	 */
571 	if (!waiter->activated)
572 		add_wait_queue(&ev->wq, &waiter->wait);
573 }
574 
575 /* test_event_condition - Test condition of events being waited for
576  * @all:           Return completion only if all events have signaled
577  * @num_events:    Number of events to wait for
578  * @event_waiters: Array of event waiters, one per event
579  *
580  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
581  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
582  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
583  * the events have been destroyed.
584  */
test_event_condition(bool all,uint32_t num_events,struct kfd_event_waiter * event_waiters)585 static uint32_t test_event_condition(bool all, uint32_t num_events,
586 				struct kfd_event_waiter *event_waiters)
587 {
588 	uint32_t i;
589 	uint32_t activated_count = 0;
590 
591 	for (i = 0; i < num_events; i++) {
592 		if (!event_waiters[i].event)
593 			return KFD_IOC_WAIT_RESULT_FAIL;
594 
595 		if (event_waiters[i].activated) {
596 			if (!all)
597 				return KFD_IOC_WAIT_RESULT_COMPLETE;
598 
599 			activated_count++;
600 		}
601 	}
602 
603 	return activated_count == num_events ?
604 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
605 }
606 
607 /*
608  * Copy event specific data, if defined.
609  * Currently only memory exception events have additional data to copy to user
610  */
copy_signaled_event_data(uint32_t num_events,struct kfd_event_waiter * event_waiters,struct kfd_event_data __user * data)611 static int copy_signaled_event_data(uint32_t num_events,
612 		struct kfd_event_waiter *event_waiters,
613 		struct kfd_event_data __user *data)
614 {
615 	struct kfd_hsa_memory_exception_data *src;
616 	struct kfd_hsa_memory_exception_data __user *dst;
617 	struct kfd_event_waiter *waiter;
618 	struct kfd_event *event;
619 	uint32_t i;
620 
621 	for (i = 0; i < num_events; i++) {
622 		waiter = &event_waiters[i];
623 		event = waiter->event;
624 		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
625 			dst = &data[i].memory_exception_data;
626 			src = &event->memory_exception_data;
627 			if (copy_to_user(dst, src,
628 				sizeof(struct kfd_hsa_memory_exception_data)))
629 				return -EFAULT;
630 		}
631 	}
632 
633 	return 0;
634 
635 }
636 
637 
638 
user_timeout_to_jiffies(uint32_t user_timeout_ms)639 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
640 {
641 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
642 		return 0;
643 
644 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
645 		return MAX_SCHEDULE_TIMEOUT;
646 
647 	/*
648 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
649 	 * but we consider them finite.
650 	 * This hack is wrong, but nobody is likely to notice.
651 	 */
652 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
653 
654 	return msecs_to_jiffies(user_timeout_ms) + 1;
655 }
656 
free_waiters(uint32_t num_events,struct kfd_event_waiter * waiters)657 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
658 {
659 	uint32_t i;
660 
661 	for (i = 0; i < num_events; i++)
662 		if (waiters[i].event)
663 			remove_wait_queue(&waiters[i].event->wq,
664 					  &waiters[i].wait);
665 
666 	kfree(waiters);
667 }
668 
kfd_wait_on_events(struct kfd_process * p,uint32_t num_events,void __user * data,bool all,uint32_t user_timeout_ms,uint32_t * wait_result)669 int kfd_wait_on_events(struct kfd_process *p,
670 		       uint32_t num_events, void __user *data,
671 		       bool all, uint32_t user_timeout_ms,
672 		       uint32_t *wait_result)
673 {
674 	struct kfd_event_data __user *events =
675 			(struct kfd_event_data __user *) data;
676 	uint32_t i;
677 	int ret = 0;
678 
679 	struct kfd_event_waiter *event_waiters = NULL;
680 	long timeout = user_timeout_to_jiffies(user_timeout_ms);
681 
682 	event_waiters = alloc_event_waiters(num_events);
683 	if (!event_waiters) {
684 		ret = -ENOMEM;
685 		goto out;
686 	}
687 
688 	mutex_lock(&p->event_mutex);
689 
690 	for (i = 0; i < num_events; i++) {
691 		struct kfd_event_data event_data;
692 
693 		if (copy_from_user(&event_data, &events[i],
694 				sizeof(struct kfd_event_data))) {
695 			ret = -EFAULT;
696 			goto out_unlock;
697 		}
698 
699 		ret = init_event_waiter_get_status(p, &event_waiters[i],
700 				event_data.event_id);
701 		if (ret)
702 			goto out_unlock;
703 	}
704 
705 	/* Check condition once. */
706 	*wait_result = test_event_condition(all, num_events, event_waiters);
707 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
708 		ret = copy_signaled_event_data(num_events,
709 					       event_waiters, events);
710 		goto out_unlock;
711 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
712 		/* This should not happen. Events shouldn't be
713 		 * destroyed while we're holding the event_mutex
714 		 */
715 		goto out_unlock;
716 	}
717 
718 	/* Add to wait lists if we need to wait. */
719 	for (i = 0; i < num_events; i++)
720 		init_event_waiter_add_to_waitlist(&event_waiters[i]);
721 
722 	mutex_unlock(&p->event_mutex);
723 
724 	while (true) {
725 		if (fatal_signal_pending(current)) {
726 			ret = -EINTR;
727 			break;
728 		}
729 
730 		if (signal_pending(current)) {
731 			/*
732 			 * This is wrong when a nonzero, non-infinite timeout
733 			 * is specified. We need to use
734 			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
735 			 * contains a union with data for each user and it's
736 			 * in generic kernel code that I don't want to
737 			 * touch yet.
738 			 */
739 			ret = -ERESTARTSYS;
740 			break;
741 		}
742 
743 		/* Set task state to interruptible sleep before
744 		 * checking wake-up conditions. A concurrent wake-up
745 		 * will put the task back into runnable state. In that
746 		 * case schedule_timeout will not put the task to
747 		 * sleep and we'll get a chance to re-check the
748 		 * updated conditions almost immediately. Otherwise,
749 		 * this race condition would lead to a soft hang or a
750 		 * very long sleep.
751 		 */
752 		set_current_state(TASK_INTERRUPTIBLE);
753 
754 		*wait_result = test_event_condition(all, num_events,
755 						    event_waiters);
756 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
757 			break;
758 
759 		if (timeout <= 0)
760 			break;
761 
762 		timeout = schedule_timeout(timeout);
763 	}
764 	__set_current_state(TASK_RUNNING);
765 
766 	/* copy_signaled_event_data may sleep. So this has to happen
767 	 * after the task state is set back to RUNNING.
768 	 */
769 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
770 		ret = copy_signaled_event_data(num_events,
771 					       event_waiters, events);
772 
773 	mutex_lock(&p->event_mutex);
774 out_unlock:
775 	free_waiters(num_events, event_waiters);
776 	mutex_unlock(&p->event_mutex);
777 out:
778 	if (ret)
779 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
780 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
781 		ret = -EIO;
782 
783 	return ret;
784 }
785 
kfd_event_mmap(struct kfd_process * p,struct vm_area_struct * vma)786 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
787 {
788 	unsigned long pfn;
789 	struct kfd_signal_page *page;
790 	int ret;
791 
792 	/* check required size doesn't exceed the allocated size */
793 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
794 			get_order(vma->vm_end - vma->vm_start)) {
795 		pr_err("Event page mmap requested illegal size\n");
796 		return -EINVAL;
797 	}
798 
799 	page = p->signal_page;
800 	if (!page) {
801 		/* Probably KFD bug, but mmap is user-accessible. */
802 		pr_debug("Signal page could not be found\n");
803 		return -EINVAL;
804 	}
805 
806 	pfn = __pa(page->kernel_address);
807 	pfn >>= PAGE_SHIFT;
808 
809 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
810 		       | VM_DONTDUMP | VM_PFNMAP;
811 
812 	pr_debug("Mapping signal page\n");
813 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
814 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
815 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
816 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
817 	pr_debug("     size                == 0x%08lX\n",
818 			vma->vm_end - vma->vm_start);
819 
820 	page->user_address = (uint64_t __user *)vma->vm_start;
821 
822 	/* mapping the page to user process */
823 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
824 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
825 	if (!ret)
826 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
827 
828 	return ret;
829 }
830 
831 /*
832  * Assumes that p->event_mutex is held and of course
833  * that p is not going away (current or locked).
834  */
lookup_events_by_type_and_signal(struct kfd_process * p,int type,void * event_data)835 static void lookup_events_by_type_and_signal(struct kfd_process *p,
836 		int type, void *event_data)
837 {
838 	struct kfd_hsa_memory_exception_data *ev_data;
839 	struct kfd_event *ev;
840 	uint32_t id;
841 	bool send_signal = true;
842 
843 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
844 
845 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
846 	idr_for_each_entry_continue(&p->event_idr, ev, id)
847 		if (ev->type == type) {
848 			send_signal = false;
849 			dev_dbg(kfd_device,
850 					"Event found: id %X type %d",
851 					ev->event_id, ev->type);
852 			set_event(ev);
853 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
854 				ev->memory_exception_data = *ev_data;
855 		}
856 
857 	if (type == KFD_EVENT_TYPE_MEMORY) {
858 		dev_warn(kfd_device,
859 			"Sending SIGSEGV to process %d (pasid 0x%x)",
860 				p->lead_thread->pid, p->pasid);
861 		send_sig(SIGSEGV, p->lead_thread, 0);
862 	}
863 
864 	/* Send SIGTERM no event of type "type" has been found*/
865 	if (send_signal) {
866 		if (send_sigterm) {
867 			dev_warn(kfd_device,
868 				"Sending SIGTERM to process %d (pasid 0x%x)",
869 					p->lead_thread->pid, p->pasid);
870 			send_sig(SIGTERM, p->lead_thread, 0);
871 		} else {
872 			dev_err(kfd_device,
873 				"Process %d (pasid 0x%x) got unhandled exception",
874 				p->lead_thread->pid, p->pasid);
875 		}
876 	}
877 }
878 
879 #ifdef KFD_SUPPORT_IOMMU_V2
kfd_signal_iommu_event(struct kfd_dev * dev,unsigned int pasid,unsigned long address,bool is_write_requested,bool is_execute_requested)880 void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
881 		unsigned long address, bool is_write_requested,
882 		bool is_execute_requested)
883 {
884 	struct kfd_hsa_memory_exception_data memory_exception_data;
885 	struct vm_area_struct *vma;
886 
887 	/*
888 	 * Because we are called from arbitrary context (workqueue) as opposed
889 	 * to process context, kfd_process could attempt to exit while we are
890 	 * running so the lookup function increments the process ref count.
891 	 */
892 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
893 	struct mm_struct *mm;
894 
895 	if (!p)
896 		return; /* Presumably process exited. */
897 
898 	/* Take a safe reference to the mm_struct, which may otherwise
899 	 * disappear even while the kfd_process is still referenced.
900 	 */
901 	mm = get_task_mm(p->lead_thread);
902 	if (!mm) {
903 		kfd_unref_process(p);
904 		return; /* Process is exiting */
905 	}
906 
907 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
908 
909 	down_read(&mm->mmap_sem);
910 	vma = find_vma(mm, address);
911 
912 	memory_exception_data.gpu_id = dev->id;
913 	memory_exception_data.va = address;
914 	/* Set failure reason */
915 	memory_exception_data.failure.NotPresent = 1;
916 	memory_exception_data.failure.NoExecute = 0;
917 	memory_exception_data.failure.ReadOnly = 0;
918 	if (vma && address >= vma->vm_start) {
919 		memory_exception_data.failure.NotPresent = 0;
920 
921 		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
922 			memory_exception_data.failure.ReadOnly = 1;
923 		else
924 			memory_exception_data.failure.ReadOnly = 0;
925 
926 		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
927 			memory_exception_data.failure.NoExecute = 1;
928 		else
929 			memory_exception_data.failure.NoExecute = 0;
930 	}
931 
932 	up_read(&mm->mmap_sem);
933 	mmput(mm);
934 
935 	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
936 			memory_exception_data.failure.NotPresent,
937 			memory_exception_data.failure.NoExecute,
938 			memory_exception_data.failure.ReadOnly);
939 
940 	/* Workaround on Raven to not kill the process when memory is freed
941 	 * before IOMMU is able to finish processing all the excessive PPRs
942 	 */
943 	if (dev->device_info->asic_family != CHIP_RAVEN &&
944 	    dev->device_info->asic_family != CHIP_RENOIR) {
945 		mutex_lock(&p->event_mutex);
946 
947 		/* Lookup events by type and signal them */
948 		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
949 				&memory_exception_data);
950 
951 		mutex_unlock(&p->event_mutex);
952 	}
953 
954 	kfd_unref_process(p);
955 }
956 #endif /* KFD_SUPPORT_IOMMU_V2 */
957 
kfd_signal_hw_exception_event(unsigned int pasid)958 void kfd_signal_hw_exception_event(unsigned int pasid)
959 {
960 	/*
961 	 * Because we are called from arbitrary context (workqueue) as opposed
962 	 * to process context, kfd_process could attempt to exit while we are
963 	 * running so the lookup function increments the process ref count.
964 	 */
965 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
966 
967 	if (!p)
968 		return; /* Presumably process exited. */
969 
970 	mutex_lock(&p->event_mutex);
971 
972 	/* Lookup events by type and signal them */
973 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
974 
975 	mutex_unlock(&p->event_mutex);
976 	kfd_unref_process(p);
977 }
978 
kfd_signal_vm_fault_event(struct kfd_dev * dev,unsigned int pasid,struct kfd_vm_fault_info * info)979 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
980 				struct kfd_vm_fault_info *info)
981 {
982 	struct kfd_event *ev;
983 	uint32_t id;
984 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
985 	struct kfd_hsa_memory_exception_data memory_exception_data;
986 
987 	if (!p)
988 		return; /* Presumably process exited. */
989 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
990 	memory_exception_data.gpu_id = dev->id;
991 	memory_exception_data.failure.imprecise = true;
992 	/* Set failure reason */
993 	if (info) {
994 		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
995 		memory_exception_data.failure.NotPresent =
996 			info->prot_valid ? 1 : 0;
997 		memory_exception_data.failure.NoExecute =
998 			info->prot_exec ? 1 : 0;
999 		memory_exception_data.failure.ReadOnly =
1000 			info->prot_write ? 1 : 0;
1001 		memory_exception_data.failure.imprecise = 0;
1002 	}
1003 	mutex_lock(&p->event_mutex);
1004 
1005 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1006 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1007 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1008 			ev->memory_exception_data = memory_exception_data;
1009 			set_event(ev);
1010 		}
1011 
1012 	mutex_unlock(&p->event_mutex);
1013 	kfd_unref_process(p);
1014 }
1015 
kfd_signal_reset_event(struct kfd_dev * dev)1016 void kfd_signal_reset_event(struct kfd_dev *dev)
1017 {
1018 	struct kfd_hsa_hw_exception_data hw_exception_data;
1019 	struct kfd_hsa_memory_exception_data memory_exception_data;
1020 	struct kfd_process *p;
1021 	struct kfd_event *ev;
1022 	unsigned int temp;
1023 	uint32_t id, idx;
1024 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1025 			KFD_HW_EXCEPTION_ECC :
1026 			KFD_HW_EXCEPTION_GPU_HANG;
1027 
1028 	/* Whole gpu reset caused by GPU hang and memory is lost */
1029 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1030 	hw_exception_data.gpu_id = dev->id;
1031 	hw_exception_data.memory_lost = 1;
1032 	hw_exception_data.reset_cause = reset_cause;
1033 
1034 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1035 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1036 	memory_exception_data.gpu_id = dev->id;
1037 	memory_exception_data.failure.imprecise = true;
1038 
1039 	idx = srcu_read_lock(&kfd_processes_srcu);
1040 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1041 		mutex_lock(&p->event_mutex);
1042 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1043 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1044 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1045 				ev->hw_exception_data = hw_exception_data;
1046 				set_event(ev);
1047 			}
1048 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1049 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1050 				ev->memory_exception_data = memory_exception_data;
1051 				set_event(ev);
1052 			}
1053 		}
1054 		mutex_unlock(&p->event_mutex);
1055 	}
1056 	srcu_read_unlock(&kfd_processes_srcu, idx);
1057 }
1058