xref: /openbsd/gnu/usr.bin/binutils/gdb/values.c (revision 63addd46)
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 
3    Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4    1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5    Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40 
41 /* Prototypes for exported functions. */
42 
43 void _initialize_values (void);
44 
45 /* Prototypes for local functions. */
46 
47 static void show_values (char *, int);
48 
49 static void show_convenience (char *, int);
50 
51 
52 /* The value-history records all the values printed
53    by print commands during this session.  Each chunk
54    records 60 consecutive values.  The first chunk on
55    the chain records the most recent values.
56    The total number of values is in value_history_count.  */
57 
58 #define VALUE_HISTORY_CHUNK 60
59 
60 struct value_history_chunk
61   {
62     struct value_history_chunk *next;
63     struct value *values[VALUE_HISTORY_CHUNK];
64   };
65 
66 /* Chain of chunks now in use.  */
67 
68 static struct value_history_chunk *value_history_chain;
69 
70 static int value_history_count;	/* Abs number of last entry stored */
71 
72 /* List of all value objects currently allocated
73    (except for those released by calls to release_value)
74    This is so they can be freed after each command.  */
75 
76 static struct value *all_values;
77 
78 /* Allocate a  value  that has the correct length for type TYPE.  */
79 
80 struct value *
allocate_value(struct type * type)81 allocate_value (struct type *type)
82 {
83   struct value *val;
84   struct type *atype = check_typedef (type);
85 
86   val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87   VALUE_NEXT (val) = all_values;
88   all_values = val;
89   VALUE_TYPE (val) = type;
90   VALUE_ENCLOSING_TYPE (val) = type;
91   VALUE_LVAL (val) = not_lval;
92   VALUE_ADDRESS (val) = 0;
93   VALUE_FRAME_ID (val) = null_frame_id;
94   VALUE_OFFSET (val) = 0;
95   VALUE_BITPOS (val) = 0;
96   VALUE_BITSIZE (val) = 0;
97   VALUE_REGNO (val) = -1;
98   VALUE_LAZY (val) = 0;
99   VALUE_OPTIMIZED_OUT (val) = 0;
100   VALUE_BFD_SECTION (val) = NULL;
101   VALUE_EMBEDDED_OFFSET (val) = 0;
102   VALUE_POINTED_TO_OFFSET (val) = 0;
103   val->modifiable = 1;
104   return val;
105 }
106 
107 /* Allocate a  value  that has the correct length
108    for COUNT repetitions type TYPE.  */
109 
110 struct value *
allocate_repeat_value(struct type * type,int count)111 allocate_repeat_value (struct type *type, int count)
112 {
113   int low_bound = current_language->string_lower_bound;		/* ??? */
114   /* FIXME-type-allocation: need a way to free this type when we are
115      done with it.  */
116   struct type *range_type
117   = create_range_type ((struct type *) NULL, builtin_type_int,
118 		       low_bound, count + low_bound - 1);
119   /* FIXME-type-allocation: need a way to free this type when we are
120      done with it.  */
121   return allocate_value (create_array_type ((struct type *) NULL,
122 					    type, range_type));
123 }
124 
125 /* Return a mark in the value chain.  All values allocated after the
126    mark is obtained (except for those released) are subject to being freed
127    if a subsequent value_free_to_mark is passed the mark.  */
128 struct value *
value_mark(void)129 value_mark (void)
130 {
131   return all_values;
132 }
133 
134 /* Free all values allocated since MARK was obtained by value_mark
135    (except for those released).  */
136 void
value_free_to_mark(struct value * mark)137 value_free_to_mark (struct value *mark)
138 {
139   struct value *val;
140   struct value *next;
141 
142   for (val = all_values; val && val != mark; val = next)
143     {
144       next = VALUE_NEXT (val);
145       value_free (val);
146     }
147   all_values = val;
148 }
149 
150 /* Free all the values that have been allocated (except for those released).
151    Called after each command, successful or not.  */
152 
153 void
free_all_values(void)154 free_all_values (void)
155 {
156   struct value *val;
157   struct value *next;
158 
159   for (val = all_values; val; val = next)
160     {
161       next = VALUE_NEXT (val);
162       value_free (val);
163     }
164 
165   all_values = 0;
166 }
167 
168 /* Remove VAL from the chain all_values
169    so it will not be freed automatically.  */
170 
171 void
release_value(struct value * val)172 release_value (struct value *val)
173 {
174   struct value *v;
175 
176   if (all_values == val)
177     {
178       all_values = val->next;
179       return;
180     }
181 
182   for (v = all_values; v; v = v->next)
183     {
184       if (v->next == val)
185 	{
186 	  v->next = val->next;
187 	  break;
188 	}
189     }
190 }
191 
192 /* Release all values up to mark  */
193 struct value *
value_release_to_mark(struct value * mark)194 value_release_to_mark (struct value *mark)
195 {
196   struct value *val;
197   struct value *next;
198 
199   for (val = next = all_values; next; next = VALUE_NEXT (next))
200     if (VALUE_NEXT (next) == mark)
201       {
202 	all_values = VALUE_NEXT (next);
203 	VALUE_NEXT (next) = 0;
204 	return val;
205       }
206   all_values = 0;
207   return val;
208 }
209 
210 /* Return a copy of the value ARG.
211    It contains the same contents, for same memory address,
212    but it's a different block of storage.  */
213 
214 struct value *
value_copy(struct value * arg)215 value_copy (struct value *arg)
216 {
217   struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
218   struct value *val = allocate_value (encl_type);
219   VALUE_TYPE (val) = VALUE_TYPE (arg);
220   VALUE_LVAL (val) = VALUE_LVAL (arg);
221   VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
222   VALUE_OFFSET (val) = VALUE_OFFSET (arg);
223   VALUE_BITPOS (val) = VALUE_BITPOS (arg);
224   VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
225   VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
226   VALUE_REGNO (val) = VALUE_REGNO (arg);
227   VALUE_LAZY (val) = VALUE_LAZY (arg);
228   VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
229   VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
230   VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
231   VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
232   val->modifiable = arg->modifiable;
233   if (!VALUE_LAZY (val))
234     {
235       memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
236 	      TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
237 
238     }
239   return val;
240 }
241 
242 /* Access to the value history.  */
243 
244 /* Record a new value in the value history.
245    Returns the absolute history index of the entry.
246    Result of -1 indicates the value was not saved; otherwise it is the
247    value history index of this new item.  */
248 
249 int
record_latest_value(struct value * val)250 record_latest_value (struct value *val)
251 {
252   int i;
253 
254   /* We don't want this value to have anything to do with the inferior anymore.
255      In particular, "set $1 = 50" should not affect the variable from which
256      the value was taken, and fast watchpoints should be able to assume that
257      a value on the value history never changes.  */
258   if (VALUE_LAZY (val))
259     value_fetch_lazy (val);
260   /* We preserve VALUE_LVAL so that the user can find out where it was fetched
261      from.  This is a bit dubious, because then *&$1 does not just return $1
262      but the current contents of that location.  c'est la vie...  */
263   val->modifiable = 0;
264   release_value (val);
265 
266   /* Here we treat value_history_count as origin-zero
267      and applying to the value being stored now.  */
268 
269   i = value_history_count % VALUE_HISTORY_CHUNK;
270   if (i == 0)
271     {
272       struct value_history_chunk *new
273       = (struct value_history_chunk *)
274       xmalloc (sizeof (struct value_history_chunk));
275       memset (new->values, 0, sizeof new->values);
276       new->next = value_history_chain;
277       value_history_chain = new;
278     }
279 
280   value_history_chain->values[i] = val;
281 
282   /* Now we regard value_history_count as origin-one
283      and applying to the value just stored.  */
284 
285   return ++value_history_count;
286 }
287 
288 /* Return a copy of the value in the history with sequence number NUM.  */
289 
290 struct value *
access_value_history(int num)291 access_value_history (int num)
292 {
293   struct value_history_chunk *chunk;
294   int i;
295   int absnum = num;
296 
297   if (absnum <= 0)
298     absnum += value_history_count;
299 
300   if (absnum <= 0)
301     {
302       if (num == 0)
303 	error ("The history is empty.");
304       else if (num == 1)
305 	error ("There is only one value in the history.");
306       else
307 	error ("History does not go back to $$%d.", -num);
308     }
309   if (absnum > value_history_count)
310     error ("History has not yet reached $%d.", absnum);
311 
312   absnum--;
313 
314   /* Now absnum is always absolute and origin zero.  */
315 
316   chunk = value_history_chain;
317   for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
318        i > 0; i--)
319     chunk = chunk->next;
320 
321   return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
322 }
323 
324 /* Clear the value history entirely.
325    Must be done when new symbol tables are loaded,
326    because the type pointers become invalid.  */
327 
328 void
clear_value_history(void)329 clear_value_history (void)
330 {
331   struct value_history_chunk *next;
332   int i;
333   struct value *val;
334 
335   while (value_history_chain)
336     {
337       for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
338 	if ((val = value_history_chain->values[i]) != NULL)
339 	  xfree (val);
340       next = value_history_chain->next;
341       xfree (value_history_chain);
342       value_history_chain = next;
343     }
344   value_history_count = 0;
345 }
346 
347 static void
show_values(char * num_exp,int from_tty)348 show_values (char *num_exp, int from_tty)
349 {
350   int i;
351   struct value *val;
352   static int num = 1;
353 
354   if (num_exp)
355     {
356       /* "info history +" should print from the stored position.
357          "info history <exp>" should print around value number <exp>.  */
358       if (num_exp[0] != '+' || num_exp[1] != '\0')
359 	num = parse_and_eval_long (num_exp) - 5;
360     }
361   else
362     {
363       /* "info history" means print the last 10 values.  */
364       num = value_history_count - 9;
365     }
366 
367   if (num <= 0)
368     num = 1;
369 
370   for (i = num; i < num + 10 && i <= value_history_count; i++)
371     {
372       val = access_value_history (i);
373       printf_filtered ("$%d = ", i);
374       value_print (val, gdb_stdout, 0, Val_pretty_default);
375       printf_filtered ("\n");
376     }
377 
378   /* The next "info history +" should start after what we just printed.  */
379   num += 10;
380 
381   /* Hitting just return after this command should do the same thing as
382      "info history +".  If num_exp is null, this is unnecessary, since
383      "info history +" is not useful after "info history".  */
384   if (from_tty && num_exp)
385     {
386       num_exp[0] = '+';
387       num_exp[1] = '\0';
388     }
389 }
390 
391 /* Internal variables.  These are variables within the debugger
392    that hold values assigned by debugger commands.
393    The user refers to them with a '$' prefix
394    that does not appear in the variable names stored internally.  */
395 
396 static struct internalvar *internalvars;
397 
398 /* Look up an internal variable with name NAME.  NAME should not
399    normally include a dollar sign.
400 
401    If the specified internal variable does not exist,
402    one is created, with a void value.  */
403 
404 struct internalvar *
lookup_internalvar(char * name)405 lookup_internalvar (char *name)
406 {
407   struct internalvar *var;
408 
409   for (var = internalvars; var; var = var->next)
410     if (strcmp (var->name, name) == 0)
411       return var;
412 
413   var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
414   var->name = concat (name, NULL);
415   var->value = allocate_value (builtin_type_void);
416   release_value (var->value);
417   var->next = internalvars;
418   internalvars = var;
419   return var;
420 }
421 
422 struct value *
value_of_internalvar(struct internalvar * var)423 value_of_internalvar (struct internalvar *var)
424 {
425   struct value *val;
426 
427   val = value_copy (var->value);
428   if (VALUE_LAZY (val))
429     value_fetch_lazy (val);
430   VALUE_LVAL (val) = lval_internalvar;
431   VALUE_INTERNALVAR (val) = var;
432   return val;
433 }
434 
435 void
set_internalvar_component(struct internalvar * var,int offset,int bitpos,int bitsize,struct value * newval)436 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 			   int bitsize, struct value *newval)
438 {
439   char *addr = VALUE_CONTENTS (var->value) + offset;
440 
441   if (bitsize)
442     modify_field (addr, value_as_long (newval),
443 		  bitpos, bitsize);
444   else
445     memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
446 }
447 
448 void
set_internalvar(struct internalvar * var,struct value * val)449 set_internalvar (struct internalvar *var, struct value *val)
450 {
451   struct value *newval;
452 
453   newval = value_copy (val);
454   newval->modifiable = 1;
455 
456   /* Force the value to be fetched from the target now, to avoid problems
457      later when this internalvar is referenced and the target is gone or
458      has changed.  */
459   if (VALUE_LAZY (newval))
460     value_fetch_lazy (newval);
461 
462   /* Begin code which must not call error().  If var->value points to
463      something free'd, an error() obviously leaves a dangling pointer.
464      But we also get a danling pointer if var->value points to
465      something in the value chain (i.e., before release_value is
466      called), because after the error free_all_values will get called before
467      long.  */
468   xfree (var->value);
469   var->value = newval;
470   release_value (newval);
471   /* End code which must not call error().  */
472 }
473 
474 char *
internalvar_name(struct internalvar * var)475 internalvar_name (struct internalvar *var)
476 {
477   return var->name;
478 }
479 
480 /* Free all internalvars.  Done when new symtabs are loaded,
481    because that makes the values invalid.  */
482 
483 void
clear_internalvars(void)484 clear_internalvars (void)
485 {
486   struct internalvar *var;
487 
488   while (internalvars)
489     {
490       var = internalvars;
491       internalvars = var->next;
492       xfree (var->name);
493       xfree (var->value);
494       xfree (var);
495     }
496 }
497 
498 static void
show_convenience(char * ignore,int from_tty)499 show_convenience (char *ignore, int from_tty)
500 {
501   struct internalvar *var;
502   int varseen = 0;
503 
504   for (var = internalvars; var; var = var->next)
505     {
506       if (!varseen)
507 	{
508 	  varseen = 1;
509 	}
510       printf_filtered ("$%s = ", var->name);
511       value_print (var->value, gdb_stdout, 0, Val_pretty_default);
512       printf_filtered ("\n");
513     }
514   if (!varseen)
515     printf_unfiltered ("No debugger convenience variables now defined.\n\
516 Convenience variables have names starting with \"$\";\n\
517 use \"set\" as in \"set $foo = 5\" to define them.\n");
518 }
519 
520 /* Extract a value as a C number (either long or double).
521    Knows how to convert fixed values to double, or
522    floating values to long.
523    Does not deallocate the value.  */
524 
525 LONGEST
value_as_long(struct value * val)526 value_as_long (struct value *val)
527 {
528   /* This coerces arrays and functions, which is necessary (e.g.
529      in disassemble_command).  It also dereferences references, which
530      I suspect is the most logical thing to do.  */
531   COERCE_ARRAY (val);
532   return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534 
535 DOUBLEST
value_as_double(struct value * val)536 value_as_double (struct value *val)
537 {
538   DOUBLEST foo;
539   int inv;
540 
541   foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
542   if (inv)
543     error ("Invalid floating value found in program.");
544   return foo;
545 }
546 /* Extract a value as a C pointer. Does not deallocate the value.
547    Note that val's type may not actually be a pointer; value_as_long
548    handles all the cases.  */
549 CORE_ADDR
value_as_address(struct value * val)550 value_as_address (struct value *val)
551 {
552   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
553      whether we want this to be true eventually.  */
554 #if 0
555   /* ADDR_BITS_REMOVE is wrong if we are being called for a
556      non-address (e.g. argument to "signal", "info break", etc.), or
557      for pointers to char, in which the low bits *are* significant.  */
558   return ADDR_BITS_REMOVE (value_as_long (val));
559 #else
560 
561   /* There are several targets (IA-64, PowerPC, and others) which
562      don't represent pointers to functions as simply the address of
563      the function's entry point.  For example, on the IA-64, a
564      function pointer points to a two-word descriptor, generated by
565      the linker, which contains the function's entry point, and the
566      value the IA-64 "global pointer" register should have --- to
567      support position-independent code.  The linker generates
568      descriptors only for those functions whose addresses are taken.
569 
570      On such targets, it's difficult for GDB to convert an arbitrary
571      function address into a function pointer; it has to either find
572      an existing descriptor for that function, or call malloc and
573      build its own.  On some targets, it is impossible for GDB to
574      build a descriptor at all: the descriptor must contain a jump
575      instruction; data memory cannot be executed; and code memory
576      cannot be modified.
577 
578      Upon entry to this function, if VAL is a value of type `function'
579      (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
580      VALUE_ADDRESS (val) is the address of the function.  This is what
581      you'll get if you evaluate an expression like `main'.  The call
582      to COERCE_ARRAY below actually does all the usual unary
583      conversions, which includes converting values of type `function'
584      to `pointer to function'.  This is the challenging conversion
585      discussed above.  Then, `unpack_long' will convert that pointer
586      back into an address.
587 
588      So, suppose the user types `disassemble foo' on an architecture
589      with a strange function pointer representation, on which GDB
590      cannot build its own descriptors, and suppose further that `foo'
591      has no linker-built descriptor.  The address->pointer conversion
592      will signal an error and prevent the command from running, even
593      though the next step would have been to convert the pointer
594      directly back into the same address.
595 
596      The following shortcut avoids this whole mess.  If VAL is a
597      function, just return its address directly.  */
598   if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
599       || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
600     return VALUE_ADDRESS (val);
601 
602   COERCE_ARRAY (val);
603 
604   /* Some architectures (e.g. Harvard), map instruction and data
605      addresses onto a single large unified address space.  For
606      instance: An architecture may consider a large integer in the
607      range 0x10000000 .. 0x1000ffff to already represent a data
608      addresses (hence not need a pointer to address conversion) while
609      a small integer would still need to be converted integer to
610      pointer to address.  Just assume such architectures handle all
611      integer conversions in a single function.  */
612 
613   /* JimB writes:
614 
615      I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
616      must admonish GDB hackers to make sure its behavior matches the
617      compiler's, whenever possible.
618 
619      In general, I think GDB should evaluate expressions the same way
620      the compiler does.  When the user copies an expression out of
621      their source code and hands it to a `print' command, they should
622      get the same value the compiler would have computed.  Any
623      deviation from this rule can cause major confusion and annoyance,
624      and needs to be justified carefully.  In other words, GDB doesn't
625      really have the freedom to do these conversions in clever and
626      useful ways.
627 
628      AndrewC pointed out that users aren't complaining about how GDB
629      casts integers to pointers; they are complaining that they can't
630      take an address from a disassembly listing and give it to `x/i'.
631      This is certainly important.
632 
633      Adding an architecture method like INTEGER_TO_ADDRESS certainly
634      makes it possible for GDB to "get it right" in all circumstances
635      --- the target has complete control over how things get done, so
636      people can Do The Right Thing for their target without breaking
637      anyone else.  The standard doesn't specify how integers get
638      converted to pointers; usually, the ABI doesn't either, but
639      ABI-specific code is a more reasonable place to handle it.  */
640 
641   if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
642       && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
643       && INTEGER_TO_ADDRESS_P ())
644     return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
645 
646   return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
647 #endif
648 }
649 
650 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
651    as a long, or as a double, assuming the raw data is described
652    by type TYPE.  Knows how to convert different sizes of values
653    and can convert between fixed and floating point.  We don't assume
654    any alignment for the raw data.  Return value is in host byte order.
655 
656    If you want functions and arrays to be coerced to pointers, and
657    references to be dereferenced, call value_as_long() instead.
658 
659    C++: It is assumed that the front-end has taken care of
660    all matters concerning pointers to members.  A pointer
661    to member which reaches here is considered to be equivalent
662    to an INT (or some size).  After all, it is only an offset.  */
663 
664 LONGEST
unpack_long(struct type * type,const char * valaddr)665 unpack_long (struct type *type, const char *valaddr)
666 {
667   enum type_code code = TYPE_CODE (type);
668   int len = TYPE_LENGTH (type);
669   int nosign = TYPE_UNSIGNED (type);
670 
671   if (current_language->la_language == language_scm
672       && is_scmvalue_type (type))
673     return scm_unpack (type, valaddr, TYPE_CODE_INT);
674 
675   switch (code)
676     {
677     case TYPE_CODE_TYPEDEF:
678       return unpack_long (check_typedef (type), valaddr);
679     case TYPE_CODE_ENUM:
680     case TYPE_CODE_BOOL:
681     case TYPE_CODE_INT:
682     case TYPE_CODE_CHAR:
683     case TYPE_CODE_RANGE:
684       if (nosign)
685 	return extract_unsigned_integer (valaddr, len);
686       else
687 	return extract_signed_integer (valaddr, len);
688 
689     case TYPE_CODE_FLT:
690       return extract_typed_floating (valaddr, type);
691 
692     case TYPE_CODE_PTR:
693     case TYPE_CODE_REF:
694       /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
695          whether we want this to be true eventually.  */
696       return extract_typed_address (valaddr, type);
697 
698     case TYPE_CODE_MEMBER:
699       error ("not implemented: member types in unpack_long");
700 
701     default:
702       error ("Value can't be converted to integer.");
703     }
704   return 0;			/* Placate lint.  */
705 }
706 
707 /* Return a double value from the specified type and address.
708    INVP points to an int which is set to 0 for valid value,
709    1 for invalid value (bad float format).  In either case,
710    the returned double is OK to use.  Argument is in target
711    format, result is in host format.  */
712 
713 DOUBLEST
unpack_double(struct type * type,const char * valaddr,int * invp)714 unpack_double (struct type *type, const char *valaddr, int *invp)
715 {
716   enum type_code code;
717   int len;
718   int nosign;
719 
720   *invp = 0;			/* Assume valid.   */
721   CHECK_TYPEDEF (type);
722   code = TYPE_CODE (type);
723   len = TYPE_LENGTH (type);
724   nosign = TYPE_UNSIGNED (type);
725   if (code == TYPE_CODE_FLT)
726     {
727       /* NOTE: cagney/2002-02-19: There was a test here to see if the
728 	 floating-point value was valid (using the macro
729 	 INVALID_FLOAT).  That test/macro have been removed.
730 
731 	 It turns out that only the VAX defined this macro and then
732 	 only in a non-portable way.  Fixing the portability problem
733 	 wouldn't help since the VAX floating-point code is also badly
734 	 bit-rotten.  The target needs to add definitions for the
735 	 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
736 	 exactly describe the target floating-point format.  The
737 	 problem here is that the corresponding floatformat_vax_f and
738 	 floatformat_vax_d values these methods should be set to are
739 	 also not defined either.  Oops!
740 
741          Hopefully someone will add both the missing floatformat
742          definitions and the new cases for floatformat_is_valid ().  */
743 
744       if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
745 	{
746 	  *invp = 1;
747 	  return 0.0;
748 	}
749 
750       return extract_typed_floating (valaddr, type);
751     }
752   else if (nosign)
753     {
754       /* Unsigned -- be sure we compensate for signed LONGEST.  */
755       return (ULONGEST) unpack_long (type, valaddr);
756     }
757   else
758     {
759       /* Signed -- we are OK with unpack_long.  */
760       return unpack_long (type, valaddr);
761     }
762 }
763 
764 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
765    as a CORE_ADDR, assuming the raw data is described by type TYPE.
766    We don't assume any alignment for the raw data.  Return value is in
767    host byte order.
768 
769    If you want functions and arrays to be coerced to pointers, and
770    references to be dereferenced, call value_as_address() instead.
771 
772    C++: It is assumed that the front-end has taken care of
773    all matters concerning pointers to members.  A pointer
774    to member which reaches here is considered to be equivalent
775    to an INT (or some size).  After all, it is only an offset.  */
776 
777 CORE_ADDR
unpack_pointer(struct type * type,const char * valaddr)778 unpack_pointer (struct type *type, const char *valaddr)
779 {
780   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
781      whether we want this to be true eventually.  */
782   return unpack_long (type, valaddr);
783 }
784 
785 
786 /* Get the value of the FIELDN'th field (which must be static) of
787    TYPE.  Return NULL if the field doesn't exist or has been
788    optimized out. */
789 
790 struct value *
value_static_field(struct type * type,int fieldno)791 value_static_field (struct type *type, int fieldno)
792 {
793   struct value *retval;
794 
795   if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
796     {
797       retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
798 			 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno),
799 			 NULL);
800     }
801   else
802     {
803       char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
804       struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
805       if (sym == NULL)
806 	{
807 	  /* With some compilers, e.g. HP aCC, static data members are reported
808 	     as non-debuggable symbols */
809 	  struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
810 	  if (!msym)
811 	    return NULL;
812 	  else
813 	    {
814 	      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
815 				 SYMBOL_VALUE_ADDRESS (msym),
816 				 SYMBOL_BFD_SECTION (msym));
817 	    }
818 	}
819       else
820 	{
821 	  /* SYM should never have a SYMBOL_CLASS which will require
822 	     read_var_value to use the FRAME parameter.  */
823 	  if (symbol_read_needs_frame (sym))
824 	    warning ("static field's value depends on the current "
825 		     "frame - bad debug info?");
826 	  retval = read_var_value (sym, NULL);
827  	}
828       if (retval && VALUE_LVAL (retval) == lval_memory)
829 	SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
830 			    VALUE_ADDRESS (retval));
831     }
832   return retval;
833 }
834 
835 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
836    You have to be careful here, since the size of the data area for the value
837    is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
838    than the old enclosing type, you have to allocate more space for the data.
839    The return value is a pointer to the new version of this value structure. */
840 
841 struct value *
value_change_enclosing_type(struct value * val,struct type * new_encl_type)842 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
843 {
844   if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
845     {
846       VALUE_ENCLOSING_TYPE (val) = new_encl_type;
847       return val;
848     }
849   else
850     {
851       struct value *new_val;
852       struct value *prev;
853 
854       new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
855 
856       VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
857 
858       /* We have to make sure this ends up in the same place in the value
859 	 chain as the original copy, so it's clean-up behavior is the same.
860 	 If the value has been released, this is a waste of time, but there
861 	 is no way to tell that in advance, so... */
862 
863       if (val != all_values)
864 	{
865 	  for (prev = all_values; prev != NULL; prev = prev->next)
866 	    {
867 	      if (prev->next == val)
868 		{
869 		  prev->next = new_val;
870 		  break;
871 		}
872 	    }
873 	}
874 
875       return new_val;
876     }
877 }
878 
879 /* Given a value ARG1 (offset by OFFSET bytes)
880    of a struct or union type ARG_TYPE,
881    extract and return the value of one of its (non-static) fields.
882    FIELDNO says which field. */
883 
884 struct value *
value_primitive_field(struct value * arg1,int offset,int fieldno,struct type * arg_type)885 value_primitive_field (struct value *arg1, int offset,
886 		       int fieldno, struct type *arg_type)
887 {
888   struct value *v;
889   struct type *type;
890 
891   CHECK_TYPEDEF (arg_type);
892   type = TYPE_FIELD_TYPE (arg_type, fieldno);
893 
894   /* Handle packed fields */
895 
896   if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
897     {
898       v = value_from_longest (type,
899 			      unpack_field_as_long (arg_type,
900 						    VALUE_CONTENTS (arg1)
901 						    + offset,
902 						    fieldno));
903       VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
904       VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
905       VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
906 	+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
907     }
908   else if (fieldno < TYPE_N_BASECLASSES (arg_type))
909     {
910       /* This field is actually a base subobject, so preserve the
911          entire object's contents for later references to virtual
912          bases, etc.  */
913       v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
914       VALUE_TYPE (v) = type;
915       if (VALUE_LAZY (arg1))
916 	VALUE_LAZY (v) = 1;
917       else
918 	memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
919 		TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
920       VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
921       VALUE_EMBEDDED_OFFSET (v)
922 	= offset +
923 	VALUE_EMBEDDED_OFFSET (arg1) +
924 	TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
925     }
926   else
927     {
928       /* Plain old data member */
929       offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
930       v = allocate_value (type);
931       if (VALUE_LAZY (arg1))
932 	VALUE_LAZY (v) = 1;
933       else
934 	memcpy (VALUE_CONTENTS_RAW (v),
935 		VALUE_CONTENTS_RAW (arg1) + offset,
936 		TYPE_LENGTH (type));
937       VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
938 			 + VALUE_EMBEDDED_OFFSET (arg1);
939     }
940   VALUE_LVAL (v) = VALUE_LVAL (arg1);
941   if (VALUE_LVAL (arg1) == lval_internalvar)
942     VALUE_LVAL (v) = lval_internalvar_component;
943   VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
944   VALUE_REGNO (v) = VALUE_REGNO (arg1);
945 /*  VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
946    + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
947   return v;
948 }
949 
950 /* Given a value ARG1 of a struct or union type,
951    extract and return the value of one of its (non-static) fields.
952    FIELDNO says which field. */
953 
954 struct value *
value_field(struct value * arg1,int fieldno)955 value_field (struct value *arg1, int fieldno)
956 {
957   return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
958 }
959 
960 /* Return a non-virtual function as a value.
961    F is the list of member functions which contains the desired method.
962    J is an index into F which provides the desired method.
963 
964    We only use the symbol for its address, so be happy with either a
965    full symbol or a minimal symbol.
966  */
967 
968 struct value *
value_fn_field(struct value ** arg1p,struct fn_field * f,int j,struct type * type,int offset)969 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
970 		int offset)
971 {
972   struct value *v;
973   struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
974   char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
975   struct symbol *sym;
976   struct minimal_symbol *msym;
977 
978   sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
979   if (sym != NULL)
980     {
981       msym = NULL;
982     }
983   else
984     {
985       gdb_assert (sym == NULL);
986       msym = lookup_minimal_symbol (physname, NULL, NULL);
987       if (msym == NULL)
988 	return NULL;
989     }
990 
991   v = allocate_value (ftype);
992   if (sym)
993     {
994       VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
995     }
996   else
997     {
998       VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
999     }
1000 
1001   if (arg1p)
1002     {
1003       if (type != VALUE_TYPE (*arg1p))
1004 	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
1005 					value_addr (*arg1p)));
1006 
1007       /* Move the `this' pointer according to the offset.
1008          VALUE_OFFSET (*arg1p) += offset;
1009        */
1010     }
1011 
1012   return v;
1013 }
1014 
1015 
1016 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1017    VALADDR.
1018 
1019    Extracting bits depends on endianness of the machine.  Compute the
1020    number of least significant bits to discard.  For big endian machines,
1021    we compute the total number of bits in the anonymous object, subtract
1022    off the bit count from the MSB of the object to the MSB of the
1023    bitfield, then the size of the bitfield, which leaves the LSB discard
1024    count.  For little endian machines, the discard count is simply the
1025    number of bits from the LSB of the anonymous object to the LSB of the
1026    bitfield.
1027 
1028    If the field is signed, we also do sign extension. */
1029 
1030 LONGEST
unpack_field_as_long(struct type * type,const char * valaddr,int fieldno)1031 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1032 {
1033   ULONGEST val;
1034   ULONGEST valmask;
1035   int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1036   int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1037   int lsbcount;
1038   struct type *field_type;
1039 
1040   val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1041   field_type = TYPE_FIELD_TYPE (type, fieldno);
1042   CHECK_TYPEDEF (field_type);
1043 
1044   /* Extract bits.  See comment above. */
1045 
1046   if (BITS_BIG_ENDIAN)
1047     lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1048   else
1049     lsbcount = (bitpos % 8);
1050   val >>= lsbcount;
1051 
1052   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1053      If the field is signed, and is negative, then sign extend. */
1054 
1055   if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1056     {
1057       valmask = (((ULONGEST) 1) << bitsize) - 1;
1058       val &= valmask;
1059       if (!TYPE_UNSIGNED (field_type))
1060 	{
1061 	  if (val & (valmask ^ (valmask >> 1)))
1062 	    {
1063 	      val |= ~valmask;
1064 	    }
1065 	}
1066     }
1067   return (val);
1068 }
1069 
1070 /* Modify the value of a bitfield.  ADDR points to a block of memory in
1071    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
1072    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
1073    indicate which bits (in target bit order) comprise the bitfield.  */
1074 
1075 void
modify_field(char * addr,LONGEST fieldval,int bitpos,int bitsize)1076 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1077 {
1078   LONGEST oword;
1079 
1080   /* If a negative fieldval fits in the field in question, chop
1081      off the sign extension bits.  */
1082   if (bitsize < (8 * (int) sizeof (fieldval))
1083       && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1084     fieldval = fieldval & ((1 << bitsize) - 1);
1085 
1086   /* Warn if value is too big to fit in the field in question.  */
1087   if (bitsize < (8 * (int) sizeof (fieldval))
1088       && 0 != (fieldval & ~((1 << bitsize) - 1)))
1089     {
1090       /* FIXME: would like to include fieldval in the message, but
1091          we don't have a sprintf_longest.  */
1092       warning ("Value does not fit in %d bits.", bitsize);
1093 
1094       /* Truncate it, otherwise adjoining fields may be corrupted.  */
1095       fieldval = fieldval & ((1 << bitsize) - 1);
1096     }
1097 
1098   oword = extract_signed_integer (addr, sizeof oword);
1099 
1100   /* Shifting for bit field depends on endianness of the target machine.  */
1101   if (BITS_BIG_ENDIAN)
1102     bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1103 
1104   /* Mask out old value, while avoiding shifts >= size of oword */
1105   if (bitsize < 8 * (int) sizeof (oword))
1106     oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1107   else
1108     oword &= ~((~(ULONGEST) 0) << bitpos);
1109   oword |= fieldval << bitpos;
1110 
1111   store_signed_integer (addr, sizeof oword, oword);
1112 }
1113 
1114 /* Convert C numbers into newly allocated values */
1115 
1116 struct value *
value_from_longest(struct type * type,LONGEST num)1117 value_from_longest (struct type *type, LONGEST num)
1118 {
1119   struct value *val = allocate_value (type);
1120   enum type_code code;
1121   int len;
1122 retry:
1123   code = TYPE_CODE (type);
1124   len = TYPE_LENGTH (type);
1125 
1126   switch (code)
1127     {
1128     case TYPE_CODE_TYPEDEF:
1129       type = check_typedef (type);
1130       goto retry;
1131     case TYPE_CODE_INT:
1132     case TYPE_CODE_CHAR:
1133     case TYPE_CODE_ENUM:
1134     case TYPE_CODE_BOOL:
1135     case TYPE_CODE_RANGE:
1136       store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1137       break;
1138 
1139     case TYPE_CODE_REF:
1140     case TYPE_CODE_PTR:
1141       store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1142       break;
1143 
1144     default:
1145       error ("Unexpected type (%d) encountered for integer constant.", code);
1146     }
1147   return val;
1148 }
1149 
1150 
1151 /* Create a value representing a pointer of type TYPE to the address
1152    ADDR.  */
1153 struct value *
value_from_pointer(struct type * type,CORE_ADDR addr)1154 value_from_pointer (struct type *type, CORE_ADDR addr)
1155 {
1156   struct value *val = allocate_value (type);
1157   store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1158   return val;
1159 }
1160 
1161 
1162 /* Create a value for a string constant to be stored locally
1163    (not in the inferior's memory space, but in GDB memory).
1164    This is analogous to value_from_longest, which also does not
1165    use inferior memory.  String shall NOT contain embedded nulls.  */
1166 
1167 struct value *
value_from_string(char * ptr)1168 value_from_string (char *ptr)
1169 {
1170   struct value *val;
1171   int len = strlen (ptr);
1172   int lowbound = current_language->string_lower_bound;
1173   struct type *string_char_type;
1174   struct type *rangetype;
1175   struct type *stringtype;
1176 
1177   rangetype = create_range_type ((struct type *) NULL,
1178 				 builtin_type_int,
1179 				 lowbound, len + lowbound - 1);
1180   string_char_type = language_string_char_type (current_language,
1181 						current_gdbarch);
1182   stringtype = create_array_type ((struct type *) NULL,
1183 				  string_char_type,
1184 				  rangetype);
1185   val = allocate_value (stringtype);
1186   memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1187   return val;
1188 }
1189 
1190 struct value *
value_from_double(struct type * type,DOUBLEST num)1191 value_from_double (struct type *type, DOUBLEST num)
1192 {
1193   struct value *val = allocate_value (type);
1194   struct type *base_type = check_typedef (type);
1195   enum type_code code = TYPE_CODE (base_type);
1196   int len = TYPE_LENGTH (base_type);
1197 
1198   if (code == TYPE_CODE_FLT)
1199     {
1200       store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1201     }
1202   else
1203     error ("Unexpected type encountered for floating constant.");
1204 
1205   return val;
1206 }
1207 
1208 
1209 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1210    EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc and TYPE
1211    is the type (which is known to be struct, union or array).
1212 
1213    On most machines, the struct convention is used unless we are
1214    using gcc and the type is of a special size.  */
1215 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1216    native compiler.  GCC 2.3.3 was the last release that did it the
1217    old way.  Since gcc2_compiled was not changed, we have no
1218    way to correctly win in all cases, so we just do the right thing
1219    for gcc1 and for gcc2 after this change.  Thus it loses for gcc
1220    2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
1221    would cause more chaos than dealing with some struct returns being
1222    handled wrong.  */
1223 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p".  GCC 1.x is
1224    dead.  */
1225 
1226 int
generic_use_struct_convention(int gcc_p,struct type * value_type)1227 generic_use_struct_convention (int gcc_p, struct type *value_type)
1228 {
1229   return !(TYPE_LENGTH (value_type) == 1
1230 	   || TYPE_LENGTH (value_type) == 2
1231 	   || TYPE_LENGTH (value_type) == 4
1232 	   || TYPE_LENGTH (value_type) == 8);
1233 }
1234 
1235 /* Return true if the function returning the specified type is using
1236    the convention of returning structures in memory (passing in the
1237    address as a hidden first parameter).  GCC_P is nonzero if compiled
1238    with GCC.  */
1239 
1240 int
using_struct_return(struct type * value_type,int gcc_p)1241 using_struct_return (struct type *value_type, int gcc_p)
1242 {
1243   enum type_code code = TYPE_CODE (value_type);
1244 
1245   if (code == TYPE_CODE_ERROR)
1246     error ("Function return type unknown.");
1247 
1248   if (code == TYPE_CODE_VOID)
1249     /* A void return value is never in memory.  See also corresponding
1250        code in "print_return_value".  */
1251     return 0;
1252 
1253   /* Probe the architecture for the return-value convention.  */
1254   return (gdbarch_return_value (current_gdbarch, value_type,
1255 				NULL, NULL, NULL)
1256 	  != RETURN_VALUE_REGISTER_CONVENTION);
1257 }
1258 
1259 void
_initialize_values(void)1260 _initialize_values (void)
1261 {
1262   add_cmd ("convenience", no_class, show_convenience,
1263 	   "Debugger convenience (\"$foo\") variables.\n\
1264 These variables are created when you assign them values;\n\
1265 thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\n\
1266 A few convenience variables are given values automatically:\n\
1267 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1268 \"$__\" holds the contents of the last address examined with \"x\".",
1269 	   &showlist);
1270 
1271   add_cmd ("values", no_class, show_values,
1272 	   "Elements of value history around item number IDX (or last ten).",
1273 	   &showlist);
1274 }
1275