xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision aca928a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright (c) 2021, Klara Inc.
32  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_raidz.h>
62 #include <sys/zvol.h>
63 #include <sys/zfs_ratelimit.h>
64 #include "zfs_prop.h"
65 
66 /*
67  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
68  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69  * part of the spa_embedded_log_class.  The metaslab with the most free space
70  * in each vdev is selected for this purpose when the pool is opened (or a
71  * vdev is added).  See vdev_metaslab_init().
72  *
73  * Log blocks can be allocated from the following locations.  Each one is tried
74  * in order until the allocation succeeds:
75  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76  * 2. embedded slog metaslabs (spa_embedded_log_class)
77  * 3. other metaslabs in normal vdevs (spa_normal_class)
78  *
79  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80  * than this number of metaslabs in the vdev.  This ensures that we don't set
81  * aside an unreasonable amount of space for the ZIL.  If set to less than
82  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84  */
85 static uint_t zfs_embedded_slog_min_ms = 64;
86 
87 /* default target for number of metaslabs per top-level vdev */
88 static uint_t zfs_vdev_default_ms_count = 200;
89 
90 /* minimum number of metaslabs per top-level vdev */
91 static uint_t zfs_vdev_min_ms_count = 16;
92 
93 /* practical upper limit of total metaslabs per top-level vdev */
94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
95 
96 /* lower limit for metaslab size (512M) */
97 static uint_t zfs_vdev_default_ms_shift = 29;
98 
99 /* upper limit for metaslab size (16G) */
100 static uint_t zfs_vdev_max_ms_shift = 34;
101 
102 int vdev_validate_skip = B_FALSE;
103 
104 /*
105  * Since the DTL space map of a vdev is not expected to have a lot of
106  * entries, we default its block size to 4K.
107  */
108 int zfs_vdev_dtl_sm_blksz = (1 << 12);
109 
110 /*
111  * Rate limit slow IO (delay) events to this many per second.
112  */
113 static unsigned int zfs_slow_io_events_per_second = 20;
114 
115 /*
116  * Rate limit deadman "hung IO" events to this many per second.
117  */
118 static unsigned int zfs_deadman_events_per_second = 1;
119 
120 /*
121  * Rate limit checksum events after this many checksum errors per second.
122  */
123 static unsigned int zfs_checksum_events_per_second = 20;
124 
125 /*
126  * Ignore errors during scrub/resilver.  Allows to work around resilver
127  * upon import when there are pool errors.
128  */
129 static int zfs_scan_ignore_errors = 0;
130 
131 /*
132  * vdev-wide space maps that have lots of entries written to them at
133  * the end of each transaction can benefit from a higher I/O bandwidth
134  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
135  */
136 int zfs_vdev_standard_sm_blksz = (1 << 17);
137 
138 /*
139  * Tunable parameter for debugging or performance analysis. Setting this
140  * will cause pool corruption on power loss if a volatile out-of-order
141  * write cache is enabled.
142  */
143 int zfs_nocacheflush = 0;
144 
145 /*
146  * Maximum and minimum ashift values that can be automatically set based on
147  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
148  * is higher than the maximum value, it is intentionally limited here to not
149  * excessively impact pool space efficiency.  Higher ashift values may still
150  * be forced by vdev logical ashift or by user via ashift property, but won't
151  * be set automatically as a performance optimization.
152  */
153 uint_t zfs_vdev_max_auto_ashift = 14;
154 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
155 
156 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)157 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
158 {
159 	va_list adx;
160 	char buf[256];
161 
162 	va_start(adx, fmt);
163 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
164 	va_end(adx);
165 
166 	if (vd->vdev_path != NULL) {
167 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
168 		    vd->vdev_path, buf);
169 	} else {
170 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
171 		    vd->vdev_ops->vdev_op_type,
172 		    (u_longlong_t)vd->vdev_id,
173 		    (u_longlong_t)vd->vdev_guid, buf);
174 	}
175 }
176 
177 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)178 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
179 {
180 	char state[20];
181 
182 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
183 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
184 		    (u_longlong_t)vd->vdev_id,
185 		    vd->vdev_ops->vdev_op_type);
186 		return;
187 	}
188 
189 	switch (vd->vdev_state) {
190 	case VDEV_STATE_UNKNOWN:
191 		(void) snprintf(state, sizeof (state), "unknown");
192 		break;
193 	case VDEV_STATE_CLOSED:
194 		(void) snprintf(state, sizeof (state), "closed");
195 		break;
196 	case VDEV_STATE_OFFLINE:
197 		(void) snprintf(state, sizeof (state), "offline");
198 		break;
199 	case VDEV_STATE_REMOVED:
200 		(void) snprintf(state, sizeof (state), "removed");
201 		break;
202 	case VDEV_STATE_CANT_OPEN:
203 		(void) snprintf(state, sizeof (state), "can't open");
204 		break;
205 	case VDEV_STATE_FAULTED:
206 		(void) snprintf(state, sizeof (state), "faulted");
207 		break;
208 	case VDEV_STATE_DEGRADED:
209 		(void) snprintf(state, sizeof (state), "degraded");
210 		break;
211 	case VDEV_STATE_HEALTHY:
212 		(void) snprintf(state, sizeof (state), "healthy");
213 		break;
214 	default:
215 		(void) snprintf(state, sizeof (state), "<state %u>",
216 		    (uint_t)vd->vdev_state);
217 	}
218 
219 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
220 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
221 	    vd->vdev_islog ? " (log)" : "",
222 	    (u_longlong_t)vd->vdev_guid,
223 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
224 
225 	for (uint64_t i = 0; i < vd->vdev_children; i++)
226 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
227 }
228 
229 /*
230  * Virtual device management.
231  */
232 
233 static vdev_ops_t *const vdev_ops_table[] = {
234 	&vdev_root_ops,
235 	&vdev_raidz_ops,
236 	&vdev_draid_ops,
237 	&vdev_draid_spare_ops,
238 	&vdev_mirror_ops,
239 	&vdev_replacing_ops,
240 	&vdev_spare_ops,
241 	&vdev_disk_ops,
242 	&vdev_file_ops,
243 	&vdev_missing_ops,
244 	&vdev_hole_ops,
245 	&vdev_indirect_ops,
246 	NULL
247 };
248 
249 /*
250  * Given a vdev type, return the appropriate ops vector.
251  */
252 static vdev_ops_t *
vdev_getops(const char * type)253 vdev_getops(const char *type)
254 {
255 	vdev_ops_t *ops, *const *opspp;
256 
257 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
258 		if (strcmp(ops->vdev_op_type, type) == 0)
259 			break;
260 
261 	return (ops);
262 }
263 
264 /*
265  * Given a vdev and a metaslab class, find which metaslab group we're
266  * interested in. All vdevs may belong to two different metaslab classes.
267  * Dedicated slog devices use only the primary metaslab group, rather than a
268  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
269  */
270 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)271 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
272 {
273 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
274 	    vd->vdev_log_mg != NULL)
275 		return (vd->vdev_log_mg);
276 	else
277 		return (vd->vdev_mg);
278 }
279 
280 void
vdev_default_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)281 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
282     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
283 {
284 	(void) vd, (void) remain_rs;
285 
286 	physical_rs->rs_start = logical_rs->rs_start;
287 	physical_rs->rs_end = logical_rs->rs_end;
288 }
289 
290 /*
291  * Derive the enumerated allocation bias from string input.
292  * String origin is either the per-vdev zap or zpool(8).
293  */
294 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)295 vdev_derive_alloc_bias(const char *bias)
296 {
297 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
298 
299 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
300 		alloc_bias = VDEV_BIAS_LOG;
301 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
302 		alloc_bias = VDEV_BIAS_SPECIAL;
303 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
304 		alloc_bias = VDEV_BIAS_DEDUP;
305 
306 	return (alloc_bias);
307 }
308 
309 /*
310  * Default asize function: return the MAX of psize with the asize of
311  * all children.  This is what's used by anything other than RAID-Z.
312  */
313 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)314 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
315 {
316 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
317 	uint64_t csize;
318 
319 	for (int c = 0; c < vd->vdev_children; c++) {
320 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
321 		asize = MAX(asize, csize);
322 	}
323 
324 	return (asize);
325 }
326 
327 uint64_t
vdev_default_min_asize(vdev_t * vd)328 vdev_default_min_asize(vdev_t *vd)
329 {
330 	return (vd->vdev_min_asize);
331 }
332 
333 /*
334  * Get the minimum allocatable size. We define the allocatable size as
335  * the vdev's asize rounded to the nearest metaslab. This allows us to
336  * replace or attach devices which don't have the same physical size but
337  * can still satisfy the same number of allocations.
338  */
339 uint64_t
vdev_get_min_asize(vdev_t * vd)340 vdev_get_min_asize(vdev_t *vd)
341 {
342 	vdev_t *pvd = vd->vdev_parent;
343 
344 	/*
345 	 * If our parent is NULL (inactive spare or cache) or is the root,
346 	 * just return our own asize.
347 	 */
348 	if (pvd == NULL)
349 		return (vd->vdev_asize);
350 
351 	/*
352 	 * The top-level vdev just returns the allocatable size rounded
353 	 * to the nearest metaslab.
354 	 */
355 	if (vd == vd->vdev_top)
356 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
357 		    uint64_t));
358 
359 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
360 }
361 
362 void
vdev_set_min_asize(vdev_t * vd)363 vdev_set_min_asize(vdev_t *vd)
364 {
365 	vd->vdev_min_asize = vdev_get_min_asize(vd);
366 
367 	for (int c = 0; c < vd->vdev_children; c++)
368 		vdev_set_min_asize(vd->vdev_child[c]);
369 }
370 
371 /*
372  * Get the minimal allocation size for the top-level vdev.
373  */
374 uint64_t
vdev_get_min_alloc(vdev_t * vd)375 vdev_get_min_alloc(vdev_t *vd)
376 {
377 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
378 
379 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
380 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
381 
382 	return (min_alloc);
383 }
384 
385 /*
386  * Get the parity level for a top-level vdev.
387  */
388 uint64_t
vdev_get_nparity(vdev_t * vd)389 vdev_get_nparity(vdev_t *vd)
390 {
391 	uint64_t nparity = 0;
392 
393 	if (vd->vdev_ops->vdev_op_nparity != NULL)
394 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
395 
396 	return (nparity);
397 }
398 
399 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)400 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
401 {
402 	spa_t *spa = vd->vdev_spa;
403 	objset_t *mos = spa->spa_meta_objset;
404 	uint64_t objid;
405 	int err;
406 
407 	if (vd->vdev_root_zap != 0) {
408 		objid = vd->vdev_root_zap;
409 	} else if (vd->vdev_top_zap != 0) {
410 		objid = vd->vdev_top_zap;
411 	} else if (vd->vdev_leaf_zap != 0) {
412 		objid = vd->vdev_leaf_zap;
413 	} else {
414 		return (EINVAL);
415 	}
416 
417 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
418 	    sizeof (uint64_t), 1, value);
419 
420 	if (err == ENOENT)
421 		*value = vdev_prop_default_numeric(prop);
422 
423 	return (err);
424 }
425 
426 /*
427  * Get the number of data disks for a top-level vdev.
428  */
429 uint64_t
vdev_get_ndisks(vdev_t * vd)430 vdev_get_ndisks(vdev_t *vd)
431 {
432 	uint64_t ndisks = 1;
433 
434 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
435 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
436 
437 	return (ndisks);
438 }
439 
440 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)441 vdev_lookup_top(spa_t *spa, uint64_t vdev)
442 {
443 	vdev_t *rvd = spa->spa_root_vdev;
444 
445 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
446 
447 	if (vdev < rvd->vdev_children) {
448 		ASSERT(rvd->vdev_child[vdev] != NULL);
449 		return (rvd->vdev_child[vdev]);
450 	}
451 
452 	return (NULL);
453 }
454 
455 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)456 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
457 {
458 	vdev_t *mvd;
459 
460 	if (vd->vdev_guid == guid)
461 		return (vd);
462 
463 	for (int c = 0; c < vd->vdev_children; c++)
464 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
465 		    NULL)
466 			return (mvd);
467 
468 	return (NULL);
469 }
470 
471 static int
vdev_count_leaves_impl(vdev_t * vd)472 vdev_count_leaves_impl(vdev_t *vd)
473 {
474 	int n = 0;
475 
476 	if (vd->vdev_ops->vdev_op_leaf)
477 		return (1);
478 
479 	for (int c = 0; c < vd->vdev_children; c++)
480 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
481 
482 	return (n);
483 }
484 
485 int
vdev_count_leaves(spa_t * spa)486 vdev_count_leaves(spa_t *spa)
487 {
488 	int rc;
489 
490 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
491 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
492 	spa_config_exit(spa, SCL_VDEV, FTAG);
493 
494 	return (rc);
495 }
496 
497 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)498 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
499 {
500 	size_t oldsize, newsize;
501 	uint64_t id = cvd->vdev_id;
502 	vdev_t **newchild;
503 
504 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
505 	ASSERT(cvd->vdev_parent == NULL);
506 
507 	cvd->vdev_parent = pvd;
508 
509 	if (pvd == NULL)
510 		return;
511 
512 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
513 
514 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
515 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
516 	newsize = pvd->vdev_children * sizeof (vdev_t *);
517 
518 	newchild = kmem_alloc(newsize, KM_SLEEP);
519 	if (pvd->vdev_child != NULL) {
520 		memcpy(newchild, pvd->vdev_child, oldsize);
521 		kmem_free(pvd->vdev_child, oldsize);
522 	}
523 
524 	pvd->vdev_child = newchild;
525 	pvd->vdev_child[id] = cvd;
526 
527 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
528 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
529 
530 	/*
531 	 * Walk up all ancestors to update guid sum.
532 	 */
533 	for (; pvd != NULL; pvd = pvd->vdev_parent)
534 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
535 
536 	if (cvd->vdev_ops->vdev_op_leaf) {
537 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
538 		cvd->vdev_spa->spa_leaf_list_gen++;
539 	}
540 }
541 
542 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)543 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
544 {
545 	int c;
546 	uint_t id = cvd->vdev_id;
547 
548 	ASSERT(cvd->vdev_parent == pvd);
549 
550 	if (pvd == NULL)
551 		return;
552 
553 	ASSERT(id < pvd->vdev_children);
554 	ASSERT(pvd->vdev_child[id] == cvd);
555 
556 	pvd->vdev_child[id] = NULL;
557 	cvd->vdev_parent = NULL;
558 
559 	for (c = 0; c < pvd->vdev_children; c++)
560 		if (pvd->vdev_child[c])
561 			break;
562 
563 	if (c == pvd->vdev_children) {
564 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
565 		pvd->vdev_child = NULL;
566 		pvd->vdev_children = 0;
567 	}
568 
569 	if (cvd->vdev_ops->vdev_op_leaf) {
570 		spa_t *spa = cvd->vdev_spa;
571 		list_remove(&spa->spa_leaf_list, cvd);
572 		spa->spa_leaf_list_gen++;
573 	}
574 
575 	/*
576 	 * Walk up all ancestors to update guid sum.
577 	 */
578 	for (; pvd != NULL; pvd = pvd->vdev_parent)
579 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
580 }
581 
582 /*
583  * Remove any holes in the child array.
584  */
585 void
vdev_compact_children(vdev_t * pvd)586 vdev_compact_children(vdev_t *pvd)
587 {
588 	vdev_t **newchild, *cvd;
589 	int oldc = pvd->vdev_children;
590 	int newc;
591 
592 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
593 
594 	if (oldc == 0)
595 		return;
596 
597 	for (int c = newc = 0; c < oldc; c++)
598 		if (pvd->vdev_child[c])
599 			newc++;
600 
601 	if (newc > 0) {
602 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
603 
604 		for (int c = newc = 0; c < oldc; c++) {
605 			if ((cvd = pvd->vdev_child[c]) != NULL) {
606 				newchild[newc] = cvd;
607 				cvd->vdev_id = newc++;
608 			}
609 		}
610 	} else {
611 		newchild = NULL;
612 	}
613 
614 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
615 	pvd->vdev_child = newchild;
616 	pvd->vdev_children = newc;
617 }
618 
619 /*
620  * Allocate and minimally initialize a vdev_t.
621  */
622 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)623 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
624 {
625 	vdev_t *vd;
626 	vdev_indirect_config_t *vic;
627 
628 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
629 	vic = &vd->vdev_indirect_config;
630 
631 	if (spa->spa_root_vdev == NULL) {
632 		ASSERT(ops == &vdev_root_ops);
633 		spa->spa_root_vdev = vd;
634 		spa->spa_load_guid = spa_generate_guid(NULL);
635 	}
636 
637 	if (guid == 0 && ops != &vdev_hole_ops) {
638 		if (spa->spa_root_vdev == vd) {
639 			/*
640 			 * The root vdev's guid will also be the pool guid,
641 			 * which must be unique among all pools.
642 			 */
643 			guid = spa_generate_guid(NULL);
644 		} else {
645 			/*
646 			 * Any other vdev's guid must be unique within the pool.
647 			 */
648 			guid = spa_generate_guid(spa);
649 		}
650 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
651 	}
652 
653 	vd->vdev_spa = spa;
654 	vd->vdev_id = id;
655 	vd->vdev_guid = guid;
656 	vd->vdev_guid_sum = guid;
657 	vd->vdev_ops = ops;
658 	vd->vdev_state = VDEV_STATE_CLOSED;
659 	vd->vdev_ishole = (ops == &vdev_hole_ops);
660 	vic->vic_prev_indirect_vdev = UINT64_MAX;
661 
662 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
663 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
664 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
665 	    0, 0);
666 
667 	/*
668 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
669 	 * and checksum events so that we don't overwhelm ZED with thousands
670 	 * of events when a disk is acting up.
671 	 */
672 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
673 	    1);
674 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
675 	    1);
676 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
677 	    &zfs_checksum_events_per_second, 1);
678 
679 	/*
680 	 * Default Thresholds for tuning ZED
681 	 */
682 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
683 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
684 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
685 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
686 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
687 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
688 
689 	list_link_init(&vd->vdev_config_dirty_node);
690 	list_link_init(&vd->vdev_state_dirty_node);
691 	list_link_init(&vd->vdev_initialize_node);
692 	list_link_init(&vd->vdev_leaf_node);
693 	list_link_init(&vd->vdev_trim_node);
694 
695 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
696 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
697 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
698 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
699 
700 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
701 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
702 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
703 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
704 
705 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
708 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
709 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
710 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
711 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
712 
713 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
714 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
715 
716 	for (int t = 0; t < DTL_TYPES; t++) {
717 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
718 		    0);
719 	}
720 
721 	txg_list_create(&vd->vdev_ms_list, spa,
722 	    offsetof(struct metaslab, ms_txg_node));
723 	txg_list_create(&vd->vdev_dtl_list, spa,
724 	    offsetof(struct vdev, vdev_dtl_node));
725 	vd->vdev_stat.vs_timestamp = gethrtime();
726 	vdev_queue_init(vd);
727 
728 	return (vd);
729 }
730 
731 /*
732  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
733  * creating a new vdev or loading an existing one - the behavior is slightly
734  * different for each case.
735  */
736 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)737 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
738     int alloctype)
739 {
740 	vdev_ops_t *ops;
741 	const char *type;
742 	uint64_t guid = 0, islog;
743 	vdev_t *vd;
744 	vdev_indirect_config_t *vic;
745 	const char *tmp = NULL;
746 	int rc;
747 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
748 	boolean_t top_level = (parent && !parent->vdev_parent);
749 
750 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751 
752 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
753 		return (SET_ERROR(EINVAL));
754 
755 	if ((ops = vdev_getops(type)) == NULL)
756 		return (SET_ERROR(EINVAL));
757 
758 	/*
759 	 * If this is a load, get the vdev guid from the nvlist.
760 	 * Otherwise, vdev_alloc_common() will generate one for us.
761 	 */
762 	if (alloctype == VDEV_ALLOC_LOAD) {
763 		uint64_t label_id;
764 
765 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
766 		    label_id != id)
767 			return (SET_ERROR(EINVAL));
768 
769 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
770 			return (SET_ERROR(EINVAL));
771 	} else if (alloctype == VDEV_ALLOC_SPARE) {
772 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
773 			return (SET_ERROR(EINVAL));
774 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
775 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
776 			return (SET_ERROR(EINVAL));
777 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
778 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
779 			return (SET_ERROR(EINVAL));
780 	}
781 
782 	/*
783 	 * The first allocated vdev must be of type 'root'.
784 	 */
785 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
786 		return (SET_ERROR(EINVAL));
787 
788 	/*
789 	 * Determine whether we're a log vdev.
790 	 */
791 	islog = 0;
792 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
793 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
794 		return (SET_ERROR(ENOTSUP));
795 
796 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
797 		return (SET_ERROR(ENOTSUP));
798 
799 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
800 		const char *bias;
801 
802 		/*
803 		 * If creating a top-level vdev, check for allocation
804 		 * classes input.
805 		 */
806 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
807 		    &bias) == 0) {
808 			alloc_bias = vdev_derive_alloc_bias(bias);
809 
810 			/* spa_vdev_add() expects feature to be enabled */
811 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
812 			    !spa_feature_is_enabled(spa,
813 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
814 				return (SET_ERROR(ENOTSUP));
815 			}
816 		}
817 
818 		/* spa_vdev_add() expects feature to be enabled */
819 		if (ops == &vdev_draid_ops &&
820 		    spa->spa_load_state != SPA_LOAD_CREATE &&
821 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
822 			return (SET_ERROR(ENOTSUP));
823 		}
824 	}
825 
826 	/*
827 	 * Initialize the vdev specific data.  This is done before calling
828 	 * vdev_alloc_common() since it may fail and this simplifies the
829 	 * error reporting and cleanup code paths.
830 	 */
831 	void *tsd = NULL;
832 	if (ops->vdev_op_init != NULL) {
833 		rc = ops->vdev_op_init(spa, nv, &tsd);
834 		if (rc != 0) {
835 			return (rc);
836 		}
837 	}
838 
839 	vd = vdev_alloc_common(spa, id, guid, ops);
840 	vd->vdev_tsd = tsd;
841 	vd->vdev_islog = islog;
842 
843 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
844 		vd->vdev_alloc_bias = alloc_bias;
845 
846 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
847 		vd->vdev_path = spa_strdup(tmp);
848 
849 	/*
850 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
851 	 * fault on a vdev and want it to persist across imports (like with
852 	 * zpool offline -f).
853 	 */
854 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
855 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
856 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
857 		vd->vdev_faulted = 1;
858 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
859 	}
860 
861 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
862 		vd->vdev_devid = spa_strdup(tmp);
863 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
864 		vd->vdev_physpath = spa_strdup(tmp);
865 
866 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
867 	    &tmp) == 0)
868 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
869 
870 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
871 		vd->vdev_fru = spa_strdup(tmp);
872 
873 	/*
874 	 * Set the whole_disk property.  If it's not specified, leave the value
875 	 * as -1.
876 	 */
877 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
878 	    &vd->vdev_wholedisk) != 0)
879 		vd->vdev_wholedisk = -1ULL;
880 
881 	vic = &vd->vdev_indirect_config;
882 
883 	ASSERT0(vic->vic_mapping_object);
884 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
885 	    &vic->vic_mapping_object);
886 	ASSERT0(vic->vic_births_object);
887 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
888 	    &vic->vic_births_object);
889 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
890 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
891 	    &vic->vic_prev_indirect_vdev);
892 
893 	/*
894 	 * Look for the 'not present' flag.  This will only be set if the device
895 	 * was not present at the time of import.
896 	 */
897 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
898 	    &vd->vdev_not_present);
899 
900 	/*
901 	 * Get the alignment requirement. Ignore pool ashift for vdev
902 	 * attach case.
903 	 */
904 	if (alloctype != VDEV_ALLOC_ATTACH) {
905 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
906 		    &vd->vdev_ashift);
907 	} else {
908 		vd->vdev_attaching = B_TRUE;
909 	}
910 
911 	/*
912 	 * Retrieve the vdev creation time.
913 	 */
914 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
915 	    &vd->vdev_crtxg);
916 
917 	if (vd->vdev_ops == &vdev_root_ops &&
918 	    (alloctype == VDEV_ALLOC_LOAD ||
919 	    alloctype == VDEV_ALLOC_SPLIT ||
920 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
921 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
922 		    &vd->vdev_root_zap);
923 	}
924 
925 	/*
926 	 * If we're a top-level vdev, try to load the allocation parameters.
927 	 */
928 	if (top_level &&
929 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
930 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
931 		    &vd->vdev_ms_array);
932 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
933 		    &vd->vdev_ms_shift);
934 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
935 		    &vd->vdev_asize);
936 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
937 		    &vd->vdev_noalloc);
938 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
939 		    &vd->vdev_removing);
940 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
941 		    &vd->vdev_top_zap);
942 		vd->vdev_rz_expanding = nvlist_exists(nv,
943 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
944 	} else {
945 		ASSERT0(vd->vdev_top_zap);
946 	}
947 
948 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
949 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
950 		    alloctype == VDEV_ALLOC_ADD ||
951 		    alloctype == VDEV_ALLOC_SPLIT ||
952 		    alloctype == VDEV_ALLOC_ROOTPOOL);
953 		/* Note: metaslab_group_create() is now deferred */
954 	}
955 
956 	if (vd->vdev_ops->vdev_op_leaf &&
957 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
958 		(void) nvlist_lookup_uint64(nv,
959 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
960 	} else {
961 		ASSERT0(vd->vdev_leaf_zap);
962 	}
963 
964 	/*
965 	 * If we're a leaf vdev, try to load the DTL object and other state.
966 	 */
967 
968 	if (vd->vdev_ops->vdev_op_leaf &&
969 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
970 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
971 		if (alloctype == VDEV_ALLOC_LOAD) {
972 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
973 			    &vd->vdev_dtl_object);
974 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
975 			    &vd->vdev_unspare);
976 		}
977 
978 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
979 			uint64_t spare = 0;
980 
981 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
982 			    &spare) == 0 && spare)
983 				spa_spare_add(vd);
984 		}
985 
986 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
987 		    &vd->vdev_offline);
988 
989 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
990 		    &vd->vdev_resilver_txg);
991 
992 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
993 		    &vd->vdev_rebuild_txg);
994 
995 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
996 			vdev_defer_resilver(vd);
997 
998 		/*
999 		 * In general, when importing a pool we want to ignore the
1000 		 * persistent fault state, as the diagnosis made on another
1001 		 * system may not be valid in the current context.  The only
1002 		 * exception is if we forced a vdev to a persistently faulted
1003 		 * state with 'zpool offline -f'.  The persistent fault will
1004 		 * remain across imports until cleared.
1005 		 *
1006 		 * Local vdevs will remain in the faulted state.
1007 		 */
1008 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1009 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1010 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1011 			    &vd->vdev_faulted);
1012 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1013 			    &vd->vdev_degraded);
1014 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1015 			    &vd->vdev_removed);
1016 
1017 			if (vd->vdev_faulted || vd->vdev_degraded) {
1018 				const char *aux;
1019 
1020 				vd->vdev_label_aux =
1021 				    VDEV_AUX_ERR_EXCEEDED;
1022 				if (nvlist_lookup_string(nv,
1023 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1024 				    strcmp(aux, "external") == 0)
1025 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1026 				else
1027 					vd->vdev_faulted = 0ULL;
1028 			}
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Add ourselves to the parent's list of children.
1034 	 */
1035 	vdev_add_child(parent, vd);
1036 
1037 	*vdp = vd;
1038 
1039 	return (0);
1040 }
1041 
1042 void
vdev_free(vdev_t * vd)1043 vdev_free(vdev_t *vd)
1044 {
1045 	spa_t *spa = vd->vdev_spa;
1046 
1047 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1048 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1049 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1050 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1051 
1052 	/*
1053 	 * Scan queues are normally destroyed at the end of a scan. If the
1054 	 * queue exists here, that implies the vdev is being removed while
1055 	 * the scan is still running.
1056 	 */
1057 	if (vd->vdev_scan_io_queue != NULL) {
1058 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1059 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1060 		vd->vdev_scan_io_queue = NULL;
1061 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1062 	}
1063 
1064 	/*
1065 	 * vdev_free() implies closing the vdev first.  This is simpler than
1066 	 * trying to ensure complicated semantics for all callers.
1067 	 */
1068 	vdev_close(vd);
1069 
1070 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1071 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1072 
1073 	/*
1074 	 * Free all children.
1075 	 */
1076 	for (int c = 0; c < vd->vdev_children; c++)
1077 		vdev_free(vd->vdev_child[c]);
1078 
1079 	ASSERT(vd->vdev_child == NULL);
1080 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1081 
1082 	if (vd->vdev_ops->vdev_op_fini != NULL)
1083 		vd->vdev_ops->vdev_op_fini(vd);
1084 
1085 	/*
1086 	 * Discard allocation state.
1087 	 */
1088 	if (vd->vdev_mg != NULL) {
1089 		vdev_metaslab_fini(vd);
1090 		metaslab_group_destroy(vd->vdev_mg);
1091 		vd->vdev_mg = NULL;
1092 	}
1093 	if (vd->vdev_log_mg != NULL) {
1094 		ASSERT0(vd->vdev_ms_count);
1095 		metaslab_group_destroy(vd->vdev_log_mg);
1096 		vd->vdev_log_mg = NULL;
1097 	}
1098 
1099 	ASSERT0(vd->vdev_stat.vs_space);
1100 	ASSERT0(vd->vdev_stat.vs_dspace);
1101 	ASSERT0(vd->vdev_stat.vs_alloc);
1102 
1103 	/*
1104 	 * Remove this vdev from its parent's child list.
1105 	 */
1106 	vdev_remove_child(vd->vdev_parent, vd);
1107 
1108 	ASSERT(vd->vdev_parent == NULL);
1109 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1110 
1111 	/*
1112 	 * Clean up vdev structure.
1113 	 */
1114 	vdev_queue_fini(vd);
1115 
1116 	if (vd->vdev_path)
1117 		spa_strfree(vd->vdev_path);
1118 	if (vd->vdev_devid)
1119 		spa_strfree(vd->vdev_devid);
1120 	if (vd->vdev_physpath)
1121 		spa_strfree(vd->vdev_physpath);
1122 
1123 	if (vd->vdev_enc_sysfs_path)
1124 		spa_strfree(vd->vdev_enc_sysfs_path);
1125 
1126 	if (vd->vdev_fru)
1127 		spa_strfree(vd->vdev_fru);
1128 
1129 	if (vd->vdev_isspare)
1130 		spa_spare_remove(vd);
1131 	if (vd->vdev_isl2cache)
1132 		spa_l2cache_remove(vd);
1133 
1134 	txg_list_destroy(&vd->vdev_ms_list);
1135 	txg_list_destroy(&vd->vdev_dtl_list);
1136 
1137 	mutex_enter(&vd->vdev_dtl_lock);
1138 	space_map_close(vd->vdev_dtl_sm);
1139 	for (int t = 0; t < DTL_TYPES; t++) {
1140 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1141 		range_tree_destroy(vd->vdev_dtl[t]);
1142 	}
1143 	mutex_exit(&vd->vdev_dtl_lock);
1144 
1145 	EQUIV(vd->vdev_indirect_births != NULL,
1146 	    vd->vdev_indirect_mapping != NULL);
1147 	if (vd->vdev_indirect_births != NULL) {
1148 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1149 		vdev_indirect_births_close(vd->vdev_indirect_births);
1150 	}
1151 
1152 	if (vd->vdev_obsolete_sm != NULL) {
1153 		ASSERT(vd->vdev_removing ||
1154 		    vd->vdev_ops == &vdev_indirect_ops);
1155 		space_map_close(vd->vdev_obsolete_sm);
1156 		vd->vdev_obsolete_sm = NULL;
1157 	}
1158 	range_tree_destroy(vd->vdev_obsolete_segments);
1159 	rw_destroy(&vd->vdev_indirect_rwlock);
1160 	mutex_destroy(&vd->vdev_obsolete_lock);
1161 
1162 	mutex_destroy(&vd->vdev_dtl_lock);
1163 	mutex_destroy(&vd->vdev_stat_lock);
1164 	mutex_destroy(&vd->vdev_probe_lock);
1165 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1166 
1167 	mutex_destroy(&vd->vdev_initialize_lock);
1168 	mutex_destroy(&vd->vdev_initialize_io_lock);
1169 	cv_destroy(&vd->vdev_initialize_io_cv);
1170 	cv_destroy(&vd->vdev_initialize_cv);
1171 
1172 	mutex_destroy(&vd->vdev_trim_lock);
1173 	mutex_destroy(&vd->vdev_autotrim_lock);
1174 	mutex_destroy(&vd->vdev_trim_io_lock);
1175 	cv_destroy(&vd->vdev_trim_cv);
1176 	cv_destroy(&vd->vdev_autotrim_cv);
1177 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1178 	cv_destroy(&vd->vdev_trim_io_cv);
1179 
1180 	mutex_destroy(&vd->vdev_rebuild_lock);
1181 	cv_destroy(&vd->vdev_rebuild_cv);
1182 
1183 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1184 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1185 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1186 
1187 	if (vd == spa->spa_root_vdev)
1188 		spa->spa_root_vdev = NULL;
1189 
1190 	kmem_free(vd, sizeof (vdev_t));
1191 }
1192 
1193 /*
1194  * Transfer top-level vdev state from svd to tvd.
1195  */
1196 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1197 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1198 {
1199 	spa_t *spa = svd->vdev_spa;
1200 	metaslab_t *msp;
1201 	vdev_t *vd;
1202 	int t;
1203 
1204 	ASSERT(tvd == tvd->vdev_top);
1205 
1206 	tvd->vdev_ms_array = svd->vdev_ms_array;
1207 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1208 	tvd->vdev_ms_count = svd->vdev_ms_count;
1209 	tvd->vdev_top_zap = svd->vdev_top_zap;
1210 
1211 	svd->vdev_ms_array = 0;
1212 	svd->vdev_ms_shift = 0;
1213 	svd->vdev_ms_count = 0;
1214 	svd->vdev_top_zap = 0;
1215 
1216 	if (tvd->vdev_mg)
1217 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1218 	if (tvd->vdev_log_mg)
1219 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1220 	tvd->vdev_mg = svd->vdev_mg;
1221 	tvd->vdev_log_mg = svd->vdev_log_mg;
1222 	tvd->vdev_ms = svd->vdev_ms;
1223 
1224 	svd->vdev_mg = NULL;
1225 	svd->vdev_log_mg = NULL;
1226 	svd->vdev_ms = NULL;
1227 
1228 	if (tvd->vdev_mg != NULL)
1229 		tvd->vdev_mg->mg_vd = tvd;
1230 	if (tvd->vdev_log_mg != NULL)
1231 		tvd->vdev_log_mg->mg_vd = tvd;
1232 
1233 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1234 	svd->vdev_checkpoint_sm = NULL;
1235 
1236 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1237 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1238 
1239 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1240 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1241 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1242 
1243 	svd->vdev_stat.vs_alloc = 0;
1244 	svd->vdev_stat.vs_space = 0;
1245 	svd->vdev_stat.vs_dspace = 0;
1246 
1247 	/*
1248 	 * State which may be set on a top-level vdev that's in the
1249 	 * process of being removed.
1250 	 */
1251 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1252 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1253 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1254 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1255 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1256 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1257 	ASSERT0(tvd->vdev_noalloc);
1258 	ASSERT0(tvd->vdev_removing);
1259 	ASSERT0(tvd->vdev_rebuilding);
1260 	tvd->vdev_noalloc = svd->vdev_noalloc;
1261 	tvd->vdev_removing = svd->vdev_removing;
1262 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1263 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1264 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1265 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1266 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1267 	range_tree_swap(&svd->vdev_obsolete_segments,
1268 	    &tvd->vdev_obsolete_segments);
1269 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1270 	svd->vdev_indirect_config.vic_mapping_object = 0;
1271 	svd->vdev_indirect_config.vic_births_object = 0;
1272 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1273 	svd->vdev_indirect_mapping = NULL;
1274 	svd->vdev_indirect_births = NULL;
1275 	svd->vdev_obsolete_sm = NULL;
1276 	svd->vdev_noalloc = 0;
1277 	svd->vdev_removing = 0;
1278 	svd->vdev_rebuilding = 0;
1279 
1280 	for (t = 0; t < TXG_SIZE; t++) {
1281 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1282 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1283 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1284 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1285 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1286 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1287 	}
1288 
1289 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1290 		vdev_config_clean(svd);
1291 		vdev_config_dirty(tvd);
1292 	}
1293 
1294 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1295 		vdev_state_clean(svd);
1296 		vdev_state_dirty(tvd);
1297 	}
1298 
1299 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1300 	svd->vdev_deflate_ratio = 0;
1301 
1302 	tvd->vdev_islog = svd->vdev_islog;
1303 	svd->vdev_islog = 0;
1304 
1305 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1306 }
1307 
1308 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1309 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1310 {
1311 	if (vd == NULL)
1312 		return;
1313 
1314 	vd->vdev_top = tvd;
1315 
1316 	for (int c = 0; c < vd->vdev_children; c++)
1317 		vdev_top_update(tvd, vd->vdev_child[c]);
1318 }
1319 
1320 /*
1321  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1322  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1323  */
1324 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1325 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1326 {
1327 	spa_t *spa = cvd->vdev_spa;
1328 	vdev_t *pvd = cvd->vdev_parent;
1329 	vdev_t *mvd;
1330 
1331 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332 
1333 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1334 
1335 	mvd->vdev_asize = cvd->vdev_asize;
1336 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1337 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1338 	mvd->vdev_psize = cvd->vdev_psize;
1339 	mvd->vdev_ashift = cvd->vdev_ashift;
1340 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1341 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1342 	mvd->vdev_state = cvd->vdev_state;
1343 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1344 
1345 	vdev_remove_child(pvd, cvd);
1346 	vdev_add_child(pvd, mvd);
1347 	cvd->vdev_id = mvd->vdev_children;
1348 	vdev_add_child(mvd, cvd);
1349 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1350 
1351 	if (mvd == mvd->vdev_top)
1352 		vdev_top_transfer(cvd, mvd);
1353 
1354 	return (mvd);
1355 }
1356 
1357 /*
1358  * Remove a 1-way mirror/replacing vdev from the tree.
1359  */
1360 void
vdev_remove_parent(vdev_t * cvd)1361 vdev_remove_parent(vdev_t *cvd)
1362 {
1363 	vdev_t *mvd = cvd->vdev_parent;
1364 	vdev_t *pvd = mvd->vdev_parent;
1365 
1366 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1367 
1368 	ASSERT(mvd->vdev_children == 1);
1369 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1370 	    mvd->vdev_ops == &vdev_replacing_ops ||
1371 	    mvd->vdev_ops == &vdev_spare_ops);
1372 	cvd->vdev_ashift = mvd->vdev_ashift;
1373 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1374 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1375 	vdev_remove_child(mvd, cvd);
1376 	vdev_remove_child(pvd, mvd);
1377 
1378 	/*
1379 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1380 	 * Otherwise, we could have detached an offline device, and when we
1381 	 * go to import the pool we'll think we have two top-level vdevs,
1382 	 * instead of a different version of the same top-level vdev.
1383 	 */
1384 	if (mvd->vdev_top == mvd) {
1385 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1386 		cvd->vdev_orig_guid = cvd->vdev_guid;
1387 		cvd->vdev_guid += guid_delta;
1388 		cvd->vdev_guid_sum += guid_delta;
1389 
1390 		/*
1391 		 * If pool not set for autoexpand, we need to also preserve
1392 		 * mvd's asize to prevent automatic expansion of cvd.
1393 		 * Otherwise if we are adjusting the mirror by attaching and
1394 		 * detaching children of non-uniform sizes, the mirror could
1395 		 * autoexpand, unexpectedly requiring larger devices to
1396 		 * re-establish the mirror.
1397 		 */
1398 		if (!cvd->vdev_spa->spa_autoexpand)
1399 			cvd->vdev_asize = mvd->vdev_asize;
1400 	}
1401 	cvd->vdev_id = mvd->vdev_id;
1402 	vdev_add_child(pvd, cvd);
1403 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1404 
1405 	if (cvd == cvd->vdev_top)
1406 		vdev_top_transfer(mvd, cvd);
1407 
1408 	ASSERT(mvd->vdev_children == 0);
1409 	vdev_free(mvd);
1410 }
1411 
1412 /*
1413  * Choose GCD for spa_gcd_alloc.
1414  */
1415 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1416 vdev_gcd(uint64_t a, uint64_t b)
1417 {
1418 	while (b != 0) {
1419 		uint64_t t = b;
1420 		b = a % b;
1421 		a = t;
1422 	}
1423 	return (a);
1424 }
1425 
1426 /*
1427  * Set spa_min_alloc and spa_gcd_alloc.
1428  */
1429 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1430 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1431 {
1432 	if (min_alloc < spa->spa_min_alloc)
1433 		spa->spa_min_alloc = min_alloc;
1434 	if (spa->spa_gcd_alloc == INT_MAX) {
1435 		spa->spa_gcd_alloc = min_alloc;
1436 	} else {
1437 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1438 		    spa->spa_gcd_alloc);
1439 	}
1440 }
1441 
1442 void
vdev_metaslab_group_create(vdev_t * vd)1443 vdev_metaslab_group_create(vdev_t *vd)
1444 {
1445 	spa_t *spa = vd->vdev_spa;
1446 
1447 	/*
1448 	 * metaslab_group_create was delayed until allocation bias was available
1449 	 */
1450 	if (vd->vdev_mg == NULL) {
1451 		metaslab_class_t *mc;
1452 
1453 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1454 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1455 
1456 		ASSERT3U(vd->vdev_islog, ==,
1457 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1458 
1459 		switch (vd->vdev_alloc_bias) {
1460 		case VDEV_BIAS_LOG:
1461 			mc = spa_log_class(spa);
1462 			break;
1463 		case VDEV_BIAS_SPECIAL:
1464 			mc = spa_special_class(spa);
1465 			break;
1466 		case VDEV_BIAS_DEDUP:
1467 			mc = spa_dedup_class(spa);
1468 			break;
1469 		default:
1470 			mc = spa_normal_class(spa);
1471 		}
1472 
1473 		vd->vdev_mg = metaslab_group_create(mc, vd,
1474 		    spa->spa_alloc_count);
1475 
1476 		if (!vd->vdev_islog) {
1477 			vd->vdev_log_mg = metaslab_group_create(
1478 			    spa_embedded_log_class(spa), vd, 1);
1479 		}
1480 
1481 		/*
1482 		 * The spa ashift min/max only apply for the normal metaslab
1483 		 * class. Class destination is late binding so ashift boundary
1484 		 * setting had to wait until now.
1485 		 */
1486 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1487 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1488 			if (vd->vdev_ashift > spa->spa_max_ashift)
1489 				spa->spa_max_ashift = vd->vdev_ashift;
1490 			if (vd->vdev_ashift < spa->spa_min_ashift)
1491 				spa->spa_min_ashift = vd->vdev_ashift;
1492 
1493 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1494 			vdev_spa_set_alloc(spa, min_alloc);
1495 		}
1496 	}
1497 }
1498 
1499 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1500 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1501 {
1502 	spa_t *spa = vd->vdev_spa;
1503 	uint64_t oldc = vd->vdev_ms_count;
1504 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1505 	metaslab_t **mspp;
1506 	int error;
1507 	boolean_t expanding = (oldc != 0);
1508 
1509 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1510 
1511 	/*
1512 	 * This vdev is not being allocated from yet or is a hole.
1513 	 */
1514 	if (vd->vdev_ms_shift == 0)
1515 		return (0);
1516 
1517 	ASSERT(!vd->vdev_ishole);
1518 
1519 	ASSERT(oldc <= newc);
1520 
1521 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1522 
1523 	if (expanding) {
1524 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1525 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1526 	}
1527 
1528 	vd->vdev_ms = mspp;
1529 	vd->vdev_ms_count = newc;
1530 
1531 	for (uint64_t m = oldc; m < newc; m++) {
1532 		uint64_t object = 0;
1533 		/*
1534 		 * vdev_ms_array may be 0 if we are creating the "fake"
1535 		 * metaslabs for an indirect vdev for zdb's leak detection.
1536 		 * See zdb_leak_init().
1537 		 */
1538 		if (txg == 0 && vd->vdev_ms_array != 0) {
1539 			error = dmu_read(spa->spa_meta_objset,
1540 			    vd->vdev_ms_array,
1541 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1542 			    DMU_READ_PREFETCH);
1543 			if (error != 0) {
1544 				vdev_dbgmsg(vd, "unable to read the metaslab "
1545 				    "array [error=%d]", error);
1546 				return (error);
1547 			}
1548 		}
1549 
1550 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1551 		    &(vd->vdev_ms[m]));
1552 		if (error != 0) {
1553 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1554 			    error);
1555 			return (error);
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * Find the emptiest metaslab on the vdev and mark it for use for
1561 	 * embedded slog by moving it from the regular to the log metaslab
1562 	 * group.
1563 	 */
1564 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1565 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1566 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1567 		uint64_t slog_msid = 0;
1568 		uint64_t smallest = UINT64_MAX;
1569 
1570 		/*
1571 		 * Note, we only search the new metaslabs, because the old
1572 		 * (pre-existing) ones may be active (e.g. have non-empty
1573 		 * range_tree's), and we don't move them to the new
1574 		 * metaslab_t.
1575 		 */
1576 		for (uint64_t m = oldc; m < newc; m++) {
1577 			uint64_t alloc =
1578 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1579 			if (alloc < smallest) {
1580 				slog_msid = m;
1581 				smallest = alloc;
1582 			}
1583 		}
1584 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1585 		/*
1586 		 * The metaslab was marked as dirty at the end of
1587 		 * metaslab_init(). Remove it from the dirty list so that we
1588 		 * can uninitialize and reinitialize it to the new class.
1589 		 */
1590 		if (txg != 0) {
1591 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1592 			    slog_ms, txg);
1593 		}
1594 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1595 		metaslab_fini(slog_ms);
1596 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1597 		    &vd->vdev_ms[slog_msid]));
1598 	}
1599 
1600 	if (txg == 0)
1601 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1602 
1603 	/*
1604 	 * If the vdev is marked as non-allocating then don't
1605 	 * activate the metaslabs since we want to ensure that
1606 	 * no allocations are performed on this device.
1607 	 */
1608 	if (vd->vdev_noalloc) {
1609 		/* track non-allocating vdev space */
1610 		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1611 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1612 	} else if (!expanding) {
1613 		metaslab_group_activate(vd->vdev_mg);
1614 		if (vd->vdev_log_mg != NULL)
1615 			metaslab_group_activate(vd->vdev_log_mg);
1616 	}
1617 
1618 	if (txg == 0)
1619 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1620 
1621 	return (0);
1622 }
1623 
1624 void
vdev_metaslab_fini(vdev_t * vd)1625 vdev_metaslab_fini(vdev_t *vd)
1626 {
1627 	if (vd->vdev_checkpoint_sm != NULL) {
1628 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1629 		    SPA_FEATURE_POOL_CHECKPOINT));
1630 		space_map_close(vd->vdev_checkpoint_sm);
1631 		/*
1632 		 * Even though we close the space map, we need to set its
1633 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1634 		 * may be called multiple times for certain operations
1635 		 * (i.e. when destroying a pool) so we need to ensure that
1636 		 * this clause never executes twice. This logic is similar
1637 		 * to the one used for the vdev_ms clause below.
1638 		 */
1639 		vd->vdev_checkpoint_sm = NULL;
1640 	}
1641 
1642 	if (vd->vdev_ms != NULL) {
1643 		metaslab_group_t *mg = vd->vdev_mg;
1644 
1645 		metaslab_group_passivate(mg);
1646 		if (vd->vdev_log_mg != NULL) {
1647 			ASSERT(!vd->vdev_islog);
1648 			metaslab_group_passivate(vd->vdev_log_mg);
1649 		}
1650 
1651 		uint64_t count = vd->vdev_ms_count;
1652 		for (uint64_t m = 0; m < count; m++) {
1653 			metaslab_t *msp = vd->vdev_ms[m];
1654 			if (msp != NULL)
1655 				metaslab_fini(msp);
1656 		}
1657 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1658 		vd->vdev_ms = NULL;
1659 		vd->vdev_ms_count = 0;
1660 
1661 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1662 			ASSERT0(mg->mg_histogram[i]);
1663 			if (vd->vdev_log_mg != NULL)
1664 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1665 		}
1666 	}
1667 	ASSERT0(vd->vdev_ms_count);
1668 }
1669 
1670 typedef struct vdev_probe_stats {
1671 	boolean_t	vps_readable;
1672 	boolean_t	vps_writeable;
1673 	boolean_t	vps_zio_done_probe;
1674 	int		vps_flags;
1675 } vdev_probe_stats_t;
1676 
1677 static void
vdev_probe_done(zio_t * zio)1678 vdev_probe_done(zio_t *zio)
1679 {
1680 	spa_t *spa = zio->io_spa;
1681 	vdev_t *vd = zio->io_vd;
1682 	vdev_probe_stats_t *vps = zio->io_private;
1683 
1684 	ASSERT(vd->vdev_probe_zio != NULL);
1685 
1686 	if (zio->io_type == ZIO_TYPE_READ) {
1687 		if (zio->io_error == 0)
1688 			vps->vps_readable = 1;
1689 		if (zio->io_error == 0 && spa_writeable(spa)) {
1690 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1691 			    zio->io_offset, zio->io_size, zio->io_abd,
1692 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1693 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1694 		} else {
1695 			abd_free(zio->io_abd);
1696 		}
1697 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1698 		if (zio->io_error == 0)
1699 			vps->vps_writeable = 1;
1700 		abd_free(zio->io_abd);
1701 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1702 		zio_t *pio;
1703 		zio_link_t *zl;
1704 
1705 		vd->vdev_cant_read |= !vps->vps_readable;
1706 		vd->vdev_cant_write |= !vps->vps_writeable;
1707 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1708 		    vd->vdev_cant_read, vd->vdev_cant_write);
1709 
1710 		if (vdev_readable(vd) &&
1711 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1712 			zio->io_error = 0;
1713 		} else {
1714 			ASSERT(zio->io_error != 0);
1715 			vdev_dbgmsg(vd, "failed probe");
1716 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1717 			    spa, vd, NULL, NULL, 0);
1718 			zio->io_error = SET_ERROR(ENXIO);
1719 
1720 			/*
1721 			 * If this probe was initiated from zio pipeline, then
1722 			 * change the state in a spa_async_request. Probes that
1723 			 * were initiated from a vdev_open can change the state
1724 			 * as part of the open call.
1725 			 */
1726 			if (vps->vps_zio_done_probe) {
1727 				vd->vdev_fault_wanted = B_TRUE;
1728 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1729 			}
1730 		}
1731 
1732 		mutex_enter(&vd->vdev_probe_lock);
1733 		ASSERT(vd->vdev_probe_zio == zio);
1734 		vd->vdev_probe_zio = NULL;
1735 		mutex_exit(&vd->vdev_probe_lock);
1736 
1737 		zl = NULL;
1738 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1739 			if (!vdev_accessible(vd, pio))
1740 				pio->io_error = SET_ERROR(ENXIO);
1741 
1742 		kmem_free(vps, sizeof (*vps));
1743 	}
1744 }
1745 
1746 /*
1747  * Determine whether this device is accessible.
1748  *
1749  * Read and write to several known locations: the pad regions of each
1750  * vdev label but the first, which we leave alone in case it contains
1751  * a VTOC.
1752  */
1753 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1754 vdev_probe(vdev_t *vd, zio_t *zio)
1755 {
1756 	spa_t *spa = vd->vdev_spa;
1757 	vdev_probe_stats_t *vps = NULL;
1758 	zio_t *pio;
1759 
1760 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1761 
1762 	/*
1763 	 * Don't probe the probe.
1764 	 */
1765 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1766 		return (NULL);
1767 
1768 	/*
1769 	 * To prevent 'probe storms' when a device fails, we create
1770 	 * just one probe i/o at a time.  All zios that want to probe
1771 	 * this vdev will become parents of the probe io.
1772 	 */
1773 	mutex_enter(&vd->vdev_probe_lock);
1774 
1775 	if ((pio = vd->vdev_probe_zio) == NULL) {
1776 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1777 
1778 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1779 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1780 		vps->vps_zio_done_probe = (zio != NULL);
1781 
1782 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1783 			/*
1784 			 * vdev_cant_read and vdev_cant_write can only
1785 			 * transition from TRUE to FALSE when we have the
1786 			 * SCL_ZIO lock as writer; otherwise they can only
1787 			 * transition from FALSE to TRUE.  This ensures that
1788 			 * any zio looking at these values can assume that
1789 			 * failures persist for the life of the I/O.  That's
1790 			 * important because when a device has intermittent
1791 			 * connectivity problems, we want to ensure that
1792 			 * they're ascribed to the device (ENXIO) and not
1793 			 * the zio (EIO).
1794 			 *
1795 			 * Since we hold SCL_ZIO as writer here, clear both
1796 			 * values so the probe can reevaluate from first
1797 			 * principles.
1798 			 */
1799 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1800 			vd->vdev_cant_read = B_FALSE;
1801 			vd->vdev_cant_write = B_FALSE;
1802 		}
1803 
1804 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1805 		    vdev_probe_done, vps,
1806 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1807 	}
1808 
1809 	if (zio != NULL)
1810 		zio_add_child(zio, pio);
1811 
1812 	mutex_exit(&vd->vdev_probe_lock);
1813 
1814 	if (vps == NULL) {
1815 		ASSERT(zio != NULL);
1816 		return (NULL);
1817 	}
1818 
1819 	for (int l = 1; l < VDEV_LABELS; l++) {
1820 		zio_nowait(zio_read_phys(pio, vd,
1821 		    vdev_label_offset(vd->vdev_psize, l,
1822 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1823 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1824 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1825 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1826 	}
1827 
1828 	if (zio == NULL)
1829 		return (pio);
1830 
1831 	zio_nowait(pio);
1832 	return (NULL);
1833 }
1834 
1835 static void
vdev_load_child(void * arg)1836 vdev_load_child(void *arg)
1837 {
1838 	vdev_t *vd = arg;
1839 
1840 	vd->vdev_load_error = vdev_load(vd);
1841 }
1842 
1843 static void
vdev_open_child(void * arg)1844 vdev_open_child(void *arg)
1845 {
1846 	vdev_t *vd = arg;
1847 
1848 	vd->vdev_open_thread = curthread;
1849 	vd->vdev_open_error = vdev_open(vd);
1850 	vd->vdev_open_thread = NULL;
1851 }
1852 
1853 static boolean_t
vdev_uses_zvols(vdev_t * vd)1854 vdev_uses_zvols(vdev_t *vd)
1855 {
1856 #ifdef _KERNEL
1857 	if (zvol_is_zvol(vd->vdev_path))
1858 		return (B_TRUE);
1859 #endif
1860 
1861 	for (int c = 0; c < vd->vdev_children; c++)
1862 		if (vdev_uses_zvols(vd->vdev_child[c]))
1863 			return (B_TRUE);
1864 
1865 	return (B_FALSE);
1866 }
1867 
1868 /*
1869  * Returns B_TRUE if the passed child should be opened.
1870  */
1871 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1872 vdev_default_open_children_func(vdev_t *vd)
1873 {
1874 	(void) vd;
1875 	return (B_TRUE);
1876 }
1877 
1878 /*
1879  * Open the requested child vdevs.  If any of the leaf vdevs are using
1880  * a ZFS volume then do the opens in a single thread.  This avoids a
1881  * deadlock when the current thread is holding the spa_namespace_lock.
1882  */
1883 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1884 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1885 {
1886 	int children = vd->vdev_children;
1887 
1888 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1889 	    children, children, TASKQ_PREPOPULATE);
1890 	vd->vdev_nonrot = B_TRUE;
1891 
1892 	for (int c = 0; c < children; c++) {
1893 		vdev_t *cvd = vd->vdev_child[c];
1894 
1895 		if (open_func(cvd) == B_FALSE)
1896 			continue;
1897 
1898 		if (tq == NULL || vdev_uses_zvols(vd)) {
1899 			cvd->vdev_open_error = vdev_open(cvd);
1900 		} else {
1901 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1902 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1903 		}
1904 
1905 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1906 	}
1907 
1908 	if (tq != NULL) {
1909 		taskq_wait(tq);
1910 		taskq_destroy(tq);
1911 	}
1912 }
1913 
1914 /*
1915  * Open all child vdevs.
1916  */
1917 void
vdev_open_children(vdev_t * vd)1918 vdev_open_children(vdev_t *vd)
1919 {
1920 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1921 }
1922 
1923 /*
1924  * Conditionally open a subset of child vdevs.
1925  */
1926 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)1927 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1928 {
1929 	vdev_open_children_impl(vd, open_func);
1930 }
1931 
1932 /*
1933  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1934  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1935  * changed, this algorithm can not change, otherwise it would inconsistently
1936  * account for existing bp's.  We also hard-code txg 0 for the same reason
1937  * since expanded RAIDZ vdevs can use a different asize for different birth
1938  * txg's.
1939  */
1940 static void
vdev_set_deflate_ratio(vdev_t * vd)1941 vdev_set_deflate_ratio(vdev_t *vd)
1942 {
1943 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1944 		vd->vdev_deflate_ratio = (1 << 17) /
1945 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1946 		    SPA_MINBLOCKSHIFT);
1947 	}
1948 }
1949 
1950 /*
1951  * Choose the best of two ashifts, preferring one between logical ashift
1952  * (absolute minimum) and administrator defined maximum, otherwise take
1953  * the biggest of the two.
1954  */
1955 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)1956 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1957 {
1958 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1959 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1960 			return (a);
1961 		else
1962 			return (MAX(a, b));
1963 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1964 		return (MAX(a, b));
1965 	return (b);
1966 }
1967 
1968 /*
1969  * Maximize performance by inflating the configured ashift for top level
1970  * vdevs to be as close to the physical ashift as possible while maintaining
1971  * administrator defined limits and ensuring it doesn't go below the
1972  * logical ashift.
1973  */
1974 static void
vdev_ashift_optimize(vdev_t * vd)1975 vdev_ashift_optimize(vdev_t *vd)
1976 {
1977 	ASSERT(vd == vd->vdev_top);
1978 
1979 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1980 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1981 		vd->vdev_ashift = MIN(
1982 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1983 		    MAX(zfs_vdev_min_auto_ashift,
1984 		    vd->vdev_physical_ashift));
1985 	} else {
1986 		/*
1987 		 * If the logical and physical ashifts are the same, then
1988 		 * we ensure that the top-level vdev's ashift is not smaller
1989 		 * than our minimum ashift value. For the unusual case
1990 		 * where logical ashift > physical ashift, we can't cap
1991 		 * the calculated ashift based on max ashift as that
1992 		 * would cause failures.
1993 		 * We still check if we need to increase it to match
1994 		 * the min ashift.
1995 		 */
1996 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1997 		    vd->vdev_ashift);
1998 	}
1999 }
2000 
2001 /*
2002  * Prepare a virtual device for access.
2003  */
2004 int
vdev_open(vdev_t * vd)2005 vdev_open(vdev_t *vd)
2006 {
2007 	spa_t *spa = vd->vdev_spa;
2008 	int error;
2009 	uint64_t osize = 0;
2010 	uint64_t max_osize = 0;
2011 	uint64_t asize, max_asize, psize;
2012 	uint64_t logical_ashift = 0;
2013 	uint64_t physical_ashift = 0;
2014 
2015 	ASSERT(vd->vdev_open_thread == curthread ||
2016 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2017 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2018 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2019 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2020 
2021 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2022 	vd->vdev_cant_read = B_FALSE;
2023 	vd->vdev_cant_write = B_FALSE;
2024 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2025 
2026 	/*
2027 	 * If this vdev is not removed, check its fault status.  If it's
2028 	 * faulted, bail out of the open.
2029 	 */
2030 	if (!vd->vdev_removed && vd->vdev_faulted) {
2031 		ASSERT(vd->vdev_children == 0);
2032 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2033 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2034 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2035 		    vd->vdev_label_aux);
2036 		return (SET_ERROR(ENXIO));
2037 	} else if (vd->vdev_offline) {
2038 		ASSERT(vd->vdev_children == 0);
2039 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2040 		return (SET_ERROR(ENXIO));
2041 	}
2042 
2043 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2044 	    &logical_ashift, &physical_ashift);
2045 
2046 	/* Keep the device in removed state if unplugged */
2047 	if (error == ENOENT && vd->vdev_removed) {
2048 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2049 		    VDEV_AUX_NONE);
2050 		return (error);
2051 	}
2052 
2053 	/*
2054 	 * Physical volume size should never be larger than its max size, unless
2055 	 * the disk has shrunk while we were reading it or the device is buggy
2056 	 * or damaged: either way it's not safe for use, bail out of the open.
2057 	 */
2058 	if (osize > max_osize) {
2059 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2060 		    VDEV_AUX_OPEN_FAILED);
2061 		return (SET_ERROR(ENXIO));
2062 	}
2063 
2064 	/*
2065 	 * Reset the vdev_reopening flag so that we actually close
2066 	 * the vdev on error.
2067 	 */
2068 	vd->vdev_reopening = B_FALSE;
2069 	if (zio_injection_enabled && error == 0)
2070 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2071 
2072 	if (error) {
2073 		if (vd->vdev_removed &&
2074 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2075 			vd->vdev_removed = B_FALSE;
2076 
2077 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2078 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2079 			    vd->vdev_stat.vs_aux);
2080 		} else {
2081 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2082 			    vd->vdev_stat.vs_aux);
2083 		}
2084 		return (error);
2085 	}
2086 
2087 	vd->vdev_removed = B_FALSE;
2088 
2089 	/*
2090 	 * Recheck the faulted flag now that we have confirmed that
2091 	 * the vdev is accessible.  If we're faulted, bail.
2092 	 */
2093 	if (vd->vdev_faulted) {
2094 		ASSERT(vd->vdev_children == 0);
2095 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2096 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2097 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2098 		    vd->vdev_label_aux);
2099 		return (SET_ERROR(ENXIO));
2100 	}
2101 
2102 	if (vd->vdev_degraded) {
2103 		ASSERT(vd->vdev_children == 0);
2104 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2105 		    VDEV_AUX_ERR_EXCEEDED);
2106 	} else {
2107 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2108 	}
2109 
2110 	/*
2111 	 * For hole or missing vdevs we just return success.
2112 	 */
2113 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2114 		return (0);
2115 
2116 	for (int c = 0; c < vd->vdev_children; c++) {
2117 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2118 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2119 			    VDEV_AUX_NONE);
2120 			break;
2121 		}
2122 	}
2123 
2124 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2125 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2126 
2127 	if (vd->vdev_children == 0) {
2128 		if (osize < SPA_MINDEVSIZE) {
2129 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2130 			    VDEV_AUX_TOO_SMALL);
2131 			return (SET_ERROR(EOVERFLOW));
2132 		}
2133 		psize = osize;
2134 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2135 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2136 		    VDEV_LABEL_END_SIZE);
2137 	} else {
2138 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2139 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2140 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2141 			    VDEV_AUX_TOO_SMALL);
2142 			return (SET_ERROR(EOVERFLOW));
2143 		}
2144 		psize = 0;
2145 		asize = osize;
2146 		max_asize = max_osize;
2147 	}
2148 
2149 	/*
2150 	 * If the vdev was expanded, record this so that we can re-create the
2151 	 * uberblock rings in labels {2,3}, during the next sync.
2152 	 */
2153 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2154 		vd->vdev_copy_uberblocks = B_TRUE;
2155 
2156 	vd->vdev_psize = psize;
2157 
2158 	/*
2159 	 * Make sure the allocatable size hasn't shrunk too much.
2160 	 */
2161 	if (asize < vd->vdev_min_asize) {
2162 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2163 		    VDEV_AUX_BAD_LABEL);
2164 		return (SET_ERROR(EINVAL));
2165 	}
2166 
2167 	/*
2168 	 * We can always set the logical/physical ashift members since
2169 	 * their values are only used to calculate the vdev_ashift when
2170 	 * the device is first added to the config. These values should
2171 	 * not be used for anything else since they may change whenever
2172 	 * the device is reopened and we don't store them in the label.
2173 	 */
2174 	vd->vdev_physical_ashift =
2175 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2176 	vd->vdev_logical_ashift = MAX(logical_ashift,
2177 	    vd->vdev_logical_ashift);
2178 
2179 	if (vd->vdev_asize == 0) {
2180 		/*
2181 		 * This is the first-ever open, so use the computed values.
2182 		 * For compatibility, a different ashift can be requested.
2183 		 */
2184 		vd->vdev_asize = asize;
2185 		vd->vdev_max_asize = max_asize;
2186 
2187 		/*
2188 		 * If the vdev_ashift was not overridden at creation time,
2189 		 * then set it the logical ashift and optimize the ashift.
2190 		 */
2191 		if (vd->vdev_ashift == 0) {
2192 			vd->vdev_ashift = vd->vdev_logical_ashift;
2193 
2194 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2195 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2196 				    VDEV_AUX_ASHIFT_TOO_BIG);
2197 				return (SET_ERROR(EDOM));
2198 			}
2199 
2200 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2201 				vdev_ashift_optimize(vd);
2202 			vd->vdev_attaching = B_FALSE;
2203 		}
2204 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2205 		    vd->vdev_ashift > ASHIFT_MAX)) {
2206 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2207 			    VDEV_AUX_BAD_ASHIFT);
2208 			return (SET_ERROR(EDOM));
2209 		}
2210 	} else {
2211 		/*
2212 		 * Make sure the alignment required hasn't increased.
2213 		 */
2214 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2215 		    vd->vdev_ops->vdev_op_leaf) {
2216 			(void) zfs_ereport_post(
2217 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2218 			    spa, vd, NULL, NULL, 0);
2219 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2220 			    VDEV_AUX_BAD_LABEL);
2221 			return (SET_ERROR(EDOM));
2222 		}
2223 		vd->vdev_max_asize = max_asize;
2224 	}
2225 
2226 	/*
2227 	 * If all children are healthy we update asize if either:
2228 	 * The asize has increased, due to a device expansion caused by dynamic
2229 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2230 	 * making the additional space available.
2231 	 *
2232 	 * The asize has decreased, due to a device shrink usually caused by a
2233 	 * vdev replace with a smaller device. This ensures that calculations
2234 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2235 	 * to do this as we've already validated that asize is greater than
2236 	 * vdev_min_asize.
2237 	 */
2238 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2239 	    ((asize > vd->vdev_asize &&
2240 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2241 	    (asize < vd->vdev_asize)))
2242 		vd->vdev_asize = asize;
2243 
2244 	vdev_set_min_asize(vd);
2245 
2246 	/*
2247 	 * Ensure we can issue some IO before declaring the
2248 	 * vdev open for business.
2249 	 */
2250 	if (vd->vdev_ops->vdev_op_leaf &&
2251 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2252 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2253 		    VDEV_AUX_ERR_EXCEEDED);
2254 		return (error);
2255 	}
2256 
2257 	/*
2258 	 * Track the minimum allocation size.
2259 	 */
2260 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2261 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2262 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2263 		vdev_spa_set_alloc(spa, min_alloc);
2264 	}
2265 
2266 	/*
2267 	 * If this is a leaf vdev, assess whether a resilver is needed.
2268 	 * But don't do this if we are doing a reopen for a scrub, since
2269 	 * this would just restart the scrub we are already doing.
2270 	 */
2271 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2272 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2273 
2274 	return (0);
2275 }
2276 
2277 static void
vdev_validate_child(void * arg)2278 vdev_validate_child(void *arg)
2279 {
2280 	vdev_t *vd = arg;
2281 
2282 	vd->vdev_validate_thread = curthread;
2283 	vd->vdev_validate_error = vdev_validate(vd);
2284 	vd->vdev_validate_thread = NULL;
2285 }
2286 
2287 /*
2288  * Called once the vdevs are all opened, this routine validates the label
2289  * contents. This needs to be done before vdev_load() so that we don't
2290  * inadvertently do repair I/Os to the wrong device.
2291  *
2292  * This function will only return failure if one of the vdevs indicates that it
2293  * has since been destroyed or exported.  This is only possible if
2294  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2295  * will be updated but the function will return 0.
2296  */
2297 int
vdev_validate(vdev_t * vd)2298 vdev_validate(vdev_t *vd)
2299 {
2300 	spa_t *spa = vd->vdev_spa;
2301 	taskq_t *tq = NULL;
2302 	nvlist_t *label;
2303 	uint64_t guid = 0, aux_guid = 0, top_guid;
2304 	uint64_t state;
2305 	nvlist_t *nvl;
2306 	uint64_t txg;
2307 	int children = vd->vdev_children;
2308 
2309 	if (vdev_validate_skip)
2310 		return (0);
2311 
2312 	if (children > 0) {
2313 		tq = taskq_create("vdev_validate", children, minclsyspri,
2314 		    children, children, TASKQ_PREPOPULATE);
2315 	}
2316 
2317 	for (uint64_t c = 0; c < children; c++) {
2318 		vdev_t *cvd = vd->vdev_child[c];
2319 
2320 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2321 			vdev_validate_child(cvd);
2322 		} else {
2323 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2324 			    TQ_SLEEP) != TASKQID_INVALID);
2325 		}
2326 	}
2327 	if (tq != NULL) {
2328 		taskq_wait(tq);
2329 		taskq_destroy(tq);
2330 	}
2331 	for (int c = 0; c < children; c++) {
2332 		int error = vd->vdev_child[c]->vdev_validate_error;
2333 
2334 		if (error != 0)
2335 			return (SET_ERROR(EBADF));
2336 	}
2337 
2338 
2339 	/*
2340 	 * If the device has already failed, or was marked offline, don't do
2341 	 * any further validation.  Otherwise, label I/O will fail and we will
2342 	 * overwrite the previous state.
2343 	 */
2344 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2345 		return (0);
2346 
2347 	/*
2348 	 * If we are performing an extreme rewind, we allow for a label that
2349 	 * was modified at a point after the current txg.
2350 	 * If config lock is not held do not check for the txg. spa_sync could
2351 	 * be updating the vdev's label before updating spa_last_synced_txg.
2352 	 */
2353 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2354 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2355 		txg = UINT64_MAX;
2356 	else
2357 		txg = spa_last_synced_txg(spa);
2358 
2359 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2360 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2361 		    VDEV_AUX_BAD_LABEL);
2362 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2363 		    "txg %llu", (u_longlong_t)txg);
2364 		return (0);
2365 	}
2366 
2367 	/*
2368 	 * Determine if this vdev has been split off into another
2369 	 * pool.  If so, then refuse to open it.
2370 	 */
2371 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2372 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2373 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2374 		    VDEV_AUX_SPLIT_POOL);
2375 		nvlist_free(label);
2376 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2377 		return (0);
2378 	}
2379 
2380 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2381 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2382 		    VDEV_AUX_CORRUPT_DATA);
2383 		nvlist_free(label);
2384 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2385 		    ZPOOL_CONFIG_POOL_GUID);
2386 		return (0);
2387 	}
2388 
2389 	/*
2390 	 * If config is not trusted then ignore the spa guid check. This is
2391 	 * necessary because if the machine crashed during a re-guid the new
2392 	 * guid might have been written to all of the vdev labels, but not the
2393 	 * cached config. The check will be performed again once we have the
2394 	 * trusted config from the MOS.
2395 	 */
2396 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2397 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2398 		    VDEV_AUX_CORRUPT_DATA);
2399 		nvlist_free(label);
2400 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2401 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2402 		    (u_longlong_t)spa_guid(spa));
2403 		return (0);
2404 	}
2405 
2406 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2407 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2408 	    &aux_guid) != 0)
2409 		aux_guid = 0;
2410 
2411 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2412 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2413 		    VDEV_AUX_CORRUPT_DATA);
2414 		nvlist_free(label);
2415 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2416 		    ZPOOL_CONFIG_GUID);
2417 		return (0);
2418 	}
2419 
2420 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2421 	    != 0) {
2422 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2423 		    VDEV_AUX_CORRUPT_DATA);
2424 		nvlist_free(label);
2425 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2426 		    ZPOOL_CONFIG_TOP_GUID);
2427 		return (0);
2428 	}
2429 
2430 	/*
2431 	 * If this vdev just became a top-level vdev because its sibling was
2432 	 * detached, it will have adopted the parent's vdev guid -- but the
2433 	 * label may or may not be on disk yet. Fortunately, either version
2434 	 * of the label will have the same top guid, so if we're a top-level
2435 	 * vdev, we can safely compare to that instead.
2436 	 * However, if the config comes from a cachefile that failed to update
2437 	 * after the detach, a top-level vdev will appear as a non top-level
2438 	 * vdev in the config. Also relax the constraints if we perform an
2439 	 * extreme rewind.
2440 	 *
2441 	 * If we split this vdev off instead, then we also check the
2442 	 * original pool's guid. We don't want to consider the vdev
2443 	 * corrupt if it is partway through a split operation.
2444 	 */
2445 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2446 		boolean_t mismatch = B_FALSE;
2447 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2448 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2449 				mismatch = B_TRUE;
2450 		} else {
2451 			if (vd->vdev_guid != top_guid &&
2452 			    vd->vdev_top->vdev_guid != guid)
2453 				mismatch = B_TRUE;
2454 		}
2455 
2456 		if (mismatch) {
2457 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2458 			    VDEV_AUX_CORRUPT_DATA);
2459 			nvlist_free(label);
2460 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2461 			    "doesn't match label guid");
2462 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2463 			    (u_longlong_t)vd->vdev_guid,
2464 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2465 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2466 			    "aux_guid %llu", (u_longlong_t)guid,
2467 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2468 			return (0);
2469 		}
2470 	}
2471 
2472 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2473 	    &state) != 0) {
2474 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2475 		    VDEV_AUX_CORRUPT_DATA);
2476 		nvlist_free(label);
2477 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2478 		    ZPOOL_CONFIG_POOL_STATE);
2479 		return (0);
2480 	}
2481 
2482 	nvlist_free(label);
2483 
2484 	/*
2485 	 * If this is a verbatim import, no need to check the
2486 	 * state of the pool.
2487 	 */
2488 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2489 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2490 	    state != POOL_STATE_ACTIVE) {
2491 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2492 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2493 		return (SET_ERROR(EBADF));
2494 	}
2495 
2496 	/*
2497 	 * If we were able to open and validate a vdev that was
2498 	 * previously marked permanently unavailable, clear that state
2499 	 * now.
2500 	 */
2501 	if (vd->vdev_not_present)
2502 		vd->vdev_not_present = 0;
2503 
2504 	return (0);
2505 }
2506 
2507 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2508 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2509 {
2510 	if (svd != NULL && *dvd != NULL) {
2511 		if (strcmp(svd, *dvd) != 0) {
2512 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2513 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2514 			    *dvd, svd);
2515 			spa_strfree(*dvd);
2516 			*dvd = spa_strdup(svd);
2517 		}
2518 	} else if (svd != NULL) {
2519 		*dvd = spa_strdup(svd);
2520 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2521 		    (u_longlong_t)guid, *dvd);
2522 	}
2523 }
2524 
2525 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2526 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2527 {
2528 	char *old, *new;
2529 
2530 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2531 	    dvd->vdev_guid);
2532 
2533 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2534 	    dvd->vdev_guid);
2535 
2536 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2537 	    &dvd->vdev_physpath, dvd->vdev_guid);
2538 
2539 	/*
2540 	 * Our enclosure sysfs path may have changed between imports
2541 	 */
2542 	old = dvd->vdev_enc_sysfs_path;
2543 	new = svd->vdev_enc_sysfs_path;
2544 	if ((old != NULL && new == NULL) ||
2545 	    (old == NULL && new != NULL) ||
2546 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2547 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2548 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2549 		    old, new);
2550 
2551 		if (dvd->vdev_enc_sysfs_path)
2552 			spa_strfree(dvd->vdev_enc_sysfs_path);
2553 
2554 		if (svd->vdev_enc_sysfs_path) {
2555 			dvd->vdev_enc_sysfs_path = spa_strdup(
2556 			    svd->vdev_enc_sysfs_path);
2557 		} else {
2558 			dvd->vdev_enc_sysfs_path = NULL;
2559 		}
2560 	}
2561 }
2562 
2563 /*
2564  * Recursively copy vdev paths from one vdev to another. Source and destination
2565  * vdev trees must have same geometry otherwise return error. Intended to copy
2566  * paths from userland config into MOS config.
2567  */
2568 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2569 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2570 {
2571 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2572 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2573 	    (dvd->vdev_ops == &vdev_indirect_ops))
2574 		return (0);
2575 
2576 	if (svd->vdev_ops != dvd->vdev_ops) {
2577 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2578 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2579 		return (SET_ERROR(EINVAL));
2580 	}
2581 
2582 	if (svd->vdev_guid != dvd->vdev_guid) {
2583 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2584 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2585 		    (u_longlong_t)dvd->vdev_guid);
2586 		return (SET_ERROR(EINVAL));
2587 	}
2588 
2589 	if (svd->vdev_children != dvd->vdev_children) {
2590 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2591 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2592 		    (u_longlong_t)dvd->vdev_children);
2593 		return (SET_ERROR(EINVAL));
2594 	}
2595 
2596 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2597 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2598 		    dvd->vdev_child[i]);
2599 		if (error != 0)
2600 			return (error);
2601 	}
2602 
2603 	if (svd->vdev_ops->vdev_op_leaf)
2604 		vdev_copy_path_impl(svd, dvd);
2605 
2606 	return (0);
2607 }
2608 
2609 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2610 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2611 {
2612 	ASSERT(stvd->vdev_top == stvd);
2613 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2614 
2615 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2616 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2617 	}
2618 
2619 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2620 		return;
2621 
2622 	/*
2623 	 * The idea here is that while a vdev can shift positions within
2624 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2625 	 * step outside of it.
2626 	 */
2627 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2628 
2629 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2630 		return;
2631 
2632 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2633 
2634 	vdev_copy_path_impl(vd, dvd);
2635 }
2636 
2637 /*
2638  * Recursively copy vdev paths from one root vdev to another. Source and
2639  * destination vdev trees may differ in geometry. For each destination leaf
2640  * vdev, search a vdev with the same guid and top vdev id in the source.
2641  * Intended to copy paths from userland config into MOS config.
2642  */
2643 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2644 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2645 {
2646 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2647 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2648 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2649 
2650 	for (uint64_t i = 0; i < children; i++) {
2651 		vdev_copy_path_search(srvd->vdev_child[i],
2652 		    drvd->vdev_child[i]);
2653 	}
2654 }
2655 
2656 /*
2657  * Close a virtual device.
2658  */
2659 void
vdev_close(vdev_t * vd)2660 vdev_close(vdev_t *vd)
2661 {
2662 	vdev_t *pvd = vd->vdev_parent;
2663 	spa_t *spa __maybe_unused = vd->vdev_spa;
2664 
2665 	ASSERT(vd != NULL);
2666 	ASSERT(vd->vdev_open_thread == curthread ||
2667 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2668 
2669 	/*
2670 	 * If our parent is reopening, then we are as well, unless we are
2671 	 * going offline.
2672 	 */
2673 	if (pvd != NULL && pvd->vdev_reopening)
2674 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2675 
2676 	vd->vdev_ops->vdev_op_close(vd);
2677 
2678 	/*
2679 	 * We record the previous state before we close it, so that if we are
2680 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2681 	 * it's still faulted.
2682 	 */
2683 	vd->vdev_prevstate = vd->vdev_state;
2684 
2685 	if (vd->vdev_offline)
2686 		vd->vdev_state = VDEV_STATE_OFFLINE;
2687 	else
2688 		vd->vdev_state = VDEV_STATE_CLOSED;
2689 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2690 }
2691 
2692 void
vdev_hold(vdev_t * vd)2693 vdev_hold(vdev_t *vd)
2694 {
2695 	spa_t *spa = vd->vdev_spa;
2696 
2697 	ASSERT(spa_is_root(spa));
2698 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2699 		return;
2700 
2701 	for (int c = 0; c < vd->vdev_children; c++)
2702 		vdev_hold(vd->vdev_child[c]);
2703 
2704 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2705 		vd->vdev_ops->vdev_op_hold(vd);
2706 }
2707 
2708 void
vdev_rele(vdev_t * vd)2709 vdev_rele(vdev_t *vd)
2710 {
2711 	ASSERT(spa_is_root(vd->vdev_spa));
2712 	for (int c = 0; c < vd->vdev_children; c++)
2713 		vdev_rele(vd->vdev_child[c]);
2714 
2715 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2716 		vd->vdev_ops->vdev_op_rele(vd);
2717 }
2718 
2719 /*
2720  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2721  * reopen leaf vdevs which had previously been opened as they might deadlock
2722  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2723  * If the leaf has never been opened then open it, as usual.
2724  */
2725 void
vdev_reopen(vdev_t * vd)2726 vdev_reopen(vdev_t *vd)
2727 {
2728 	spa_t *spa = vd->vdev_spa;
2729 
2730 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2731 
2732 	/* set the reopening flag unless we're taking the vdev offline */
2733 	vd->vdev_reopening = !vd->vdev_offline;
2734 	vdev_close(vd);
2735 	(void) vdev_open(vd);
2736 
2737 	/*
2738 	 * Call vdev_validate() here to make sure we have the same device.
2739 	 * Otherwise, a device with an invalid label could be successfully
2740 	 * opened in response to vdev_reopen().
2741 	 */
2742 	if (vd->vdev_aux) {
2743 		(void) vdev_validate_aux(vd);
2744 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2745 		    vd->vdev_aux == &spa->spa_l2cache) {
2746 			/*
2747 			 * In case the vdev is present we should evict all ARC
2748 			 * buffers and pointers to log blocks and reclaim their
2749 			 * space before restoring its contents to L2ARC.
2750 			 */
2751 			if (l2arc_vdev_present(vd)) {
2752 				l2arc_rebuild_vdev(vd, B_TRUE);
2753 			} else {
2754 				l2arc_add_vdev(spa, vd);
2755 			}
2756 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2757 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2758 		}
2759 	} else {
2760 		(void) vdev_validate(vd);
2761 	}
2762 
2763 	/*
2764 	 * Recheck if resilver is still needed and cancel any
2765 	 * scheduled resilver if resilver is unneeded.
2766 	 */
2767 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2768 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2769 		mutex_enter(&spa->spa_async_lock);
2770 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2771 		mutex_exit(&spa->spa_async_lock);
2772 	}
2773 
2774 	/*
2775 	 * Reassess parent vdev's health.
2776 	 */
2777 	vdev_propagate_state(vd);
2778 }
2779 
2780 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2781 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2782 {
2783 	int error;
2784 
2785 	/*
2786 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2787 	 * For a create, however, we want to fail the request if
2788 	 * there are any components we can't open.
2789 	 */
2790 	error = vdev_open(vd);
2791 
2792 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2793 		vdev_close(vd);
2794 		return (error ? error : SET_ERROR(ENXIO));
2795 	}
2796 
2797 	/*
2798 	 * Recursively load DTLs and initialize all labels.
2799 	 */
2800 	if ((error = vdev_dtl_load(vd)) != 0 ||
2801 	    (error = vdev_label_init(vd, txg, isreplacing ?
2802 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2803 		vdev_close(vd);
2804 		return (error);
2805 	}
2806 
2807 	return (0);
2808 }
2809 
2810 void
vdev_metaslab_set_size(vdev_t * vd)2811 vdev_metaslab_set_size(vdev_t *vd)
2812 {
2813 	uint64_t asize = vd->vdev_asize;
2814 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2815 	uint64_t ms_shift;
2816 
2817 	/*
2818 	 * There are two dimensions to the metaslab sizing calculation:
2819 	 * the size of the metaslab and the count of metaslabs per vdev.
2820 	 *
2821 	 * The default values used below are a good balance between memory
2822 	 * usage (larger metaslab size means more memory needed for loaded
2823 	 * metaslabs; more metaslabs means more memory needed for the
2824 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2825 	 * longer to load), and metaslab sync time (more metaslabs means
2826 	 * more time spent syncing all of them).
2827 	 *
2828 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2829 	 * The range of the dimensions are as follows:
2830 	 *
2831 	 *	2^29 <= ms_size  <= 2^34
2832 	 *	  16 <= ms_count <= 131,072
2833 	 *
2834 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2835 	 * at least 512MB (2^29) to minimize fragmentation effects when
2836 	 * testing with smaller devices.  However, the count constraint
2837 	 * of at least 16 metaslabs will override this minimum size goal.
2838 	 *
2839 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2840 	 * size of 16GB.  However, we will cap the total count to 2^17
2841 	 * metaslabs to keep our memory footprint in check and let the
2842 	 * metaslab size grow from there if that limit is hit.
2843 	 *
2844 	 * The net effect of applying above constrains is summarized below.
2845 	 *
2846 	 *   vdev size       metaslab count
2847 	 *  --------------|-----------------
2848 	 *      < 8GB        ~16
2849 	 *  8GB   - 100GB   one per 512MB
2850 	 *  100GB - 3TB     ~200
2851 	 *  3TB   - 2PB     one per 16GB
2852 	 *      > 2PB       ~131,072
2853 	 *  --------------------------------
2854 	 *
2855 	 *  Finally, note that all of the above calculate the initial
2856 	 *  number of metaslabs. Expanding a top-level vdev will result
2857 	 *  in additional metaslabs being allocated making it possible
2858 	 *  to exceed the zfs_vdev_ms_count_limit.
2859 	 */
2860 
2861 	if (ms_count < zfs_vdev_min_ms_count)
2862 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2863 	else if (ms_count > zfs_vdev_default_ms_count)
2864 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2865 	else
2866 		ms_shift = zfs_vdev_default_ms_shift;
2867 
2868 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2869 		ms_shift = SPA_MAXBLOCKSHIFT;
2870 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2871 		ms_shift = zfs_vdev_max_ms_shift;
2872 		/* cap the total count to constrain memory footprint */
2873 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2874 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2875 	}
2876 
2877 	vd->vdev_ms_shift = ms_shift;
2878 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2879 }
2880 
2881 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2882 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2883 {
2884 	ASSERT(vd == vd->vdev_top);
2885 	/* indirect vdevs don't have metaslabs or dtls */
2886 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2887 	ASSERT(ISP2(flags));
2888 	ASSERT(spa_writeable(vd->vdev_spa));
2889 
2890 	if (flags & VDD_METASLAB)
2891 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2892 
2893 	if (flags & VDD_DTL)
2894 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2895 
2896 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2897 }
2898 
2899 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2900 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2901 {
2902 	for (int c = 0; c < vd->vdev_children; c++)
2903 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2904 
2905 	if (vd->vdev_ops->vdev_op_leaf)
2906 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2907 }
2908 
2909 /*
2910  * DTLs.
2911  *
2912  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2913  * the vdev has less than perfect replication.  There are four kinds of DTL:
2914  *
2915  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2916  *
2917  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2918  *
2919  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2920  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2921  *	txgs that was scrubbed.
2922  *
2923  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2924  *	persistent errors or just some device being offline.
2925  *	Unlike the other three, the DTL_OUTAGE map is not generally
2926  *	maintained; it's only computed when needed, typically to
2927  *	determine whether a device can be detached.
2928  *
2929  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2930  * either has the data or it doesn't.
2931  *
2932  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2933  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2934  * if any child is less than fully replicated, then so is its parent.
2935  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2936  * comprising only those txgs which appear in 'maxfaults' or more children;
2937  * those are the txgs we don't have enough replication to read.  For example,
2938  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2939  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2940  * two child DTL_MISSING maps.
2941  *
2942  * It should be clear from the above that to compute the DTLs and outage maps
2943  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2944  * Therefore, that is all we keep on disk.  When loading the pool, or after
2945  * a configuration change, we generate all other DTLs from first principles.
2946  */
2947 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2948 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2949 {
2950 	range_tree_t *rt = vd->vdev_dtl[t];
2951 
2952 	ASSERT(t < DTL_TYPES);
2953 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2954 	ASSERT(spa_writeable(vd->vdev_spa));
2955 
2956 	mutex_enter(&vd->vdev_dtl_lock);
2957 	if (!range_tree_contains(rt, txg, size))
2958 		range_tree_add(rt, txg, size);
2959 	mutex_exit(&vd->vdev_dtl_lock);
2960 }
2961 
2962 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2963 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2964 {
2965 	range_tree_t *rt = vd->vdev_dtl[t];
2966 	boolean_t dirty = B_FALSE;
2967 
2968 	ASSERT(t < DTL_TYPES);
2969 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2970 
2971 	/*
2972 	 * While we are loading the pool, the DTLs have not been loaded yet.
2973 	 * This isn't a problem but it can result in devices being tried
2974 	 * which are known to not have the data.  In which case, the import
2975 	 * is relying on the checksum to ensure that we get the right data.
2976 	 * Note that while importing we are only reading the MOS, which is
2977 	 * always checksummed.
2978 	 */
2979 	mutex_enter(&vd->vdev_dtl_lock);
2980 	if (!range_tree_is_empty(rt))
2981 		dirty = range_tree_contains(rt, txg, size);
2982 	mutex_exit(&vd->vdev_dtl_lock);
2983 
2984 	return (dirty);
2985 }
2986 
2987 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)2988 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2989 {
2990 	range_tree_t *rt = vd->vdev_dtl[t];
2991 	boolean_t empty;
2992 
2993 	mutex_enter(&vd->vdev_dtl_lock);
2994 	empty = range_tree_is_empty(rt);
2995 	mutex_exit(&vd->vdev_dtl_lock);
2996 
2997 	return (empty);
2998 }
2999 
3000 /*
3001  * Check if the txg falls within the range which must be
3002  * resilvered.  DVAs outside this range can always be skipped.
3003  */
3004 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3005 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3006     uint64_t phys_birth)
3007 {
3008 	(void) dva, (void) psize;
3009 
3010 	/* Set by sequential resilver. */
3011 	if (phys_birth == TXG_UNKNOWN)
3012 		return (B_TRUE);
3013 
3014 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3015 }
3016 
3017 /*
3018  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3019  */
3020 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3021 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3022     uint64_t phys_birth)
3023 {
3024 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3025 
3026 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3027 	    vd->vdev_ops->vdev_op_leaf)
3028 		return (B_TRUE);
3029 
3030 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3031 	    phys_birth));
3032 }
3033 
3034 /*
3035  * Returns the lowest txg in the DTL range.
3036  */
3037 static uint64_t
vdev_dtl_min(vdev_t * vd)3038 vdev_dtl_min(vdev_t *vd)
3039 {
3040 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3041 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3042 	ASSERT0(vd->vdev_children);
3043 
3044 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3045 }
3046 
3047 /*
3048  * Returns the highest txg in the DTL.
3049  */
3050 static uint64_t
vdev_dtl_max(vdev_t * vd)3051 vdev_dtl_max(vdev_t *vd)
3052 {
3053 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3054 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3055 	ASSERT0(vd->vdev_children);
3056 
3057 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3058 }
3059 
3060 /*
3061  * Determine if a resilvering vdev should remove any DTL entries from
3062  * its range. If the vdev was resilvering for the entire duration of the
3063  * scan then it should excise that range from its DTLs. Otherwise, this
3064  * vdev is considered partially resilvered and should leave its DTL
3065  * entries intact. The comment in vdev_dtl_reassess() describes how we
3066  * excise the DTLs.
3067  */
3068 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3069 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3070 {
3071 	ASSERT0(vd->vdev_children);
3072 
3073 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3074 		return (B_FALSE);
3075 
3076 	if (vd->vdev_resilver_deferred)
3077 		return (B_FALSE);
3078 
3079 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3080 		return (B_TRUE);
3081 
3082 	if (rebuild_done) {
3083 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3084 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3085 
3086 		/* Rebuild not initiated by attach */
3087 		if (vd->vdev_rebuild_txg == 0)
3088 			return (B_TRUE);
3089 
3090 		/*
3091 		 * When a rebuild completes without error then all missing data
3092 		 * up to the rebuild max txg has been reconstructed and the DTL
3093 		 * is eligible for excision.
3094 		 */
3095 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3096 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3097 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3098 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3099 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3100 			return (B_TRUE);
3101 		}
3102 	} else {
3103 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3104 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3105 
3106 		/* Resilver not initiated by attach */
3107 		if (vd->vdev_resilver_txg == 0)
3108 			return (B_TRUE);
3109 
3110 		/*
3111 		 * When a resilver is initiated the scan will assign the
3112 		 * scn_max_txg value to the highest txg value that exists
3113 		 * in all DTLs. If this device's max DTL is not part of this
3114 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3115 		 * then it is not eligible for excision.
3116 		 */
3117 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3118 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3119 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3120 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3121 			return (B_TRUE);
3122 		}
3123 	}
3124 
3125 	return (B_FALSE);
3126 }
3127 
3128 /*
3129  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3130  * write operations will be issued to the pool.
3131  */
3132 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3133 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3134     boolean_t scrub_done, boolean_t rebuild_done)
3135 {
3136 	spa_t *spa = vd->vdev_spa;
3137 	avl_tree_t reftree;
3138 	int minref;
3139 
3140 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3141 
3142 	for (int c = 0; c < vd->vdev_children; c++)
3143 		vdev_dtl_reassess(vd->vdev_child[c], txg,
3144 		    scrub_txg, scrub_done, rebuild_done);
3145 
3146 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3147 		return;
3148 
3149 	if (vd->vdev_ops->vdev_op_leaf) {
3150 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3151 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3152 		boolean_t check_excise = B_FALSE;
3153 		boolean_t wasempty = B_TRUE;
3154 
3155 		mutex_enter(&vd->vdev_dtl_lock);
3156 
3157 		/*
3158 		 * If requested, pretend the scan or rebuild completed cleanly.
3159 		 */
3160 		if (zfs_scan_ignore_errors) {
3161 			if (scn != NULL)
3162 				scn->scn_phys.scn_errors = 0;
3163 			if (vr != NULL)
3164 				vr->vr_rebuild_phys.vrp_errors = 0;
3165 		}
3166 
3167 		if (scrub_txg != 0 &&
3168 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3169 			wasempty = B_FALSE;
3170 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3171 			    "dtl:%llu/%llu errors:%llu",
3172 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3173 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3174 			    (u_longlong_t)vdev_dtl_min(vd),
3175 			    (u_longlong_t)vdev_dtl_max(vd),
3176 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3177 		}
3178 
3179 		/*
3180 		 * If we've completed a scrub/resilver or a rebuild cleanly
3181 		 * then determine if this vdev should remove any DTLs. We
3182 		 * only want to excise regions on vdevs that were available
3183 		 * during the entire duration of this scan.
3184 		 */
3185 		if (rebuild_done &&
3186 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3187 			check_excise = B_TRUE;
3188 		} else {
3189 			if (spa->spa_scrub_started ||
3190 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3191 				check_excise = B_TRUE;
3192 			}
3193 		}
3194 
3195 		if (scrub_txg && check_excise &&
3196 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3197 			/*
3198 			 * We completed a scrub, resilver or rebuild up to
3199 			 * scrub_txg.  If we did it without rebooting, then
3200 			 * the scrub dtl will be valid, so excise the old
3201 			 * region and fold in the scrub dtl.  Otherwise,
3202 			 * leave the dtl as-is if there was an error.
3203 			 *
3204 			 * There's little trick here: to excise the beginning
3205 			 * of the DTL_MISSING map, we put it into a reference
3206 			 * tree and then add a segment with refcnt -1 that
3207 			 * covers the range [0, scrub_txg).  This means
3208 			 * that each txg in that range has refcnt -1 or 0.
3209 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3210 			 * entries in the range [0, scrub_txg) will have a
3211 			 * positive refcnt -- either 1 or 2.  We then convert
3212 			 * the reference tree into the new DTL_MISSING map.
3213 			 */
3214 			space_reftree_create(&reftree);
3215 			space_reftree_add_map(&reftree,
3216 			    vd->vdev_dtl[DTL_MISSING], 1);
3217 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3218 			space_reftree_add_map(&reftree,
3219 			    vd->vdev_dtl[DTL_SCRUB], 2);
3220 			space_reftree_generate_map(&reftree,
3221 			    vd->vdev_dtl[DTL_MISSING], 1);
3222 			space_reftree_destroy(&reftree);
3223 
3224 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3225 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3226 				    (u_longlong_t)vdev_dtl_min(vd),
3227 				    (u_longlong_t)vdev_dtl_max(vd));
3228 			} else if (!wasempty) {
3229 				zfs_dbgmsg("DTL_MISSING is now empty");
3230 			}
3231 		}
3232 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3233 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3234 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3235 		if (scrub_done)
3236 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3237 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3238 		if (!vdev_readable(vd))
3239 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3240 		else
3241 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3242 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3243 
3244 		/*
3245 		 * If the vdev was resilvering or rebuilding and no longer
3246 		 * has any DTLs then reset the appropriate flag and dirty
3247 		 * the top level so that we persist the change.
3248 		 */
3249 		if (txg != 0 &&
3250 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3251 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3252 			if (vd->vdev_rebuild_txg != 0) {
3253 				vd->vdev_rebuild_txg = 0;
3254 				vdev_config_dirty(vd->vdev_top);
3255 			} else if (vd->vdev_resilver_txg != 0) {
3256 				vd->vdev_resilver_txg = 0;
3257 				vdev_config_dirty(vd->vdev_top);
3258 			}
3259 		}
3260 
3261 		mutex_exit(&vd->vdev_dtl_lock);
3262 
3263 		if (txg != 0)
3264 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3265 	} else {
3266 		mutex_enter(&vd->vdev_dtl_lock);
3267 		for (int t = 0; t < DTL_TYPES; t++) {
3268 			/* account for child's outage in parent's missing map */
3269 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3270 			if (t == DTL_SCRUB) {
3271 				/* leaf vdevs only */
3272 				continue;
3273 			}
3274 			if (t == DTL_PARTIAL) {
3275 				/* i.e. non-zero */
3276 				minref = 1;
3277 			} else if (vdev_get_nparity(vd) != 0) {
3278 				/* RAIDZ, DRAID */
3279 				minref = vdev_get_nparity(vd) + 1;
3280 			} else {
3281 				/* any kind of mirror */
3282 				minref = vd->vdev_children;
3283 			}
3284 			space_reftree_create(&reftree);
3285 			for (int c = 0; c < vd->vdev_children; c++) {
3286 				vdev_t *cvd = vd->vdev_child[c];
3287 				mutex_enter(&cvd->vdev_dtl_lock);
3288 				space_reftree_add_map(&reftree,
3289 				    cvd->vdev_dtl[s], 1);
3290 				mutex_exit(&cvd->vdev_dtl_lock);
3291 			}
3292 			space_reftree_generate_map(&reftree,
3293 			    vd->vdev_dtl[t], minref);
3294 			space_reftree_destroy(&reftree);
3295 		}
3296 		mutex_exit(&vd->vdev_dtl_lock);
3297 	}
3298 
3299 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3300 		raidz_dtl_reassessed(vd);
3301 	}
3302 }
3303 
3304 /*
3305  * Iterate over all the vdevs except spare, and post kobj events
3306  */
3307 void
vdev_post_kobj_evt(vdev_t * vd)3308 vdev_post_kobj_evt(vdev_t *vd)
3309 {
3310 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3311 	    vd->vdev_kobj_flag == B_FALSE) {
3312 		vd->vdev_kobj_flag = B_TRUE;
3313 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3314 	}
3315 
3316 	for (int c = 0; c < vd->vdev_children; c++)
3317 		vdev_post_kobj_evt(vd->vdev_child[c]);
3318 }
3319 
3320 /*
3321  * Iterate over all the vdevs except spare, and clear kobj events
3322  */
3323 void
vdev_clear_kobj_evt(vdev_t * vd)3324 vdev_clear_kobj_evt(vdev_t *vd)
3325 {
3326 	vd->vdev_kobj_flag = B_FALSE;
3327 
3328 	for (int c = 0; c < vd->vdev_children; c++)
3329 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3330 }
3331 
3332 int
vdev_dtl_load(vdev_t * vd)3333 vdev_dtl_load(vdev_t *vd)
3334 {
3335 	spa_t *spa = vd->vdev_spa;
3336 	objset_t *mos = spa->spa_meta_objset;
3337 	range_tree_t *rt;
3338 	int error = 0;
3339 
3340 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3341 		ASSERT(vdev_is_concrete(vd));
3342 
3343 		/*
3344 		 * If the dtl cannot be sync'd there is no need to open it.
3345 		 */
3346 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3347 			return (0);
3348 
3349 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3350 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3351 		if (error)
3352 			return (error);
3353 		ASSERT(vd->vdev_dtl_sm != NULL);
3354 
3355 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3356 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3357 		if (error == 0) {
3358 			mutex_enter(&vd->vdev_dtl_lock);
3359 			range_tree_walk(rt, range_tree_add,
3360 			    vd->vdev_dtl[DTL_MISSING]);
3361 			mutex_exit(&vd->vdev_dtl_lock);
3362 		}
3363 
3364 		range_tree_vacate(rt, NULL, NULL);
3365 		range_tree_destroy(rt);
3366 
3367 		return (error);
3368 	}
3369 
3370 	for (int c = 0; c < vd->vdev_children; c++) {
3371 		error = vdev_dtl_load(vd->vdev_child[c]);
3372 		if (error != 0)
3373 			break;
3374 	}
3375 
3376 	return (error);
3377 }
3378 
3379 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3380 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3381 {
3382 	spa_t *spa = vd->vdev_spa;
3383 	objset_t *mos = spa->spa_meta_objset;
3384 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3385 	const char *string;
3386 
3387 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3388 
3389 	string =
3390 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3391 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3392 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3393 
3394 	ASSERT(string != NULL);
3395 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3396 	    1, strlen(string) + 1, string, tx));
3397 
3398 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3399 		spa_activate_allocation_classes(spa, tx);
3400 	}
3401 }
3402 
3403 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3404 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3405 {
3406 	spa_t *spa = vd->vdev_spa;
3407 
3408 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3409 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3410 	    zapobj, tx));
3411 }
3412 
3413 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3414 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3415 {
3416 	spa_t *spa = vd->vdev_spa;
3417 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3418 	    DMU_OT_NONE, 0, tx);
3419 
3420 	ASSERT(zap != 0);
3421 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3422 	    zap, tx));
3423 
3424 	return (zap);
3425 }
3426 
3427 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3428 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3429 {
3430 	if (vd->vdev_ops != &vdev_hole_ops &&
3431 	    vd->vdev_ops != &vdev_missing_ops &&
3432 	    vd->vdev_ops != &vdev_root_ops &&
3433 	    !vd->vdev_top->vdev_removing) {
3434 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3435 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3436 		}
3437 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3438 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3439 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3440 				vdev_zap_allocation_data(vd, tx);
3441 		}
3442 	}
3443 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3444 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3445 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3446 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3447 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3448 	}
3449 
3450 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3451 		vdev_construct_zaps(vd->vdev_child[i], tx);
3452 	}
3453 }
3454 
3455 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3456 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3457 {
3458 	spa_t *spa = vd->vdev_spa;
3459 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3460 	objset_t *mos = spa->spa_meta_objset;
3461 	range_tree_t *rtsync;
3462 	dmu_tx_t *tx;
3463 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3464 
3465 	ASSERT(vdev_is_concrete(vd));
3466 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3467 
3468 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3469 
3470 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3471 		mutex_enter(&vd->vdev_dtl_lock);
3472 		space_map_free(vd->vdev_dtl_sm, tx);
3473 		space_map_close(vd->vdev_dtl_sm);
3474 		vd->vdev_dtl_sm = NULL;
3475 		mutex_exit(&vd->vdev_dtl_lock);
3476 
3477 		/*
3478 		 * We only destroy the leaf ZAP for detached leaves or for
3479 		 * removed log devices. Removed data devices handle leaf ZAP
3480 		 * cleanup later, once cancellation is no longer possible.
3481 		 */
3482 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3483 		    vd->vdev_top->vdev_islog)) {
3484 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3485 			vd->vdev_leaf_zap = 0;
3486 		}
3487 
3488 		dmu_tx_commit(tx);
3489 		return;
3490 	}
3491 
3492 	if (vd->vdev_dtl_sm == NULL) {
3493 		uint64_t new_object;
3494 
3495 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3496 		VERIFY3U(new_object, !=, 0);
3497 
3498 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3499 		    0, -1ULL, 0));
3500 		ASSERT(vd->vdev_dtl_sm != NULL);
3501 	}
3502 
3503 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3504 
3505 	mutex_enter(&vd->vdev_dtl_lock);
3506 	range_tree_walk(rt, range_tree_add, rtsync);
3507 	mutex_exit(&vd->vdev_dtl_lock);
3508 
3509 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3510 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3511 	range_tree_vacate(rtsync, NULL, NULL);
3512 
3513 	range_tree_destroy(rtsync);
3514 
3515 	/*
3516 	 * If the object for the space map has changed then dirty
3517 	 * the top level so that we update the config.
3518 	 */
3519 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3520 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3521 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3522 		    (u_longlong_t)object,
3523 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3524 		vdev_config_dirty(vd->vdev_top);
3525 	}
3526 
3527 	dmu_tx_commit(tx);
3528 }
3529 
3530 /*
3531  * Determine whether the specified vdev can be offlined/detached/removed
3532  * without losing data.
3533  */
3534 boolean_t
vdev_dtl_required(vdev_t * vd)3535 vdev_dtl_required(vdev_t *vd)
3536 {
3537 	spa_t *spa = vd->vdev_spa;
3538 	vdev_t *tvd = vd->vdev_top;
3539 	uint8_t cant_read = vd->vdev_cant_read;
3540 	boolean_t required;
3541 
3542 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3543 
3544 	if (vd == spa->spa_root_vdev || vd == tvd)
3545 		return (B_TRUE);
3546 
3547 	/*
3548 	 * Temporarily mark the device as unreadable, and then determine
3549 	 * whether this results in any DTL outages in the top-level vdev.
3550 	 * If not, we can safely offline/detach/remove the device.
3551 	 */
3552 	vd->vdev_cant_read = B_TRUE;
3553 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3554 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3555 	vd->vdev_cant_read = cant_read;
3556 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3557 
3558 	if (!required && zio_injection_enabled) {
3559 		required = !!zio_handle_device_injection(vd, NULL,
3560 		    SET_ERROR(ECHILD));
3561 	}
3562 
3563 	return (required);
3564 }
3565 
3566 /*
3567  * Determine if resilver is needed, and if so the txg range.
3568  */
3569 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3570 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3571 {
3572 	boolean_t needed = B_FALSE;
3573 	uint64_t thismin = UINT64_MAX;
3574 	uint64_t thismax = 0;
3575 
3576 	if (vd->vdev_children == 0) {
3577 		mutex_enter(&vd->vdev_dtl_lock);
3578 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3579 		    vdev_writeable(vd)) {
3580 
3581 			thismin = vdev_dtl_min(vd);
3582 			thismax = vdev_dtl_max(vd);
3583 			needed = B_TRUE;
3584 		}
3585 		mutex_exit(&vd->vdev_dtl_lock);
3586 	} else {
3587 		for (int c = 0; c < vd->vdev_children; c++) {
3588 			vdev_t *cvd = vd->vdev_child[c];
3589 			uint64_t cmin, cmax;
3590 
3591 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3592 				thismin = MIN(thismin, cmin);
3593 				thismax = MAX(thismax, cmax);
3594 				needed = B_TRUE;
3595 			}
3596 		}
3597 	}
3598 
3599 	if (needed && minp) {
3600 		*minp = thismin;
3601 		*maxp = thismax;
3602 	}
3603 	return (needed);
3604 }
3605 
3606 /*
3607  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3608  * will contain either the checkpoint spacemap object or zero if none exists.
3609  * All other errors are returned to the caller.
3610  */
3611 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3612 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3613 {
3614 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3615 
3616 	if (vd->vdev_top_zap == 0) {
3617 		*sm_obj = 0;
3618 		return (0);
3619 	}
3620 
3621 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3622 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3623 	if (error == ENOENT) {
3624 		*sm_obj = 0;
3625 		error = 0;
3626 	}
3627 
3628 	return (error);
3629 }
3630 
3631 int
vdev_load(vdev_t * vd)3632 vdev_load(vdev_t *vd)
3633 {
3634 	int children = vd->vdev_children;
3635 	int error = 0;
3636 	taskq_t *tq = NULL;
3637 
3638 	/*
3639 	 * It's only worthwhile to use the taskq for the root vdev, because the
3640 	 * slow part is metaslab_init, and that only happens for top-level
3641 	 * vdevs.
3642 	 */
3643 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3644 		tq = taskq_create("vdev_load", children, minclsyspri,
3645 		    children, children, TASKQ_PREPOPULATE);
3646 	}
3647 
3648 	/*
3649 	 * Recursively load all children.
3650 	 */
3651 	for (int c = 0; c < vd->vdev_children; c++) {
3652 		vdev_t *cvd = vd->vdev_child[c];
3653 
3654 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3655 			cvd->vdev_load_error = vdev_load(cvd);
3656 		} else {
3657 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3658 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3659 		}
3660 	}
3661 
3662 	if (tq != NULL) {
3663 		taskq_wait(tq);
3664 		taskq_destroy(tq);
3665 	}
3666 
3667 	for (int c = 0; c < vd->vdev_children; c++) {
3668 		int error = vd->vdev_child[c]->vdev_load_error;
3669 
3670 		if (error != 0)
3671 			return (error);
3672 	}
3673 
3674 	vdev_set_deflate_ratio(vd);
3675 
3676 	if (vd->vdev_ops == &vdev_raidz_ops) {
3677 		error = vdev_raidz_load(vd);
3678 		if (error != 0)
3679 			return (error);
3680 	}
3681 
3682 	/*
3683 	 * On spa_load path, grab the allocation bias from our zap
3684 	 */
3685 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3686 		spa_t *spa = vd->vdev_spa;
3687 		char bias_str[64];
3688 
3689 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3690 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3691 		    bias_str);
3692 		if (error == 0) {
3693 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3694 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3695 		} else if (error != ENOENT) {
3696 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3697 			    VDEV_AUX_CORRUPT_DATA);
3698 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3699 			    "failed [error=%d]",
3700 			    (u_longlong_t)vd->vdev_top_zap, error);
3701 			return (error);
3702 		}
3703 	}
3704 
3705 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3706 		spa_t *spa = vd->vdev_spa;
3707 		uint64_t failfast;
3708 
3709 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3710 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3711 		    1, &failfast);
3712 		if (error == 0) {
3713 			vd->vdev_failfast = failfast & 1;
3714 		} else if (error == ENOENT) {
3715 			vd->vdev_failfast = vdev_prop_default_numeric(
3716 			    VDEV_PROP_FAILFAST);
3717 		} else {
3718 			vdev_dbgmsg(vd,
3719 			    "vdev_load: zap_lookup(top_zap=%llu) "
3720 			    "failed [error=%d]",
3721 			    (u_longlong_t)vd->vdev_top_zap, error);
3722 		}
3723 	}
3724 
3725 	/*
3726 	 * Load any rebuild state from the top-level vdev zap.
3727 	 */
3728 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3729 		error = vdev_rebuild_load(vd);
3730 		if (error && error != ENOTSUP) {
3731 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3732 			    VDEV_AUX_CORRUPT_DATA);
3733 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3734 			    "failed [error=%d]", error);
3735 			return (error);
3736 		}
3737 	}
3738 
3739 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3740 		uint64_t zapobj;
3741 
3742 		if (vd->vdev_top_zap != 0)
3743 			zapobj = vd->vdev_top_zap;
3744 		else
3745 			zapobj = vd->vdev_leaf_zap;
3746 
3747 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3748 		    &vd->vdev_checksum_n);
3749 		if (error && error != ENOENT)
3750 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3751 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3752 
3753 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3754 		    &vd->vdev_checksum_t);
3755 		if (error && error != ENOENT)
3756 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3757 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3758 
3759 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3760 		    &vd->vdev_io_n);
3761 		if (error && error != ENOENT)
3762 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3763 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3764 
3765 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3766 		    &vd->vdev_io_t);
3767 		if (error && error != ENOENT)
3768 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3769 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3770 
3771 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3772 		    &vd->vdev_slow_io_n);
3773 		if (error && error != ENOENT)
3774 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3775 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3776 
3777 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3778 		    &vd->vdev_slow_io_t);
3779 		if (error && error != ENOENT)
3780 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3781 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3782 	}
3783 
3784 	/*
3785 	 * If this is a top-level vdev, initialize its metaslabs.
3786 	 */
3787 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3788 		vdev_metaslab_group_create(vd);
3789 
3790 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3791 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3792 			    VDEV_AUX_CORRUPT_DATA);
3793 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3794 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3795 			    (u_longlong_t)vd->vdev_asize);
3796 			return (SET_ERROR(ENXIO));
3797 		}
3798 
3799 		error = vdev_metaslab_init(vd, 0);
3800 		if (error != 0) {
3801 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3802 			    "[error=%d]", error);
3803 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3804 			    VDEV_AUX_CORRUPT_DATA);
3805 			return (error);
3806 		}
3807 
3808 		uint64_t checkpoint_sm_obj;
3809 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3810 		if (error == 0 && checkpoint_sm_obj != 0) {
3811 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3812 			ASSERT(vd->vdev_asize != 0);
3813 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3814 
3815 			error = space_map_open(&vd->vdev_checkpoint_sm,
3816 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3817 			    vd->vdev_ashift);
3818 			if (error != 0) {
3819 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3820 				    "failed for checkpoint spacemap (obj %llu) "
3821 				    "[error=%d]",
3822 				    (u_longlong_t)checkpoint_sm_obj, error);
3823 				return (error);
3824 			}
3825 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3826 
3827 			/*
3828 			 * Since the checkpoint_sm contains free entries
3829 			 * exclusively we can use space_map_allocated() to
3830 			 * indicate the cumulative checkpointed space that
3831 			 * has been freed.
3832 			 */
3833 			vd->vdev_stat.vs_checkpoint_space =
3834 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3835 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3836 			    vd->vdev_stat.vs_checkpoint_space;
3837 		} else if (error != 0) {
3838 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3839 			    "checkpoint space map object from vdev ZAP "
3840 			    "[error=%d]", error);
3841 			return (error);
3842 		}
3843 	}
3844 
3845 	/*
3846 	 * If this is a leaf vdev, load its DTL.
3847 	 */
3848 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3849 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3850 		    VDEV_AUX_CORRUPT_DATA);
3851 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3852 		    "[error=%d]", error);
3853 		return (error);
3854 	}
3855 
3856 	uint64_t obsolete_sm_object;
3857 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3858 	if (error == 0 && obsolete_sm_object != 0) {
3859 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3860 		ASSERT(vd->vdev_asize != 0);
3861 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3862 
3863 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3864 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3865 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3866 			    VDEV_AUX_CORRUPT_DATA);
3867 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3868 			    "obsolete spacemap (obj %llu) [error=%d]",
3869 			    (u_longlong_t)obsolete_sm_object, error);
3870 			return (error);
3871 		}
3872 	} else if (error != 0) {
3873 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3874 		    "space map object from vdev ZAP [error=%d]", error);
3875 		return (error);
3876 	}
3877 
3878 	return (0);
3879 }
3880 
3881 /*
3882  * The special vdev case is used for hot spares and l2cache devices.  Its
3883  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3884  * we make sure that we can open the underlying device, then try to read the
3885  * label, and make sure that the label is sane and that it hasn't been
3886  * repurposed to another pool.
3887  */
3888 int
vdev_validate_aux(vdev_t * vd)3889 vdev_validate_aux(vdev_t *vd)
3890 {
3891 	nvlist_t *label;
3892 	uint64_t guid, version;
3893 	uint64_t state;
3894 
3895 	if (!vdev_readable(vd))
3896 		return (0);
3897 
3898 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3899 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3900 		    VDEV_AUX_CORRUPT_DATA);
3901 		return (-1);
3902 	}
3903 
3904 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3905 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3906 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3907 	    guid != vd->vdev_guid ||
3908 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3909 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3910 		    VDEV_AUX_CORRUPT_DATA);
3911 		nvlist_free(label);
3912 		return (-1);
3913 	}
3914 
3915 	/*
3916 	 * We don't actually check the pool state here.  If it's in fact in
3917 	 * use by another pool, we update this fact on the fly when requested.
3918 	 */
3919 	nvlist_free(label);
3920 	return (0);
3921 }
3922 
3923 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)3924 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3925 {
3926 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3927 
3928 	if (vd->vdev_top_zap == 0)
3929 		return;
3930 
3931 	uint64_t object = 0;
3932 	int err = zap_lookup(mos, vd->vdev_top_zap,
3933 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3934 	if (err == ENOENT)
3935 		return;
3936 	VERIFY0(err);
3937 
3938 	VERIFY0(dmu_object_free(mos, object, tx));
3939 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3940 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3941 }
3942 
3943 /*
3944  * Free the objects used to store this vdev's spacemaps, and the array
3945  * that points to them.
3946  */
3947 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3948 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3949 {
3950 	if (vd->vdev_ms_array == 0)
3951 		return;
3952 
3953 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3954 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3955 	size_t array_bytes = array_count * sizeof (uint64_t);
3956 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3957 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3958 	    array_bytes, smobj_array, 0));
3959 
3960 	for (uint64_t i = 0; i < array_count; i++) {
3961 		uint64_t smobj = smobj_array[i];
3962 		if (smobj == 0)
3963 			continue;
3964 
3965 		space_map_free_obj(mos, smobj, tx);
3966 	}
3967 
3968 	kmem_free(smobj_array, array_bytes);
3969 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3970 	vdev_destroy_ms_flush_data(vd, tx);
3971 	vd->vdev_ms_array = 0;
3972 }
3973 
3974 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)3975 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3976 {
3977 	spa_t *spa = vd->vdev_spa;
3978 
3979 	ASSERT(vd->vdev_islog);
3980 	ASSERT(vd == vd->vdev_top);
3981 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3982 
3983 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3984 
3985 	vdev_destroy_spacemaps(vd, tx);
3986 	if (vd->vdev_top_zap != 0) {
3987 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3988 		vd->vdev_top_zap = 0;
3989 	}
3990 
3991 	dmu_tx_commit(tx);
3992 }
3993 
3994 void
vdev_sync_done(vdev_t * vd,uint64_t txg)3995 vdev_sync_done(vdev_t *vd, uint64_t txg)
3996 {
3997 	metaslab_t *msp;
3998 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3999 
4000 	ASSERT(vdev_is_concrete(vd));
4001 
4002 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4003 	    != NULL)
4004 		metaslab_sync_done(msp, txg);
4005 
4006 	if (reassess) {
4007 		metaslab_sync_reassess(vd->vdev_mg);
4008 		if (vd->vdev_log_mg != NULL)
4009 			metaslab_sync_reassess(vd->vdev_log_mg);
4010 	}
4011 }
4012 
4013 void
vdev_sync(vdev_t * vd,uint64_t txg)4014 vdev_sync(vdev_t *vd, uint64_t txg)
4015 {
4016 	spa_t *spa = vd->vdev_spa;
4017 	vdev_t *lvd;
4018 	metaslab_t *msp;
4019 
4020 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4021 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4022 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
4023 		ASSERT(vd->vdev_removing ||
4024 		    vd->vdev_ops == &vdev_indirect_ops);
4025 
4026 		vdev_indirect_sync_obsolete(vd, tx);
4027 
4028 		/*
4029 		 * If the vdev is indirect, it can't have dirty
4030 		 * metaslabs or DTLs.
4031 		 */
4032 		if (vd->vdev_ops == &vdev_indirect_ops) {
4033 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4034 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4035 			dmu_tx_commit(tx);
4036 			return;
4037 		}
4038 	}
4039 
4040 	ASSERT(vdev_is_concrete(vd));
4041 
4042 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4043 	    !vd->vdev_removing) {
4044 		ASSERT(vd == vd->vdev_top);
4045 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4046 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4047 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4048 		ASSERT(vd->vdev_ms_array != 0);
4049 		vdev_config_dirty(vd);
4050 	}
4051 
4052 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4053 		metaslab_sync(msp, txg);
4054 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4055 	}
4056 
4057 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4058 		vdev_dtl_sync(lvd, txg);
4059 
4060 	/*
4061 	 * If this is an empty log device being removed, destroy the
4062 	 * metadata associated with it.
4063 	 */
4064 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4065 		vdev_remove_empty_log(vd, txg);
4066 
4067 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4068 	dmu_tx_commit(tx);
4069 }
4070 
4071 /*
4072  * Return the amount of space that should be (or was) allocated for the given
4073  * psize (compressed block size) in the given TXG. Note that for expanded
4074  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4075  * vdev_raidz_asize().
4076  */
4077 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4078 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4079 {
4080 	return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4081 }
4082 
4083 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4084 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4085 {
4086 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4087 }
4088 
4089 /*
4090  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4091  * not be opened, and no I/O is attempted.
4092  */
4093 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4094 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4095 {
4096 	vdev_t *vd, *tvd;
4097 
4098 	spa_vdev_state_enter(spa, SCL_NONE);
4099 
4100 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4101 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4102 
4103 	if (!vd->vdev_ops->vdev_op_leaf)
4104 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4105 
4106 	tvd = vd->vdev_top;
4107 
4108 	/*
4109 	 * If user did a 'zpool offline -f' then make the fault persist across
4110 	 * reboots.
4111 	 */
4112 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4113 		/*
4114 		 * There are two kinds of forced faults: temporary and
4115 		 * persistent.  Temporary faults go away at pool import, while
4116 		 * persistent faults stay set.  Both types of faults can be
4117 		 * cleared with a zpool clear.
4118 		 *
4119 		 * We tell if a vdev is persistently faulted by looking at the
4120 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4121 		 * import then it's a persistent fault.  Otherwise, it's
4122 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4123 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4124 		 * tells vdev_config_generate() (which gets run later) to set
4125 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4126 		 */
4127 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4128 		vd->vdev_tmpoffline = B_FALSE;
4129 		aux = VDEV_AUX_EXTERNAL;
4130 	} else {
4131 		vd->vdev_tmpoffline = B_TRUE;
4132 	}
4133 
4134 	/*
4135 	 * We don't directly use the aux state here, but if we do a
4136 	 * vdev_reopen(), we need this value to be present to remember why we
4137 	 * were faulted.
4138 	 */
4139 	vd->vdev_label_aux = aux;
4140 
4141 	/*
4142 	 * Faulted state takes precedence over degraded.
4143 	 */
4144 	vd->vdev_delayed_close = B_FALSE;
4145 	vd->vdev_faulted = 1ULL;
4146 	vd->vdev_degraded = 0ULL;
4147 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4148 
4149 	/*
4150 	 * If this device has the only valid copy of the data, then
4151 	 * back off and simply mark the vdev as degraded instead.
4152 	 */
4153 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4154 		vd->vdev_degraded = 1ULL;
4155 		vd->vdev_faulted = 0ULL;
4156 
4157 		/*
4158 		 * If we reopen the device and it's not dead, only then do we
4159 		 * mark it degraded.
4160 		 */
4161 		vdev_reopen(tvd);
4162 
4163 		if (vdev_readable(vd))
4164 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4165 	}
4166 
4167 	return (spa_vdev_state_exit(spa, vd, 0));
4168 }
4169 
4170 /*
4171  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4172  * user that something is wrong.  The vdev continues to operate as normal as far
4173  * as I/O is concerned.
4174  */
4175 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4176 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4177 {
4178 	vdev_t *vd;
4179 
4180 	spa_vdev_state_enter(spa, SCL_NONE);
4181 
4182 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4183 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4184 
4185 	if (!vd->vdev_ops->vdev_op_leaf)
4186 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4187 
4188 	/*
4189 	 * If the vdev is already faulted, then don't do anything.
4190 	 */
4191 	if (vd->vdev_faulted || vd->vdev_degraded)
4192 		return (spa_vdev_state_exit(spa, NULL, 0));
4193 
4194 	vd->vdev_degraded = 1ULL;
4195 	if (!vdev_is_dead(vd))
4196 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4197 		    aux);
4198 
4199 	return (spa_vdev_state_exit(spa, vd, 0));
4200 }
4201 
4202 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4203 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4204 {
4205 	vdev_t *vd;
4206 
4207 	spa_vdev_state_enter(spa, SCL_NONE);
4208 
4209 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4210 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4211 
4212 	/*
4213 	 * If the vdev is already removed, or expanding which can trigger
4214 	 * repartition add/remove events, then don't do anything.
4215 	 */
4216 	if (vd->vdev_removed || vd->vdev_expanding)
4217 		return (spa_vdev_state_exit(spa, NULL, 0));
4218 
4219 	/*
4220 	 * Confirm the vdev has been removed, otherwise don't do anything.
4221 	 */
4222 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4223 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4224 
4225 	vd->vdev_remove_wanted = B_TRUE;
4226 	spa_async_request(spa, SPA_ASYNC_REMOVE);
4227 
4228 	return (spa_vdev_state_exit(spa, vd, 0));
4229 }
4230 
4231 
4232 /*
4233  * Online the given vdev.
4234  *
4235  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4236  * spare device should be detached when the device finishes resilvering.
4237  * Second, the online should be treated like a 'test' online case, so no FMA
4238  * events are generated if the device fails to open.
4239  */
4240 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4241 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4242 {
4243 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4244 	boolean_t wasoffline;
4245 	vdev_state_t oldstate;
4246 
4247 	spa_vdev_state_enter(spa, SCL_NONE);
4248 
4249 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4250 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4251 
4252 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4253 	oldstate = vd->vdev_state;
4254 
4255 	tvd = vd->vdev_top;
4256 	vd->vdev_offline = B_FALSE;
4257 	vd->vdev_tmpoffline = B_FALSE;
4258 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4259 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4260 
4261 	/* XXX - L2ARC 1.0 does not support expansion */
4262 	if (!vd->vdev_aux) {
4263 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4264 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4265 			    spa->spa_autoexpand);
4266 		vd->vdev_expansion_time = gethrestime_sec();
4267 	}
4268 
4269 	vdev_reopen(tvd);
4270 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4271 
4272 	if (!vd->vdev_aux) {
4273 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4274 			pvd->vdev_expanding = B_FALSE;
4275 	}
4276 
4277 	if (newstate)
4278 		*newstate = vd->vdev_state;
4279 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4280 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4281 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4282 	    vd->vdev_parent->vdev_child[0] == vd)
4283 		vd->vdev_unspare = B_TRUE;
4284 
4285 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4286 
4287 		/* XXX - L2ARC 1.0 does not support expansion */
4288 		if (vd->vdev_aux)
4289 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4290 		spa->spa_ccw_fail_time = 0;
4291 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4292 	}
4293 
4294 	/* Restart initializing if necessary */
4295 	mutex_enter(&vd->vdev_initialize_lock);
4296 	if (vdev_writeable(vd) &&
4297 	    vd->vdev_initialize_thread == NULL &&
4298 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4299 		(void) vdev_initialize(vd);
4300 	}
4301 	mutex_exit(&vd->vdev_initialize_lock);
4302 
4303 	/*
4304 	 * Restart trimming if necessary. We do not restart trimming for cache
4305 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4306 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4307 	 * space for upcoming writes.
4308 	 */
4309 	mutex_enter(&vd->vdev_trim_lock);
4310 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4311 	    vd->vdev_trim_thread == NULL &&
4312 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4313 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4314 		    vd->vdev_trim_secure);
4315 	}
4316 	mutex_exit(&vd->vdev_trim_lock);
4317 
4318 	if (wasoffline ||
4319 	    (oldstate < VDEV_STATE_DEGRADED &&
4320 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4321 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4322 
4323 		/*
4324 		 * Asynchronously detach spare vdev if resilver or
4325 		 * rebuild is not required
4326 		 */
4327 		if (vd->vdev_unspare &&
4328 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4329 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4330 		    !vdev_rebuild_active(tvd))
4331 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4332 	}
4333 	return (spa_vdev_state_exit(spa, vd, 0));
4334 }
4335 
4336 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4337 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4338 {
4339 	vdev_t *vd, *tvd;
4340 	int error = 0;
4341 	uint64_t generation;
4342 	metaslab_group_t *mg;
4343 
4344 top:
4345 	spa_vdev_state_enter(spa, SCL_ALLOC);
4346 
4347 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4348 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4349 
4350 	if (!vd->vdev_ops->vdev_op_leaf)
4351 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4352 
4353 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4354 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4355 
4356 	tvd = vd->vdev_top;
4357 	mg = tvd->vdev_mg;
4358 	generation = spa->spa_config_generation + 1;
4359 
4360 	/*
4361 	 * If the device isn't already offline, try to offline it.
4362 	 */
4363 	if (!vd->vdev_offline) {
4364 		/*
4365 		 * If this device has the only valid copy of some data,
4366 		 * don't allow it to be offlined. Log devices are always
4367 		 * expendable.
4368 		 */
4369 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4370 		    vdev_dtl_required(vd))
4371 			return (spa_vdev_state_exit(spa, NULL,
4372 			    SET_ERROR(EBUSY)));
4373 
4374 		/*
4375 		 * If the top-level is a slog and it has had allocations
4376 		 * then proceed.  We check that the vdev's metaslab group
4377 		 * is not NULL since it's possible that we may have just
4378 		 * added this vdev but not yet initialized its metaslabs.
4379 		 */
4380 		if (tvd->vdev_islog && mg != NULL) {
4381 			/*
4382 			 * Prevent any future allocations.
4383 			 */
4384 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4385 			metaslab_group_passivate(mg);
4386 			(void) spa_vdev_state_exit(spa, vd, 0);
4387 
4388 			error = spa_reset_logs(spa);
4389 
4390 			/*
4391 			 * If the log device was successfully reset but has
4392 			 * checkpointed data, do not offline it.
4393 			 */
4394 			if (error == 0 &&
4395 			    tvd->vdev_checkpoint_sm != NULL) {
4396 				ASSERT3U(space_map_allocated(
4397 				    tvd->vdev_checkpoint_sm), !=, 0);
4398 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4399 			}
4400 
4401 			spa_vdev_state_enter(spa, SCL_ALLOC);
4402 
4403 			/*
4404 			 * Check to see if the config has changed.
4405 			 */
4406 			if (error || generation != spa->spa_config_generation) {
4407 				metaslab_group_activate(mg);
4408 				if (error)
4409 					return (spa_vdev_state_exit(spa,
4410 					    vd, error));
4411 				(void) spa_vdev_state_exit(spa, vd, 0);
4412 				goto top;
4413 			}
4414 			ASSERT0(tvd->vdev_stat.vs_alloc);
4415 		}
4416 
4417 		/*
4418 		 * Offline this device and reopen its top-level vdev.
4419 		 * If the top-level vdev is a log device then just offline
4420 		 * it. Otherwise, if this action results in the top-level
4421 		 * vdev becoming unusable, undo it and fail the request.
4422 		 */
4423 		vd->vdev_offline = B_TRUE;
4424 		vdev_reopen(tvd);
4425 
4426 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4427 		    vdev_is_dead(tvd)) {
4428 			vd->vdev_offline = B_FALSE;
4429 			vdev_reopen(tvd);
4430 			return (spa_vdev_state_exit(spa, NULL,
4431 			    SET_ERROR(EBUSY)));
4432 		}
4433 
4434 		/*
4435 		 * Add the device back into the metaslab rotor so that
4436 		 * once we online the device it's open for business.
4437 		 */
4438 		if (tvd->vdev_islog && mg != NULL)
4439 			metaslab_group_activate(mg);
4440 	}
4441 
4442 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4443 
4444 	return (spa_vdev_state_exit(spa, vd, 0));
4445 }
4446 
4447 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4448 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4449 {
4450 	int error;
4451 
4452 	mutex_enter(&spa->spa_vdev_top_lock);
4453 	error = vdev_offline_locked(spa, guid, flags);
4454 	mutex_exit(&spa->spa_vdev_top_lock);
4455 
4456 	return (error);
4457 }
4458 
4459 /*
4460  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4461  * vdev_offline(), we assume the spa config is locked.  We also clear all
4462  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4463  */
4464 void
vdev_clear(spa_t * spa,vdev_t * vd)4465 vdev_clear(spa_t *spa, vdev_t *vd)
4466 {
4467 	vdev_t *rvd = spa->spa_root_vdev;
4468 
4469 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4470 
4471 	if (vd == NULL)
4472 		vd = rvd;
4473 
4474 	vd->vdev_stat.vs_read_errors = 0;
4475 	vd->vdev_stat.vs_write_errors = 0;
4476 	vd->vdev_stat.vs_checksum_errors = 0;
4477 	vd->vdev_stat.vs_slow_ios = 0;
4478 
4479 	for (int c = 0; c < vd->vdev_children; c++)
4480 		vdev_clear(spa, vd->vdev_child[c]);
4481 
4482 	/*
4483 	 * It makes no sense to "clear" an indirect  or removed vdev.
4484 	 */
4485 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4486 		return;
4487 
4488 	/*
4489 	 * If we're in the FAULTED state or have experienced failed I/O, then
4490 	 * clear the persistent state and attempt to reopen the device.  We
4491 	 * also mark the vdev config dirty, so that the new faulted state is
4492 	 * written out to disk.
4493 	 */
4494 	if (vd->vdev_faulted || vd->vdev_degraded ||
4495 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4496 		/*
4497 		 * When reopening in response to a clear event, it may be due to
4498 		 * a fmadm repair request.  In this case, if the device is
4499 		 * still broken, we want to still post the ereport again.
4500 		 */
4501 		vd->vdev_forcefault = B_TRUE;
4502 
4503 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4504 		vd->vdev_cant_read = B_FALSE;
4505 		vd->vdev_cant_write = B_FALSE;
4506 		vd->vdev_stat.vs_aux = 0;
4507 
4508 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4509 
4510 		vd->vdev_forcefault = B_FALSE;
4511 
4512 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4513 			vdev_state_dirty(vd->vdev_top);
4514 
4515 		/* If a resilver isn't required, check if vdevs can be culled */
4516 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4517 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4518 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4519 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4520 
4521 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4522 	}
4523 
4524 	/*
4525 	 * When clearing a FMA-diagnosed fault, we always want to
4526 	 * unspare the device, as we assume that the original spare was
4527 	 * done in response to the FMA fault.
4528 	 */
4529 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4530 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4531 	    vd->vdev_parent->vdev_child[0] == vd)
4532 		vd->vdev_unspare = B_TRUE;
4533 
4534 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4535 	zfs_ereport_clear(spa, vd);
4536 }
4537 
4538 boolean_t
vdev_is_dead(vdev_t * vd)4539 vdev_is_dead(vdev_t *vd)
4540 {
4541 	/*
4542 	 * Holes and missing devices are always considered "dead".
4543 	 * This simplifies the code since we don't have to check for
4544 	 * these types of devices in the various code paths.
4545 	 * Instead we rely on the fact that we skip over dead devices
4546 	 * before issuing I/O to them.
4547 	 */
4548 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4549 	    vd->vdev_ops == &vdev_hole_ops ||
4550 	    vd->vdev_ops == &vdev_missing_ops);
4551 }
4552 
4553 boolean_t
vdev_readable(vdev_t * vd)4554 vdev_readable(vdev_t *vd)
4555 {
4556 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4557 }
4558 
4559 boolean_t
vdev_writeable(vdev_t * vd)4560 vdev_writeable(vdev_t *vd)
4561 {
4562 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4563 	    vdev_is_concrete(vd));
4564 }
4565 
4566 boolean_t
vdev_allocatable(vdev_t * vd)4567 vdev_allocatable(vdev_t *vd)
4568 {
4569 	uint64_t state = vd->vdev_state;
4570 
4571 	/*
4572 	 * We currently allow allocations from vdevs which may be in the
4573 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4574 	 * fails to reopen then we'll catch it later when we're holding
4575 	 * the proper locks.  Note that we have to get the vdev state
4576 	 * in a local variable because although it changes atomically,
4577 	 * we're asking two separate questions about it.
4578 	 */
4579 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4580 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4581 	    vd->vdev_mg->mg_initialized);
4582 }
4583 
4584 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4585 vdev_accessible(vdev_t *vd, zio_t *zio)
4586 {
4587 	ASSERT(zio->io_vd == vd);
4588 
4589 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4590 		return (B_FALSE);
4591 
4592 	if (zio->io_type == ZIO_TYPE_READ)
4593 		return (!vd->vdev_cant_read);
4594 
4595 	if (zio->io_type == ZIO_TYPE_WRITE)
4596 		return (!vd->vdev_cant_write);
4597 
4598 	return (B_TRUE);
4599 }
4600 
4601 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4602 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4603 {
4604 	/*
4605 	 * Exclude the dRAID spare when aggregating to avoid double counting
4606 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4607 	 */
4608 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4609 		return;
4610 
4611 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4612 		vs->vs_ops[t] += cvs->vs_ops[t];
4613 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4614 	}
4615 
4616 	cvs->vs_scan_removing = cvd->vdev_removing;
4617 }
4618 
4619 /*
4620  * Get extended stats
4621  */
4622 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4623 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4624 {
4625 	(void) cvd;
4626 
4627 	int t, b;
4628 	for (t = 0; t < ZIO_TYPES; t++) {
4629 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4630 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4631 
4632 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4633 			vsx->vsx_total_histo[t][b] +=
4634 			    cvsx->vsx_total_histo[t][b];
4635 		}
4636 	}
4637 
4638 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4639 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4640 			vsx->vsx_queue_histo[t][b] +=
4641 			    cvsx->vsx_queue_histo[t][b];
4642 		}
4643 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4644 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4645 
4646 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4647 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4648 
4649 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4650 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4651 	}
4652 
4653 }
4654 
4655 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4656 vdev_is_spacemap_addressable(vdev_t *vd)
4657 {
4658 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4659 		return (B_TRUE);
4660 
4661 	/*
4662 	 * If double-word space map entries are not enabled we assume
4663 	 * 47 bits of the space map entry are dedicated to the entry's
4664 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4665 	 * to calculate the maximum address that can be described by a
4666 	 * space map entry for the given device.
4667 	 */
4668 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4669 
4670 	if (shift >= 63) /* detect potential overflow */
4671 		return (B_TRUE);
4672 
4673 	return (vd->vdev_asize < (1ULL << shift));
4674 }
4675 
4676 /*
4677  * Get statistics for the given vdev.
4678  */
4679 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4680 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4681 {
4682 	int t;
4683 	/*
4684 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4685 	 * over all top-level vdevs (i.e. the direct children of the root).
4686 	 */
4687 	if (!vd->vdev_ops->vdev_op_leaf) {
4688 		if (vs) {
4689 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4690 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4691 		}
4692 		if (vsx)
4693 			memset(vsx, 0, sizeof (*vsx));
4694 
4695 		for (int c = 0; c < vd->vdev_children; c++) {
4696 			vdev_t *cvd = vd->vdev_child[c];
4697 			vdev_stat_t *cvs = &cvd->vdev_stat;
4698 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4699 
4700 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4701 			if (vs)
4702 				vdev_get_child_stat(cvd, vs, cvs);
4703 			if (vsx)
4704 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4705 		}
4706 	} else {
4707 		/*
4708 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4709 		 * other leaf stats are updated in vdev_stat_update().
4710 		 */
4711 		if (!vsx)
4712 			return;
4713 
4714 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4715 
4716 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4717 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4718 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4719 		}
4720 	}
4721 }
4722 
4723 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4724 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4725 {
4726 	vdev_t *tvd = vd->vdev_top;
4727 	mutex_enter(&vd->vdev_stat_lock);
4728 	if (vs) {
4729 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4730 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4731 		vs->vs_state = vd->vdev_state;
4732 		vs->vs_rsize = vdev_get_min_asize(vd);
4733 
4734 		if (vd->vdev_ops->vdev_op_leaf) {
4735 			vs->vs_pspace = vd->vdev_psize;
4736 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4737 			    VDEV_LABEL_END_SIZE;
4738 			/*
4739 			 * Report initializing progress. Since we don't
4740 			 * have the initializing locks held, this is only
4741 			 * an estimate (although a fairly accurate one).
4742 			 */
4743 			vs->vs_initialize_bytes_done =
4744 			    vd->vdev_initialize_bytes_done;
4745 			vs->vs_initialize_bytes_est =
4746 			    vd->vdev_initialize_bytes_est;
4747 			vs->vs_initialize_state = vd->vdev_initialize_state;
4748 			vs->vs_initialize_action_time =
4749 			    vd->vdev_initialize_action_time;
4750 
4751 			/*
4752 			 * Report manual TRIM progress. Since we don't have
4753 			 * the manual TRIM locks held, this is only an
4754 			 * estimate (although fairly accurate one).
4755 			 */
4756 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4757 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4758 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4759 			vs->vs_trim_state = vd->vdev_trim_state;
4760 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4761 
4762 			/* Set when there is a deferred resilver. */
4763 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4764 		}
4765 
4766 		/*
4767 		 * Report expandable space on top-level, non-auxiliary devices
4768 		 * only. The expandable space is reported in terms of metaslab
4769 		 * sized units since that determines how much space the pool
4770 		 * can expand.
4771 		 */
4772 		if (vd->vdev_aux == NULL && tvd != NULL) {
4773 			vs->vs_esize = P2ALIGN_TYPED(
4774 			    vd->vdev_max_asize - vd->vdev_asize,
4775 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4776 		}
4777 
4778 		vs->vs_configured_ashift = vd->vdev_top != NULL
4779 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4780 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4781 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4782 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4783 		else
4784 			vs->vs_physical_ashift = 0;
4785 
4786 		/*
4787 		 * Report fragmentation and rebuild progress for top-level,
4788 		 * non-auxiliary, concrete devices.
4789 		 */
4790 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4791 		    vdev_is_concrete(vd)) {
4792 			/*
4793 			 * The vdev fragmentation rating doesn't take into
4794 			 * account the embedded slog metaslab (vdev_log_mg).
4795 			 * Since it's only one metaslab, it would have a tiny
4796 			 * impact on the overall fragmentation.
4797 			 */
4798 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4799 			    vd->vdev_mg->mg_fragmentation : 0;
4800 		}
4801 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4802 		    tvd ? tvd->vdev_noalloc : 0);
4803 	}
4804 
4805 	vdev_get_stats_ex_impl(vd, vs, vsx);
4806 	mutex_exit(&vd->vdev_stat_lock);
4807 }
4808 
4809 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4810 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4811 {
4812 	return (vdev_get_stats_ex(vd, vs, NULL));
4813 }
4814 
4815 void
vdev_clear_stats(vdev_t * vd)4816 vdev_clear_stats(vdev_t *vd)
4817 {
4818 	mutex_enter(&vd->vdev_stat_lock);
4819 	vd->vdev_stat.vs_space = 0;
4820 	vd->vdev_stat.vs_dspace = 0;
4821 	vd->vdev_stat.vs_alloc = 0;
4822 	mutex_exit(&vd->vdev_stat_lock);
4823 }
4824 
4825 void
vdev_scan_stat_init(vdev_t * vd)4826 vdev_scan_stat_init(vdev_t *vd)
4827 {
4828 	vdev_stat_t *vs = &vd->vdev_stat;
4829 
4830 	for (int c = 0; c < vd->vdev_children; c++)
4831 		vdev_scan_stat_init(vd->vdev_child[c]);
4832 
4833 	mutex_enter(&vd->vdev_stat_lock);
4834 	vs->vs_scan_processed = 0;
4835 	mutex_exit(&vd->vdev_stat_lock);
4836 }
4837 
4838 void
vdev_stat_update(zio_t * zio,uint64_t psize)4839 vdev_stat_update(zio_t *zio, uint64_t psize)
4840 {
4841 	spa_t *spa = zio->io_spa;
4842 	vdev_t *rvd = spa->spa_root_vdev;
4843 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4844 	vdev_t *pvd;
4845 	uint64_t txg = zio->io_txg;
4846 /* Suppress ASAN false positive */
4847 #ifdef __SANITIZE_ADDRESS__
4848 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4849 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4850 #else
4851 	vdev_stat_t *vs = &vd->vdev_stat;
4852 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4853 #endif
4854 	zio_type_t type = zio->io_type;
4855 	int flags = zio->io_flags;
4856 
4857 	/*
4858 	 * If this i/o is a gang leader, it didn't do any actual work.
4859 	 */
4860 	if (zio->io_gang_tree)
4861 		return;
4862 
4863 	if (zio->io_error == 0) {
4864 		/*
4865 		 * If this is a root i/o, don't count it -- we've already
4866 		 * counted the top-level vdevs, and vdev_get_stats() will
4867 		 * aggregate them when asked.  This reduces contention on
4868 		 * the root vdev_stat_lock and implicitly handles blocks
4869 		 * that compress away to holes, for which there is no i/o.
4870 		 * (Holes never create vdev children, so all the counters
4871 		 * remain zero, which is what we want.)
4872 		 *
4873 		 * Note: this only applies to successful i/o (io_error == 0)
4874 		 * because unlike i/o counts, errors are not additive.
4875 		 * When reading a ditto block, for example, failure of
4876 		 * one top-level vdev does not imply a root-level error.
4877 		 */
4878 		if (vd == rvd)
4879 			return;
4880 
4881 		ASSERT(vd == zio->io_vd);
4882 
4883 		if (flags & ZIO_FLAG_IO_BYPASS)
4884 			return;
4885 
4886 		mutex_enter(&vd->vdev_stat_lock);
4887 
4888 		if (flags & ZIO_FLAG_IO_REPAIR) {
4889 			/*
4890 			 * Repair is the result of a resilver issued by the
4891 			 * scan thread (spa_sync).
4892 			 */
4893 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4894 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4895 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4896 				uint64_t *processed = &scn_phys->scn_processed;
4897 
4898 				if (vd->vdev_ops->vdev_op_leaf)
4899 					atomic_add_64(processed, psize);
4900 				vs->vs_scan_processed += psize;
4901 			}
4902 
4903 			/*
4904 			 * Repair is the result of a rebuild issued by the
4905 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4906 			 * double counting repaired bytes the virtual dRAID
4907 			 * spare vdev is excluded from the processed bytes.
4908 			 */
4909 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4910 				vdev_t *tvd = vd->vdev_top;
4911 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4912 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4913 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4914 
4915 				if (vd->vdev_ops->vdev_op_leaf &&
4916 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4917 					atomic_add_64(rebuilt, psize);
4918 				}
4919 				vs->vs_rebuild_processed += psize;
4920 			}
4921 
4922 			if (flags & ZIO_FLAG_SELF_HEAL)
4923 				vs->vs_self_healed += psize;
4924 		}
4925 
4926 		/*
4927 		 * The bytes/ops/histograms are recorded at the leaf level and
4928 		 * aggregated into the higher level vdevs in vdev_get_stats().
4929 		 */
4930 		if (vd->vdev_ops->vdev_op_leaf &&
4931 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4932 			zio_type_t vs_type = type;
4933 			zio_priority_t priority = zio->io_priority;
4934 
4935 			/*
4936 			 * TRIM ops and bytes are reported to user space as
4937 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
4938 			 * vdev_stat_t structure layout for user space.
4939 			 */
4940 			if (type == ZIO_TYPE_TRIM)
4941 				vs_type = ZIO_TYPE_FLUSH;
4942 
4943 			/*
4944 			 * Solely for the purposes of 'zpool iostat -lqrw'
4945 			 * reporting use the priority to categorize the IO.
4946 			 * Only the following are reported to user space:
4947 			 *
4948 			 *   ZIO_PRIORITY_SYNC_READ,
4949 			 *   ZIO_PRIORITY_SYNC_WRITE,
4950 			 *   ZIO_PRIORITY_ASYNC_READ,
4951 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4952 			 *   ZIO_PRIORITY_SCRUB,
4953 			 *   ZIO_PRIORITY_TRIM,
4954 			 *   ZIO_PRIORITY_REBUILD.
4955 			 */
4956 			if (priority == ZIO_PRIORITY_INITIALIZING) {
4957 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4958 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4959 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4960 				priority = ((type == ZIO_TYPE_WRITE) ?
4961 				    ZIO_PRIORITY_ASYNC_WRITE :
4962 				    ZIO_PRIORITY_ASYNC_READ);
4963 			}
4964 
4965 			vs->vs_ops[vs_type]++;
4966 			vs->vs_bytes[vs_type] += psize;
4967 
4968 			if (flags & ZIO_FLAG_DELEGATED) {
4969 				vsx->vsx_agg_histo[priority]
4970 				    [RQ_HISTO(zio->io_size)]++;
4971 			} else {
4972 				vsx->vsx_ind_histo[priority]
4973 				    [RQ_HISTO(zio->io_size)]++;
4974 			}
4975 
4976 			if (zio->io_delta && zio->io_delay) {
4977 				vsx->vsx_queue_histo[priority]
4978 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4979 				vsx->vsx_disk_histo[type]
4980 				    [L_HISTO(zio->io_delay)]++;
4981 				vsx->vsx_total_histo[type]
4982 				    [L_HISTO(zio->io_delta)]++;
4983 			}
4984 		}
4985 
4986 		mutex_exit(&vd->vdev_stat_lock);
4987 		return;
4988 	}
4989 
4990 	if (flags & ZIO_FLAG_SPECULATIVE)
4991 		return;
4992 
4993 	/*
4994 	 * If this is an I/O error that is going to be retried, then ignore the
4995 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4996 	 * hard errors, when in reality they can happen for any number of
4997 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4998 	 */
4999 	if (zio->io_error == EIO &&
5000 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5001 		return;
5002 
5003 	/*
5004 	 * Intent logs writes won't propagate their error to the root
5005 	 * I/O so don't mark these types of failures as pool-level
5006 	 * errors.
5007 	 */
5008 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5009 		return;
5010 
5011 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5012 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5013 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5014 	    spa->spa_claiming)) {
5015 		/*
5016 		 * This is either a normal write (not a repair), or it's
5017 		 * a repair induced by the scrub thread, or it's a repair
5018 		 * made by zil_claim() during spa_load() in the first txg.
5019 		 * In the normal case, we commit the DTL change in the same
5020 		 * txg as the block was born.  In the scrub-induced repair
5021 		 * case, we know that scrubs run in first-pass syncing context,
5022 		 * so we commit the DTL change in spa_syncing_txg(spa).
5023 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5024 		 *
5025 		 * We currently do not make DTL entries for failed spontaneous
5026 		 * self-healing writes triggered by normal (non-scrubbing)
5027 		 * reads, because we have no transactional context in which to
5028 		 * do so -- and it's not clear that it'd be desirable anyway.
5029 		 */
5030 		if (vd->vdev_ops->vdev_op_leaf) {
5031 			uint64_t commit_txg = txg;
5032 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5033 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5034 				ASSERT(spa_sync_pass(spa) == 1);
5035 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5036 				commit_txg = spa_syncing_txg(spa);
5037 			} else if (spa->spa_claiming) {
5038 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5039 				commit_txg = spa_first_txg(spa);
5040 			}
5041 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5042 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5043 				return;
5044 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5045 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5046 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5047 		}
5048 		if (vd != rvd)
5049 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5050 	}
5051 }
5052 
5053 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5054 vdev_deflated_space(vdev_t *vd, int64_t space)
5055 {
5056 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5057 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5058 
5059 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5060 }
5061 
5062 /*
5063  * Update the in-core space usage stats for this vdev, its metaslab class,
5064  * and the root vdev.
5065  */
5066 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5067 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5068     int64_t space_delta)
5069 {
5070 	(void) defer_delta;
5071 	int64_t dspace_delta;
5072 	spa_t *spa = vd->vdev_spa;
5073 	vdev_t *rvd = spa->spa_root_vdev;
5074 
5075 	ASSERT(vd == vd->vdev_top);
5076 
5077 	/*
5078 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5079 	 * factor.  We must calculate this here and not at the root vdev
5080 	 * because the root vdev's psize-to-asize is simply the max of its
5081 	 * children's, thus not accurate enough for us.
5082 	 */
5083 	dspace_delta = vdev_deflated_space(vd, space_delta);
5084 
5085 	mutex_enter(&vd->vdev_stat_lock);
5086 	/* ensure we won't underflow */
5087 	if (alloc_delta < 0) {
5088 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5089 	}
5090 
5091 	vd->vdev_stat.vs_alloc += alloc_delta;
5092 	vd->vdev_stat.vs_space += space_delta;
5093 	vd->vdev_stat.vs_dspace += dspace_delta;
5094 	mutex_exit(&vd->vdev_stat_lock);
5095 
5096 	/* every class but log contributes to root space stats */
5097 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5098 		ASSERT(!vd->vdev_isl2cache);
5099 		mutex_enter(&rvd->vdev_stat_lock);
5100 		rvd->vdev_stat.vs_alloc += alloc_delta;
5101 		rvd->vdev_stat.vs_space += space_delta;
5102 		rvd->vdev_stat.vs_dspace += dspace_delta;
5103 		mutex_exit(&rvd->vdev_stat_lock);
5104 	}
5105 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5106 }
5107 
5108 /*
5109  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5110  * so that it will be written out next time the vdev configuration is synced.
5111  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5112  */
5113 void
vdev_config_dirty(vdev_t * vd)5114 vdev_config_dirty(vdev_t *vd)
5115 {
5116 	spa_t *spa = vd->vdev_spa;
5117 	vdev_t *rvd = spa->spa_root_vdev;
5118 	int c;
5119 
5120 	ASSERT(spa_writeable(spa));
5121 
5122 	/*
5123 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5124 	 * update the vdev config manually and set the sync flag.
5125 	 */
5126 	if (vd->vdev_aux != NULL) {
5127 		spa_aux_vdev_t *sav = vd->vdev_aux;
5128 		nvlist_t **aux;
5129 		uint_t naux;
5130 
5131 		for (c = 0; c < sav->sav_count; c++) {
5132 			if (sav->sav_vdevs[c] == vd)
5133 				break;
5134 		}
5135 
5136 		if (c == sav->sav_count) {
5137 			/*
5138 			 * We're being removed.  There's nothing more to do.
5139 			 */
5140 			ASSERT(sav->sav_sync == B_TRUE);
5141 			return;
5142 		}
5143 
5144 		sav->sav_sync = B_TRUE;
5145 
5146 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5147 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5148 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5149 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5150 		}
5151 
5152 		ASSERT(c < naux);
5153 
5154 		/*
5155 		 * Setting the nvlist in the middle if the array is a little
5156 		 * sketchy, but it will work.
5157 		 */
5158 		nvlist_free(aux[c]);
5159 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5160 
5161 		return;
5162 	}
5163 
5164 	/*
5165 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5166 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5167 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5168 	 * so this is sufficient to ensure mutual exclusion.
5169 	 */
5170 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5171 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5172 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5173 
5174 	if (vd == rvd) {
5175 		for (c = 0; c < rvd->vdev_children; c++)
5176 			vdev_config_dirty(rvd->vdev_child[c]);
5177 	} else {
5178 		ASSERT(vd == vd->vdev_top);
5179 
5180 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5181 		    vdev_is_concrete(vd)) {
5182 			list_insert_head(&spa->spa_config_dirty_list, vd);
5183 		}
5184 	}
5185 }
5186 
5187 void
vdev_config_clean(vdev_t * vd)5188 vdev_config_clean(vdev_t *vd)
5189 {
5190 	spa_t *spa = vd->vdev_spa;
5191 
5192 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5193 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5194 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5195 
5196 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5197 	list_remove(&spa->spa_config_dirty_list, vd);
5198 }
5199 
5200 /*
5201  * Mark a top-level vdev's state as dirty, so that the next pass of
5202  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5203  * the state changes from larger config changes because they require
5204  * much less locking, and are often needed for administrative actions.
5205  */
5206 void
vdev_state_dirty(vdev_t * vd)5207 vdev_state_dirty(vdev_t *vd)
5208 {
5209 	spa_t *spa = vd->vdev_spa;
5210 
5211 	ASSERT(spa_writeable(spa));
5212 	ASSERT(vd == vd->vdev_top);
5213 
5214 	/*
5215 	 * The state list is protected by the SCL_STATE lock.  The caller
5216 	 * must either hold SCL_STATE as writer, or must be the sync thread
5217 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5218 	 * so this is sufficient to ensure mutual exclusion.
5219 	 */
5220 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5221 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5222 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5223 
5224 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5225 	    vdev_is_concrete(vd))
5226 		list_insert_head(&spa->spa_state_dirty_list, vd);
5227 }
5228 
5229 void
vdev_state_clean(vdev_t * vd)5230 vdev_state_clean(vdev_t *vd)
5231 {
5232 	spa_t *spa = vd->vdev_spa;
5233 
5234 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5235 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5236 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5237 
5238 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5239 	list_remove(&spa->spa_state_dirty_list, vd);
5240 }
5241 
5242 /*
5243  * Propagate vdev state up from children to parent.
5244  */
5245 void
vdev_propagate_state(vdev_t * vd)5246 vdev_propagate_state(vdev_t *vd)
5247 {
5248 	spa_t *spa = vd->vdev_spa;
5249 	vdev_t *rvd = spa->spa_root_vdev;
5250 	int degraded = 0, faulted = 0;
5251 	int corrupted = 0;
5252 	vdev_t *child;
5253 
5254 	if (vd->vdev_children > 0) {
5255 		for (int c = 0; c < vd->vdev_children; c++) {
5256 			child = vd->vdev_child[c];
5257 
5258 			/*
5259 			 * Don't factor holes or indirect vdevs into the
5260 			 * decision.
5261 			 */
5262 			if (!vdev_is_concrete(child))
5263 				continue;
5264 
5265 			if (!vdev_readable(child) ||
5266 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5267 				/*
5268 				 * Root special: if there is a top-level log
5269 				 * device, treat the root vdev as if it were
5270 				 * degraded.
5271 				 */
5272 				if (child->vdev_islog && vd == rvd)
5273 					degraded++;
5274 				else
5275 					faulted++;
5276 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5277 				degraded++;
5278 			}
5279 
5280 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5281 				corrupted++;
5282 		}
5283 
5284 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5285 
5286 		/*
5287 		 * Root special: if there is a top-level vdev that cannot be
5288 		 * opened due to corrupted metadata, then propagate the root
5289 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5290 		 * replicas'.
5291 		 */
5292 		if (corrupted && vd == rvd &&
5293 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5294 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5295 			    VDEV_AUX_CORRUPT_DATA);
5296 	}
5297 
5298 	if (vd->vdev_parent)
5299 		vdev_propagate_state(vd->vdev_parent);
5300 }
5301 
5302 /*
5303  * Set a vdev's state.  If this is during an open, we don't update the parent
5304  * state, because we're in the process of opening children depth-first.
5305  * Otherwise, we propagate the change to the parent.
5306  *
5307  * If this routine places a device in a faulted state, an appropriate ereport is
5308  * generated.
5309  */
5310 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5311 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5312 {
5313 	uint64_t save_state;
5314 	spa_t *spa = vd->vdev_spa;
5315 
5316 	if (state == vd->vdev_state) {
5317 		/*
5318 		 * Since vdev_offline() code path is already in an offline
5319 		 * state we can miss a statechange event to OFFLINE. Check
5320 		 * the previous state to catch this condition.
5321 		 */
5322 		if (vd->vdev_ops->vdev_op_leaf &&
5323 		    (state == VDEV_STATE_OFFLINE) &&
5324 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5325 			/* post an offline state change */
5326 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5327 		}
5328 		vd->vdev_stat.vs_aux = aux;
5329 		return;
5330 	}
5331 
5332 	save_state = vd->vdev_state;
5333 
5334 	vd->vdev_state = state;
5335 	vd->vdev_stat.vs_aux = aux;
5336 
5337 	/*
5338 	 * If we are setting the vdev state to anything but an open state, then
5339 	 * always close the underlying device unless the device has requested
5340 	 * a delayed close (i.e. we're about to remove or fault the device).
5341 	 * Otherwise, we keep accessible but invalid devices open forever.
5342 	 * We don't call vdev_close() itself, because that implies some extra
5343 	 * checks (offline, etc) that we don't want here.  This is limited to
5344 	 * leaf devices, because otherwise closing the device will affect other
5345 	 * children.
5346 	 */
5347 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5348 	    vd->vdev_ops->vdev_op_leaf)
5349 		vd->vdev_ops->vdev_op_close(vd);
5350 
5351 	if (vd->vdev_removed &&
5352 	    state == VDEV_STATE_CANT_OPEN &&
5353 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5354 		/*
5355 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5356 		 * device was previously marked removed and someone attempted to
5357 		 * reopen it.  If this failed due to a nonexistent device, then
5358 		 * keep the device in the REMOVED state.  We also let this be if
5359 		 * it is one of our special test online cases, which is only
5360 		 * attempting to online the device and shouldn't generate an FMA
5361 		 * fault.
5362 		 */
5363 		vd->vdev_state = VDEV_STATE_REMOVED;
5364 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5365 	} else if (state == VDEV_STATE_REMOVED) {
5366 		vd->vdev_removed = B_TRUE;
5367 	} else if (state == VDEV_STATE_CANT_OPEN) {
5368 		/*
5369 		 * If we fail to open a vdev during an import or recovery, we
5370 		 * mark it as "not available", which signifies that it was
5371 		 * never there to begin with.  Failure to open such a device
5372 		 * is not considered an error.
5373 		 */
5374 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5375 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5376 		    vd->vdev_ops->vdev_op_leaf)
5377 			vd->vdev_not_present = 1;
5378 
5379 		/*
5380 		 * Post the appropriate ereport.  If the 'prevstate' field is
5381 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5382 		 * that this is part of a vdev_reopen().  In this case, we don't
5383 		 * want to post the ereport if the device was already in the
5384 		 * CANT_OPEN state beforehand.
5385 		 *
5386 		 * If the 'checkremove' flag is set, then this is an attempt to
5387 		 * online the device in response to an insertion event.  If we
5388 		 * hit this case, then we have detected an insertion event for a
5389 		 * faulted or offline device that wasn't in the removed state.
5390 		 * In this scenario, we don't post an ereport because we are
5391 		 * about to replace the device, or attempt an online with
5392 		 * vdev_forcefault, which will generate the fault for us.
5393 		 */
5394 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5395 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5396 		    vd != spa->spa_root_vdev) {
5397 			const char *class;
5398 
5399 			switch (aux) {
5400 			case VDEV_AUX_OPEN_FAILED:
5401 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5402 				break;
5403 			case VDEV_AUX_CORRUPT_DATA:
5404 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5405 				break;
5406 			case VDEV_AUX_NO_REPLICAS:
5407 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5408 				break;
5409 			case VDEV_AUX_BAD_GUID_SUM:
5410 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5411 				break;
5412 			case VDEV_AUX_TOO_SMALL:
5413 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5414 				break;
5415 			case VDEV_AUX_BAD_LABEL:
5416 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5417 				break;
5418 			case VDEV_AUX_BAD_ASHIFT:
5419 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5420 				break;
5421 			default:
5422 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5423 			}
5424 
5425 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5426 			    save_state);
5427 		}
5428 
5429 		/* Erase any notion of persistent removed state */
5430 		vd->vdev_removed = B_FALSE;
5431 	} else {
5432 		vd->vdev_removed = B_FALSE;
5433 	}
5434 
5435 	/*
5436 	 * Notify ZED of any significant state-change on a leaf vdev.
5437 	 *
5438 	 */
5439 	if (vd->vdev_ops->vdev_op_leaf) {
5440 		/* preserve original state from a vdev_reopen() */
5441 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5442 		    (vd->vdev_prevstate != vd->vdev_state) &&
5443 		    (save_state <= VDEV_STATE_CLOSED))
5444 			save_state = vd->vdev_prevstate;
5445 
5446 		/* filter out state change due to initial vdev_open */
5447 		if (save_state > VDEV_STATE_CLOSED)
5448 			zfs_post_state_change(spa, vd, save_state);
5449 	}
5450 
5451 	if (!isopen && vd->vdev_parent)
5452 		vdev_propagate_state(vd->vdev_parent);
5453 }
5454 
5455 boolean_t
vdev_children_are_offline(vdev_t * vd)5456 vdev_children_are_offline(vdev_t *vd)
5457 {
5458 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5459 
5460 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5461 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5462 			return (B_FALSE);
5463 	}
5464 
5465 	return (B_TRUE);
5466 }
5467 
5468 /*
5469  * Check the vdev configuration to ensure that it's capable of supporting
5470  * a root pool. We do not support partial configuration.
5471  */
5472 boolean_t
vdev_is_bootable(vdev_t * vd)5473 vdev_is_bootable(vdev_t *vd)
5474 {
5475 	if (!vd->vdev_ops->vdev_op_leaf) {
5476 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5477 
5478 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5479 			return (B_FALSE);
5480 	}
5481 
5482 	for (int c = 0; c < vd->vdev_children; c++) {
5483 		if (!vdev_is_bootable(vd->vdev_child[c]))
5484 			return (B_FALSE);
5485 	}
5486 	return (B_TRUE);
5487 }
5488 
5489 boolean_t
vdev_is_concrete(vdev_t * vd)5490 vdev_is_concrete(vdev_t *vd)
5491 {
5492 	vdev_ops_t *ops = vd->vdev_ops;
5493 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5494 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5495 		return (B_FALSE);
5496 	} else {
5497 		return (B_TRUE);
5498 	}
5499 }
5500 
5501 /*
5502  * Determine if a log device has valid content.  If the vdev was
5503  * removed or faulted in the MOS config then we know that
5504  * the content on the log device has already been written to the pool.
5505  */
5506 boolean_t
vdev_log_state_valid(vdev_t * vd)5507 vdev_log_state_valid(vdev_t *vd)
5508 {
5509 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5510 	    !vd->vdev_removed)
5511 		return (B_TRUE);
5512 
5513 	for (int c = 0; c < vd->vdev_children; c++)
5514 		if (vdev_log_state_valid(vd->vdev_child[c]))
5515 			return (B_TRUE);
5516 
5517 	return (B_FALSE);
5518 }
5519 
5520 /*
5521  * Expand a vdev if possible.
5522  */
5523 void
vdev_expand(vdev_t * vd,uint64_t txg)5524 vdev_expand(vdev_t *vd, uint64_t txg)
5525 {
5526 	ASSERT(vd->vdev_top == vd);
5527 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5528 	ASSERT(vdev_is_concrete(vd));
5529 
5530 	vdev_set_deflate_ratio(vd);
5531 
5532 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5533 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5534 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5535 	    vdev_is_concrete(vd)) {
5536 		vdev_metaslab_group_create(vd);
5537 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5538 		vdev_config_dirty(vd);
5539 	}
5540 }
5541 
5542 /*
5543  * Split a vdev.
5544  */
5545 void
vdev_split(vdev_t * vd)5546 vdev_split(vdev_t *vd)
5547 {
5548 	vdev_t *cvd, *pvd = vd->vdev_parent;
5549 
5550 	VERIFY3U(pvd->vdev_children, >, 1);
5551 
5552 	vdev_remove_child(pvd, vd);
5553 	vdev_compact_children(pvd);
5554 
5555 	ASSERT3P(pvd->vdev_child, !=, NULL);
5556 
5557 	cvd = pvd->vdev_child[0];
5558 	if (pvd->vdev_children == 1) {
5559 		vdev_remove_parent(cvd);
5560 		cvd->vdev_splitting = B_TRUE;
5561 	}
5562 	vdev_propagate_state(cvd);
5563 }
5564 
5565 void
vdev_deadman(vdev_t * vd,const char * tag)5566 vdev_deadman(vdev_t *vd, const char *tag)
5567 {
5568 	for (int c = 0; c < vd->vdev_children; c++) {
5569 		vdev_t *cvd = vd->vdev_child[c];
5570 
5571 		vdev_deadman(cvd, tag);
5572 	}
5573 
5574 	if (vd->vdev_ops->vdev_op_leaf) {
5575 		vdev_queue_t *vq = &vd->vdev_queue;
5576 
5577 		mutex_enter(&vq->vq_lock);
5578 		if (vq->vq_active > 0) {
5579 			spa_t *spa = vd->vdev_spa;
5580 			zio_t *fio;
5581 			uint64_t delta;
5582 
5583 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5584 			    vd->vdev_path, vq->vq_active);
5585 
5586 			/*
5587 			 * Look at the head of all the pending queues,
5588 			 * if any I/O has been outstanding for longer than
5589 			 * the spa_deadman_synctime invoke the deadman logic.
5590 			 */
5591 			fio = list_head(&vq->vq_active_list);
5592 			delta = gethrtime() - fio->io_timestamp;
5593 			if (delta > spa_deadman_synctime(spa))
5594 				zio_deadman(fio, tag);
5595 		}
5596 		mutex_exit(&vq->vq_lock);
5597 	}
5598 }
5599 
5600 void
vdev_defer_resilver(vdev_t * vd)5601 vdev_defer_resilver(vdev_t *vd)
5602 {
5603 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5604 
5605 	vd->vdev_resilver_deferred = B_TRUE;
5606 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5607 }
5608 
5609 /*
5610  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5611  * B_TRUE if we have devices that need to be resilvered and are available to
5612  * accept resilver I/Os.
5613  */
5614 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5615 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5616 {
5617 	boolean_t resilver_needed = B_FALSE;
5618 	spa_t *spa = vd->vdev_spa;
5619 
5620 	for (int c = 0; c < vd->vdev_children; c++) {
5621 		vdev_t *cvd = vd->vdev_child[c];
5622 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5623 	}
5624 
5625 	if (vd == spa->spa_root_vdev &&
5626 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5627 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5628 		vdev_config_dirty(vd);
5629 		spa->spa_resilver_deferred = B_FALSE;
5630 		return (resilver_needed);
5631 	}
5632 
5633 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5634 	    !vd->vdev_ops->vdev_op_leaf)
5635 		return (resilver_needed);
5636 
5637 	vd->vdev_resilver_deferred = B_FALSE;
5638 
5639 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5640 	    vdev_resilver_needed(vd, NULL, NULL));
5641 }
5642 
5643 boolean_t
vdev_xlate_is_empty(range_seg64_t * rs)5644 vdev_xlate_is_empty(range_seg64_t *rs)
5645 {
5646 	return (rs->rs_start == rs->rs_end);
5647 }
5648 
5649 /*
5650  * Translate a logical range to the first contiguous physical range for the
5651  * specified vdev_t.  This function is initially called with a leaf vdev and
5652  * will walk each parent vdev until it reaches a top-level vdev. Once the
5653  * top-level is reached the physical range is initialized and the recursive
5654  * function begins to unwind. As it unwinds it calls the parent's vdev
5655  * specific translation function to do the real conversion.
5656  */
5657 void
vdev_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)5658 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5659     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5660 {
5661 	/*
5662 	 * Walk up the vdev tree
5663 	 */
5664 	if (vd != vd->vdev_top) {
5665 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5666 		    remain_rs);
5667 	} else {
5668 		/*
5669 		 * We've reached the top-level vdev, initialize the physical
5670 		 * range to the logical range and set an empty remaining
5671 		 * range then start to unwind.
5672 		 */
5673 		physical_rs->rs_start = logical_rs->rs_start;
5674 		physical_rs->rs_end = logical_rs->rs_end;
5675 
5676 		remain_rs->rs_start = logical_rs->rs_start;
5677 		remain_rs->rs_end = logical_rs->rs_start;
5678 
5679 		return;
5680 	}
5681 
5682 	vdev_t *pvd = vd->vdev_parent;
5683 	ASSERT3P(pvd, !=, NULL);
5684 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5685 
5686 	/*
5687 	 * As this recursive function unwinds, translate the logical
5688 	 * range into its physical and any remaining components by calling
5689 	 * the vdev specific translate function.
5690 	 */
5691 	range_seg64_t intermediate = { 0 };
5692 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5693 
5694 	physical_rs->rs_start = intermediate.rs_start;
5695 	physical_rs->rs_end = intermediate.rs_end;
5696 }
5697 
5698 void
vdev_xlate_walk(vdev_t * vd,const range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5699 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5700     vdev_xlate_func_t *func, void *arg)
5701 {
5702 	range_seg64_t iter_rs = *logical_rs;
5703 	range_seg64_t physical_rs;
5704 	range_seg64_t remain_rs;
5705 
5706 	while (!vdev_xlate_is_empty(&iter_rs)) {
5707 
5708 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5709 
5710 		/*
5711 		 * With raidz and dRAID, it's possible that the logical range
5712 		 * does not live on this leaf vdev. Only when there is a non-
5713 		 * zero physical size call the provided function.
5714 		 */
5715 		if (!vdev_xlate_is_empty(&physical_rs))
5716 			func(arg, &physical_rs);
5717 
5718 		iter_rs = remain_rs;
5719 	}
5720 }
5721 
5722 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5723 vdev_name(vdev_t *vd, char *buf, int buflen)
5724 {
5725 	if (vd->vdev_path == NULL) {
5726 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5727 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5728 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5729 			snprintf(buf, buflen, "%s-%llu",
5730 			    vd->vdev_ops->vdev_op_type,
5731 			    (u_longlong_t)vd->vdev_id);
5732 		}
5733 	} else {
5734 		strlcpy(buf, vd->vdev_path, buflen);
5735 	}
5736 	return (buf);
5737 }
5738 
5739 /*
5740  * Look at the vdev tree and determine whether any devices are currently being
5741  * replaced.
5742  */
5743 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5744 vdev_replace_in_progress(vdev_t *vdev)
5745 {
5746 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5747 
5748 	if (vdev->vdev_ops == &vdev_replacing_ops)
5749 		return (B_TRUE);
5750 
5751 	/*
5752 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5753 	 * it has exactly two children, and the second, the hot spare, has
5754 	 * finished being resilvered.
5755 	 */
5756 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5757 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5758 		return (B_TRUE);
5759 
5760 	for (int i = 0; i < vdev->vdev_children; i++) {
5761 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5762 			return (B_TRUE);
5763 	}
5764 
5765 	return (B_FALSE);
5766 }
5767 
5768 /*
5769  * Add a (source=src, propname=propval) list to an nvlist.
5770  */
5771 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5772 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5773     uint64_t intval, zprop_source_t src)
5774 {
5775 	nvlist_t *propval;
5776 
5777 	propval = fnvlist_alloc();
5778 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5779 
5780 	if (strval != NULL)
5781 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5782 	else
5783 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5784 
5785 	fnvlist_add_nvlist(nvl, propname, propval);
5786 	nvlist_free(propval);
5787 }
5788 
5789 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5790 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5791 {
5792 	vdev_t *vd;
5793 	nvlist_t *nvp = arg;
5794 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5795 	objset_t *mos = spa->spa_meta_objset;
5796 	nvpair_t *elem = NULL;
5797 	uint64_t vdev_guid;
5798 	uint64_t objid;
5799 	nvlist_t *nvprops;
5800 
5801 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5802 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5803 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5804 
5805 	/* this vdev could get removed while waiting for this sync task */
5806 	if (vd == NULL)
5807 		return;
5808 
5809 	/*
5810 	 * Set vdev property values in the vdev props mos object.
5811 	 */
5812 	if (vd->vdev_root_zap != 0) {
5813 		objid = vd->vdev_root_zap;
5814 	} else if (vd->vdev_top_zap != 0) {
5815 		objid = vd->vdev_top_zap;
5816 	} else if (vd->vdev_leaf_zap != 0) {
5817 		objid = vd->vdev_leaf_zap;
5818 	} else {
5819 		panic("unexpected vdev type");
5820 	}
5821 
5822 	mutex_enter(&spa->spa_props_lock);
5823 
5824 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5825 		uint64_t intval;
5826 		const char *strval;
5827 		vdev_prop_t prop;
5828 		const char *propname = nvpair_name(elem);
5829 		zprop_type_t proptype;
5830 
5831 		switch (prop = vdev_name_to_prop(propname)) {
5832 		case VDEV_PROP_USERPROP:
5833 			if (vdev_prop_user(propname)) {
5834 				strval = fnvpair_value_string(elem);
5835 				if (strlen(strval) == 0) {
5836 					/* remove the property if value == "" */
5837 					(void) zap_remove(mos, objid, propname,
5838 					    tx);
5839 				} else {
5840 					VERIFY0(zap_update(mos, objid, propname,
5841 					    1, strlen(strval) + 1, strval, tx));
5842 				}
5843 				spa_history_log_internal(spa, "vdev set", tx,
5844 				    "vdev_guid=%llu: %s=%s",
5845 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5846 				    strval);
5847 			}
5848 			break;
5849 		default:
5850 			/* normalize the property name */
5851 			propname = vdev_prop_to_name(prop);
5852 			proptype = vdev_prop_get_type(prop);
5853 
5854 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5855 				ASSERT(proptype == PROP_TYPE_STRING);
5856 				strval = fnvpair_value_string(elem);
5857 				VERIFY0(zap_update(mos, objid, propname,
5858 				    1, strlen(strval) + 1, strval, tx));
5859 				spa_history_log_internal(spa, "vdev set", tx,
5860 				    "vdev_guid=%llu: %s=%s",
5861 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5862 				    strval);
5863 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5864 				intval = fnvpair_value_uint64(elem);
5865 
5866 				if (proptype == PROP_TYPE_INDEX) {
5867 					const char *unused;
5868 					VERIFY0(vdev_prop_index_to_string(
5869 					    prop, intval, &unused));
5870 				}
5871 				VERIFY0(zap_update(mos, objid, propname,
5872 				    sizeof (uint64_t), 1, &intval, tx));
5873 				spa_history_log_internal(spa, "vdev set", tx,
5874 				    "vdev_guid=%llu: %s=%lld",
5875 				    (u_longlong_t)vdev_guid,
5876 				    nvpair_name(elem), (longlong_t)intval);
5877 			} else {
5878 				panic("invalid vdev property type %u",
5879 				    nvpair_type(elem));
5880 			}
5881 		}
5882 
5883 	}
5884 
5885 	mutex_exit(&spa->spa_props_lock);
5886 }
5887 
5888 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5889 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5890 {
5891 	spa_t *spa = vd->vdev_spa;
5892 	nvpair_t *elem = NULL;
5893 	uint64_t vdev_guid;
5894 	nvlist_t *nvprops;
5895 	int error = 0;
5896 
5897 	ASSERT(vd != NULL);
5898 
5899 	/* Check that vdev has a zap we can use */
5900 	if (vd->vdev_root_zap == 0 &&
5901 	    vd->vdev_top_zap == 0 &&
5902 	    vd->vdev_leaf_zap == 0)
5903 		return (SET_ERROR(EINVAL));
5904 
5905 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5906 	    &vdev_guid) != 0)
5907 		return (SET_ERROR(EINVAL));
5908 
5909 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5910 	    &nvprops) != 0)
5911 		return (SET_ERROR(EINVAL));
5912 
5913 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5914 		return (SET_ERROR(EINVAL));
5915 
5916 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5917 		const char *propname = nvpair_name(elem);
5918 		vdev_prop_t prop = vdev_name_to_prop(propname);
5919 		uint64_t intval = 0;
5920 		const char *strval = NULL;
5921 
5922 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5923 			error = EINVAL;
5924 			goto end;
5925 		}
5926 
5927 		if (vdev_prop_readonly(prop)) {
5928 			error = EROFS;
5929 			goto end;
5930 		}
5931 
5932 		/* Special Processing */
5933 		switch (prop) {
5934 		case VDEV_PROP_PATH:
5935 			if (vd->vdev_path == NULL) {
5936 				error = EROFS;
5937 				break;
5938 			}
5939 			if (nvpair_value_string(elem, &strval) != 0) {
5940 				error = EINVAL;
5941 				break;
5942 			}
5943 			/* New path must start with /dev/ */
5944 			if (strncmp(strval, "/dev/", 5)) {
5945 				error = EINVAL;
5946 				break;
5947 			}
5948 			error = spa_vdev_setpath(spa, vdev_guid, strval);
5949 			break;
5950 		case VDEV_PROP_ALLOCATING:
5951 			if (nvpair_value_uint64(elem, &intval) != 0) {
5952 				error = EINVAL;
5953 				break;
5954 			}
5955 			if (intval != vd->vdev_noalloc)
5956 				break;
5957 			if (intval == 0)
5958 				error = spa_vdev_noalloc(spa, vdev_guid);
5959 			else
5960 				error = spa_vdev_alloc(spa, vdev_guid);
5961 			break;
5962 		case VDEV_PROP_FAILFAST:
5963 			if (nvpair_value_uint64(elem, &intval) != 0) {
5964 				error = EINVAL;
5965 				break;
5966 			}
5967 			vd->vdev_failfast = intval & 1;
5968 			break;
5969 		case VDEV_PROP_CHECKSUM_N:
5970 			if (nvpair_value_uint64(elem, &intval) != 0) {
5971 				error = EINVAL;
5972 				break;
5973 			}
5974 			vd->vdev_checksum_n = intval;
5975 			break;
5976 		case VDEV_PROP_CHECKSUM_T:
5977 			if (nvpair_value_uint64(elem, &intval) != 0) {
5978 				error = EINVAL;
5979 				break;
5980 			}
5981 			vd->vdev_checksum_t = intval;
5982 			break;
5983 		case VDEV_PROP_IO_N:
5984 			if (nvpair_value_uint64(elem, &intval) != 0) {
5985 				error = EINVAL;
5986 				break;
5987 			}
5988 			vd->vdev_io_n = intval;
5989 			break;
5990 		case VDEV_PROP_IO_T:
5991 			if (nvpair_value_uint64(elem, &intval) != 0) {
5992 				error = EINVAL;
5993 				break;
5994 			}
5995 			vd->vdev_io_t = intval;
5996 			break;
5997 		case VDEV_PROP_SLOW_IO_N:
5998 			if (nvpair_value_uint64(elem, &intval) != 0) {
5999 				error = EINVAL;
6000 				break;
6001 			}
6002 			vd->vdev_slow_io_n = intval;
6003 			break;
6004 		case VDEV_PROP_SLOW_IO_T:
6005 			if (nvpair_value_uint64(elem, &intval) != 0) {
6006 				error = EINVAL;
6007 				break;
6008 			}
6009 			vd->vdev_slow_io_t = intval;
6010 			break;
6011 		default:
6012 			/* Most processing is done in vdev_props_set_sync */
6013 			break;
6014 		}
6015 end:
6016 		if (error != 0) {
6017 			intval = error;
6018 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6019 			return (error);
6020 		}
6021 	}
6022 
6023 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6024 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6025 }
6026 
6027 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6028 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6029 {
6030 	spa_t *spa = vd->vdev_spa;
6031 	objset_t *mos = spa->spa_meta_objset;
6032 	int err = 0;
6033 	uint64_t objid;
6034 	uint64_t vdev_guid;
6035 	nvpair_t *elem = NULL;
6036 	nvlist_t *nvprops = NULL;
6037 	uint64_t intval = 0;
6038 	char *strval = NULL;
6039 	const char *propname = NULL;
6040 	vdev_prop_t prop;
6041 
6042 	ASSERT(vd != NULL);
6043 	ASSERT(mos != NULL);
6044 
6045 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6046 	    &vdev_guid) != 0)
6047 		return (SET_ERROR(EINVAL));
6048 
6049 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6050 
6051 	if (vd->vdev_root_zap != 0) {
6052 		objid = vd->vdev_root_zap;
6053 	} else if (vd->vdev_top_zap != 0) {
6054 		objid = vd->vdev_top_zap;
6055 	} else if (vd->vdev_leaf_zap != 0) {
6056 		objid = vd->vdev_leaf_zap;
6057 	} else {
6058 		return (SET_ERROR(EINVAL));
6059 	}
6060 	ASSERT(objid != 0);
6061 
6062 	mutex_enter(&spa->spa_props_lock);
6063 
6064 	if (nvprops != NULL) {
6065 		char namebuf[64] = { 0 };
6066 
6067 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6068 			intval = 0;
6069 			strval = NULL;
6070 			propname = nvpair_name(elem);
6071 			prop = vdev_name_to_prop(propname);
6072 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6073 			uint64_t integer_size, num_integers;
6074 
6075 			switch (prop) {
6076 			/* Special Read-only Properties */
6077 			case VDEV_PROP_NAME:
6078 				strval = vdev_name(vd, namebuf,
6079 				    sizeof (namebuf));
6080 				if (strval == NULL)
6081 					continue;
6082 				vdev_prop_add_list(outnvl, propname, strval, 0,
6083 				    ZPROP_SRC_NONE);
6084 				continue;
6085 			case VDEV_PROP_CAPACITY:
6086 				/* percent used */
6087 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6088 				    (vd->vdev_stat.vs_alloc * 100 /
6089 				    vd->vdev_stat.vs_dspace);
6090 				vdev_prop_add_list(outnvl, propname, NULL,
6091 				    intval, ZPROP_SRC_NONE);
6092 				continue;
6093 			case VDEV_PROP_STATE:
6094 				vdev_prop_add_list(outnvl, propname, NULL,
6095 				    vd->vdev_state, ZPROP_SRC_NONE);
6096 				continue;
6097 			case VDEV_PROP_GUID:
6098 				vdev_prop_add_list(outnvl, propname, NULL,
6099 				    vd->vdev_guid, ZPROP_SRC_NONE);
6100 				continue;
6101 			case VDEV_PROP_ASIZE:
6102 				vdev_prop_add_list(outnvl, propname, NULL,
6103 				    vd->vdev_asize, ZPROP_SRC_NONE);
6104 				continue;
6105 			case VDEV_PROP_PSIZE:
6106 				vdev_prop_add_list(outnvl, propname, NULL,
6107 				    vd->vdev_psize, ZPROP_SRC_NONE);
6108 				continue;
6109 			case VDEV_PROP_ASHIFT:
6110 				vdev_prop_add_list(outnvl, propname, NULL,
6111 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6112 				continue;
6113 			case VDEV_PROP_SIZE:
6114 				vdev_prop_add_list(outnvl, propname, NULL,
6115 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6116 				continue;
6117 			case VDEV_PROP_FREE:
6118 				vdev_prop_add_list(outnvl, propname, NULL,
6119 				    vd->vdev_stat.vs_dspace -
6120 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6121 				continue;
6122 			case VDEV_PROP_ALLOCATED:
6123 				vdev_prop_add_list(outnvl, propname, NULL,
6124 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6125 				continue;
6126 			case VDEV_PROP_EXPANDSZ:
6127 				vdev_prop_add_list(outnvl, propname, NULL,
6128 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6129 				continue;
6130 			case VDEV_PROP_FRAGMENTATION:
6131 				vdev_prop_add_list(outnvl, propname, NULL,
6132 				    vd->vdev_stat.vs_fragmentation,
6133 				    ZPROP_SRC_NONE);
6134 				continue;
6135 			case VDEV_PROP_PARITY:
6136 				vdev_prop_add_list(outnvl, propname, NULL,
6137 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6138 				continue;
6139 			case VDEV_PROP_PATH:
6140 				if (vd->vdev_path == NULL)
6141 					continue;
6142 				vdev_prop_add_list(outnvl, propname,
6143 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6144 				continue;
6145 			case VDEV_PROP_DEVID:
6146 				if (vd->vdev_devid == NULL)
6147 					continue;
6148 				vdev_prop_add_list(outnvl, propname,
6149 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6150 				continue;
6151 			case VDEV_PROP_PHYS_PATH:
6152 				if (vd->vdev_physpath == NULL)
6153 					continue;
6154 				vdev_prop_add_list(outnvl, propname,
6155 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6156 				continue;
6157 			case VDEV_PROP_ENC_PATH:
6158 				if (vd->vdev_enc_sysfs_path == NULL)
6159 					continue;
6160 				vdev_prop_add_list(outnvl, propname,
6161 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6162 				continue;
6163 			case VDEV_PROP_FRU:
6164 				if (vd->vdev_fru == NULL)
6165 					continue;
6166 				vdev_prop_add_list(outnvl, propname,
6167 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6168 				continue;
6169 			case VDEV_PROP_PARENT:
6170 				if (vd->vdev_parent != NULL) {
6171 					strval = vdev_name(vd->vdev_parent,
6172 					    namebuf, sizeof (namebuf));
6173 					vdev_prop_add_list(outnvl, propname,
6174 					    strval, 0, ZPROP_SRC_NONE);
6175 				}
6176 				continue;
6177 			case VDEV_PROP_CHILDREN:
6178 				if (vd->vdev_children > 0)
6179 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6180 					    KM_SLEEP);
6181 				for (uint64_t i = 0; i < vd->vdev_children;
6182 				    i++) {
6183 					const char *vname;
6184 
6185 					vname = vdev_name(vd->vdev_child[i],
6186 					    namebuf, sizeof (namebuf));
6187 					if (vname == NULL)
6188 						vname = "(unknown)";
6189 					if (strlen(strval) > 0)
6190 						strlcat(strval, ",",
6191 						    ZAP_MAXVALUELEN);
6192 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6193 				}
6194 				if (strval != NULL) {
6195 					vdev_prop_add_list(outnvl, propname,
6196 					    strval, 0, ZPROP_SRC_NONE);
6197 					kmem_free(strval, ZAP_MAXVALUELEN);
6198 				}
6199 				continue;
6200 			case VDEV_PROP_NUMCHILDREN:
6201 				vdev_prop_add_list(outnvl, propname, NULL,
6202 				    vd->vdev_children, ZPROP_SRC_NONE);
6203 				continue;
6204 			case VDEV_PROP_READ_ERRORS:
6205 				vdev_prop_add_list(outnvl, propname, NULL,
6206 				    vd->vdev_stat.vs_read_errors,
6207 				    ZPROP_SRC_NONE);
6208 				continue;
6209 			case VDEV_PROP_WRITE_ERRORS:
6210 				vdev_prop_add_list(outnvl, propname, NULL,
6211 				    vd->vdev_stat.vs_write_errors,
6212 				    ZPROP_SRC_NONE);
6213 				continue;
6214 			case VDEV_PROP_CHECKSUM_ERRORS:
6215 				vdev_prop_add_list(outnvl, propname, NULL,
6216 				    vd->vdev_stat.vs_checksum_errors,
6217 				    ZPROP_SRC_NONE);
6218 				continue;
6219 			case VDEV_PROP_INITIALIZE_ERRORS:
6220 				vdev_prop_add_list(outnvl, propname, NULL,
6221 				    vd->vdev_stat.vs_initialize_errors,
6222 				    ZPROP_SRC_NONE);
6223 				continue;
6224 			case VDEV_PROP_OPS_NULL:
6225 				vdev_prop_add_list(outnvl, propname, NULL,
6226 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6227 				    ZPROP_SRC_NONE);
6228 				continue;
6229 			case VDEV_PROP_OPS_READ:
6230 				vdev_prop_add_list(outnvl, propname, NULL,
6231 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6232 				    ZPROP_SRC_NONE);
6233 				continue;
6234 			case VDEV_PROP_OPS_WRITE:
6235 				vdev_prop_add_list(outnvl, propname, NULL,
6236 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6237 				    ZPROP_SRC_NONE);
6238 				continue;
6239 			case VDEV_PROP_OPS_FREE:
6240 				vdev_prop_add_list(outnvl, propname, NULL,
6241 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6242 				    ZPROP_SRC_NONE);
6243 				continue;
6244 			case VDEV_PROP_OPS_CLAIM:
6245 				vdev_prop_add_list(outnvl, propname, NULL,
6246 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6247 				    ZPROP_SRC_NONE);
6248 				continue;
6249 			case VDEV_PROP_OPS_TRIM:
6250 				/*
6251 				 * TRIM ops and bytes are reported to user
6252 				 * space as ZIO_TYPE_FLUSH.  This is done to
6253 				 * preserve the vdev_stat_t structure layout
6254 				 * for user space.
6255 				 */
6256 				vdev_prop_add_list(outnvl, propname, NULL,
6257 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6258 				    ZPROP_SRC_NONE);
6259 				continue;
6260 			case VDEV_PROP_BYTES_NULL:
6261 				vdev_prop_add_list(outnvl, propname, NULL,
6262 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6263 				    ZPROP_SRC_NONE);
6264 				continue;
6265 			case VDEV_PROP_BYTES_READ:
6266 				vdev_prop_add_list(outnvl, propname, NULL,
6267 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6268 				    ZPROP_SRC_NONE);
6269 				continue;
6270 			case VDEV_PROP_BYTES_WRITE:
6271 				vdev_prop_add_list(outnvl, propname, NULL,
6272 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6273 				    ZPROP_SRC_NONE);
6274 				continue;
6275 			case VDEV_PROP_BYTES_FREE:
6276 				vdev_prop_add_list(outnvl, propname, NULL,
6277 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6278 				    ZPROP_SRC_NONE);
6279 				continue;
6280 			case VDEV_PROP_BYTES_CLAIM:
6281 				vdev_prop_add_list(outnvl, propname, NULL,
6282 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6283 				    ZPROP_SRC_NONE);
6284 				continue;
6285 			case VDEV_PROP_BYTES_TRIM:
6286 				/*
6287 				 * TRIM ops and bytes are reported to user
6288 				 * space as ZIO_TYPE_FLUSH.  This is done to
6289 				 * preserve the vdev_stat_t structure layout
6290 				 * for user space.
6291 				 */
6292 				vdev_prop_add_list(outnvl, propname, NULL,
6293 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6294 				    ZPROP_SRC_NONE);
6295 				continue;
6296 			case VDEV_PROP_REMOVING:
6297 				vdev_prop_add_list(outnvl, propname, NULL,
6298 				    vd->vdev_removing, ZPROP_SRC_NONE);
6299 				continue;
6300 			case VDEV_PROP_RAIDZ_EXPANDING:
6301 				/* Only expose this for raidz */
6302 				if (vd->vdev_ops == &vdev_raidz_ops) {
6303 					vdev_prop_add_list(outnvl, propname,
6304 					    NULL, vd->vdev_rz_expanding,
6305 					    ZPROP_SRC_NONE);
6306 				}
6307 				continue;
6308 			/* Numeric Properites */
6309 			case VDEV_PROP_ALLOCATING:
6310 				/* Leaf vdevs cannot have this property */
6311 				if (vd->vdev_mg == NULL &&
6312 				    vd->vdev_top != NULL) {
6313 					src = ZPROP_SRC_NONE;
6314 					intval = ZPROP_BOOLEAN_NA;
6315 				} else {
6316 					err = vdev_prop_get_int(vd, prop,
6317 					    &intval);
6318 					if (err && err != ENOENT)
6319 						break;
6320 
6321 					if (intval ==
6322 					    vdev_prop_default_numeric(prop))
6323 						src = ZPROP_SRC_DEFAULT;
6324 					else
6325 						src = ZPROP_SRC_LOCAL;
6326 				}
6327 
6328 				vdev_prop_add_list(outnvl, propname, NULL,
6329 				    intval, src);
6330 				break;
6331 			case VDEV_PROP_FAILFAST:
6332 				src = ZPROP_SRC_LOCAL;
6333 				strval = NULL;
6334 
6335 				err = zap_lookup(mos, objid, nvpair_name(elem),
6336 				    sizeof (uint64_t), 1, &intval);
6337 				if (err == ENOENT) {
6338 					intval = vdev_prop_default_numeric(
6339 					    prop);
6340 					err = 0;
6341 				} else if (err) {
6342 					break;
6343 				}
6344 				if (intval == vdev_prop_default_numeric(prop))
6345 					src = ZPROP_SRC_DEFAULT;
6346 
6347 				vdev_prop_add_list(outnvl, propname, strval,
6348 				    intval, src);
6349 				break;
6350 			case VDEV_PROP_CHECKSUM_N:
6351 			case VDEV_PROP_CHECKSUM_T:
6352 			case VDEV_PROP_IO_N:
6353 			case VDEV_PROP_IO_T:
6354 			case VDEV_PROP_SLOW_IO_N:
6355 			case VDEV_PROP_SLOW_IO_T:
6356 				err = vdev_prop_get_int(vd, prop, &intval);
6357 				if (err && err != ENOENT)
6358 					break;
6359 
6360 				if (intval == vdev_prop_default_numeric(prop))
6361 					src = ZPROP_SRC_DEFAULT;
6362 				else
6363 					src = ZPROP_SRC_LOCAL;
6364 
6365 				vdev_prop_add_list(outnvl, propname, NULL,
6366 				    intval, src);
6367 				break;
6368 			/* Text Properties */
6369 			case VDEV_PROP_COMMENT:
6370 				/* Exists in the ZAP below */
6371 				/* FALLTHRU */
6372 			case VDEV_PROP_USERPROP:
6373 				/* User Properites */
6374 				src = ZPROP_SRC_LOCAL;
6375 
6376 				err = zap_length(mos, objid, nvpair_name(elem),
6377 				    &integer_size, &num_integers);
6378 				if (err)
6379 					break;
6380 
6381 				switch (integer_size) {
6382 				case 8:
6383 					/* User properties cannot be integers */
6384 					err = EINVAL;
6385 					break;
6386 				case 1:
6387 					/* string property */
6388 					strval = kmem_alloc(num_integers,
6389 					    KM_SLEEP);
6390 					err = zap_lookup(mos, objid,
6391 					    nvpair_name(elem), 1,
6392 					    num_integers, strval);
6393 					if (err) {
6394 						kmem_free(strval,
6395 						    num_integers);
6396 						break;
6397 					}
6398 					vdev_prop_add_list(outnvl, propname,
6399 					    strval, 0, src);
6400 					kmem_free(strval, num_integers);
6401 					break;
6402 				}
6403 				break;
6404 			default:
6405 				err = ENOENT;
6406 				break;
6407 			}
6408 			if (err)
6409 				break;
6410 		}
6411 	} else {
6412 		/*
6413 		 * Get all properties from the MOS vdev property object.
6414 		 */
6415 		zap_cursor_t zc;
6416 		zap_attribute_t za;
6417 		for (zap_cursor_init(&zc, mos, objid);
6418 		    (err = zap_cursor_retrieve(&zc, &za)) == 0;
6419 		    zap_cursor_advance(&zc)) {
6420 			intval = 0;
6421 			strval = NULL;
6422 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6423 			propname = za.za_name;
6424 
6425 			switch (za.za_integer_length) {
6426 			case 8:
6427 				/* We do not allow integer user properties */
6428 				/* This is likely an internal value */
6429 				break;
6430 			case 1:
6431 				/* string property */
6432 				strval = kmem_alloc(za.za_num_integers,
6433 				    KM_SLEEP);
6434 				err = zap_lookup(mos, objid, za.za_name, 1,
6435 				    za.za_num_integers, strval);
6436 				if (err) {
6437 					kmem_free(strval, za.za_num_integers);
6438 					break;
6439 				}
6440 				vdev_prop_add_list(outnvl, propname, strval, 0,
6441 				    src);
6442 				kmem_free(strval, za.za_num_integers);
6443 				break;
6444 
6445 			default:
6446 				break;
6447 			}
6448 		}
6449 		zap_cursor_fini(&zc);
6450 	}
6451 
6452 	mutex_exit(&spa->spa_props_lock);
6453 	if (err && err != ENOENT) {
6454 		return (err);
6455 	}
6456 
6457 	return (0);
6458 }
6459 
6460 EXPORT_SYMBOL(vdev_fault);
6461 EXPORT_SYMBOL(vdev_degrade);
6462 EXPORT_SYMBOL(vdev_online);
6463 EXPORT_SYMBOL(vdev_offline);
6464 EXPORT_SYMBOL(vdev_clear);
6465 
6466 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6467 	"Target number of metaslabs per top-level vdev");
6468 
6469 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6470 	"Default lower limit for metaslab size");
6471 
6472 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6473 	"Default upper limit for metaslab size");
6474 
6475 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6476 	"Minimum number of metaslabs per top-level vdev");
6477 
6478 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6479 	"Practical upper limit of total metaslabs per top-level vdev");
6480 
6481 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6482 	"Rate limit slow IO (delay) events to this many per second");
6483 
6484 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6485 	"Rate limit hung IO (deadman) events to this many per second");
6486 
6487 /* BEGIN CSTYLED */
6488 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6489 	"Rate limit checksum events to this many checksum errors per second "
6490 	"(do not set below ZED threshold).");
6491 /* END CSTYLED */
6492 
6493 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6494 	"Ignore errors during resilver/scrub");
6495 
6496 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6497 	"Bypass vdev_validate()");
6498 
6499 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6500 	"Disable cache flushes");
6501 
6502 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6503 	"Minimum number of metaslabs required to dedicate one for log blocks");
6504 
6505 /* BEGIN CSTYLED */
6506 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6507 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6508 	"Minimum ashift used when creating new top-level vdevs");
6509 
6510 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6511 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6512 	"Maximum ashift used when optimizing for logical -> physical sector "
6513 	"size on new top-level vdevs");
6514 /* END CSTYLED */
6515