xref: /freebsd/sys/dev/vt/hw/vga/vt_vga.c (revision b93028d8)
1 /*-
2  * Copyright (c) 2005 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Copyright (c) 2009 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Ed Schouten
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_acpi.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/module.h>
40 #include <sys/rman.h>
41 
42 #include <dev/vt/vt.h>
43 #include <dev/vt/colors/vt_termcolors.h>
44 #include <dev/vt/hw/vga/vt_vga_reg.h>
45 #include <dev/pci/pcivar.h>
46 
47 #include <machine/bus.h>
48 #if defined(__amd64__) || defined(__i386__)
49 #include <contrib/dev/acpica/include/acpi.h>
50 #include <machine/md_var.h>
51 #endif
52 
53 struct vga_softc {
54 	bus_space_tag_t		 vga_fb_tag;
55 	bus_space_handle_t	 vga_fb_handle;
56 	bus_space_tag_t		 vga_reg_tag;
57 	bus_space_handle_t	 vga_reg_handle;
58 	int			 vga_wmode;
59 	term_color_t		 vga_curfg, vga_curbg;
60 	boolean_t		 vga_enabled;
61 };
62 
63 /* Convenience macros. */
64 #define	MEM_READ1(sc, ofs) \
65 	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
66 #define	MEM_WRITE1(sc, ofs, val) \
67 	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
68 #define	MEM_WRITE2(sc, ofs, val) \
69 	bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
70 #define	REG_READ1(sc, reg) \
71 	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
72 #define	REG_WRITE1(sc, reg, val) \
73 	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
74 
75 #define	VT_VGA_WIDTH	640
76 #define	VT_VGA_HEIGHT	480
77 #define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
78 
79 /*
80  * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
81  * memory).
82  */
83 #define	VT_VGA_PIXELS_BLOCK	8
84 
85 /*
86  * We use an off-screen addresses to:
87  *     o  store the background color;
88  *     o  store pixels pattern.
89  * Those addresses are then loaded in the latches once.
90  */
91 #define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
92 
93 static vd_probe_t	vga_probe;
94 static vd_init_t	vga_init;
95 static vd_blank_t	vga_blank;
96 static vd_bitblt_text_t	vga_bitblt_text;
97 static vd_invalidate_text_t	vga_invalidate_text;
98 static vd_bitblt_bmp_t	vga_bitblt_bitmap;
99 static vd_bitblt_argb_t	vga_bitblt_argb;
100 static vd_drawrect_t	vga_drawrect;
101 static vd_setpixel_t	vga_setpixel;
102 static vd_postswitch_t	vga_postswitch;
103 
104 static const struct vt_driver vt_vga_driver = {
105 	.vd_name	= "vga",
106 	.vd_probe	= vga_probe,
107 	.vd_init	= vga_init,
108 	.vd_blank	= vga_blank,
109 	.vd_bitblt_text	= vga_bitblt_text,
110 	.vd_invalidate_text = vga_invalidate_text,
111 	.vd_bitblt_bmp	= vga_bitblt_bitmap,
112 	.vd_bitblt_argb	= vga_bitblt_argb,
113 	.vd_drawrect	= vga_drawrect,
114 	.vd_setpixel	= vga_setpixel,
115 	.vd_postswitch	= vga_postswitch,
116 	.vd_priority	= VD_PRIORITY_GENERIC,
117 };
118 
119 /*
120  * Driver supports both text mode and graphics mode.  Make sure the
121  * buffer is always big enough to support both.
122  */
123 static struct vga_softc vga_conssoftc;
124 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
125 
126 static inline void
vga_setwmode(struct vt_device * vd,int wmode)127 vga_setwmode(struct vt_device *vd, int wmode)
128 {
129 	struct vga_softc *sc = vd->vd_softc;
130 
131 	if (sc->vga_wmode == wmode)
132 		return;
133 
134 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
135 	REG_WRITE1(sc, VGA_GC_DATA, wmode);
136 	sc->vga_wmode = wmode;
137 
138 	switch (wmode) {
139 	case 3:
140 		/* Re-enable all planes. */
141 		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
142 		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
143 		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
144 		break;
145 	}
146 }
147 
148 static inline void
vga_setfg(struct vt_device * vd,term_color_t color)149 vga_setfg(struct vt_device *vd, term_color_t color)
150 {
151 	struct vga_softc *sc = vd->vd_softc;
152 
153 	vga_setwmode(vd, 3);
154 
155 	if (sc->vga_curfg == color)
156 		return;
157 
158 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
159 	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
160 	sc->vga_curfg = color;
161 }
162 
163 static inline void
vga_setbg(struct vt_device * vd,term_color_t color)164 vga_setbg(struct vt_device *vd, term_color_t color)
165 {
166 	struct vga_softc *sc = vd->vd_softc;
167 
168 	vga_setwmode(vd, 3);
169 
170 	if (sc->vga_curbg == color)
171 		return;
172 
173 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
174 	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
175 
176 	/*
177 	 * Write 8 pixels using the background color to an off-screen
178 	 * byte in the video memory.
179 	 */
180 	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
181 
182 	/*
183 	 * Read those 8 pixels back to load the background color in the
184 	 * latches register.
185 	 */
186 	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
187 
188 	sc->vga_curbg = color;
189 
190 	/*
191          * The Set/Reset register doesn't contain the fg color anymore,
192          * store an invalid color.
193 	 */
194 	sc->vga_curfg = 0xff;
195 }
196 
197 /*
198  * Binary searchable table for Unicode to CP437 conversion.
199  */
200 
201 struct unicp437 {
202 	uint16_t	unicode_base;
203 	uint8_t		cp437_base;
204 	uint8_t		length;
205 };
206 
207 static const struct unicp437 cp437table[] = {
208 	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
209 	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
210 	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
211 	{ 0x00a6, 0x7c, 0x00 },
212 	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
213 	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
214 	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
215 	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
216 	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
217 	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
218 	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
219 	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
220 	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
221 	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
222 	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
223 	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
224 	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
225 	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
226 	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
227 	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
228 	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
229 	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
230 	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
231 	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
232 	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
233 	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
234 	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
235 	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
236 	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
237 	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
238 	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
239 	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
240 	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
241 	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
242 	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
243 	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
244 	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
245 	{ 0x2013, 0x2d, 0x00 },
246 	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
247 	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
248 	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
249 	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
250 	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
251 	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
252 	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
253 	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
254 	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
255 	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
256 	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
257 	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
258 	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
259 	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
260 	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
261 	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
262 	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
263 	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
264 	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
265 	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
266 	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
267 	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
268 	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
269 	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
270 	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
271 	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
272 	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
273 	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
274 	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
275 	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
276 	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
277 	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
278 	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
279 	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
280 	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
281 	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
282 	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
283 	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
284 	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
285 	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
286 	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
287 	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
288 	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
289 	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
290 	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
291 	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
292 	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
293 	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
294 	{ 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 },
295 	{ 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 },
296 };
297 
298 static uint8_t
vga_get_cp437(term_char_t c)299 vga_get_cp437(term_char_t c)
300 {
301 	int min, mid, max;
302 
303 	min = 0;
304 	max = nitems(cp437table) - 1;
305 
306 	if (c < cp437table[0].unicode_base ||
307 	    c > cp437table[max].unicode_base + cp437table[max].length)
308 		return '?';
309 
310 	while (max >= min) {
311 		mid = (min + max) / 2;
312 		if (c < cp437table[mid].unicode_base)
313 			max = mid - 1;
314 		else if (c > cp437table[mid].unicode_base +
315 		    cp437table[mid].length)
316 			min = mid + 1;
317 		else
318 			return (c - cp437table[mid].unicode_base +
319 			    cp437table[mid].cp437_base);
320 	}
321 
322 	return '?';
323 }
324 
325 static void
vga_blank(struct vt_device * vd,term_color_t color)326 vga_blank(struct vt_device *vd, term_color_t color)
327 {
328 	struct vga_softc *sc = vd->vd_softc;
329 	u_int ofs;
330 
331 	vga_setfg(vd, color);
332 	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
333 		MEM_WRITE1(sc, ofs, 0xff);
334 }
335 
336 static inline void
vga_bitblt_put(struct vt_device * vd,u_long dst,term_color_t color,uint8_t v)337 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
338     uint8_t v)
339 {
340 	struct vga_softc *sc = vd->vd_softc;
341 
342 	/* Skip empty writes, in order to avoid palette changes. */
343 	if (v != 0x00) {
344 		vga_setfg(vd, color);
345 		/*
346 		 * When this MEM_READ1() gets disabled, all sorts of
347 		 * artifacts occur.  This is because this read loads the
348 		 * set of 8 pixels that are about to be changed.  There
349 		 * is one scenario where we can avoid the read, namely
350 		 * if all pixels are about to be overwritten anyway.
351 		 */
352 		if (v != 0xff) {
353 			MEM_READ1(sc, dst);
354 
355 			/* The bg color was trashed by the reads. */
356 			sc->vga_curbg = 0xff;
357 		}
358 		MEM_WRITE1(sc, dst, v);
359 	}
360 }
361 
362 static void
vga_setpixel(struct vt_device * vd,int x,int y,term_color_t color)363 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
364 {
365 
366 	if (vd->vd_flags & VDF_TEXTMODE)
367 		return;
368 
369 	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
370 	    0x80 >> (x % 8));
371 }
372 
373 static void
vga_drawrect(struct vt_device * vd,int x1,int y1,int x2,int y2,int fill,term_color_t color)374 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
375     term_color_t color)
376 {
377 	int x, y;
378 
379 	if (vd->vd_flags & VDF_TEXTMODE)
380 		return;
381 
382 	for (y = y1; y <= y2; y++) {
383 		if (fill || (y == y1) || (y == y2)) {
384 			for (x = x1; x <= x2; x++)
385 				vga_setpixel(vd, x, y, color);
386 		} else {
387 			vga_setpixel(vd, x1, y, color);
388 			vga_setpixel(vd, x2, y, color);
389 		}
390 	}
391 }
392 
393 static void
vga_compute_shifted_pattern(const uint8_t * src,unsigned int bytes,unsigned int src_x,unsigned int x_count,unsigned int dst_x,uint8_t * pattern,uint8_t * mask)394 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
395     unsigned int src_x, unsigned int x_count, unsigned int dst_x,
396     uint8_t *pattern, uint8_t *mask)
397 {
398 	unsigned int n;
399 
400 	n = src_x / 8;
401 
402 	/*
403 	 * This mask has bits set, where a pixel (ether 0 or 1)
404 	 * comes from the source bitmap.
405 	 */
406 	if (mask != NULL) {
407 		*mask = (0xff
408 		    >> (8 - x_count))
409 		    << (8 - x_count - dst_x);
410 	}
411 
412 	if (n == (src_x + x_count - 1) / 8) {
413 		/* All the pixels we want are in the same byte. */
414 		*pattern = src[n];
415 		if (dst_x >= src_x)
416 			*pattern >>= (dst_x - src_x % 8);
417 		else
418 			*pattern <<= (src_x % 8 - dst_x);
419 	} else {
420 		/* The pixels we want are split into two bytes. */
421 		if (dst_x >= src_x % 8) {
422 			*pattern =
423 			    src[n] << (8 - dst_x - src_x % 8) |
424 			    src[n + 1] >> (dst_x - src_x % 8);
425 		} else {
426 			*pattern =
427 			    src[n] << (src_x % 8 - dst_x) |
428 			    src[n + 1] >> (8 - src_x % 8 - dst_x);
429 		}
430 	}
431 }
432 
433 static void
vga_copy_bitmap_portion(uint8_t * pattern_2colors,uint8_t * pattern_ncolors,const uint8_t * src,const uint8_t * src_mask,unsigned int src_width,unsigned int src_x,unsigned int dst_x,unsigned int x_count,unsigned int src_y,unsigned int dst_y,unsigned int y_count,term_color_t fg,term_color_t bg,int overwrite)434 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
435     const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
436     unsigned int src_x, unsigned int dst_x, unsigned int x_count,
437     unsigned int src_y, unsigned int dst_y, unsigned int y_count,
438     term_color_t fg, term_color_t bg, int overwrite)
439 {
440 	unsigned int i, bytes;
441 	uint8_t pattern, relevant_bits, mask;
442 
443 	bytes = (src_width + 7) / 8;
444 
445 	for (i = 0; i < y_count; ++i) {
446 		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
447 		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
448 
449 		if (src_mask == NULL) {
450 			/*
451 			 * No src mask. Consider that all wanted bits
452 			 * from the source are "authoritative".
453 			 */
454 			mask = relevant_bits;
455 		} else {
456 			/*
457 			 * There's an src mask. We shift it the same way
458 			 * we shifted the source pattern.
459 			 */
460 			vga_compute_shifted_pattern(
461 			    src_mask + (src_y + i) * bytes,
462 			    bytes, src_x, x_count, dst_x,
463 			    &mask, NULL);
464 
465 			/* Now, only keep the wanted bits among them. */
466 			mask &= relevant_bits;
467 		}
468 
469 		/*
470 		 * Clear bits from the pattern which must be
471 		 * transparent, according to the source mask.
472 		 */
473 		pattern &= mask;
474 
475 		/* Set the bits in the 2-colors array. */
476 		if (overwrite)
477 			pattern_2colors[dst_y + i] &= ~mask;
478 		pattern_2colors[dst_y + i] |= pattern;
479 
480 		if (pattern_ncolors == NULL)
481 			continue;
482 
483 		/*
484 		 * Set the same bits in the n-colors array. This one
485 		 * supports transparency, when a given bit is cleared in
486 		 * all colors.
487 		 */
488 		if (overwrite) {
489 			/*
490 			 * Ensure that the pixels used by this bitmap are
491 			 * cleared in other colors.
492 			 */
493 			for (int j = 0; j < 16; ++j)
494 				pattern_ncolors[(dst_y + i) * 16 + j] &=
495 				    ~mask;
496 		}
497 		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
498 		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
499 	}
500 }
501 
502 static void
vga_bitblt_pixels_block_2colors(struct vt_device * vd,const uint8_t * masks,term_color_t fg,term_color_t bg,unsigned int x,unsigned int y,unsigned int height)503 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
504     term_color_t fg, term_color_t bg,
505     unsigned int x, unsigned int y, unsigned int height)
506 {
507 	unsigned int i, offset;
508 	struct vga_softc *sc;
509 
510 	/*
511 	 * The great advantage of Write Mode 3 is that we just need
512 	 * to load the foreground in the Set/Reset register, load the
513 	 * background color in the latches register (this is done
514 	 * through a write in offscreen memory followed by a read of
515 	 * that data), then write the pattern to video memory. This
516 	 * pattern indicates if the pixel should use the foreground
517 	 * color (bit set) or the background color (bit cleared).
518 	 */
519 
520 	vga_setbg(vd, bg);
521 	vga_setfg(vd, fg);
522 
523 	sc = vd->vd_softc;
524 	offset = (VT_VGA_WIDTH * y + x) / 8;
525 
526 	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
527 		MEM_WRITE1(sc, offset, masks[i]);
528 	}
529 }
530 
531 static void
vga_bitblt_pixels_block_ncolors(struct vt_device * vd,const uint8_t * masks,unsigned int x,unsigned int y,unsigned int height)532 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
533     unsigned int x, unsigned int y, unsigned int height)
534 {
535 	unsigned int i, j, plane, color, offset;
536 	struct vga_softc *sc;
537 	uint8_t mask, planes[height * 4];
538 
539 	sc = vd->vd_softc;
540 
541 	memset(planes, 0, sizeof(planes));
542 
543 	/*
544          * To write a group of pixels using 3 or more colors, we select
545          * Write Mode 0 and write one byte to each plane separately.
546 	 */
547 
548 	/*
549 	 * We first compute each byte: each plane contains one bit of the
550 	 * color code for each of the 8 pixels.
551 	 *
552 	 * For example, if the 8 pixels are like this:
553 	 *     GBBBBBBY
554 	 * where:
555 	 *     G (gray)   = 0b0111
556 	 *     B (black)  = 0b0000
557 	 *     Y (yellow) = 0b0011
558 	 *
559 	 * The corresponding for bytes are:
560 	 *             GBBBBBBY
561 	 *    Plane 0: 10000001 = 0x81
562 	 *    Plane 1: 10000001 = 0x81
563 	 *    Plane 2: 10000000 = 0x80
564 	 *    Plane 3: 00000000 = 0x00
565 	 *             |  |   |
566 	 *             |  |   +-> 0b0011 (Y)
567 	 *             |  +-----> 0b0000 (B)
568 	 *             +--------> 0b0111 (G)
569 	 */
570 
571 	for (i = 0; i < height; ++i) {
572 		for (color = 0; color < 16; ++color) {
573 			mask = masks[i * 16 + color];
574 			if (mask == 0x00)
575 				continue;
576 
577 			for (j = 0; j < 8; ++j) {
578 				if (!((mask >> (7 - j)) & 0x1))
579 					continue;
580 
581 				/* The pixel "j" uses color "color". */
582 				for (plane = 0; plane < 4; ++plane)
583 					planes[i * 4 + plane] |=
584 					    ((cons_to_vga_colors[color] >>
585 					    plane) & 0x1) << (7 - j);
586 			}
587 		}
588 	}
589 
590 	/*
591 	 * The bytes are ready: we now switch to Write Mode 0 and write
592 	 * all bytes, one plane at a time.
593 	 */
594 	vga_setwmode(vd, 0);
595 
596 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
597 	for (plane = 0; plane < 4; ++plane) {
598 		/* Select plane. */
599 		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plane);
600 
601 		/* Write all bytes for this plane, from Y to Y+height. */
602 		for (i = 0; i < height; ++i) {
603 			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
604 			MEM_WRITE1(sc, offset, planes[i * 4 + plane]);
605 		}
606 	}
607 }
608 
609 static void
vga_bitblt_one_text_pixels_block(struct vt_device * vd,const struct vt_window * vw,unsigned int x,unsigned int y)610 vga_bitblt_one_text_pixels_block(struct vt_device *vd,
611     const struct vt_window *vw, unsigned int x, unsigned int y)
612 {
613 	const struct vt_buf *vb;
614 	const struct vt_font *vf;
615 	unsigned int i, col, row, src_x, x_count;
616 	unsigned int used_colors_list[16], used_colors;
617 	uint8_t pattern_2colors[vw->vw_font->vf_height];
618 	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
619 	term_char_t c;
620 	term_color_t fg, bg;
621 	const uint8_t *src;
622 
623 	vb = &vw->vw_buf;
624 	vf = vw->vw_font;
625 
626 	/*
627 	 * The current pixels block.
628 	 *
629 	 * We fill it with portions of characters, because both "grids"
630 	 * may not match.
631 	 *
632 	 * i is the index in this pixels block.
633 	 */
634 
635 	i = x;
636 	used_colors = 0;
637 	memset(used_colors_list, 0, sizeof(used_colors_list));
638 	memset(pattern_2colors, 0, sizeof(pattern_2colors));
639 	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
640 
641 	if (i < vw->vw_draw_area.tr_begin.tp_col) {
642 		/*
643 		 * i is in the margin used to center the text area on
644 		 * the screen.
645 		 */
646 
647 		i = vw->vw_draw_area.tr_begin.tp_col;
648 	}
649 
650 	while (i < x + VT_VGA_PIXELS_BLOCK &&
651 	    i < vw->vw_draw_area.tr_end.tp_col) {
652 		/*
653 		 * Find which character is drawn on this pixel in the
654 		 * pixels block.
655 		 *
656 		 * While here, record what colors it uses.
657 		 */
658 
659 		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
660 		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
661 
662 		c = VTBUF_GET_FIELD(vb, row, col);
663 		src = vtfont_lookup(vf, c);
664 
665 		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
666 		if ((used_colors_list[fg] & 0x1) != 0x1)
667 			used_colors++;
668 		if ((used_colors_list[bg] & 0x2) != 0x2)
669 			used_colors++;
670 		used_colors_list[fg] |= 0x1;
671 		used_colors_list[bg] |= 0x2;
672 
673 		/*
674 		 * Compute the portion of the character we want to draw,
675 		 * because the pixels block may start in the middle of a
676 		 * character.
677 		 *
678 		 * The first pixel to draw in the character is
679 		 *     the current position -
680 		 *     the start position of the character
681 		 *
682 		 * The last pixel to draw is either
683 		 *     - the last pixel of the character, or
684 		 *     - the pixel of the character matching the end of
685 		 *       the pixels block
686 		 * whichever comes first. This position is then
687 		 * changed to be relative to the start position of the
688 		 * character.
689 		 */
690 
691 		src_x = i -
692 		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
693 		x_count = min(min(
694 		    (col + 1) * vf->vf_width +
695 		    vw->vw_draw_area.tr_begin.tp_col,
696 		    x + VT_VGA_PIXELS_BLOCK),
697 		    vw->vw_draw_area.tr_end.tp_col);
698 		x_count -= col * vf->vf_width +
699 		    vw->vw_draw_area.tr_begin.tp_col;
700 		x_count -= src_x;
701 
702 		/* Copy a portion of the character. */
703 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
704 		    src, NULL, vf->vf_width,
705 		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
706 		    0, 0, vf->vf_height, fg, bg, 0);
707 
708 		/* We move to the next portion. */
709 		i += x_count;
710 	}
711 
712 #ifndef SC_NO_CUTPASTE
713 	/*
714 	 * Copy the mouse pointer bitmap if it's over the current pixels
715 	 * block.
716 	 *
717 	 * We use the saved cursor position (saved in vt_flush()), because
718 	 * the current position could be different than the one used
719 	 * to mark the area dirty.
720 	 */
721 	term_rect_t drawn_area;
722 
723 	drawn_area.tr_begin.tp_col = x;
724 	drawn_area.tr_begin.tp_row = y;
725 	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
726 	drawn_area.tr_end.tp_row = y + vf->vf_height;
727 	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
728 		struct vt_mouse_cursor *cursor;
729 		unsigned int mx, my;
730 		unsigned int dst_x, src_y, dst_y, y_count;
731 
732 		cursor = vd->vd_mcursor;
733 		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
734 		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
735 
736 		/* Compute the portion of the cursor we want to copy. */
737 		src_x = x > mx ? x - mx : 0;
738 		dst_x = mx > x ? mx - x : 0;
739 		x_count = min(min(min(
740 		    cursor->width - src_x,
741 		    x + VT_VGA_PIXELS_BLOCK - mx),
742 		    vw->vw_draw_area.tr_end.tp_col - mx),
743 		    VT_VGA_PIXELS_BLOCK);
744 
745 		/*
746 		 * The cursor isn't aligned on the Y-axis with
747 		 * characters, so we need to compute the vertical
748 		 * start/count.
749 		 */
750 		src_y = y > my ? y - my : 0;
751 		dst_y = my > y ? my - y : 0;
752 		y_count = min(
753 		    min(cursor->height - src_y, y + vf->vf_height - my),
754 		    vf->vf_height);
755 
756 		/* Copy the cursor portion. */
757 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
758 		    cursor->map, cursor->mask, cursor->width,
759 		    src_x, dst_x, x_count, src_y, dst_y, y_count,
760 		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
761 
762 		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
763 			used_colors++;
764 		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
765 			used_colors++;
766 	}
767 #endif
768 
769 	/*
770 	 * The pixels block is completed, we can now draw it on the
771 	 * screen.
772 	 */
773 	if (used_colors == 2)
774 		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
775 		    x, y, vf->vf_height);
776 	else
777 		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
778 		    x, y, vf->vf_height);
779 }
780 
781 static void
vga_bitblt_text_gfxmode(struct vt_device * vd,const struct vt_window * vw,const term_rect_t * area)782 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
783     const term_rect_t *area)
784 {
785 	const struct vt_font *vf;
786 	unsigned int col, row;
787 	unsigned int x1, y1, x2, y2, x, y;
788 
789 	vf = vw->vw_font;
790 
791 	/*
792 	 * Compute the top-left pixel position aligned with the video
793 	 * adapter pixels block size.
794 	 *
795 	 * This is calculated from the top-left column of te dirty area:
796 	 *
797 	 *     1. Compute the top-left pixel of the character:
798 	 *        col * font width + x offset
799 	 *
800 	 *        NOTE: x offset is used to center the text area on the
801 	 *        screen. It's expressed in pixels, not in characters
802 	 *        col/row!
803 	 *
804 	 *     2. Find the pixel further on the left marking the start of
805 	 *        an aligned pixels block (eg. chunk of 8 pixels):
806 	 *        character's x / blocksize * blocksize
807 	 *
808 	 *        The division, being made on integers, achieves the
809 	 *        alignment.
810 	 *
811 	 * For the Y-axis, we need to compute the character's y
812 	 * coordinate, but we don't need to align it.
813 	 */
814 
815 	col = area->tr_begin.tp_col;
816 	row = area->tr_begin.tp_row;
817 	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
818 	     / VT_VGA_PIXELS_BLOCK)
819 	    * VT_VGA_PIXELS_BLOCK;
820 	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
821 
822 	/*
823 	 * Compute the bottom right pixel position, again, aligned with
824 	 * the pixels block size.
825 	 *
826 	 * The same rules apply, we just add 1 to base the computation
827 	 * on the "right border" of the dirty area.
828 	 */
829 
830 	col = area->tr_end.tp_col;
831 	row = area->tr_end.tp_row;
832 	x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col,
833 	    VT_VGA_PIXELS_BLOCK)
834 	    * VT_VGA_PIXELS_BLOCK;
835 	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
836 
837 	/* Clip the area to the screen size. */
838 	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
839 	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
840 
841 	/*
842 	 * Now, we take care of N pixels line at a time (the first for
843 	 * loop, N = font height), and for these lines, draw one pixels
844 	 * block at a time (the second for loop), not a character at a
845 	 * time.
846 	 *
847 	 * Therefore, on the X-axis, characters my be drawn partially if
848 	 * they are not aligned on 8-pixels boundary.
849 	 *
850 	 * However, the operation is repeated for the full height of the
851 	 * font before moving to the next character, because it allows
852 	 * to keep the color settings and write mode, before perhaps
853 	 * changing them with the next one.
854 	 */
855 
856 	for (y = y1; y < y2; y += vf->vf_height) {
857 		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
858 			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
859 		}
860 	}
861 }
862 
863 static void
vga_bitblt_text_txtmode(struct vt_device * vd,const struct vt_window * vw,const term_rect_t * area)864 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
865     const term_rect_t *area)
866 {
867 	struct vga_softc *sc;
868 	const struct vt_buf *vb;
869 	unsigned int col, row;
870 	term_char_t c;
871 	term_color_t fg, bg;
872 	uint8_t ch, attr;
873 	size_t z;
874 
875 	sc = vd->vd_softc;
876 	vb = &vw->vw_buf;
877 
878 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
879 		for (col = area->tr_begin.tp_col;
880 		    col < area->tr_end.tp_col;
881 		    ++col) {
882 			/*
883 			 * Get next character and its associated fg/bg
884 			 * colors.
885 			 */
886 			c = VTBUF_GET_FIELD(vb, row, col);
887 			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
888 			    &fg, &bg);
889 
890 			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
891 			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
892 			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
893 				continue;
894 			if (vd->vd_drawn && (vd->vd_drawn[z] == c) &&
895 			    vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) &&
896 			    vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg))
897 				continue;
898 
899 			/*
900 			 * Convert character to CP437, which is the
901 			 * character set used by the VGA hardware by
902 			 * default.
903 			 */
904 			ch = vga_get_cp437(TCHAR_CHARACTER(c));
905 
906 			/* Convert colors to VGA attributes. */
907 			attr =
908 			    cons_to_vga_colors[bg] << 4 |
909 			    cons_to_vga_colors[fg];
910 
911 			MEM_WRITE2(sc, (row * 80 + col) * 2 + 0,
912 			    ch + ((uint16_t)(attr) << 8));
913 
914 			if (vd->vd_drawn)
915 				vd->vd_drawn[z] = c;
916 			if (vd->vd_drawnfg)
917 				vd->vd_drawnfg[z] = fg;
918 			if (vd->vd_drawnbg)
919 				vd->vd_drawnbg[z] = bg;
920 		}
921 	}
922 }
923 
924 static void
vga_bitblt_text(struct vt_device * vd,const struct vt_window * vw,const term_rect_t * area)925 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
926     const term_rect_t *area)
927 {
928 
929 	if (!(vd->vd_flags & VDF_TEXTMODE)) {
930 		vga_bitblt_text_gfxmode(vd, vw, area);
931 	} else {
932 		vga_bitblt_text_txtmode(vd, vw, area);
933 	}
934 }
935 
936 void
vga_invalidate_text(struct vt_device * vd,const term_rect_t * area)937 vga_invalidate_text(struct vt_device *vd, const term_rect_t *area)
938 {
939 	unsigned int col, row;
940 	size_t z;
941 
942 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
943 		for (col = area->tr_begin.tp_col;
944 		    col < area->tr_end.tp_col;
945 		    ++col) {
946 			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
947 			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
948 			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
949 				continue;
950 			if (vd->vd_drawn)
951 				vd->vd_drawn[z] = 0;
952 			if (vd->vd_drawnfg)
953 				vd->vd_drawnfg[z] = 0;
954 			if (vd->vd_drawnbg)
955 				vd->vd_drawnbg[z] = 0;
956 		}
957 	}
958 }
959 
960 static void
vga_bitblt_bitmap(struct vt_device * vd,const struct vt_window * vw,const uint8_t * pattern,const uint8_t * mask,unsigned int width,unsigned int height,unsigned int x,unsigned int y,term_color_t fg,term_color_t bg)961 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
962     const uint8_t *pattern, const uint8_t *mask,
963     unsigned int width, unsigned int height,
964     unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
965 {
966 	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
967 	uint8_t pattern_2colors;
968 
969 	/* Align coordinates with the 8-pxels grid. */
970 	x1 = rounddown(x, VT_VGA_PIXELS_BLOCK);
971 	y1 = y;
972 
973 	x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK);
974 	y2 = y + height;
975 	x2 = min(x2, vd->vd_width - 1);
976 	y2 = min(y2, vd->vd_height - 1);
977 
978 	for (j = y1; j < y2; ++j) {
979 		src_x = 0;
980 		dst_x = x - x1;
981 		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
982 
983 		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
984 			pattern_2colors = 0;
985 
986 			vga_copy_bitmap_portion(
987 			    &pattern_2colors, NULL,
988 			    pattern, mask, width,
989 			    src_x, dst_x, x_count,
990 			    j - y1, 0, 1, fg, bg, 0);
991 
992 			vga_bitblt_pixels_block_2colors(vd,
993 			    &pattern_2colors, fg, bg,
994 			    i, j, 1);
995 
996 			src_x += x_count;
997 			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
998 			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
999 		}
1000 	}
1001 }
1002 
1003 static int
vga_bitblt_argb(struct vt_device * vd,const struct vt_window * vw,const uint8_t * argb,unsigned int width,unsigned int height,unsigned int x,unsigned int y)1004 vga_bitblt_argb(struct vt_device *vd, const struct vt_window *vw,
1005     const uint8_t *argb,
1006     unsigned int width, unsigned int height,
1007     unsigned int x, unsigned int y)
1008 {
1009 
1010 	return (EOPNOTSUPP);
1011 }
1012 
1013 static void
vga_initialize_graphics(struct vt_device * vd)1014 vga_initialize_graphics(struct vt_device *vd)
1015 {
1016 	struct vga_softc *sc = vd->vd_softc;
1017 
1018 	/* Clock select. */
1019 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
1020 	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
1021 	/* Set sequencer clocking and memory mode. */
1022 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
1023 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
1024 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
1025 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
1026 
1027 	/* Set the graphics controller in graphics mode. */
1028 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
1029 	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
1030 	/* Program the CRT controller. */
1031 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
1032 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
1033 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
1034 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
1035 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
1036 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
1037 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
1038 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
1039 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
1040 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
1041 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
1042 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
1043 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
1044 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
1045 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
1046 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
1047 	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
1048 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
1049 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
1050 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
1051 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
1052 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1053 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
1054 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
1055 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
1056 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
1057 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
1058 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
1059 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
1060 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1061 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1062 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1063 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1064 	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1065 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1066 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1067 
1068 	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1069 
1070 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1071 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1072 	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1073 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1074 	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1075 
1076 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1077 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1078 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1079 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1080 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1081 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1082 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1083 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1084 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1085 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1086 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1087 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1088 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1089 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1090 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1091 	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1092 }
1093 
1094 static int
vga_initialize(struct vt_device * vd,int textmode)1095 vga_initialize(struct vt_device *vd, int textmode)
1096 {
1097 	struct vga_softc *sc = vd->vd_softc;
1098 	uint8_t x;
1099 	int timeout;
1100 
1101 	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1102 	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1103 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1104 
1105 	/* Unprotect CRTC registers 0-7. */
1106 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1107 	x = REG_READ1(sc, VGA_CRTC_DATA);
1108 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1109 
1110 	/*
1111 	 * Wait for the vertical retrace.
1112 	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1113 	 * the side-effect of clearing the internal flip-flip of the attribute
1114 	 * controller's write register. This means that because this code is
1115 	 * here, we know for sure that the first write to the attribute
1116 	 * controller will be a write to the address register. Removing this
1117 	 * code therefore also removes that guarantee and appropriate measures
1118 	 * need to be taken.
1119 	 */
1120 	timeout = 10000;
1121 	do {
1122 		DELAY(10);
1123 		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1124 		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1125 	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0);
1126 	if (timeout == 0) {
1127 		printf("Timeout initializing vt_vga\n");
1128 		return (ENXIO);
1129 	}
1130 
1131 	/* Now, disable the sync. signals. */
1132 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1133 	x = REG_READ1(sc, VGA_CRTC_DATA);
1134 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1135 
1136 	/* Asynchronous sequencer reset. */
1137 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1138 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1139 
1140 	if (!textmode)
1141 		vga_initialize_graphics(vd);
1142 
1143 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1144 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1145 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1146 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1147 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1148 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1149 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1150 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1151 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1152 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1153 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1154 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1155 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1156 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1157 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1158 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1159 
1160 	if (textmode) {
1161 		/* Set the attribute controller to blink disable. */
1162 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1163 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1164 	} else {
1165 		/* Set the attribute controller in graphics mode. */
1166 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1167 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1168 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1169 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1170 	}
1171 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1172 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1173 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1174 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1175 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1176 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1177 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1178 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1179 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1180 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1181 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1182 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1183 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1184 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1185 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1186 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1187 
1188 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1189 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1190 	    VGA_AC_PAL_SB);
1191 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1192 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1193 	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1194 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1195 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1196 	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1197 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1198 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1199 	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1200 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1201 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1202 	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1203 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1204 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1205 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1206 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1207 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1208 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1209 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1210 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1211 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1212 
1213 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1214 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1215 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1216 	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1217 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1218 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1219 
1220 	if (!textmode) {
1221 		u_int ofs;
1222 
1223 		/*
1224 		 * Done.  Clear the frame buffer.  All bit planes are
1225 		 * enabled, so a single-paged loop should clear all
1226 		 * planes.
1227 		 */
1228 		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1229 			MEM_WRITE1(sc, ofs, 0);
1230 		}
1231 	}
1232 
1233 	/* Re-enable the sequencer. */
1234 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1235 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1236 	/* Re-enable the sync signals. */
1237 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1238 	x = REG_READ1(sc, VGA_CRTC_DATA);
1239 	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1240 
1241 	if (!textmode) {
1242 		/* Switch to write mode 3, because we'll mainly do bitblt. */
1243 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1244 		REG_WRITE1(sc, VGA_GC_DATA, 3);
1245 		sc->vga_wmode = 3;
1246 
1247 		/*
1248 		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1249 		 * use Write Mode 0 to write a group of 8 pixels using
1250 		 * 3 or more colors. In this case, we want to disable
1251 		 * Set/Reset: set Enable Set/Reset to 0.
1252 		 */
1253 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1254 		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1255 
1256 		/*
1257 		 * Clear the colors we think are loaded into Set/Reset or
1258 		 * the latches.
1259 		 */
1260 		sc->vga_curfg = sc->vga_curbg = 0xff;
1261 	}
1262 
1263 	return (0);
1264 }
1265 
1266 static bool
vga_acpi_disabled(void)1267 vga_acpi_disabled(void)
1268 {
1269 #if defined(__amd64__) || defined(__i386__)
1270 	uint16_t flags;
1271 	int ignore;
1272 
1273 	/*
1274 	 * Ignore the flag on real hardware: there's a lot of buggy firmware
1275 	 * that will wrongly set it.
1276 	 */
1277 	ignore = (vm_guest == VM_GUEST_NO);
1278 	TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore);
1279 	if (ignore || !acpi_get_fadt_bootflags(&flags))
1280  		return (false);
1281 	return ((flags & ACPI_FADT_NO_VGA) != 0);
1282 #else
1283 	return (false);
1284 #endif
1285 }
1286 
1287 static int
vga_probe(struct vt_device * vd)1288 vga_probe(struct vt_device *vd)
1289 {
1290 
1291 	return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL);
1292 }
1293 
1294 static int
vga_init(struct vt_device * vd)1295 vga_init(struct vt_device *vd)
1296 {
1297 	struct vga_softc *sc;
1298 	int textmode;
1299 
1300 	if (vd->vd_softc == NULL)
1301 		vd->vd_softc = (void *)&vga_conssoftc;
1302 	sc = vd->vd_softc;
1303 
1304 	if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL)
1305 		vga_pci_repost(vd->vd_video_dev);
1306 
1307 #if defined(__amd64__) || defined(__i386__)
1308 	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1309 	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1310 #else
1311 # error "Architecture not yet supported!"
1312 #endif
1313 
1314 	bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0,
1315 	    &sc->vga_reg_handle);
1316 
1317 	/*
1318 	 * If "hw.vga.textmode" is not set and we're running on hypervisor,
1319 	 * we use text mode by default, this is because when we're on
1320 	 * hypervisor, vt(4) is usually much slower in graphics mode than
1321 	 * in text mode, especially when we're on Hyper-V.
1322 	 */
1323 	textmode = vm_guest != VM_GUEST_NO;
1324 	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1325 	if (textmode) {
1326 		vd->vd_flags |= VDF_TEXTMODE;
1327 		vd->vd_width = 80;
1328 		vd->vd_height = 25;
1329 		bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0,
1330 		    &sc->vga_fb_handle);
1331 	} else {
1332 		vd->vd_width = VT_VGA_WIDTH;
1333 		vd->vd_height = VT_VGA_HEIGHT;
1334 		bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0,
1335 		    &sc->vga_fb_handle);
1336 	}
1337 	if (vga_initialize(vd, textmode) != 0)
1338 		return (CN_DEAD);
1339 	sc->vga_enabled = true;
1340 
1341 	return (CN_INTERNAL);
1342 }
1343 
1344 static void
vga_postswitch(struct vt_device * vd)1345 vga_postswitch(struct vt_device *vd)
1346 {
1347 
1348 	/* Reinit VGA mode, to restore view after app which change mode. */
1349 	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1350 	/* Ask vt(9) to update chars on visible area. */
1351 	vd->vd_flags |= VDF_INVALID;
1352 }
1353 
1354 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1355 static void
vtvga_identify(driver_t * driver,device_t parent)1356 vtvga_identify(driver_t *driver, device_t parent)
1357 {
1358 
1359 	if (!vga_conssoftc.vga_enabled)
1360 		return;
1361 
1362 	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1363 		panic("Unable to attach vt_vga console");
1364 }
1365 
1366 static int
vtvga_probe(device_t dev)1367 vtvga_probe(device_t dev)
1368 {
1369 
1370 	device_set_desc(dev, "VT VGA driver");
1371 
1372 	return (BUS_PROBE_NOWILDCARD);
1373 }
1374 
1375 static int
vtvga_attach(device_t dev)1376 vtvga_attach(device_t dev)
1377 {
1378 	struct resource *pseudo_phys_res;
1379 	int res_id;
1380 
1381 	res_id = 0;
1382 	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1383 	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1384 	    VGA_MEM_SIZE, RF_ACTIVE);
1385 	if (pseudo_phys_res == NULL)
1386 		panic("Unable to reserve vt_vga memory");
1387 	return (0);
1388 }
1389 
1390 /*-------------------- Private Device Attachment Data  -----------------------*/
1391 static device_method_t vtvga_methods[] = {
1392 	/* Device interface */
1393 	DEVMETHOD(device_identify,	vtvga_identify),
1394 	DEVMETHOD(device_probe,         vtvga_probe),
1395 	DEVMETHOD(device_attach,        vtvga_attach),
1396 
1397 	DEVMETHOD_END
1398 };
1399 
1400 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1401 
1402 DRIVER_MODULE(vtvga, nexus, vtvga_driver, NULL, NULL);
1403