1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
39 // block.
40 // * Landingpad instructions must be in a function with a personality function.
41 // * All other things that are tested by asserts spread about the code...
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/IR/Verifier.h"
46 #include "llvm/ADT/APFloat.h"
47 #include "llvm/ADT/APInt.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/MapVector.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringMap.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Twine.h"
59 #include "llvm/BinaryFormat/Dwarf.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallingConv.h"
65 #include "llvm/IR/Comdat.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfo.h"
71 #include "llvm/IR/DebugInfoMetadata.h"
72 #include "llvm/IR/DebugLoc.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/GCStrategy.h"
77 #include "llvm/IR/GlobalAlias.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstVisitor.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/IntrinsicsAArch64.h"
88 #include "llvm/IR/IntrinsicsARM.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <memory>
112 #include <optional>
113 #include <string>
114 #include <utility>
115
116 using namespace llvm;
117
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121 "scopes are not dominating"));
122
123 namespace llvm {
124
125 struct VerifierSupport {
126 raw_ostream *OS;
127 const Module &M;
128 ModuleSlotTracker MST;
129 Triple TT;
130 const DataLayout &DL;
131 LLVMContext &Context;
132
133 /// Track the brokenness of the module while recursively visiting.
134 bool Broken = false;
135 /// Broken debug info can be "recovered" from by stripping the debug info.
136 bool BrokenDebugInfo = false;
137 /// Whether to treat broken debug info as an error.
138 bool TreatBrokenDebugInfoAsError = true;
139
VerifierSupportllvm::VerifierSupport140 explicit VerifierSupport(raw_ostream *OS, const Module &M)
141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142 Context(M.getContext()) {}
143
144 private:
Writellvm::VerifierSupport145 void Write(const Module *M) {
146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147 }
148
Writellvm::VerifierSupport149 void Write(const Value *V) {
150 if (V)
151 Write(*V);
152 }
153
Writellvm::VerifierSupport154 void Write(const Value &V) {
155 if (isa<Instruction>(V)) {
156 V.print(*OS, MST);
157 *OS << '\n';
158 } else {
159 V.printAsOperand(*OS, true, MST);
160 *OS << '\n';
161 }
162 }
163
Writellvm::VerifierSupport164 void Write(const Metadata *MD) {
165 if (!MD)
166 return;
167 MD->print(*OS, MST, &M);
168 *OS << '\n';
169 }
170
Writellvm::VerifierSupport171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172 Write(MD.get());
173 }
174
Writellvm::VerifierSupport175 void Write(const NamedMDNode *NMD) {
176 if (!NMD)
177 return;
178 NMD->print(*OS, MST);
179 *OS << '\n';
180 }
181
Writellvm::VerifierSupport182 void Write(Type *T) {
183 if (!T)
184 return;
185 *OS << ' ' << *T;
186 }
187
Writellvm::VerifierSupport188 void Write(const Comdat *C) {
189 if (!C)
190 return;
191 *OS << *C;
192 }
193
Writellvm::VerifierSupport194 void Write(const APInt *AI) {
195 if (!AI)
196 return;
197 *OS << *AI << '\n';
198 }
199
Writellvm::VerifierSupport200 void Write(const unsigned i) { *OS << i << '\n'; }
201
202 // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport203 void Write(const Attribute *A) {
204 if (!A)
205 return;
206 *OS << A->getAsString() << '\n';
207 }
208
209 // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport210 void Write(const AttributeSet *AS) {
211 if (!AS)
212 return;
213 *OS << AS->getAsString() << '\n';
214 }
215
216 // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport217 void Write(const AttributeList *AL) {
218 if (!AL)
219 return;
220 AL->print(*OS);
221 }
222
Writellvm::VerifierSupport223 template <typename T> void Write(ArrayRef<T> Vs) {
224 for (const T &V : Vs)
225 Write(V);
226 }
227
228 template <typename T1, typename... Ts>
WriteTsllvm::VerifierSupport229 void WriteTs(const T1 &V1, const Ts &... Vs) {
230 Write(V1);
231 WriteTs(Vs...);
232 }
233
WriteTsllvm::VerifierSupport234 template <typename... Ts> void WriteTs() {}
235
236 public:
237 /// A check failed, so printout out the condition and the message.
238 ///
239 /// This provides a nice place to put a breakpoint if you want to see why
240 /// something is not correct.
CheckFailedllvm::VerifierSupport241 void CheckFailed(const Twine &Message) {
242 if (OS)
243 *OS << Message << '\n';
244 Broken = true;
245 }
246
247 /// A check failed (with values to print).
248 ///
249 /// This calls the Message-only version so that the above is easier to set a
250 /// breakpoint on.
251 template <typename T1, typename... Ts>
CheckFailedllvm::VerifierSupport252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253 CheckFailed(Message);
254 if (OS)
255 WriteTs(V1, Vs...);
256 }
257
258 /// A debug info check failed.
DebugInfoCheckFailedllvm::VerifierSupport259 void DebugInfoCheckFailed(const Twine &Message) {
260 if (OS)
261 *OS << Message << '\n';
262 Broken |= TreatBrokenDebugInfoAsError;
263 BrokenDebugInfo = true;
264 }
265
266 /// A debug info check failed (with values to print).
267 template <typename T1, typename... Ts>
DebugInfoCheckFailedllvm::VerifierSupport268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269 const Ts &... Vs) {
270 DebugInfoCheckFailed(Message);
271 if (OS)
272 WriteTs(V1, Vs...);
273 }
274 };
275
276 } // namespace llvm
277
278 namespace {
279
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281 friend class InstVisitor<Verifier>;
282
283 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
284 // the alignment size should not exceed 2^15. Since encode(Align)
285 // would plus the shift value by 1, the alignment size should
286 // not exceed 2^14, otherwise it can NOT be properly lowered
287 // in backend.
288 static constexpr unsigned ParamMaxAlignment = 1 << 14;
289 DominatorTree DT;
290
291 /// When verifying a basic block, keep track of all of the
292 /// instructions we have seen so far.
293 ///
294 /// This allows us to do efficient dominance checks for the case when an
295 /// instruction has an operand that is an instruction in the same block.
296 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
297
298 /// Keep track of the metadata nodes that have been checked already.
299 SmallPtrSet<const Metadata *, 32> MDNodes;
300
301 /// Keep track which DISubprogram is attached to which function.
302 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
303
304 /// Track all DICompileUnits visited.
305 SmallPtrSet<const Metadata *, 2> CUVisited;
306
307 /// The result type for a landingpad.
308 Type *LandingPadResultTy;
309
310 /// Whether we've seen a call to @llvm.localescape in this function
311 /// already.
312 bool SawFrameEscape;
313
314 /// Whether the current function has a DISubprogram attached to it.
315 bool HasDebugInfo = false;
316
317 /// The current source language.
318 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
319
320 /// Whether source was present on the first DIFile encountered in each CU.
321 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
322
323 /// Stores the count of how many objects were passed to llvm.localescape for a
324 /// given function and the largest index passed to llvm.localrecover.
325 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
326
327 // Maps catchswitches and cleanuppads that unwind to siblings to the
328 // terminators that indicate the unwind, used to detect cycles therein.
329 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
330
331 /// Cache of constants visited in search of ConstantExprs.
332 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
333
334 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
335 SmallVector<const Function *, 4> DeoptimizeDeclarations;
336
337 /// Cache of attribute lists verified.
338 SmallPtrSet<const void *, 32> AttributeListsVisited;
339
340 // Verify that this GlobalValue is only used in this module.
341 // This map is used to avoid visiting uses twice. We can arrive at a user
342 // twice, if they have multiple operands. In particular for very large
343 // constant expressions, we can arrive at a particular user many times.
344 SmallPtrSet<const Value *, 32> GlobalValueVisited;
345
346 // Keeps track of duplicate function argument debug info.
347 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
348
349 TBAAVerifier TBAAVerifyHelper;
350
351 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
352
353 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
354
355 public:
Verifier(raw_ostream * OS,bool ShouldTreatBrokenDebugInfoAsError,const Module & M)356 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
357 const Module &M)
358 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
359 SawFrameEscape(false), TBAAVerifyHelper(this) {
360 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
361 }
362
hasBrokenDebugInfo() const363 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
364
verify(const Function & F)365 bool verify(const Function &F) {
366 assert(F.getParent() == &M &&
367 "An instance of this class only works with a specific module!");
368
369 // First ensure the function is well-enough formed to compute dominance
370 // information, and directly compute a dominance tree. We don't rely on the
371 // pass manager to provide this as it isolates us from a potentially
372 // out-of-date dominator tree and makes it significantly more complex to run
373 // this code outside of a pass manager.
374 // FIXME: It's really gross that we have to cast away constness here.
375 if (!F.empty())
376 DT.recalculate(const_cast<Function &>(F));
377
378 for (const BasicBlock &BB : F) {
379 if (!BB.empty() && BB.back().isTerminator())
380 continue;
381
382 if (OS) {
383 *OS << "Basic Block in function '" << F.getName()
384 << "' does not have terminator!\n";
385 BB.printAsOperand(*OS, true, MST);
386 *OS << "\n";
387 }
388 return false;
389 }
390
391 Broken = false;
392 // FIXME: We strip const here because the inst visitor strips const.
393 visit(const_cast<Function &>(F));
394 verifySiblingFuncletUnwinds();
395 InstsInThisBlock.clear();
396 DebugFnArgs.clear();
397 LandingPadResultTy = nullptr;
398 SawFrameEscape = false;
399 SiblingFuncletInfo.clear();
400 verifyNoAliasScopeDecl();
401 NoAliasScopeDecls.clear();
402
403 return !Broken;
404 }
405
406 /// Verify the module that this instance of \c Verifier was initialized with.
verify()407 bool verify() {
408 Broken = false;
409
410 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
411 for (const Function &F : M)
412 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
413 DeoptimizeDeclarations.push_back(&F);
414
415 // Now that we've visited every function, verify that we never asked to
416 // recover a frame index that wasn't escaped.
417 verifyFrameRecoverIndices();
418 for (const GlobalVariable &GV : M.globals())
419 visitGlobalVariable(GV);
420
421 for (const GlobalAlias &GA : M.aliases())
422 visitGlobalAlias(GA);
423
424 for (const GlobalIFunc &GI : M.ifuncs())
425 visitGlobalIFunc(GI);
426
427 for (const NamedMDNode &NMD : M.named_metadata())
428 visitNamedMDNode(NMD);
429
430 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
431 visitComdat(SMEC.getValue());
432
433 visitModuleFlags();
434 visitModuleIdents();
435 visitModuleCommandLines();
436
437 verifyCompileUnits();
438
439 verifyDeoptimizeCallingConvs();
440 DISubprogramAttachments.clear();
441 return !Broken;
442 }
443
444 private:
445 /// Whether a metadata node is allowed to be, or contain, a DILocation.
446 enum class AreDebugLocsAllowed { No, Yes };
447
448 // Verification methods...
449 void visitGlobalValue(const GlobalValue &GV);
450 void visitGlobalVariable(const GlobalVariable &GV);
451 void visitGlobalAlias(const GlobalAlias &GA);
452 void visitGlobalIFunc(const GlobalIFunc &GI);
453 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
454 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
455 const GlobalAlias &A, const Constant &C);
456 void visitNamedMDNode(const NamedMDNode &NMD);
457 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
458 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
459 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
460 void visitComdat(const Comdat &C);
461 void visitModuleIdents();
462 void visitModuleCommandLines();
463 void visitModuleFlags();
464 void visitModuleFlag(const MDNode *Op,
465 DenseMap<const MDString *, const MDNode *> &SeenIDs,
466 SmallVectorImpl<const MDNode *> &Requirements);
467 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
468 void visitFunction(const Function &F);
469 void visitBasicBlock(BasicBlock &BB);
470 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
471 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
472 void visitProfMetadata(Instruction &I, MDNode *MD);
473 void visitCallStackMetadata(MDNode *MD);
474 void visitMemProfMetadata(Instruction &I, MDNode *MD);
475 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
476 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
477 void visitAnnotationMetadata(MDNode *Annotation);
478 void visitAliasScopeMetadata(const MDNode *MD);
479 void visitAliasScopeListMetadata(const MDNode *MD);
480 void visitAccessGroupMetadata(const MDNode *MD);
481
482 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
483 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
484 #include "llvm/IR/Metadata.def"
485 void visitDIScope(const DIScope &N);
486 void visitDIVariable(const DIVariable &N);
487 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
488 void visitDITemplateParameter(const DITemplateParameter &N);
489
490 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
491
492 // InstVisitor overrides...
493 using InstVisitor<Verifier>::visit;
494 void visit(Instruction &I);
495
496 void visitTruncInst(TruncInst &I);
497 void visitZExtInst(ZExtInst &I);
498 void visitSExtInst(SExtInst &I);
499 void visitFPTruncInst(FPTruncInst &I);
500 void visitFPExtInst(FPExtInst &I);
501 void visitFPToUIInst(FPToUIInst &I);
502 void visitFPToSIInst(FPToSIInst &I);
503 void visitUIToFPInst(UIToFPInst &I);
504 void visitSIToFPInst(SIToFPInst &I);
505 void visitIntToPtrInst(IntToPtrInst &I);
506 void visitPtrToIntInst(PtrToIntInst &I);
507 void visitBitCastInst(BitCastInst &I);
508 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
509 void visitPHINode(PHINode &PN);
510 void visitCallBase(CallBase &Call);
511 void visitUnaryOperator(UnaryOperator &U);
512 void visitBinaryOperator(BinaryOperator &B);
513 void visitICmpInst(ICmpInst &IC);
514 void visitFCmpInst(FCmpInst &FC);
515 void visitExtractElementInst(ExtractElementInst &EI);
516 void visitInsertElementInst(InsertElementInst &EI);
517 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)518 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
519 void visitCallInst(CallInst &CI);
520 void visitInvokeInst(InvokeInst &II);
521 void visitGetElementPtrInst(GetElementPtrInst &GEP);
522 void visitLoadInst(LoadInst &LI);
523 void visitStoreInst(StoreInst &SI);
524 void verifyDominatesUse(Instruction &I, unsigned i);
525 void visitInstruction(Instruction &I);
526 void visitTerminator(Instruction &I);
527 void visitBranchInst(BranchInst &BI);
528 void visitReturnInst(ReturnInst &RI);
529 void visitSwitchInst(SwitchInst &SI);
530 void visitIndirectBrInst(IndirectBrInst &BI);
531 void visitCallBrInst(CallBrInst &CBI);
532 void visitSelectInst(SelectInst &SI);
533 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)534 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
535 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
536 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
537 void visitVPIntrinsic(VPIntrinsic &VPI);
538 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
539 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
540 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
541 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
542 void visitFenceInst(FenceInst &FI);
543 void visitAllocaInst(AllocaInst &AI);
544 void visitExtractValueInst(ExtractValueInst &EVI);
545 void visitInsertValueInst(InsertValueInst &IVI);
546 void visitEHPadPredecessors(Instruction &I);
547 void visitLandingPadInst(LandingPadInst &LPI);
548 void visitResumeInst(ResumeInst &RI);
549 void visitCatchPadInst(CatchPadInst &CPI);
550 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
551 void visitCleanupPadInst(CleanupPadInst &CPI);
552 void visitFuncletPadInst(FuncletPadInst &FPI);
553 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
554 void visitCleanupReturnInst(CleanupReturnInst &CRI);
555
556 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
557 void verifySwiftErrorValue(const Value *SwiftErrorVal);
558 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
559 void verifyMustTailCall(CallInst &CI);
560 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
561 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
562 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
563 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
564 const Value *V);
565 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
566 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
567 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
568
569 void visitConstantExprsRecursively(const Constant *EntryC);
570 void visitConstantExpr(const ConstantExpr *CE);
571 void verifyInlineAsmCall(const CallBase &Call);
572 void verifyStatepoint(const CallBase &Call);
573 void verifyFrameRecoverIndices();
574 void verifySiblingFuncletUnwinds();
575
576 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
577 template <typename ValueOrMetadata>
578 void verifyFragmentExpression(const DIVariable &V,
579 DIExpression::FragmentInfo Fragment,
580 ValueOrMetadata *Desc);
581 void verifyFnArgs(const DbgVariableIntrinsic &I);
582 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
583
584 /// Module-level debug info verification...
585 void verifyCompileUnits();
586
587 /// Module-level verification that all @llvm.experimental.deoptimize
588 /// declarations share the same calling convention.
589 void verifyDeoptimizeCallingConvs();
590
591 void verifyAttachedCallBundle(const CallBase &Call,
592 const OperandBundleUse &BU);
593
594 /// Verify all-or-nothing property of DIFile source attribute within a CU.
595 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
596
597 /// Verify the llvm.experimental.noalias.scope.decl declarations
598 void verifyNoAliasScopeDecl();
599 };
600
601 } // end anonymous namespace
602
603 /// We know that cond should be true, if not print an error message.
604 #define Check(C, ...) \
605 do { \
606 if (!(C)) { \
607 CheckFailed(__VA_ARGS__); \
608 return; \
609 } \
610 } while (false)
611
612 /// We know that a debug info condition should be true, if not print
613 /// an error message.
614 #define CheckDI(C, ...) \
615 do { \
616 if (!(C)) { \
617 DebugInfoCheckFailed(__VA_ARGS__); \
618 return; \
619 } \
620 } while (false)
621
visit(Instruction & I)622 void Verifier::visit(Instruction &I) {
623 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
624 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
625 InstVisitor<Verifier>::visit(I);
626 }
627
628 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
forEachUser(const Value * User,SmallPtrSet<const Value *,32> & Visited,llvm::function_ref<bool (const Value *)> Callback)629 static void forEachUser(const Value *User,
630 SmallPtrSet<const Value *, 32> &Visited,
631 llvm::function_ref<bool(const Value *)> Callback) {
632 if (!Visited.insert(User).second)
633 return;
634
635 SmallVector<const Value *> WorkList;
636 append_range(WorkList, User->materialized_users());
637 while (!WorkList.empty()) {
638 const Value *Cur = WorkList.pop_back_val();
639 if (!Visited.insert(Cur).second)
640 continue;
641 if (Callback(Cur))
642 append_range(WorkList, Cur->materialized_users());
643 }
644 }
645
visitGlobalValue(const GlobalValue & GV)646 void Verifier::visitGlobalValue(const GlobalValue &GV) {
647 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
648 "Global is external, but doesn't have external or weak linkage!", &GV);
649
650 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
651
652 if (MaybeAlign A = GO->getAlign()) {
653 Check(A->value() <= Value::MaximumAlignment,
654 "huge alignment values are unsupported", GO);
655 }
656 }
657 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
658 "Only global variables can have appending linkage!", &GV);
659
660 if (GV.hasAppendingLinkage()) {
661 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
662 Check(GVar && GVar->getValueType()->isArrayTy(),
663 "Only global arrays can have appending linkage!", GVar);
664 }
665
666 if (GV.isDeclarationForLinker())
667 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
668
669 if (GV.hasDLLExportStorageClass()) {
670 Check(!GV.hasHiddenVisibility(),
671 "dllexport GlobalValue must have default or protected visibility",
672 &GV);
673 }
674 if (GV.hasDLLImportStorageClass()) {
675 Check(GV.hasDefaultVisibility(),
676 "dllimport GlobalValue must have default visibility", &GV);
677 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
678 &GV);
679
680 Check((GV.isDeclaration() &&
681 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
682 GV.hasAvailableExternallyLinkage(),
683 "Global is marked as dllimport, but not external", &GV);
684 }
685
686 if (GV.isImplicitDSOLocal())
687 Check(GV.isDSOLocal(),
688 "GlobalValue with local linkage or non-default "
689 "visibility must be dso_local!",
690 &GV);
691
692 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
693 if (const Instruction *I = dyn_cast<Instruction>(V)) {
694 if (!I->getParent() || !I->getParent()->getParent())
695 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
696 I);
697 else if (I->getParent()->getParent()->getParent() != &M)
698 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
699 I->getParent()->getParent(),
700 I->getParent()->getParent()->getParent());
701 return false;
702 } else if (const Function *F = dyn_cast<Function>(V)) {
703 if (F->getParent() != &M)
704 CheckFailed("Global is used by function in a different module", &GV, &M,
705 F, F->getParent());
706 return false;
707 }
708 return true;
709 });
710 }
711
visitGlobalVariable(const GlobalVariable & GV)712 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
713 if (GV.hasInitializer()) {
714 Check(GV.getInitializer()->getType() == GV.getValueType(),
715 "Global variable initializer type does not match global "
716 "variable type!",
717 &GV);
718 // If the global has common linkage, it must have a zero initializer and
719 // cannot be constant.
720 if (GV.hasCommonLinkage()) {
721 Check(GV.getInitializer()->isNullValue(),
722 "'common' global must have a zero initializer!", &GV);
723 Check(!GV.isConstant(), "'common' global may not be marked constant!",
724 &GV);
725 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
726 }
727 }
728
729 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
730 GV.getName() == "llvm.global_dtors")) {
731 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
732 "invalid linkage for intrinsic global variable", &GV);
733 // Don't worry about emitting an error for it not being an array,
734 // visitGlobalValue will complain on appending non-array.
735 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
736 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
737 PointerType *FuncPtrTy =
738 FunctionType::get(Type::getVoidTy(Context), false)->
739 getPointerTo(DL.getProgramAddressSpace());
740 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
741 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
742 STy->getTypeAtIndex(1) == FuncPtrTy,
743 "wrong type for intrinsic global variable", &GV);
744 Check(STy->getNumElements() == 3,
745 "the third field of the element type is mandatory, "
746 "specify ptr null to migrate from the obsoleted 2-field form");
747 Type *ETy = STy->getTypeAtIndex(2);
748 Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
749 Check(ETy->isPointerTy() &&
750 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
751 "wrong type for intrinsic global variable", &GV);
752 }
753 }
754
755 if (GV.hasName() && (GV.getName() == "llvm.used" ||
756 GV.getName() == "llvm.compiler.used")) {
757 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
758 "invalid linkage for intrinsic global variable", &GV);
759 Type *GVType = GV.getValueType();
760 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
761 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
762 Check(PTy, "wrong type for intrinsic global variable", &GV);
763 if (GV.hasInitializer()) {
764 const Constant *Init = GV.getInitializer();
765 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
766 Check(InitArray, "wrong initalizer for intrinsic global variable",
767 Init);
768 for (Value *Op : InitArray->operands()) {
769 Value *V = Op->stripPointerCasts();
770 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
771 isa<GlobalAlias>(V),
772 Twine("invalid ") + GV.getName() + " member", V);
773 Check(V->hasName(),
774 Twine("members of ") + GV.getName() + " must be named", V);
775 }
776 }
777 }
778 }
779
780 // Visit any debug info attachments.
781 SmallVector<MDNode *, 1> MDs;
782 GV.getMetadata(LLVMContext::MD_dbg, MDs);
783 for (auto *MD : MDs) {
784 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
785 visitDIGlobalVariableExpression(*GVE);
786 else
787 CheckDI(false, "!dbg attachment of global variable must be a "
788 "DIGlobalVariableExpression");
789 }
790
791 // Scalable vectors cannot be global variables, since we don't know
792 // the runtime size. If the global is an array containing scalable vectors,
793 // that will be caught by the isValidElementType methods in StructType or
794 // ArrayType instead.
795 Check(!isa<ScalableVectorType>(GV.getValueType()),
796 "Globals cannot contain scalable vectors", &GV);
797
798 if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
799 Check(!STy->containsScalableVectorType(),
800 "Globals cannot contain scalable vectors", &GV);
801
802 // Check if it's a target extension type that disallows being used as a
803 // global.
804 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
805 Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
806 "Global @" + GV.getName() + " has illegal target extension type",
807 TTy);
808
809 if (!GV.hasInitializer()) {
810 visitGlobalValue(GV);
811 return;
812 }
813
814 // Walk any aggregate initializers looking for bitcasts between address spaces
815 visitConstantExprsRecursively(GV.getInitializer());
816
817 visitGlobalValue(GV);
818 }
819
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)820 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
821 SmallPtrSet<const GlobalAlias*, 4> Visited;
822 Visited.insert(&GA);
823 visitAliaseeSubExpr(Visited, GA, C);
824 }
825
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)826 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
827 const GlobalAlias &GA, const Constant &C) {
828 if (GA.hasAvailableExternallyLinkage()) {
829 Check(isa<GlobalValue>(C) &&
830 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
831 "available_externally alias must point to available_externally "
832 "global value",
833 &GA);
834 }
835 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
836 if (!GA.hasAvailableExternallyLinkage()) {
837 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
838 &GA);
839 }
840
841 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
842 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
843
844 Check(!GA2->isInterposable(),
845 "Alias cannot point to an interposable alias", &GA);
846 } else {
847 // Only continue verifying subexpressions of GlobalAliases.
848 // Do not recurse into global initializers.
849 return;
850 }
851 }
852
853 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
854 visitConstantExprsRecursively(CE);
855
856 for (const Use &U : C.operands()) {
857 Value *V = &*U;
858 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
859 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
860 else if (const auto *C2 = dyn_cast<Constant>(V))
861 visitAliaseeSubExpr(Visited, GA, *C2);
862 }
863 }
864
visitGlobalAlias(const GlobalAlias & GA)865 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
866 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
867 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
868 "weak_odr, external, or available_externally linkage!",
869 &GA);
870 const Constant *Aliasee = GA.getAliasee();
871 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
872 Check(GA.getType() == Aliasee->getType(),
873 "Alias and aliasee types should match!", &GA);
874
875 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
876 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
877
878 visitAliaseeSubExpr(GA, *Aliasee);
879
880 visitGlobalValue(GA);
881 }
882
visitGlobalIFunc(const GlobalIFunc & GI)883 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
884 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
885 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
886 "weak_odr, or external linkage!",
887 &GI);
888 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
889 // is a Function definition.
890 const Function *Resolver = GI.getResolverFunction();
891 Check(Resolver, "IFunc must have a Function resolver", &GI);
892 Check(!Resolver->isDeclarationForLinker(),
893 "IFunc resolver must be a definition", &GI);
894
895 // Check that the immediate resolver operand (prior to any bitcasts) has the
896 // correct type.
897 const Type *ResolverTy = GI.getResolver()->getType();
898
899 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
900 "IFunc resolver must return a pointer", &GI);
901
902 const Type *ResolverFuncTy =
903 GlobalIFunc::getResolverFunctionType(GI.getValueType());
904 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
905 "IFunc resolver has incorrect type", &GI);
906 }
907
visitNamedMDNode(const NamedMDNode & NMD)908 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
909 // There used to be various other llvm.dbg.* nodes, but we don't support
910 // upgrading them and we want to reserve the namespace for future uses.
911 if (NMD.getName().startswith("llvm.dbg."))
912 CheckDI(NMD.getName() == "llvm.dbg.cu",
913 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
914 for (const MDNode *MD : NMD.operands()) {
915 if (NMD.getName() == "llvm.dbg.cu")
916 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
917
918 if (!MD)
919 continue;
920
921 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
922 }
923 }
924
visitMDNode(const MDNode & MD,AreDebugLocsAllowed AllowLocs)925 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
926 // Only visit each node once. Metadata can be mutually recursive, so this
927 // avoids infinite recursion here, as well as being an optimization.
928 if (!MDNodes.insert(&MD).second)
929 return;
930
931 Check(&MD.getContext() == &Context,
932 "MDNode context does not match Module context!", &MD);
933
934 switch (MD.getMetadataID()) {
935 default:
936 llvm_unreachable("Invalid MDNode subclass");
937 case Metadata::MDTupleKind:
938 break;
939 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
940 case Metadata::CLASS##Kind: \
941 visit##CLASS(cast<CLASS>(MD)); \
942 break;
943 #include "llvm/IR/Metadata.def"
944 }
945
946 for (const Metadata *Op : MD.operands()) {
947 if (!Op)
948 continue;
949 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
950 &MD, Op);
951 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
952 "DILocation not allowed within this metadata node", &MD, Op);
953 if (auto *N = dyn_cast<MDNode>(Op)) {
954 visitMDNode(*N, AllowLocs);
955 continue;
956 }
957 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
958 visitValueAsMetadata(*V, nullptr);
959 continue;
960 }
961 }
962
963 // Check these last, so we diagnose problems in operands first.
964 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
965 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
966 }
967
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)968 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
969 Check(MD.getValue(), "Expected valid value", &MD);
970 Check(!MD.getValue()->getType()->isMetadataTy(),
971 "Unexpected metadata round-trip through values", &MD, MD.getValue());
972
973 auto *L = dyn_cast<LocalAsMetadata>(&MD);
974 if (!L)
975 return;
976
977 Check(F, "function-local metadata used outside a function", L);
978
979 // If this was an instruction, bb, or argument, verify that it is in the
980 // function that we expect.
981 Function *ActualF = nullptr;
982 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
983 Check(I->getParent(), "function-local metadata not in basic block", L, I);
984 ActualF = I->getParent()->getParent();
985 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
986 ActualF = BB->getParent();
987 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
988 ActualF = A->getParent();
989 assert(ActualF && "Unimplemented function local metadata case!");
990
991 Check(ActualF == F, "function-local metadata used in wrong function", L);
992 }
993
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)994 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
995 Metadata *MD = MDV.getMetadata();
996 if (auto *N = dyn_cast<MDNode>(MD)) {
997 visitMDNode(*N, AreDebugLocsAllowed::No);
998 return;
999 }
1000
1001 // Only visit each node once. Metadata can be mutually recursive, so this
1002 // avoids infinite recursion here, as well as being an optimization.
1003 if (!MDNodes.insert(MD).second)
1004 return;
1005
1006 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1007 visitValueAsMetadata(*V, F);
1008 }
1009
isType(const Metadata * MD)1010 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
isScope(const Metadata * MD)1011 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
isDINode(const Metadata * MD)1012 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1013
visitDILocation(const DILocation & N)1014 void Verifier::visitDILocation(const DILocation &N) {
1015 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1016 "location requires a valid scope", &N, N.getRawScope());
1017 if (auto *IA = N.getRawInlinedAt())
1018 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1019 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1020 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1021 }
1022
visitGenericDINode(const GenericDINode & N)1023 void Verifier::visitGenericDINode(const GenericDINode &N) {
1024 CheckDI(N.getTag(), "invalid tag", &N);
1025 }
1026
visitDIScope(const DIScope & N)1027 void Verifier::visitDIScope(const DIScope &N) {
1028 if (auto *F = N.getRawFile())
1029 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1030 }
1031
visitDISubrange(const DISubrange & N)1032 void Verifier::visitDISubrange(const DISubrange &N) {
1033 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1034 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1035 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1036 N.getRawUpperBound(),
1037 "Subrange must contain count or upperBound", &N);
1038 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1039 "Subrange can have any one of count or upperBound", &N);
1040 auto *CBound = N.getRawCountNode();
1041 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1042 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1043 "Count must be signed constant or DIVariable or DIExpression", &N);
1044 auto Count = N.getCount();
1045 CheckDI(!Count || !Count.is<ConstantInt *>() ||
1046 Count.get<ConstantInt *>()->getSExtValue() >= -1,
1047 "invalid subrange count", &N);
1048 auto *LBound = N.getRawLowerBound();
1049 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1050 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1051 "LowerBound must be signed constant or DIVariable or DIExpression",
1052 &N);
1053 auto *UBound = N.getRawUpperBound();
1054 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1055 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1056 "UpperBound must be signed constant or DIVariable or DIExpression",
1057 &N);
1058 auto *Stride = N.getRawStride();
1059 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1060 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1061 "Stride must be signed constant or DIVariable or DIExpression", &N);
1062 }
1063
visitDIGenericSubrange(const DIGenericSubrange & N)1064 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1065 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1066 CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1067 "GenericSubrange must contain count or upperBound", &N);
1068 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1069 "GenericSubrange can have any one of count or upperBound", &N);
1070 auto *CBound = N.getRawCountNode();
1071 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1072 "Count must be signed constant or DIVariable or DIExpression", &N);
1073 auto *LBound = N.getRawLowerBound();
1074 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1075 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1076 "LowerBound must be signed constant or DIVariable or DIExpression",
1077 &N);
1078 auto *UBound = N.getRawUpperBound();
1079 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1080 "UpperBound must be signed constant or DIVariable or DIExpression",
1081 &N);
1082 auto *Stride = N.getRawStride();
1083 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1084 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1085 "Stride must be signed constant or DIVariable or DIExpression", &N);
1086 }
1087
visitDIEnumerator(const DIEnumerator & N)1088 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1089 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1090 }
1091
visitDIBasicType(const DIBasicType & N)1092 void Verifier::visitDIBasicType(const DIBasicType &N) {
1093 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1094 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1095 N.getTag() == dwarf::DW_TAG_string_type,
1096 "invalid tag", &N);
1097 }
1098
visitDIStringType(const DIStringType & N)1099 void Verifier::visitDIStringType(const DIStringType &N) {
1100 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1101 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1102 &N);
1103 }
1104
visitDIDerivedType(const DIDerivedType & N)1105 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1106 // Common scope checks.
1107 visitDIScope(N);
1108
1109 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1110 N.getTag() == dwarf::DW_TAG_pointer_type ||
1111 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1112 N.getTag() == dwarf::DW_TAG_reference_type ||
1113 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1114 N.getTag() == dwarf::DW_TAG_const_type ||
1115 N.getTag() == dwarf::DW_TAG_immutable_type ||
1116 N.getTag() == dwarf::DW_TAG_volatile_type ||
1117 N.getTag() == dwarf::DW_TAG_restrict_type ||
1118 N.getTag() == dwarf::DW_TAG_atomic_type ||
1119 N.getTag() == dwarf::DW_TAG_member ||
1120 N.getTag() == dwarf::DW_TAG_inheritance ||
1121 N.getTag() == dwarf::DW_TAG_friend ||
1122 N.getTag() == dwarf::DW_TAG_set_type,
1123 "invalid tag", &N);
1124 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1125 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1126 N.getRawExtraData());
1127 }
1128
1129 if (N.getTag() == dwarf::DW_TAG_set_type) {
1130 if (auto *T = N.getRawBaseType()) {
1131 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1132 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1133 CheckDI(
1134 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1135 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1136 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1137 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1138 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1139 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1140 "invalid set base type", &N, T);
1141 }
1142 }
1143
1144 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1145 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1146 N.getRawBaseType());
1147
1148 if (N.getDWARFAddressSpace()) {
1149 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1150 N.getTag() == dwarf::DW_TAG_reference_type ||
1151 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1152 "DWARF address space only applies to pointer or reference types",
1153 &N);
1154 }
1155 }
1156
1157 /// Detect mutually exclusive flags.
hasConflictingReferenceFlags(unsigned Flags)1158 static bool hasConflictingReferenceFlags(unsigned Flags) {
1159 return ((Flags & DINode::FlagLValueReference) &&
1160 (Flags & DINode::FlagRValueReference)) ||
1161 ((Flags & DINode::FlagTypePassByValue) &&
1162 (Flags & DINode::FlagTypePassByReference));
1163 }
1164
visitTemplateParams(const MDNode & N,const Metadata & RawParams)1165 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1166 auto *Params = dyn_cast<MDTuple>(&RawParams);
1167 CheckDI(Params, "invalid template params", &N, &RawParams);
1168 for (Metadata *Op : Params->operands()) {
1169 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1170 &N, Params, Op);
1171 }
1172 }
1173
visitDICompositeType(const DICompositeType & N)1174 void Verifier::visitDICompositeType(const DICompositeType &N) {
1175 // Common scope checks.
1176 visitDIScope(N);
1177
1178 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1179 N.getTag() == dwarf::DW_TAG_structure_type ||
1180 N.getTag() == dwarf::DW_TAG_union_type ||
1181 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1182 N.getTag() == dwarf::DW_TAG_class_type ||
1183 N.getTag() == dwarf::DW_TAG_variant_part ||
1184 N.getTag() == dwarf::DW_TAG_namelist,
1185 "invalid tag", &N);
1186
1187 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1188 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1189 N.getRawBaseType());
1190
1191 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1192 "invalid composite elements", &N, N.getRawElements());
1193 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1194 N.getRawVTableHolder());
1195 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1196 "invalid reference flags", &N);
1197 unsigned DIBlockByRefStruct = 1 << 4;
1198 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1199 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1200
1201 if (N.isVector()) {
1202 const DINodeArray Elements = N.getElements();
1203 CheckDI(Elements.size() == 1 &&
1204 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1205 "invalid vector, expected one element of type subrange", &N);
1206 }
1207
1208 if (auto *Params = N.getRawTemplateParams())
1209 visitTemplateParams(N, *Params);
1210
1211 if (auto *D = N.getRawDiscriminator()) {
1212 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1213 "discriminator can only appear on variant part");
1214 }
1215
1216 if (N.getRawDataLocation()) {
1217 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1218 "dataLocation can only appear in array type");
1219 }
1220
1221 if (N.getRawAssociated()) {
1222 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1223 "associated can only appear in array type");
1224 }
1225
1226 if (N.getRawAllocated()) {
1227 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1228 "allocated can only appear in array type");
1229 }
1230
1231 if (N.getRawRank()) {
1232 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1233 "rank can only appear in array type");
1234 }
1235 }
1236
visitDISubroutineType(const DISubroutineType & N)1237 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1238 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1239 if (auto *Types = N.getRawTypeArray()) {
1240 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1241 for (Metadata *Ty : N.getTypeArray()->operands()) {
1242 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1243 }
1244 }
1245 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1246 "invalid reference flags", &N);
1247 }
1248
visitDIFile(const DIFile & N)1249 void Verifier::visitDIFile(const DIFile &N) {
1250 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1251 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1252 if (Checksum) {
1253 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1254 "invalid checksum kind", &N);
1255 size_t Size;
1256 switch (Checksum->Kind) {
1257 case DIFile::CSK_MD5:
1258 Size = 32;
1259 break;
1260 case DIFile::CSK_SHA1:
1261 Size = 40;
1262 break;
1263 case DIFile::CSK_SHA256:
1264 Size = 64;
1265 break;
1266 }
1267 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1268 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1269 "invalid checksum", &N);
1270 }
1271 }
1272
visitDICompileUnit(const DICompileUnit & N)1273 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1274 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1275 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1276
1277 // Don't bother verifying the compilation directory or producer string
1278 // as those could be empty.
1279 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1280 N.getRawFile());
1281 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1282 N.getFile());
1283
1284 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1285
1286 verifySourceDebugInfo(N, *N.getFile());
1287
1288 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1289 "invalid emission kind", &N);
1290
1291 if (auto *Array = N.getRawEnumTypes()) {
1292 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1293 for (Metadata *Op : N.getEnumTypes()->operands()) {
1294 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1295 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1296 "invalid enum type", &N, N.getEnumTypes(), Op);
1297 }
1298 }
1299 if (auto *Array = N.getRawRetainedTypes()) {
1300 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1301 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1302 CheckDI(
1303 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1304 !cast<DISubprogram>(Op)->isDefinition())),
1305 "invalid retained type", &N, Op);
1306 }
1307 }
1308 if (auto *Array = N.getRawGlobalVariables()) {
1309 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1310 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1311 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1312 "invalid global variable ref", &N, Op);
1313 }
1314 }
1315 if (auto *Array = N.getRawImportedEntities()) {
1316 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1317 for (Metadata *Op : N.getImportedEntities()->operands()) {
1318 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1319 &N, Op);
1320 }
1321 }
1322 if (auto *Array = N.getRawMacros()) {
1323 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1324 for (Metadata *Op : N.getMacros()->operands()) {
1325 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1326 }
1327 }
1328 CUVisited.insert(&N);
1329 }
1330
visitDISubprogram(const DISubprogram & N)1331 void Verifier::visitDISubprogram(const DISubprogram &N) {
1332 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1333 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1334 if (auto *F = N.getRawFile())
1335 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1336 else
1337 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1338 if (auto *T = N.getRawType())
1339 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1340 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1341 N.getRawContainingType());
1342 if (auto *Params = N.getRawTemplateParams())
1343 visitTemplateParams(N, *Params);
1344 if (auto *S = N.getRawDeclaration())
1345 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1346 "invalid subprogram declaration", &N, S);
1347 if (auto *RawNode = N.getRawRetainedNodes()) {
1348 auto *Node = dyn_cast<MDTuple>(RawNode);
1349 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1350 for (Metadata *Op : Node->operands()) {
1351 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1352 "invalid retained nodes, expected DILocalVariable or DILabel", &N,
1353 Node, Op);
1354 }
1355 }
1356 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1357 "invalid reference flags", &N);
1358
1359 auto *Unit = N.getRawUnit();
1360 if (N.isDefinition()) {
1361 // Subprogram definitions (not part of the type hierarchy).
1362 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1363 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1364 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1365 if (N.getFile())
1366 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1367 } else {
1368 // Subprogram declarations (part of the type hierarchy).
1369 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1370 }
1371
1372 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1373 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1374 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1375 for (Metadata *Op : ThrownTypes->operands())
1376 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1377 Op);
1378 }
1379
1380 if (N.areAllCallsDescribed())
1381 CheckDI(N.isDefinition(),
1382 "DIFlagAllCallsDescribed must be attached to a definition");
1383 }
1384
visitDILexicalBlockBase(const DILexicalBlockBase & N)1385 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1386 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1387 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1388 "invalid local scope", &N, N.getRawScope());
1389 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1390 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1391 }
1392
visitDILexicalBlock(const DILexicalBlock & N)1393 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1394 visitDILexicalBlockBase(N);
1395
1396 CheckDI(N.getLine() || !N.getColumn(),
1397 "cannot have column info without line info", &N);
1398 }
1399
visitDILexicalBlockFile(const DILexicalBlockFile & N)1400 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1401 visitDILexicalBlockBase(N);
1402 }
1403
visitDICommonBlock(const DICommonBlock & N)1404 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1405 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1406 if (auto *S = N.getRawScope())
1407 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1408 if (auto *S = N.getRawDecl())
1409 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1410 }
1411
visitDINamespace(const DINamespace & N)1412 void Verifier::visitDINamespace(const DINamespace &N) {
1413 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1414 if (auto *S = N.getRawScope())
1415 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1416 }
1417
visitDIMacro(const DIMacro & N)1418 void Verifier::visitDIMacro(const DIMacro &N) {
1419 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1420 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1421 "invalid macinfo type", &N);
1422 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1423 if (!N.getValue().empty()) {
1424 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1425 }
1426 }
1427
visitDIMacroFile(const DIMacroFile & N)1428 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1429 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1430 "invalid macinfo type", &N);
1431 if (auto *F = N.getRawFile())
1432 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1433
1434 if (auto *Array = N.getRawElements()) {
1435 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1436 for (Metadata *Op : N.getElements()->operands()) {
1437 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1438 }
1439 }
1440 }
1441
visitDIArgList(const DIArgList & N)1442 void Verifier::visitDIArgList(const DIArgList &N) {
1443 CheckDI(!N.getNumOperands(),
1444 "DIArgList should have no operands other than a list of "
1445 "ValueAsMetadata",
1446 &N);
1447 }
1448
visitDIModule(const DIModule & N)1449 void Verifier::visitDIModule(const DIModule &N) {
1450 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1451 CheckDI(!N.getName().empty(), "anonymous module", &N);
1452 }
1453
visitDITemplateParameter(const DITemplateParameter & N)1454 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1455 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1456 }
1457
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1458 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1459 visitDITemplateParameter(N);
1460
1461 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1462 &N);
1463 }
1464
visitDITemplateValueParameter(const DITemplateValueParameter & N)1465 void Verifier::visitDITemplateValueParameter(
1466 const DITemplateValueParameter &N) {
1467 visitDITemplateParameter(N);
1468
1469 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1470 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1471 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1472 "invalid tag", &N);
1473 }
1474
visitDIVariable(const DIVariable & N)1475 void Verifier::visitDIVariable(const DIVariable &N) {
1476 if (auto *S = N.getRawScope())
1477 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1478 if (auto *F = N.getRawFile())
1479 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1480 }
1481
visitDIGlobalVariable(const DIGlobalVariable & N)1482 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1483 // Checks common to all variables.
1484 visitDIVariable(N);
1485
1486 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1487 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1488 // Check only if the global variable is not an extern
1489 if (N.isDefinition())
1490 CheckDI(N.getType(), "missing global variable type", &N);
1491 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1492 CheckDI(isa<DIDerivedType>(Member),
1493 "invalid static data member declaration", &N, Member);
1494 }
1495 }
1496
visitDILocalVariable(const DILocalVariable & N)1497 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1498 // Checks common to all variables.
1499 visitDIVariable(N);
1500
1501 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1502 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1503 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1504 "local variable requires a valid scope", &N, N.getRawScope());
1505 if (auto Ty = N.getType())
1506 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1507 }
1508
visitDIAssignID(const DIAssignID & N)1509 void Verifier::visitDIAssignID(const DIAssignID &N) {
1510 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1511 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1512 }
1513
visitDILabel(const DILabel & N)1514 void Verifier::visitDILabel(const DILabel &N) {
1515 if (auto *S = N.getRawScope())
1516 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1517 if (auto *F = N.getRawFile())
1518 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1519
1520 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1521 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1522 "label requires a valid scope", &N, N.getRawScope());
1523 }
1524
visitDIExpression(const DIExpression & N)1525 void Verifier::visitDIExpression(const DIExpression &N) {
1526 CheckDI(N.isValid(), "invalid expression", &N);
1527 }
1528
visitDIGlobalVariableExpression(const DIGlobalVariableExpression & GVE)1529 void Verifier::visitDIGlobalVariableExpression(
1530 const DIGlobalVariableExpression &GVE) {
1531 CheckDI(GVE.getVariable(), "missing variable");
1532 if (auto *Var = GVE.getVariable())
1533 visitDIGlobalVariable(*Var);
1534 if (auto *Expr = GVE.getExpression()) {
1535 visitDIExpression(*Expr);
1536 if (auto Fragment = Expr->getFragmentInfo())
1537 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1538 }
1539 }
1540
visitDIObjCProperty(const DIObjCProperty & N)1541 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1542 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1543 if (auto *T = N.getRawType())
1544 CheckDI(isType(T), "invalid type ref", &N, T);
1545 if (auto *F = N.getRawFile())
1546 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1547 }
1548
visitDIImportedEntity(const DIImportedEntity & N)1549 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1550 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1551 N.getTag() == dwarf::DW_TAG_imported_declaration,
1552 "invalid tag", &N);
1553 if (auto *S = N.getRawScope())
1554 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1555 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1556 N.getRawEntity());
1557 }
1558
visitComdat(const Comdat & C)1559 void Verifier::visitComdat(const Comdat &C) {
1560 // In COFF the Module is invalid if the GlobalValue has private linkage.
1561 // Entities with private linkage don't have entries in the symbol table.
1562 if (TT.isOSBinFormatCOFF())
1563 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1564 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1565 GV);
1566 }
1567
visitModuleIdents()1568 void Verifier::visitModuleIdents() {
1569 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1570 if (!Idents)
1571 return;
1572
1573 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1574 // Scan each llvm.ident entry and make sure that this requirement is met.
1575 for (const MDNode *N : Idents->operands()) {
1576 Check(N->getNumOperands() == 1,
1577 "incorrect number of operands in llvm.ident metadata", N);
1578 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1579 ("invalid value for llvm.ident metadata entry operand"
1580 "(the operand should be a string)"),
1581 N->getOperand(0));
1582 }
1583 }
1584
visitModuleCommandLines()1585 void Verifier::visitModuleCommandLines() {
1586 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1587 if (!CommandLines)
1588 return;
1589
1590 // llvm.commandline takes a list of metadata entry. Each entry has only one
1591 // string. Scan each llvm.commandline entry and make sure that this
1592 // requirement is met.
1593 for (const MDNode *N : CommandLines->operands()) {
1594 Check(N->getNumOperands() == 1,
1595 "incorrect number of operands in llvm.commandline metadata", N);
1596 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1597 ("invalid value for llvm.commandline metadata entry operand"
1598 "(the operand should be a string)"),
1599 N->getOperand(0));
1600 }
1601 }
1602
visitModuleFlags()1603 void Verifier::visitModuleFlags() {
1604 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1605 if (!Flags) return;
1606
1607 // Scan each flag, and track the flags and requirements.
1608 DenseMap<const MDString*, const MDNode*> SeenIDs;
1609 SmallVector<const MDNode*, 16> Requirements;
1610 for (const MDNode *MDN : Flags->operands())
1611 visitModuleFlag(MDN, SeenIDs, Requirements);
1612
1613 // Validate that the requirements in the module are valid.
1614 for (const MDNode *Requirement : Requirements) {
1615 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1616 const Metadata *ReqValue = Requirement->getOperand(1);
1617
1618 const MDNode *Op = SeenIDs.lookup(Flag);
1619 if (!Op) {
1620 CheckFailed("invalid requirement on flag, flag is not present in module",
1621 Flag);
1622 continue;
1623 }
1624
1625 if (Op->getOperand(2) != ReqValue) {
1626 CheckFailed(("invalid requirement on flag, "
1627 "flag does not have the required value"),
1628 Flag);
1629 continue;
1630 }
1631 }
1632 }
1633
1634 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1635 Verifier::visitModuleFlag(const MDNode *Op,
1636 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1637 SmallVectorImpl<const MDNode *> &Requirements) {
1638 // Each module flag should have three arguments, the merge behavior (a
1639 // constant int), the flag ID (an MDString), and the value.
1640 Check(Op->getNumOperands() == 3,
1641 "incorrect number of operands in module flag", Op);
1642 Module::ModFlagBehavior MFB;
1643 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1644 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1645 "invalid behavior operand in module flag (expected constant integer)",
1646 Op->getOperand(0));
1647 Check(false,
1648 "invalid behavior operand in module flag (unexpected constant)",
1649 Op->getOperand(0));
1650 }
1651 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1652 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1653 Op->getOperand(1));
1654
1655 // Check the values for behaviors with additional requirements.
1656 switch (MFB) {
1657 case Module::Error:
1658 case Module::Warning:
1659 case Module::Override:
1660 // These behavior types accept any value.
1661 break;
1662
1663 case Module::Min: {
1664 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1665 Check(V && V->getValue().isNonNegative(),
1666 "invalid value for 'min' module flag (expected constant non-negative "
1667 "integer)",
1668 Op->getOperand(2));
1669 break;
1670 }
1671
1672 case Module::Max: {
1673 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1674 "invalid value for 'max' module flag (expected constant integer)",
1675 Op->getOperand(2));
1676 break;
1677 }
1678
1679 case Module::Require: {
1680 // The value should itself be an MDNode with two operands, a flag ID (an
1681 // MDString), and a value.
1682 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1683 Check(Value && Value->getNumOperands() == 2,
1684 "invalid value for 'require' module flag (expected metadata pair)",
1685 Op->getOperand(2));
1686 Check(isa<MDString>(Value->getOperand(0)),
1687 ("invalid value for 'require' module flag "
1688 "(first value operand should be a string)"),
1689 Value->getOperand(0));
1690
1691 // Append it to the list of requirements, to check once all module flags are
1692 // scanned.
1693 Requirements.push_back(Value);
1694 break;
1695 }
1696
1697 case Module::Append:
1698 case Module::AppendUnique: {
1699 // These behavior types require the operand be an MDNode.
1700 Check(isa<MDNode>(Op->getOperand(2)),
1701 "invalid value for 'append'-type module flag "
1702 "(expected a metadata node)",
1703 Op->getOperand(2));
1704 break;
1705 }
1706 }
1707
1708 // Unless this is a "requires" flag, check the ID is unique.
1709 if (MFB != Module::Require) {
1710 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1711 Check(Inserted,
1712 "module flag identifiers must be unique (or of 'require' type)", ID);
1713 }
1714
1715 if (ID->getString() == "wchar_size") {
1716 ConstantInt *Value
1717 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1718 Check(Value, "wchar_size metadata requires constant integer argument");
1719 }
1720
1721 if (ID->getString() == "Linker Options") {
1722 // If the llvm.linker.options named metadata exists, we assume that the
1723 // bitcode reader has upgraded the module flag. Otherwise the flag might
1724 // have been created by a client directly.
1725 Check(M.getNamedMetadata("llvm.linker.options"),
1726 "'Linker Options' named metadata no longer supported");
1727 }
1728
1729 if (ID->getString() == "SemanticInterposition") {
1730 ConstantInt *Value =
1731 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1732 Check(Value,
1733 "SemanticInterposition metadata requires constant integer argument");
1734 }
1735
1736 if (ID->getString() == "CG Profile") {
1737 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1738 visitModuleFlagCGProfileEntry(MDO);
1739 }
1740 }
1741
visitModuleFlagCGProfileEntry(const MDOperand & MDO)1742 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1743 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1744 if (!FuncMDO)
1745 return;
1746 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1747 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1748 "expected a Function or null", FuncMDO);
1749 };
1750 auto Node = dyn_cast_or_null<MDNode>(MDO);
1751 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1752 CheckFunction(Node->getOperand(0));
1753 CheckFunction(Node->getOperand(1));
1754 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1755 Check(Count && Count->getType()->isIntegerTy(),
1756 "expected an integer constant", Node->getOperand(2));
1757 }
1758
verifyAttributeTypes(AttributeSet Attrs,const Value * V)1759 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1760 for (Attribute A : Attrs) {
1761
1762 if (A.isStringAttribute()) {
1763 #define GET_ATTR_NAMES
1764 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1765 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1766 if (A.getKindAsString() == #DISPLAY_NAME) { \
1767 auto V = A.getValueAsString(); \
1768 if (!(V.empty() || V == "true" || V == "false")) \
1769 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1770 ""); \
1771 }
1772
1773 #include "llvm/IR/Attributes.inc"
1774 continue;
1775 }
1776
1777 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1778 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1779 V);
1780 return;
1781 }
1782 }
1783 }
1784
1785 // VerifyParameterAttrs - Check the given attributes for an argument or return
1786 // value of the specified type. The value V is printed in error messages.
verifyParameterAttrs(AttributeSet Attrs,Type * Ty,const Value * V)1787 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1788 const Value *V) {
1789 if (!Attrs.hasAttributes())
1790 return;
1791
1792 verifyAttributeTypes(Attrs, V);
1793
1794 for (Attribute Attr : Attrs)
1795 Check(Attr.isStringAttribute() ||
1796 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1797 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1798 V);
1799
1800 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1801 Check(Attrs.getNumAttributes() == 1,
1802 "Attribute 'immarg' is incompatible with other attributes", V);
1803 }
1804
1805 // Check for mutually incompatible attributes. Only inreg is compatible with
1806 // sret.
1807 unsigned AttrCount = 0;
1808 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1809 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1810 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1811 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1812 Attrs.hasAttribute(Attribute::InReg);
1813 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1814 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1815 Check(AttrCount <= 1,
1816 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1817 "'byref', and 'sret' are incompatible!",
1818 V);
1819
1820 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1821 Attrs.hasAttribute(Attribute::ReadOnly)),
1822 "Attributes "
1823 "'inalloca and readonly' are incompatible!",
1824 V);
1825
1826 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1827 Attrs.hasAttribute(Attribute::Returned)),
1828 "Attributes "
1829 "'sret and returned' are incompatible!",
1830 V);
1831
1832 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1833 Attrs.hasAttribute(Attribute::SExt)),
1834 "Attributes "
1835 "'zeroext and signext' are incompatible!",
1836 V);
1837
1838 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1839 Attrs.hasAttribute(Attribute::ReadOnly)),
1840 "Attributes "
1841 "'readnone and readonly' are incompatible!",
1842 V);
1843
1844 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1845 Attrs.hasAttribute(Attribute::WriteOnly)),
1846 "Attributes "
1847 "'readnone and writeonly' are incompatible!",
1848 V);
1849
1850 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1851 Attrs.hasAttribute(Attribute::WriteOnly)),
1852 "Attributes "
1853 "'readonly and writeonly' are incompatible!",
1854 V);
1855
1856 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1857 Attrs.hasAttribute(Attribute::AlwaysInline)),
1858 "Attributes "
1859 "'noinline and alwaysinline' are incompatible!",
1860 V);
1861
1862 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1863 for (Attribute Attr : Attrs) {
1864 if (!Attr.isStringAttribute() &&
1865 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1866 CheckFailed("Attribute '" + Attr.getAsString() +
1867 "' applied to incompatible type!", V);
1868 return;
1869 }
1870 }
1871
1872 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1873 if (Attrs.hasAttribute(Attribute::ByVal)) {
1874 if (Attrs.hasAttribute(Attribute::Alignment)) {
1875 Align AttrAlign = Attrs.getAlignment().valueOrOne();
1876 Align MaxAlign(ParamMaxAlignment);
1877 Check(AttrAlign <= MaxAlign,
1878 "Attribute 'align' exceed the max size 2^14", V);
1879 }
1880 SmallPtrSet<Type *, 4> Visited;
1881 Check(Attrs.getByValType()->isSized(&Visited),
1882 "Attribute 'byval' does not support unsized types!", V);
1883 }
1884 if (Attrs.hasAttribute(Attribute::ByRef)) {
1885 SmallPtrSet<Type *, 4> Visited;
1886 Check(Attrs.getByRefType()->isSized(&Visited),
1887 "Attribute 'byref' does not support unsized types!", V);
1888 }
1889 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1890 SmallPtrSet<Type *, 4> Visited;
1891 Check(Attrs.getInAllocaType()->isSized(&Visited),
1892 "Attribute 'inalloca' does not support unsized types!", V);
1893 }
1894 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1895 SmallPtrSet<Type *, 4> Visited;
1896 Check(Attrs.getPreallocatedType()->isSized(&Visited),
1897 "Attribute 'preallocated' does not support unsized types!", V);
1898 }
1899 if (!PTy->isOpaque()) {
1900 if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
1901 Check(!Attrs.hasAttribute(Attribute::SwiftError),
1902 "Attribute 'swifterror' only applies to parameters "
1903 "with pointer to pointer type!",
1904 V);
1905 if (Attrs.hasAttribute(Attribute::ByRef)) {
1906 Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
1907 "Attribute 'byref' type does not match parameter!", V);
1908 }
1909
1910 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1911 Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
1912 "Attribute 'byval' type does not match parameter!", V);
1913 }
1914
1915 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1916 Check(Attrs.getPreallocatedType() ==
1917 PTy->getNonOpaquePointerElementType(),
1918 "Attribute 'preallocated' type does not match parameter!", V);
1919 }
1920
1921 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1922 Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
1923 "Attribute 'inalloca' type does not match parameter!", V);
1924 }
1925
1926 if (Attrs.hasAttribute(Attribute::ElementType)) {
1927 Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
1928 "Attribute 'elementtype' type does not match parameter!", V);
1929 }
1930 }
1931 }
1932 }
1933
checkUnsignedBaseTenFuncAttr(AttributeList Attrs,StringRef Attr,const Value * V)1934 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1935 const Value *V) {
1936 if (Attrs.hasFnAttr(Attr)) {
1937 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1938 unsigned N;
1939 if (S.getAsInteger(10, N))
1940 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1941 }
1942 }
1943
1944 // Check parameter attributes against a function type.
1945 // The value V is printed in error messages.
verifyFunctionAttrs(FunctionType * FT,AttributeList Attrs,const Value * V,bool IsIntrinsic,bool IsInlineAsm)1946 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1947 const Value *V, bool IsIntrinsic,
1948 bool IsInlineAsm) {
1949 if (Attrs.isEmpty())
1950 return;
1951
1952 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1953 Check(Attrs.hasParentContext(Context),
1954 "Attribute list does not match Module context!", &Attrs, V);
1955 for (const auto &AttrSet : Attrs) {
1956 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1957 "Attribute set does not match Module context!", &AttrSet, V);
1958 for (const auto &A : AttrSet) {
1959 Check(A.hasParentContext(Context),
1960 "Attribute does not match Module context!", &A, V);
1961 }
1962 }
1963 }
1964
1965 bool SawNest = false;
1966 bool SawReturned = false;
1967 bool SawSRet = false;
1968 bool SawSwiftSelf = false;
1969 bool SawSwiftAsync = false;
1970 bool SawSwiftError = false;
1971
1972 // Verify return value attributes.
1973 AttributeSet RetAttrs = Attrs.getRetAttrs();
1974 for (Attribute RetAttr : RetAttrs)
1975 Check(RetAttr.isStringAttribute() ||
1976 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1977 "Attribute '" + RetAttr.getAsString() +
1978 "' does not apply to function return values",
1979 V);
1980
1981 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1982
1983 // Verify parameter attributes.
1984 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1985 Type *Ty = FT->getParamType(i);
1986 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1987
1988 if (!IsIntrinsic) {
1989 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1990 "immarg attribute only applies to intrinsics", V);
1991 if (!IsInlineAsm)
1992 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
1993 "Attribute 'elementtype' can only be applied to intrinsics"
1994 " and inline asm.",
1995 V);
1996 }
1997
1998 verifyParameterAttrs(ArgAttrs, Ty, V);
1999
2000 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2001 Check(!SawNest, "More than one parameter has attribute nest!", V);
2002 SawNest = true;
2003 }
2004
2005 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2006 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2007 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2008 "Incompatible argument and return types for 'returned' attribute",
2009 V);
2010 SawReturned = true;
2011 }
2012
2013 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2014 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2015 Check(i == 0 || i == 1,
2016 "Attribute 'sret' is not on first or second parameter!", V);
2017 SawSRet = true;
2018 }
2019
2020 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2021 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2022 SawSwiftSelf = true;
2023 }
2024
2025 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2026 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2027 SawSwiftAsync = true;
2028 }
2029
2030 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2031 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2032 SawSwiftError = true;
2033 }
2034
2035 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2036 Check(i == FT->getNumParams() - 1,
2037 "inalloca isn't on the last parameter!", V);
2038 }
2039 }
2040
2041 if (!Attrs.hasFnAttrs())
2042 return;
2043
2044 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2045 for (Attribute FnAttr : Attrs.getFnAttrs())
2046 Check(FnAttr.isStringAttribute() ||
2047 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2048 "Attribute '" + FnAttr.getAsString() +
2049 "' does not apply to functions!",
2050 V);
2051
2052 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2053 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2054 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2055
2056 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2057 Check(Attrs.hasFnAttr(Attribute::NoInline),
2058 "Attribute 'optnone' requires 'noinline'!", V);
2059
2060 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2061 "Attributes 'optsize and optnone' are incompatible!", V);
2062
2063 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2064 "Attributes 'minsize and optnone' are incompatible!", V);
2065 }
2066
2067 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2068 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2069 "Attributes 'aarch64_pstate_sm_enabled and "
2070 "aarch64_pstate_sm_compatible' are incompatible!",
2071 V);
2072 }
2073
2074 if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2075 Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2076 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2077 "are incompatible!",
2078 V);
2079
2080 Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2081 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2082 "are incompatible!",
2083 V);
2084 }
2085
2086 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2087 const GlobalValue *GV = cast<GlobalValue>(V);
2088 Check(GV->hasGlobalUnnamedAddr(),
2089 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2090 }
2091
2092 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2093 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2094 if (ParamNo >= FT->getNumParams()) {
2095 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2096 return false;
2097 }
2098
2099 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2100 CheckFailed("'allocsize' " + Name +
2101 " argument must refer to an integer parameter",
2102 V);
2103 return false;
2104 }
2105
2106 return true;
2107 };
2108
2109 if (!CheckParam("element size", Args->first))
2110 return;
2111
2112 if (Args->second && !CheckParam("number of elements", *Args->second))
2113 return;
2114 }
2115
2116 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2117 AllocFnKind K = Attrs.getAllocKind();
2118 AllocFnKind Type =
2119 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2120 if (!is_contained(
2121 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2122 Type))
2123 CheckFailed(
2124 "'allockind()' requires exactly one of alloc, realloc, and free");
2125 if ((Type == AllocFnKind::Free) &&
2126 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2127 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2128 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2129 "or aligned modifiers.");
2130 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2131 if ((K & ZeroedUninit) == ZeroedUninit)
2132 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2133 }
2134
2135 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2136 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2137 if (VScaleMin == 0)
2138 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2139
2140 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2141 if (VScaleMax && VScaleMin > VScaleMax)
2142 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2143 }
2144
2145 if (Attrs.hasFnAttr("frame-pointer")) {
2146 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2147 if (FP != "all" && FP != "non-leaf" && FP != "none")
2148 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2149 }
2150
2151 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2152 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2153 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2154 }
2155
verifyFunctionMetadata(ArrayRef<std::pair<unsigned,MDNode * >> MDs)2156 void Verifier::verifyFunctionMetadata(
2157 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2158 for (const auto &Pair : MDs) {
2159 if (Pair.first == LLVMContext::MD_prof) {
2160 MDNode *MD = Pair.second;
2161 Check(MD->getNumOperands() >= 2,
2162 "!prof annotations should have no less than 2 operands", MD);
2163
2164 // Check first operand.
2165 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2166 MD);
2167 Check(isa<MDString>(MD->getOperand(0)),
2168 "expected string with name of the !prof annotation", MD);
2169 MDString *MDS = cast<MDString>(MD->getOperand(0));
2170 StringRef ProfName = MDS->getString();
2171 Check(ProfName.equals("function_entry_count") ||
2172 ProfName.equals("synthetic_function_entry_count"),
2173 "first operand should be 'function_entry_count'"
2174 " or 'synthetic_function_entry_count'",
2175 MD);
2176
2177 // Check second operand.
2178 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2179 MD);
2180 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2181 "expected integer argument to function_entry_count", MD);
2182 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2183 MDNode *MD = Pair.second;
2184 Check(MD->getNumOperands() == 1,
2185 "!kcfi_type must have exactly one operand", MD);
2186 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2187 MD);
2188 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2189 "expected a constant operand for !kcfi_type", MD);
2190 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2191 Check(isa<ConstantInt>(C),
2192 "expected a constant integer operand for !kcfi_type", MD);
2193 IntegerType *Type = cast<ConstantInt>(C)->getType();
2194 Check(Type->getBitWidth() == 32,
2195 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2196 }
2197 }
2198 }
2199
visitConstantExprsRecursively(const Constant * EntryC)2200 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2201 if (!ConstantExprVisited.insert(EntryC).second)
2202 return;
2203
2204 SmallVector<const Constant *, 16> Stack;
2205 Stack.push_back(EntryC);
2206
2207 while (!Stack.empty()) {
2208 const Constant *C = Stack.pop_back_val();
2209
2210 // Check this constant expression.
2211 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2212 visitConstantExpr(CE);
2213
2214 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2215 // Global Values get visited separately, but we do need to make sure
2216 // that the global value is in the correct module
2217 Check(GV->getParent() == &M, "Referencing global in another module!",
2218 EntryC, &M, GV, GV->getParent());
2219 continue;
2220 }
2221
2222 // Visit all sub-expressions.
2223 for (const Use &U : C->operands()) {
2224 const auto *OpC = dyn_cast<Constant>(U);
2225 if (!OpC)
2226 continue;
2227 if (!ConstantExprVisited.insert(OpC).second)
2228 continue;
2229 Stack.push_back(OpC);
2230 }
2231 }
2232 }
2233
visitConstantExpr(const ConstantExpr * CE)2234 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2235 if (CE->getOpcode() == Instruction::BitCast)
2236 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2237 CE->getType()),
2238 "Invalid bitcast", CE);
2239 }
2240
verifyAttributeCount(AttributeList Attrs,unsigned Params)2241 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2242 // There shouldn't be more attribute sets than there are parameters plus the
2243 // function and return value.
2244 return Attrs.getNumAttrSets() <= Params + 2;
2245 }
2246
verifyInlineAsmCall(const CallBase & Call)2247 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2248 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2249 unsigned ArgNo = 0;
2250 unsigned LabelNo = 0;
2251 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2252 if (CI.Type == InlineAsm::isLabel) {
2253 ++LabelNo;
2254 continue;
2255 }
2256
2257 // Only deal with constraints that correspond to call arguments.
2258 if (!CI.hasArg())
2259 continue;
2260
2261 if (CI.isIndirect) {
2262 const Value *Arg = Call.getArgOperand(ArgNo);
2263 Check(Arg->getType()->isPointerTy(),
2264 "Operand for indirect constraint must have pointer type", &Call);
2265
2266 Check(Call.getParamElementType(ArgNo),
2267 "Operand for indirect constraint must have elementtype attribute",
2268 &Call);
2269 } else {
2270 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2271 "Elementtype attribute can only be applied for indirect "
2272 "constraints",
2273 &Call);
2274 }
2275
2276 ArgNo++;
2277 }
2278
2279 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2280 Check(LabelNo == CallBr->getNumIndirectDests(),
2281 "Number of label constraints does not match number of callbr dests",
2282 &Call);
2283 } else {
2284 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2285 &Call);
2286 }
2287 }
2288
2289 /// Verify that statepoint intrinsic is well formed.
verifyStatepoint(const CallBase & Call)2290 void Verifier::verifyStatepoint(const CallBase &Call) {
2291 assert(Call.getCalledFunction() &&
2292 Call.getCalledFunction()->getIntrinsicID() ==
2293 Intrinsic::experimental_gc_statepoint);
2294
2295 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2296 !Call.onlyAccessesArgMemory(),
2297 "gc.statepoint must read and write all memory to preserve "
2298 "reordering restrictions required by safepoint semantics",
2299 Call);
2300
2301 const int64_t NumPatchBytes =
2302 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2303 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2304 Check(NumPatchBytes >= 0,
2305 "gc.statepoint number of patchable bytes must be "
2306 "positive",
2307 Call);
2308
2309 Type *TargetElemType = Call.getParamElementType(2);
2310 Check(TargetElemType,
2311 "gc.statepoint callee argument must have elementtype attribute", Call);
2312 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2313 Check(TargetFuncType,
2314 "gc.statepoint callee elementtype must be function type", Call);
2315
2316 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2317 Check(NumCallArgs >= 0,
2318 "gc.statepoint number of arguments to underlying call "
2319 "must be positive",
2320 Call);
2321 const int NumParams = (int)TargetFuncType->getNumParams();
2322 if (TargetFuncType->isVarArg()) {
2323 Check(NumCallArgs >= NumParams,
2324 "gc.statepoint mismatch in number of vararg call args", Call);
2325
2326 // TODO: Remove this limitation
2327 Check(TargetFuncType->getReturnType()->isVoidTy(),
2328 "gc.statepoint doesn't support wrapping non-void "
2329 "vararg functions yet",
2330 Call);
2331 } else
2332 Check(NumCallArgs == NumParams,
2333 "gc.statepoint mismatch in number of call args", Call);
2334
2335 const uint64_t Flags
2336 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2337 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2338 "unknown flag used in gc.statepoint flags argument", Call);
2339
2340 // Verify that the types of the call parameter arguments match
2341 // the type of the wrapped callee.
2342 AttributeList Attrs = Call.getAttributes();
2343 for (int i = 0; i < NumParams; i++) {
2344 Type *ParamType = TargetFuncType->getParamType(i);
2345 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2346 Check(ArgType == ParamType,
2347 "gc.statepoint call argument does not match wrapped "
2348 "function type",
2349 Call);
2350
2351 if (TargetFuncType->isVarArg()) {
2352 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2353 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2354 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2355 }
2356 }
2357
2358 const int EndCallArgsInx = 4 + NumCallArgs;
2359
2360 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2361 Check(isa<ConstantInt>(NumTransitionArgsV),
2362 "gc.statepoint number of transition arguments "
2363 "must be constant integer",
2364 Call);
2365 const int NumTransitionArgs =
2366 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2367 Check(NumTransitionArgs == 0,
2368 "gc.statepoint w/inline transition bundle is deprecated", Call);
2369 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2370
2371 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2372 Check(isa<ConstantInt>(NumDeoptArgsV),
2373 "gc.statepoint number of deoptimization arguments "
2374 "must be constant integer",
2375 Call);
2376 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2377 Check(NumDeoptArgs == 0,
2378 "gc.statepoint w/inline deopt operands is deprecated", Call);
2379
2380 const int ExpectedNumArgs = 7 + NumCallArgs;
2381 Check(ExpectedNumArgs == (int)Call.arg_size(),
2382 "gc.statepoint too many arguments", Call);
2383
2384 // Check that the only uses of this gc.statepoint are gc.result or
2385 // gc.relocate calls which are tied to this statepoint and thus part
2386 // of the same statepoint sequence
2387 for (const User *U : Call.users()) {
2388 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2389 Check(UserCall, "illegal use of statepoint token", Call, U);
2390 if (!UserCall)
2391 continue;
2392 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2393 "gc.result or gc.relocate are the only value uses "
2394 "of a gc.statepoint",
2395 Call, U);
2396 if (isa<GCResultInst>(UserCall)) {
2397 Check(UserCall->getArgOperand(0) == &Call,
2398 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2399 } else if (isa<GCRelocateInst>(Call)) {
2400 Check(UserCall->getArgOperand(0) == &Call,
2401 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2402 }
2403 }
2404
2405 // Note: It is legal for a single derived pointer to be listed multiple
2406 // times. It's non-optimal, but it is legal. It can also happen after
2407 // insertion if we strip a bitcast away.
2408 // Note: It is really tempting to check that each base is relocated and
2409 // that a derived pointer is never reused as a base pointer. This turns
2410 // out to be problematic since optimizations run after safepoint insertion
2411 // can recognize equality properties that the insertion logic doesn't know
2412 // about. See example statepoint.ll in the verifier subdirectory
2413 }
2414
verifyFrameRecoverIndices()2415 void Verifier::verifyFrameRecoverIndices() {
2416 for (auto &Counts : FrameEscapeInfo) {
2417 Function *F = Counts.first;
2418 unsigned EscapedObjectCount = Counts.second.first;
2419 unsigned MaxRecoveredIndex = Counts.second.second;
2420 Check(MaxRecoveredIndex <= EscapedObjectCount,
2421 "all indices passed to llvm.localrecover must be less than the "
2422 "number of arguments passed to llvm.localescape in the parent "
2423 "function",
2424 F);
2425 }
2426 }
2427
getSuccPad(Instruction * Terminator)2428 static Instruction *getSuccPad(Instruction *Terminator) {
2429 BasicBlock *UnwindDest;
2430 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2431 UnwindDest = II->getUnwindDest();
2432 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2433 UnwindDest = CSI->getUnwindDest();
2434 else
2435 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2436 return UnwindDest->getFirstNonPHI();
2437 }
2438
verifySiblingFuncletUnwinds()2439 void Verifier::verifySiblingFuncletUnwinds() {
2440 SmallPtrSet<Instruction *, 8> Visited;
2441 SmallPtrSet<Instruction *, 8> Active;
2442 for (const auto &Pair : SiblingFuncletInfo) {
2443 Instruction *PredPad = Pair.first;
2444 if (Visited.count(PredPad))
2445 continue;
2446 Active.insert(PredPad);
2447 Instruction *Terminator = Pair.second;
2448 do {
2449 Instruction *SuccPad = getSuccPad(Terminator);
2450 if (Active.count(SuccPad)) {
2451 // Found a cycle; report error
2452 Instruction *CyclePad = SuccPad;
2453 SmallVector<Instruction *, 8> CycleNodes;
2454 do {
2455 CycleNodes.push_back(CyclePad);
2456 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2457 if (CycleTerminator != CyclePad)
2458 CycleNodes.push_back(CycleTerminator);
2459 CyclePad = getSuccPad(CycleTerminator);
2460 } while (CyclePad != SuccPad);
2461 Check(false, "EH pads can't handle each other's exceptions",
2462 ArrayRef<Instruction *>(CycleNodes));
2463 }
2464 // Don't re-walk a node we've already checked
2465 if (!Visited.insert(SuccPad).second)
2466 break;
2467 // Walk to this successor if it has a map entry.
2468 PredPad = SuccPad;
2469 auto TermI = SiblingFuncletInfo.find(PredPad);
2470 if (TermI == SiblingFuncletInfo.end())
2471 break;
2472 Terminator = TermI->second;
2473 Active.insert(PredPad);
2474 } while (true);
2475 // Each node only has one successor, so we've walked all the active
2476 // nodes' successors.
2477 Active.clear();
2478 }
2479 }
2480
2481 // visitFunction - Verify that a function is ok.
2482 //
visitFunction(const Function & F)2483 void Verifier::visitFunction(const Function &F) {
2484 visitGlobalValue(F);
2485
2486 // Check function arguments.
2487 FunctionType *FT = F.getFunctionType();
2488 unsigned NumArgs = F.arg_size();
2489
2490 Check(&Context == &F.getContext(),
2491 "Function context does not match Module context!", &F);
2492
2493 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2494 Check(FT->getNumParams() == NumArgs,
2495 "# formal arguments must match # of arguments for function type!", &F,
2496 FT);
2497 Check(F.getReturnType()->isFirstClassType() ||
2498 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2499 "Functions cannot return aggregate values!", &F);
2500
2501 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2502 "Invalid struct return type!", &F);
2503
2504 AttributeList Attrs = F.getAttributes();
2505
2506 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2507 "Attribute after last parameter!", &F);
2508
2509 bool IsIntrinsic = F.isIntrinsic();
2510
2511 // Check function attributes.
2512 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2513
2514 // On function declarations/definitions, we do not support the builtin
2515 // attribute. We do not check this in VerifyFunctionAttrs since that is
2516 // checking for Attributes that can/can not ever be on functions.
2517 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2518 "Attribute 'builtin' can only be applied to a callsite.", &F);
2519
2520 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2521 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2522
2523 // Check that this function meets the restrictions on this calling convention.
2524 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2525 // restrictions can be lifted.
2526 switch (F.getCallingConv()) {
2527 default:
2528 case CallingConv::C:
2529 break;
2530 case CallingConv::X86_INTR: {
2531 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2532 "Calling convention parameter requires byval", &F);
2533 break;
2534 }
2535 case CallingConv::AMDGPU_KERNEL:
2536 case CallingConv::SPIR_KERNEL:
2537 Check(F.getReturnType()->isVoidTy(),
2538 "Calling convention requires void return type", &F);
2539 [[fallthrough]];
2540 case CallingConv::AMDGPU_VS:
2541 case CallingConv::AMDGPU_HS:
2542 case CallingConv::AMDGPU_GS:
2543 case CallingConv::AMDGPU_PS:
2544 case CallingConv::AMDGPU_CS:
2545 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2546 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2547 const unsigned StackAS = DL.getAllocaAddrSpace();
2548 unsigned i = 0;
2549 for (const Argument &Arg : F.args()) {
2550 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2551 "Calling convention disallows byval", &F);
2552 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2553 "Calling convention disallows preallocated", &F);
2554 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2555 "Calling convention disallows inalloca", &F);
2556
2557 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2558 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2559 // value here.
2560 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2561 "Calling convention disallows stack byref", &F);
2562 }
2563
2564 ++i;
2565 }
2566 }
2567
2568 [[fallthrough]];
2569 case CallingConv::Fast:
2570 case CallingConv::Cold:
2571 case CallingConv::Intel_OCL_BI:
2572 case CallingConv::PTX_Kernel:
2573 case CallingConv::PTX_Device:
2574 Check(!F.isVarArg(),
2575 "Calling convention does not support varargs or "
2576 "perfect forwarding!",
2577 &F);
2578 break;
2579 }
2580
2581 // Check that the argument values match the function type for this function...
2582 unsigned i = 0;
2583 for (const Argument &Arg : F.args()) {
2584 Check(Arg.getType() == FT->getParamType(i),
2585 "Argument value does not match function argument type!", &Arg,
2586 FT->getParamType(i));
2587 Check(Arg.getType()->isFirstClassType(),
2588 "Function arguments must have first-class types!", &Arg);
2589 if (!IsIntrinsic) {
2590 Check(!Arg.getType()->isMetadataTy(),
2591 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2592 Check(!Arg.getType()->isTokenTy(),
2593 "Function takes token but isn't an intrinsic", &Arg, &F);
2594 Check(!Arg.getType()->isX86_AMXTy(),
2595 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2596 }
2597
2598 // Check that swifterror argument is only used by loads and stores.
2599 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2600 verifySwiftErrorValue(&Arg);
2601 }
2602 ++i;
2603 }
2604
2605 if (!IsIntrinsic) {
2606 Check(!F.getReturnType()->isTokenTy(),
2607 "Function returns a token but isn't an intrinsic", &F);
2608 Check(!F.getReturnType()->isX86_AMXTy(),
2609 "Function returns a x86_amx but isn't an intrinsic", &F);
2610 }
2611
2612 // Get the function metadata attachments.
2613 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2614 F.getAllMetadata(MDs);
2615 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2616 verifyFunctionMetadata(MDs);
2617
2618 // Check validity of the personality function
2619 if (F.hasPersonalityFn()) {
2620 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2621 if (Per)
2622 Check(Per->getParent() == F.getParent(),
2623 "Referencing personality function in another module!", &F,
2624 F.getParent(), Per, Per->getParent());
2625 }
2626
2627 if (F.isMaterializable()) {
2628 // Function has a body somewhere we can't see.
2629 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2630 MDs.empty() ? nullptr : MDs.front().second);
2631 } else if (F.isDeclaration()) {
2632 for (const auto &I : MDs) {
2633 // This is used for call site debug information.
2634 CheckDI(I.first != LLVMContext::MD_dbg ||
2635 !cast<DISubprogram>(I.second)->isDistinct(),
2636 "function declaration may only have a unique !dbg attachment",
2637 &F);
2638 Check(I.first != LLVMContext::MD_prof,
2639 "function declaration may not have a !prof attachment", &F);
2640
2641 // Verify the metadata itself.
2642 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2643 }
2644 Check(!F.hasPersonalityFn(),
2645 "Function declaration shouldn't have a personality routine", &F);
2646 } else {
2647 // Verify that this function (which has a body) is not named "llvm.*". It
2648 // is not legal to define intrinsics.
2649 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2650
2651 // Check the entry node
2652 const BasicBlock *Entry = &F.getEntryBlock();
2653 Check(pred_empty(Entry),
2654 "Entry block to function must not have predecessors!", Entry);
2655
2656 // The address of the entry block cannot be taken, unless it is dead.
2657 if (Entry->hasAddressTaken()) {
2658 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2659 "blockaddress may not be used with the entry block!", Entry);
2660 }
2661
2662 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2663 NumKCFIAttachments = 0;
2664 // Visit metadata attachments.
2665 for (const auto &I : MDs) {
2666 // Verify that the attachment is legal.
2667 auto AllowLocs = AreDebugLocsAllowed::No;
2668 switch (I.first) {
2669 default:
2670 break;
2671 case LLVMContext::MD_dbg: {
2672 ++NumDebugAttachments;
2673 CheckDI(NumDebugAttachments == 1,
2674 "function must have a single !dbg attachment", &F, I.second);
2675 CheckDI(isa<DISubprogram>(I.second),
2676 "function !dbg attachment must be a subprogram", &F, I.second);
2677 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2678 "function definition may only have a distinct !dbg attachment",
2679 &F);
2680
2681 auto *SP = cast<DISubprogram>(I.second);
2682 const Function *&AttachedTo = DISubprogramAttachments[SP];
2683 CheckDI(!AttachedTo || AttachedTo == &F,
2684 "DISubprogram attached to more than one function", SP, &F);
2685 AttachedTo = &F;
2686 AllowLocs = AreDebugLocsAllowed::Yes;
2687 break;
2688 }
2689 case LLVMContext::MD_prof:
2690 ++NumProfAttachments;
2691 Check(NumProfAttachments == 1,
2692 "function must have a single !prof attachment", &F, I.second);
2693 break;
2694 case LLVMContext::MD_kcfi_type:
2695 ++NumKCFIAttachments;
2696 Check(NumKCFIAttachments == 1,
2697 "function must have a single !kcfi_type attachment", &F,
2698 I.second);
2699 break;
2700 }
2701
2702 // Verify the metadata itself.
2703 visitMDNode(*I.second, AllowLocs);
2704 }
2705 }
2706
2707 // If this function is actually an intrinsic, verify that it is only used in
2708 // direct call/invokes, never having its "address taken".
2709 // Only do this if the module is materialized, otherwise we don't have all the
2710 // uses.
2711 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2712 const User *U;
2713 if (F.hasAddressTaken(&U, false, true, false,
2714 /*IgnoreARCAttachedCall=*/true))
2715 Check(false, "Invalid user of intrinsic instruction!", U);
2716 }
2717
2718 // Check intrinsics' signatures.
2719 switch (F.getIntrinsicID()) {
2720 case Intrinsic::experimental_gc_get_pointer_base: {
2721 FunctionType *FT = F.getFunctionType();
2722 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2723 Check(isa<PointerType>(F.getReturnType()),
2724 "gc.get.pointer.base must return a pointer", F);
2725 Check(FT->getParamType(0) == F.getReturnType(),
2726 "gc.get.pointer.base operand and result must be of the same type", F);
2727 break;
2728 }
2729 case Intrinsic::experimental_gc_get_pointer_offset: {
2730 FunctionType *FT = F.getFunctionType();
2731 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2732 Check(isa<PointerType>(FT->getParamType(0)),
2733 "gc.get.pointer.offset operand must be a pointer", F);
2734 Check(F.getReturnType()->isIntegerTy(),
2735 "gc.get.pointer.offset must return integer", F);
2736 break;
2737 }
2738 }
2739
2740 auto *N = F.getSubprogram();
2741 HasDebugInfo = (N != nullptr);
2742 if (!HasDebugInfo)
2743 return;
2744
2745 // Check that all !dbg attachments lead to back to N.
2746 //
2747 // FIXME: Check this incrementally while visiting !dbg attachments.
2748 // FIXME: Only check when N is the canonical subprogram for F.
2749 SmallPtrSet<const MDNode *, 32> Seen;
2750 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2751 // Be careful about using DILocation here since we might be dealing with
2752 // broken code (this is the Verifier after all).
2753 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2754 if (!DL)
2755 return;
2756 if (!Seen.insert(DL).second)
2757 return;
2758
2759 Metadata *Parent = DL->getRawScope();
2760 CheckDI(Parent && isa<DILocalScope>(Parent),
2761 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2762
2763 DILocalScope *Scope = DL->getInlinedAtScope();
2764 Check(Scope, "Failed to find DILocalScope", DL);
2765
2766 if (!Seen.insert(Scope).second)
2767 return;
2768
2769 DISubprogram *SP = Scope->getSubprogram();
2770
2771 // Scope and SP could be the same MDNode and we don't want to skip
2772 // validation in that case
2773 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2774 return;
2775
2776 CheckDI(SP->describes(&F),
2777 "!dbg attachment points at wrong subprogram for function", N, &F,
2778 &I, DL, Scope, SP);
2779 };
2780 for (auto &BB : F)
2781 for (auto &I : BB) {
2782 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2783 // The llvm.loop annotations also contain two DILocations.
2784 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2785 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2786 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2787 if (BrokenDebugInfo)
2788 return;
2789 }
2790 }
2791
2792 // verifyBasicBlock - Verify that a basic block is well formed...
2793 //
visitBasicBlock(BasicBlock & BB)2794 void Verifier::visitBasicBlock(BasicBlock &BB) {
2795 InstsInThisBlock.clear();
2796
2797 // Ensure that basic blocks have terminators!
2798 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2799
2800 // Check constraints that this basic block imposes on all of the PHI nodes in
2801 // it.
2802 if (isa<PHINode>(BB.front())) {
2803 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2804 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2805 llvm::sort(Preds);
2806 for (const PHINode &PN : BB.phis()) {
2807 Check(PN.getNumIncomingValues() == Preds.size(),
2808 "PHINode should have one entry for each predecessor of its "
2809 "parent basic block!",
2810 &PN);
2811
2812 // Get and sort all incoming values in the PHI node...
2813 Values.clear();
2814 Values.reserve(PN.getNumIncomingValues());
2815 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2816 Values.push_back(
2817 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2818 llvm::sort(Values);
2819
2820 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2821 // Check to make sure that if there is more than one entry for a
2822 // particular basic block in this PHI node, that the incoming values are
2823 // all identical.
2824 //
2825 Check(i == 0 || Values[i].first != Values[i - 1].first ||
2826 Values[i].second == Values[i - 1].second,
2827 "PHI node has multiple entries for the same basic block with "
2828 "different incoming values!",
2829 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2830
2831 // Check to make sure that the predecessors and PHI node entries are
2832 // matched up.
2833 Check(Values[i].first == Preds[i],
2834 "PHI node entries do not match predecessors!", &PN,
2835 Values[i].first, Preds[i]);
2836 }
2837 }
2838 }
2839
2840 // Check that all instructions have their parent pointers set up correctly.
2841 for (auto &I : BB)
2842 {
2843 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2844 }
2845 }
2846
visitTerminator(Instruction & I)2847 void Verifier::visitTerminator(Instruction &I) {
2848 // Ensure that terminators only exist at the end of the basic block.
2849 Check(&I == I.getParent()->getTerminator(),
2850 "Terminator found in the middle of a basic block!", I.getParent());
2851 visitInstruction(I);
2852 }
2853
visitBranchInst(BranchInst & BI)2854 void Verifier::visitBranchInst(BranchInst &BI) {
2855 if (BI.isConditional()) {
2856 Check(BI.getCondition()->getType()->isIntegerTy(1),
2857 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2858 }
2859 visitTerminator(BI);
2860 }
2861
visitReturnInst(ReturnInst & RI)2862 void Verifier::visitReturnInst(ReturnInst &RI) {
2863 Function *F = RI.getParent()->getParent();
2864 unsigned N = RI.getNumOperands();
2865 if (F->getReturnType()->isVoidTy())
2866 Check(N == 0,
2867 "Found return instr that returns non-void in Function of void "
2868 "return type!",
2869 &RI, F->getReturnType());
2870 else
2871 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2872 "Function return type does not match operand "
2873 "type of return inst!",
2874 &RI, F->getReturnType());
2875
2876 // Check to make sure that the return value has necessary properties for
2877 // terminators...
2878 visitTerminator(RI);
2879 }
2880
visitSwitchInst(SwitchInst & SI)2881 void Verifier::visitSwitchInst(SwitchInst &SI) {
2882 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2883 // Check to make sure that all of the constants in the switch instruction
2884 // have the same type as the switched-on value.
2885 Type *SwitchTy = SI.getCondition()->getType();
2886 SmallPtrSet<ConstantInt*, 32> Constants;
2887 for (auto &Case : SI.cases()) {
2888 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
2889 "Case value is not a constant integer.", &SI);
2890 Check(Case.getCaseValue()->getType() == SwitchTy,
2891 "Switch constants must all be same type as switch value!", &SI);
2892 Check(Constants.insert(Case.getCaseValue()).second,
2893 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2894 }
2895
2896 visitTerminator(SI);
2897 }
2898
visitIndirectBrInst(IndirectBrInst & BI)2899 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2900 Check(BI.getAddress()->getType()->isPointerTy(),
2901 "Indirectbr operand must have pointer type!", &BI);
2902 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2903 Check(BI.getDestination(i)->getType()->isLabelTy(),
2904 "Indirectbr destinations must all have pointer type!", &BI);
2905
2906 visitTerminator(BI);
2907 }
2908
visitCallBrInst(CallBrInst & CBI)2909 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2910 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
2911 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2912 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2913
2914 verifyInlineAsmCall(CBI);
2915 visitTerminator(CBI);
2916 }
2917
visitSelectInst(SelectInst & SI)2918 void Verifier::visitSelectInst(SelectInst &SI) {
2919 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2920 SI.getOperand(2)),
2921 "Invalid operands for select instruction!", &SI);
2922
2923 Check(SI.getTrueValue()->getType() == SI.getType(),
2924 "Select values must have same type as select instruction!", &SI);
2925 visitInstruction(SI);
2926 }
2927
2928 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2929 /// a pass, if any exist, it's an error.
2930 ///
visitUserOp1(Instruction & I)2931 void Verifier::visitUserOp1(Instruction &I) {
2932 Check(false, "User-defined operators should not live outside of a pass!", &I);
2933 }
2934
visitTruncInst(TruncInst & I)2935 void Verifier::visitTruncInst(TruncInst &I) {
2936 // Get the source and destination types
2937 Type *SrcTy = I.getOperand(0)->getType();
2938 Type *DestTy = I.getType();
2939
2940 // Get the size of the types in bits, we'll need this later
2941 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2942 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2943
2944 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2945 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2946 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2947 "trunc source and destination must both be a vector or neither", &I);
2948 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2949
2950 visitInstruction(I);
2951 }
2952
visitZExtInst(ZExtInst & I)2953 void Verifier::visitZExtInst(ZExtInst &I) {
2954 // Get the source and destination types
2955 Type *SrcTy = I.getOperand(0)->getType();
2956 Type *DestTy = I.getType();
2957
2958 // Get the size of the types in bits, we'll need this later
2959 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2960 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2961 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2962 "zext source and destination must both be a vector or neither", &I);
2963 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2964 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2965
2966 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2967
2968 visitInstruction(I);
2969 }
2970
visitSExtInst(SExtInst & I)2971 void Verifier::visitSExtInst(SExtInst &I) {
2972 // Get the source and destination types
2973 Type *SrcTy = I.getOperand(0)->getType();
2974 Type *DestTy = I.getType();
2975
2976 // Get the size of the types in bits, we'll need this later
2977 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2978 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2979
2980 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2981 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2982 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2983 "sext source and destination must both be a vector or neither", &I);
2984 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2985
2986 visitInstruction(I);
2987 }
2988
visitFPTruncInst(FPTruncInst & I)2989 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2990 // Get the source and destination types
2991 Type *SrcTy = I.getOperand(0)->getType();
2992 Type *DestTy = I.getType();
2993 // Get the size of the types in bits, we'll need this later
2994 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2995 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2996
2997 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2998 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2999 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3000 "fptrunc source and destination must both be a vector or neither", &I);
3001 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3002
3003 visitInstruction(I);
3004 }
3005
visitFPExtInst(FPExtInst & I)3006 void Verifier::visitFPExtInst(FPExtInst &I) {
3007 // Get the source and destination types
3008 Type *SrcTy = I.getOperand(0)->getType();
3009 Type *DestTy = I.getType();
3010
3011 // Get the size of the types in bits, we'll need this later
3012 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3013 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3014
3015 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3016 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3017 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3018 "fpext source and destination must both be a vector or neither", &I);
3019 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3020
3021 visitInstruction(I);
3022 }
3023
visitUIToFPInst(UIToFPInst & I)3024 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3025 // Get the source and destination types
3026 Type *SrcTy = I.getOperand(0)->getType();
3027 Type *DestTy = I.getType();
3028
3029 bool SrcVec = SrcTy->isVectorTy();
3030 bool DstVec = DestTy->isVectorTy();
3031
3032 Check(SrcVec == DstVec,
3033 "UIToFP source and dest must both be vector or scalar", &I);
3034 Check(SrcTy->isIntOrIntVectorTy(),
3035 "UIToFP source must be integer or integer vector", &I);
3036 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3037 &I);
3038
3039 if (SrcVec && DstVec)
3040 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3041 cast<VectorType>(DestTy)->getElementCount(),
3042 "UIToFP source and dest vector length mismatch", &I);
3043
3044 visitInstruction(I);
3045 }
3046
visitSIToFPInst(SIToFPInst & I)3047 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3048 // Get the source and destination types
3049 Type *SrcTy = I.getOperand(0)->getType();
3050 Type *DestTy = I.getType();
3051
3052 bool SrcVec = SrcTy->isVectorTy();
3053 bool DstVec = DestTy->isVectorTy();
3054
3055 Check(SrcVec == DstVec,
3056 "SIToFP source and dest must both be vector or scalar", &I);
3057 Check(SrcTy->isIntOrIntVectorTy(),
3058 "SIToFP source must be integer or integer vector", &I);
3059 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3060 &I);
3061
3062 if (SrcVec && DstVec)
3063 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3064 cast<VectorType>(DestTy)->getElementCount(),
3065 "SIToFP source and dest vector length mismatch", &I);
3066
3067 visitInstruction(I);
3068 }
3069
visitFPToUIInst(FPToUIInst & I)3070 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3071 // Get the source and destination types
3072 Type *SrcTy = I.getOperand(0)->getType();
3073 Type *DestTy = I.getType();
3074
3075 bool SrcVec = SrcTy->isVectorTy();
3076 bool DstVec = DestTy->isVectorTy();
3077
3078 Check(SrcVec == DstVec,
3079 "FPToUI source and dest must both be vector or scalar", &I);
3080 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3081 Check(DestTy->isIntOrIntVectorTy(),
3082 "FPToUI result must be integer or integer vector", &I);
3083
3084 if (SrcVec && DstVec)
3085 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3086 cast<VectorType>(DestTy)->getElementCount(),
3087 "FPToUI source and dest vector length mismatch", &I);
3088
3089 visitInstruction(I);
3090 }
3091
visitFPToSIInst(FPToSIInst & I)3092 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3093 // Get the source and destination types
3094 Type *SrcTy = I.getOperand(0)->getType();
3095 Type *DestTy = I.getType();
3096
3097 bool SrcVec = SrcTy->isVectorTy();
3098 bool DstVec = DestTy->isVectorTy();
3099
3100 Check(SrcVec == DstVec,
3101 "FPToSI source and dest must both be vector or scalar", &I);
3102 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3103 Check(DestTy->isIntOrIntVectorTy(),
3104 "FPToSI result must be integer or integer vector", &I);
3105
3106 if (SrcVec && DstVec)
3107 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3108 cast<VectorType>(DestTy)->getElementCount(),
3109 "FPToSI source and dest vector length mismatch", &I);
3110
3111 visitInstruction(I);
3112 }
3113
visitPtrToIntInst(PtrToIntInst & I)3114 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3115 // Get the source and destination types
3116 Type *SrcTy = I.getOperand(0)->getType();
3117 Type *DestTy = I.getType();
3118
3119 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3120
3121 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3122 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3123 &I);
3124
3125 if (SrcTy->isVectorTy()) {
3126 auto *VSrc = cast<VectorType>(SrcTy);
3127 auto *VDest = cast<VectorType>(DestTy);
3128 Check(VSrc->getElementCount() == VDest->getElementCount(),
3129 "PtrToInt Vector width mismatch", &I);
3130 }
3131
3132 visitInstruction(I);
3133 }
3134
visitIntToPtrInst(IntToPtrInst & I)3135 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3136 // Get the source and destination types
3137 Type *SrcTy = I.getOperand(0)->getType();
3138 Type *DestTy = I.getType();
3139
3140 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3141 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3142
3143 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3144 &I);
3145 if (SrcTy->isVectorTy()) {
3146 auto *VSrc = cast<VectorType>(SrcTy);
3147 auto *VDest = cast<VectorType>(DestTy);
3148 Check(VSrc->getElementCount() == VDest->getElementCount(),
3149 "IntToPtr Vector width mismatch", &I);
3150 }
3151 visitInstruction(I);
3152 }
3153
visitBitCastInst(BitCastInst & I)3154 void Verifier::visitBitCastInst(BitCastInst &I) {
3155 Check(
3156 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3157 "Invalid bitcast", &I);
3158 visitInstruction(I);
3159 }
3160
visitAddrSpaceCastInst(AddrSpaceCastInst & I)3161 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3162 Type *SrcTy = I.getOperand(0)->getType();
3163 Type *DestTy = I.getType();
3164
3165 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3166 &I);
3167 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3168 &I);
3169 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3170 "AddrSpaceCast must be between different address spaces", &I);
3171 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3172 Check(SrcVTy->getElementCount() ==
3173 cast<VectorType>(DestTy)->getElementCount(),
3174 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3175 visitInstruction(I);
3176 }
3177
3178 /// visitPHINode - Ensure that a PHI node is well formed.
3179 ///
visitPHINode(PHINode & PN)3180 void Verifier::visitPHINode(PHINode &PN) {
3181 // Ensure that the PHI nodes are all grouped together at the top of the block.
3182 // This can be tested by checking whether the instruction before this is
3183 // either nonexistent (because this is begin()) or is a PHI node. If not,
3184 // then there is some other instruction before a PHI.
3185 Check(&PN == &PN.getParent()->front() ||
3186 isa<PHINode>(--BasicBlock::iterator(&PN)),
3187 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3188
3189 // Check that a PHI doesn't yield a Token.
3190 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3191
3192 // Check that all of the values of the PHI node have the same type as the
3193 // result, and that the incoming blocks are really basic blocks.
3194 for (Value *IncValue : PN.incoming_values()) {
3195 Check(PN.getType() == IncValue->getType(),
3196 "PHI node operands are not the same type as the result!", &PN);
3197 }
3198
3199 // All other PHI node constraints are checked in the visitBasicBlock method.
3200
3201 visitInstruction(PN);
3202 }
3203
visitCallBase(CallBase & Call)3204 void Verifier::visitCallBase(CallBase &Call) {
3205 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3206 "Called function must be a pointer!", Call);
3207 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3208
3209 Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3210 "Called function is not the same type as the call!", Call);
3211
3212 FunctionType *FTy = Call.getFunctionType();
3213
3214 // Verify that the correct number of arguments are being passed
3215 if (FTy->isVarArg())
3216 Check(Call.arg_size() >= FTy->getNumParams(),
3217 "Called function requires more parameters than were provided!", Call);
3218 else
3219 Check(Call.arg_size() == FTy->getNumParams(),
3220 "Incorrect number of arguments passed to called function!", Call);
3221
3222 // Verify that all arguments to the call match the function type.
3223 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3224 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3225 "Call parameter type does not match function signature!",
3226 Call.getArgOperand(i), FTy->getParamType(i), Call);
3227
3228 AttributeList Attrs = Call.getAttributes();
3229
3230 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3231 "Attribute after last parameter!", Call);
3232
3233 Function *Callee =
3234 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3235 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3236 if (IsIntrinsic)
3237 Check(Callee->getValueType() == FTy,
3238 "Intrinsic called with incompatible signature", Call);
3239
3240 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3241 if (!Ty->isSized())
3242 return;
3243 Align ABIAlign = DL.getABITypeAlign(Ty);
3244 Align MaxAlign(ParamMaxAlignment);
3245 Check(ABIAlign <= MaxAlign,
3246 "Incorrect alignment of " + Message + " to called function!", Call);
3247 };
3248
3249 if (!IsIntrinsic) {
3250 VerifyTypeAlign(FTy->getReturnType(), "return type");
3251 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3252 Type *Ty = FTy->getParamType(i);
3253 VerifyTypeAlign(Ty, "argument passed");
3254 }
3255 }
3256
3257 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3258 // Don't allow speculatable on call sites, unless the underlying function
3259 // declaration is also speculatable.
3260 Check(Callee && Callee->isSpeculatable(),
3261 "speculatable attribute may not apply to call sites", Call);
3262 }
3263
3264 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3265 Check(Call.getCalledFunction()->getIntrinsicID() ==
3266 Intrinsic::call_preallocated_arg,
3267 "preallocated as a call site attribute can only be on "
3268 "llvm.call.preallocated.arg");
3269 }
3270
3271 // Verify call attributes.
3272 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3273
3274 // Conservatively check the inalloca argument.
3275 // We have a bug if we can find that there is an underlying alloca without
3276 // inalloca.
3277 if (Call.hasInAllocaArgument()) {
3278 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3279 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3280 Check(AI->isUsedWithInAlloca(),
3281 "inalloca argument for call has mismatched alloca", AI, Call);
3282 }
3283
3284 // For each argument of the callsite, if it has the swifterror argument,
3285 // make sure the underlying alloca/parameter it comes from has a swifterror as
3286 // well.
3287 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3288 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3289 Value *SwiftErrorArg = Call.getArgOperand(i);
3290 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3291 Check(AI->isSwiftError(),
3292 "swifterror argument for call has mismatched alloca", AI, Call);
3293 continue;
3294 }
3295 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3296 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3297 SwiftErrorArg, Call);
3298 Check(ArgI->hasSwiftErrorAttr(),
3299 "swifterror argument for call has mismatched parameter", ArgI,
3300 Call);
3301 }
3302
3303 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3304 // Don't allow immarg on call sites, unless the underlying declaration
3305 // also has the matching immarg.
3306 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3307 "immarg may not apply only to call sites", Call.getArgOperand(i),
3308 Call);
3309 }
3310
3311 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3312 Value *ArgVal = Call.getArgOperand(i);
3313 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3314 "immarg operand has non-immediate parameter", ArgVal, Call);
3315 }
3316
3317 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3318 Value *ArgVal = Call.getArgOperand(i);
3319 bool hasOB =
3320 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3321 bool isMustTail = Call.isMustTailCall();
3322 Check(hasOB != isMustTail,
3323 "preallocated operand either requires a preallocated bundle or "
3324 "the call to be musttail (but not both)",
3325 ArgVal, Call);
3326 }
3327 }
3328
3329 if (FTy->isVarArg()) {
3330 // FIXME? is 'nest' even legal here?
3331 bool SawNest = false;
3332 bool SawReturned = false;
3333
3334 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3335 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3336 SawNest = true;
3337 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3338 SawReturned = true;
3339 }
3340
3341 // Check attributes on the varargs part.
3342 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3343 Type *Ty = Call.getArgOperand(Idx)->getType();
3344 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3345 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3346
3347 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3348 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3349 SawNest = true;
3350 }
3351
3352 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3353 Check(!SawReturned, "More than one parameter has attribute returned!",
3354 Call);
3355 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3356 "Incompatible argument and return types for 'returned' "
3357 "attribute",
3358 Call);
3359 SawReturned = true;
3360 }
3361
3362 // Statepoint intrinsic is vararg but the wrapped function may be not.
3363 // Allow sret here and check the wrapped function in verifyStatepoint.
3364 if (!Call.getCalledFunction() ||
3365 Call.getCalledFunction()->getIntrinsicID() !=
3366 Intrinsic::experimental_gc_statepoint)
3367 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3368 "Attribute 'sret' cannot be used for vararg call arguments!",
3369 Call);
3370
3371 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3372 Check(Idx == Call.arg_size() - 1,
3373 "inalloca isn't on the last argument!", Call);
3374 }
3375 }
3376
3377 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3378 if (!IsIntrinsic) {
3379 for (Type *ParamTy : FTy->params()) {
3380 Check(!ParamTy->isMetadataTy(),
3381 "Function has metadata parameter but isn't an intrinsic", Call);
3382 Check(!ParamTy->isTokenTy(),
3383 "Function has token parameter but isn't an intrinsic", Call);
3384 }
3385 }
3386
3387 // Verify that indirect calls don't return tokens.
3388 if (!Call.getCalledFunction()) {
3389 Check(!FTy->getReturnType()->isTokenTy(),
3390 "Return type cannot be token for indirect call!");
3391 Check(!FTy->getReturnType()->isX86_AMXTy(),
3392 "Return type cannot be x86_amx for indirect call!");
3393 }
3394
3395 if (Function *F = Call.getCalledFunction())
3396 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3397 visitIntrinsicCall(ID, Call);
3398
3399 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3400 // most one "gc-transition", at most one "cfguardtarget", at most one
3401 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3402 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3403 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3404 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3405 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3406 FoundAttachedCallBundle = false;
3407 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3408 OperandBundleUse BU = Call.getOperandBundleAt(i);
3409 uint32_t Tag = BU.getTagID();
3410 if (Tag == LLVMContext::OB_deopt) {
3411 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3412 FoundDeoptBundle = true;
3413 } else if (Tag == LLVMContext::OB_gc_transition) {
3414 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3415 Call);
3416 FoundGCTransitionBundle = true;
3417 } else if (Tag == LLVMContext::OB_funclet) {
3418 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3419 FoundFuncletBundle = true;
3420 Check(BU.Inputs.size() == 1,
3421 "Expected exactly one funclet bundle operand", Call);
3422 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3423 "Funclet bundle operands should correspond to a FuncletPadInst",
3424 Call);
3425 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3426 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3427 Call);
3428 FoundCFGuardTargetBundle = true;
3429 Check(BU.Inputs.size() == 1,
3430 "Expected exactly one cfguardtarget bundle operand", Call);
3431 } else if (Tag == LLVMContext::OB_ptrauth) {
3432 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3433 FoundPtrauthBundle = true;
3434 Check(BU.Inputs.size() == 2,
3435 "Expected exactly two ptrauth bundle operands", Call);
3436 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3437 BU.Inputs[0]->getType()->isIntegerTy(32),
3438 "Ptrauth bundle key operand must be an i32 constant", Call);
3439 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3440 "Ptrauth bundle discriminator operand must be an i64", Call);
3441 } else if (Tag == LLVMContext::OB_kcfi) {
3442 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3443 FoundKCFIBundle = true;
3444 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3445 Call);
3446 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3447 BU.Inputs[0]->getType()->isIntegerTy(32),
3448 "Kcfi bundle operand must be an i32 constant", Call);
3449 } else if (Tag == LLVMContext::OB_preallocated) {
3450 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3451 Call);
3452 FoundPreallocatedBundle = true;
3453 Check(BU.Inputs.size() == 1,
3454 "Expected exactly one preallocated bundle operand", Call);
3455 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3456 Check(Input &&
3457 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3458 "\"preallocated\" argument must be a token from "
3459 "llvm.call.preallocated.setup",
3460 Call);
3461 } else if (Tag == LLVMContext::OB_gc_live) {
3462 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3463 FoundGCLiveBundle = true;
3464 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3465 Check(!FoundAttachedCallBundle,
3466 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3467 FoundAttachedCallBundle = true;
3468 verifyAttachedCallBundle(Call, BU);
3469 }
3470 }
3471
3472 // Verify that callee and callsite agree on whether to use pointer auth.
3473 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3474 "Direct call cannot have a ptrauth bundle", Call);
3475
3476 // Verify that each inlinable callsite of a debug-info-bearing function in a
3477 // debug-info-bearing function has a debug location attached to it. Failure to
3478 // do so causes assertion failures when the inliner sets up inline scope info
3479 // (Interposable functions are not inlinable, neither are functions without
3480 // definitions.)
3481 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3482 !Call.getCalledFunction()->isInterposable() &&
3483 !Call.getCalledFunction()->isDeclaration() &&
3484 Call.getCalledFunction()->getSubprogram())
3485 CheckDI(Call.getDebugLoc(),
3486 "inlinable function call in a function with "
3487 "debug info must have a !dbg location",
3488 Call);
3489
3490 if (Call.isInlineAsm())
3491 verifyInlineAsmCall(Call);
3492
3493 visitInstruction(Call);
3494 }
3495
verifyTailCCMustTailAttrs(const AttrBuilder & Attrs,StringRef Context)3496 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3497 StringRef Context) {
3498 Check(!Attrs.contains(Attribute::InAlloca),
3499 Twine("inalloca attribute not allowed in ") + Context);
3500 Check(!Attrs.contains(Attribute::InReg),
3501 Twine("inreg attribute not allowed in ") + Context);
3502 Check(!Attrs.contains(Attribute::SwiftError),
3503 Twine("swifterror attribute not allowed in ") + Context);
3504 Check(!Attrs.contains(Attribute::Preallocated),
3505 Twine("preallocated attribute not allowed in ") + Context);
3506 Check(!Attrs.contains(Attribute::ByRef),
3507 Twine("byref attribute not allowed in ") + Context);
3508 }
3509
3510 /// Two types are "congruent" if they are identical, or if they are both pointer
3511 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)3512 static bool isTypeCongruent(Type *L, Type *R) {
3513 if (L == R)
3514 return true;
3515 PointerType *PL = dyn_cast<PointerType>(L);
3516 PointerType *PR = dyn_cast<PointerType>(R);
3517 if (!PL || !PR)
3518 return false;
3519 return PL->getAddressSpace() == PR->getAddressSpace();
3520 }
3521
getParameterABIAttributes(LLVMContext & C,unsigned I,AttributeList Attrs)3522 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3523 static const Attribute::AttrKind ABIAttrs[] = {
3524 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3525 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3526 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3527 Attribute::ByRef};
3528 AttrBuilder Copy(C);
3529 for (auto AK : ABIAttrs) {
3530 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3531 if (Attr.isValid())
3532 Copy.addAttribute(Attr);
3533 }
3534
3535 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3536 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3537 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3538 Attrs.hasParamAttr(I, Attribute::ByRef)))
3539 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3540 return Copy;
3541 }
3542
verifyMustTailCall(CallInst & CI)3543 void Verifier::verifyMustTailCall(CallInst &CI) {
3544 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3545
3546 Function *F = CI.getParent()->getParent();
3547 FunctionType *CallerTy = F->getFunctionType();
3548 FunctionType *CalleeTy = CI.getFunctionType();
3549 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3550 "cannot guarantee tail call due to mismatched varargs", &CI);
3551 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3552 "cannot guarantee tail call due to mismatched return types", &CI);
3553
3554 // - The calling conventions of the caller and callee must match.
3555 Check(F->getCallingConv() == CI.getCallingConv(),
3556 "cannot guarantee tail call due to mismatched calling conv", &CI);
3557
3558 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3559 // or a pointer bitcast followed by a ret instruction.
3560 // - The ret instruction must return the (possibly bitcasted) value
3561 // produced by the call or void.
3562 Value *RetVal = &CI;
3563 Instruction *Next = CI.getNextNode();
3564
3565 // Handle the optional bitcast.
3566 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3567 Check(BI->getOperand(0) == RetVal,
3568 "bitcast following musttail call must use the call", BI);
3569 RetVal = BI;
3570 Next = BI->getNextNode();
3571 }
3572
3573 // Check the return.
3574 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3575 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3576 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3577 isa<UndefValue>(Ret->getReturnValue()),
3578 "musttail call result must be returned", Ret);
3579
3580 AttributeList CallerAttrs = F->getAttributes();
3581 AttributeList CalleeAttrs = CI.getAttributes();
3582 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3583 CI.getCallingConv() == CallingConv::Tail) {
3584 StringRef CCName =
3585 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3586
3587 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3588 // are allowed in swifttailcc call
3589 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3590 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3591 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3592 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3593 }
3594 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3595 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3596 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3597 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3598 }
3599 // - Varargs functions are not allowed
3600 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3601 " tail call for varargs function");
3602 return;
3603 }
3604
3605 // - The caller and callee prototypes must match. Pointer types of
3606 // parameters or return types may differ in pointee type, but not
3607 // address space.
3608 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3609 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3610 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3611 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3612 Check(
3613 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3614 "cannot guarantee tail call due to mismatched parameter types", &CI);
3615 }
3616 }
3617
3618 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3619 // returned, preallocated, and inalloca, must match.
3620 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3621 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3622 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3623 Check(CallerABIAttrs == CalleeABIAttrs,
3624 "cannot guarantee tail call due to mismatched ABI impacting "
3625 "function attributes",
3626 &CI, CI.getOperand(I));
3627 }
3628 }
3629
visitCallInst(CallInst & CI)3630 void Verifier::visitCallInst(CallInst &CI) {
3631 visitCallBase(CI);
3632
3633 if (CI.isMustTailCall())
3634 verifyMustTailCall(CI);
3635 }
3636
visitInvokeInst(InvokeInst & II)3637 void Verifier::visitInvokeInst(InvokeInst &II) {
3638 visitCallBase(II);
3639
3640 // Verify that the first non-PHI instruction of the unwind destination is an
3641 // exception handling instruction.
3642 Check(
3643 II.getUnwindDest()->isEHPad(),
3644 "The unwind destination does not have an exception handling instruction!",
3645 &II);
3646
3647 visitTerminator(II);
3648 }
3649
3650 /// visitUnaryOperator - Check the argument to the unary operator.
3651 ///
visitUnaryOperator(UnaryOperator & U)3652 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3653 Check(U.getType() == U.getOperand(0)->getType(),
3654 "Unary operators must have same type for"
3655 "operands and result!",
3656 &U);
3657
3658 switch (U.getOpcode()) {
3659 // Check that floating-point arithmetic operators are only used with
3660 // floating-point operands.
3661 case Instruction::FNeg:
3662 Check(U.getType()->isFPOrFPVectorTy(),
3663 "FNeg operator only works with float types!", &U);
3664 break;
3665 default:
3666 llvm_unreachable("Unknown UnaryOperator opcode!");
3667 }
3668
3669 visitInstruction(U);
3670 }
3671
3672 /// visitBinaryOperator - Check that both arguments to the binary operator are
3673 /// of the same type!
3674 ///
visitBinaryOperator(BinaryOperator & B)3675 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3676 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3677 "Both operands to a binary operator are not of the same type!", &B);
3678
3679 switch (B.getOpcode()) {
3680 // Check that integer arithmetic operators are only used with
3681 // integral operands.
3682 case Instruction::Add:
3683 case Instruction::Sub:
3684 case Instruction::Mul:
3685 case Instruction::SDiv:
3686 case Instruction::UDiv:
3687 case Instruction::SRem:
3688 case Instruction::URem:
3689 Check(B.getType()->isIntOrIntVectorTy(),
3690 "Integer arithmetic operators only work with integral types!", &B);
3691 Check(B.getType() == B.getOperand(0)->getType(),
3692 "Integer arithmetic operators must have same type "
3693 "for operands and result!",
3694 &B);
3695 break;
3696 // Check that floating-point arithmetic operators are only used with
3697 // floating-point operands.
3698 case Instruction::FAdd:
3699 case Instruction::FSub:
3700 case Instruction::FMul:
3701 case Instruction::FDiv:
3702 case Instruction::FRem:
3703 Check(B.getType()->isFPOrFPVectorTy(),
3704 "Floating-point arithmetic operators only work with "
3705 "floating-point types!",
3706 &B);
3707 Check(B.getType() == B.getOperand(0)->getType(),
3708 "Floating-point arithmetic operators must have same type "
3709 "for operands and result!",
3710 &B);
3711 break;
3712 // Check that logical operators are only used with integral operands.
3713 case Instruction::And:
3714 case Instruction::Or:
3715 case Instruction::Xor:
3716 Check(B.getType()->isIntOrIntVectorTy(),
3717 "Logical operators only work with integral types!", &B);
3718 Check(B.getType() == B.getOperand(0)->getType(),
3719 "Logical operators must have same type for operands and result!", &B);
3720 break;
3721 case Instruction::Shl:
3722 case Instruction::LShr:
3723 case Instruction::AShr:
3724 Check(B.getType()->isIntOrIntVectorTy(),
3725 "Shifts only work with integral types!", &B);
3726 Check(B.getType() == B.getOperand(0)->getType(),
3727 "Shift return type must be same as operands!", &B);
3728 break;
3729 default:
3730 llvm_unreachable("Unknown BinaryOperator opcode!");
3731 }
3732
3733 visitInstruction(B);
3734 }
3735
visitICmpInst(ICmpInst & IC)3736 void Verifier::visitICmpInst(ICmpInst &IC) {
3737 // Check that the operands are the same type
3738 Type *Op0Ty = IC.getOperand(0)->getType();
3739 Type *Op1Ty = IC.getOperand(1)->getType();
3740 Check(Op0Ty == Op1Ty,
3741 "Both operands to ICmp instruction are not of the same type!", &IC);
3742 // Check that the operands are the right type
3743 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3744 "Invalid operand types for ICmp instruction", &IC);
3745 // Check that the predicate is valid.
3746 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3747
3748 visitInstruction(IC);
3749 }
3750
visitFCmpInst(FCmpInst & FC)3751 void Verifier::visitFCmpInst(FCmpInst &FC) {
3752 // Check that the operands are the same type
3753 Type *Op0Ty = FC.getOperand(0)->getType();
3754 Type *Op1Ty = FC.getOperand(1)->getType();
3755 Check(Op0Ty == Op1Ty,
3756 "Both operands to FCmp instruction are not of the same type!", &FC);
3757 // Check that the operands are the right type
3758 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3759 &FC);
3760 // Check that the predicate is valid.
3761 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3762
3763 visitInstruction(FC);
3764 }
3765
visitExtractElementInst(ExtractElementInst & EI)3766 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3767 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3768 "Invalid extractelement operands!", &EI);
3769 visitInstruction(EI);
3770 }
3771
visitInsertElementInst(InsertElementInst & IE)3772 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3773 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3774 IE.getOperand(2)),
3775 "Invalid insertelement operands!", &IE);
3776 visitInstruction(IE);
3777 }
3778
visitShuffleVectorInst(ShuffleVectorInst & SV)3779 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3780 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3781 SV.getShuffleMask()),
3782 "Invalid shufflevector operands!", &SV);
3783 visitInstruction(SV);
3784 }
3785
visitGetElementPtrInst(GetElementPtrInst & GEP)3786 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3787 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3788
3789 Check(isa<PointerType>(TargetTy),
3790 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3791 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3792
3793 SmallVector<Value *, 16> Idxs(GEP.indices());
3794 Check(
3795 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3796 "GEP indexes must be integers", &GEP);
3797 Type *ElTy =
3798 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3799 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3800
3801 Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3802 GEP.getResultElementType() == ElTy,
3803 "GEP is not of right type for indices!", &GEP, ElTy);
3804
3805 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3806 // Additional checks for vector GEPs.
3807 ElementCount GEPWidth = GEPVTy->getElementCount();
3808 if (GEP.getPointerOperandType()->isVectorTy())
3809 Check(
3810 GEPWidth ==
3811 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3812 "Vector GEP result width doesn't match operand's", &GEP);
3813 for (Value *Idx : Idxs) {
3814 Type *IndexTy = Idx->getType();
3815 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3816 ElementCount IndexWidth = IndexVTy->getElementCount();
3817 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3818 }
3819 Check(IndexTy->isIntOrIntVectorTy(),
3820 "All GEP indices should be of integer type");
3821 }
3822 }
3823
3824 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3825 Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3826 "GEP address space doesn't match type", &GEP);
3827 }
3828
3829 visitInstruction(GEP);
3830 }
3831
isContiguous(const ConstantRange & A,const ConstantRange & B)3832 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3833 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3834 }
3835
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)3836 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3837 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3838 "precondition violation");
3839
3840 unsigned NumOperands = Range->getNumOperands();
3841 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3842 unsigned NumRanges = NumOperands / 2;
3843 Check(NumRanges >= 1, "It should have at least one range!", Range);
3844
3845 ConstantRange LastRange(1, true); // Dummy initial value
3846 for (unsigned i = 0; i < NumRanges; ++i) {
3847 ConstantInt *Low =
3848 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3849 Check(Low, "The lower limit must be an integer!", Low);
3850 ConstantInt *High =
3851 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3852 Check(High, "The upper limit must be an integer!", High);
3853 Check(High->getType() == Low->getType() && High->getType() == Ty,
3854 "Range types must match instruction type!", &I);
3855
3856 APInt HighV = High->getValue();
3857 APInt LowV = Low->getValue();
3858 ConstantRange CurRange(LowV, HighV);
3859 Check(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3860 "Range must not be empty!", Range);
3861 if (i != 0) {
3862 Check(CurRange.intersectWith(LastRange).isEmptySet(),
3863 "Intervals are overlapping", Range);
3864 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3865 Range);
3866 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3867 Range);
3868 }
3869 LastRange = ConstantRange(LowV, HighV);
3870 }
3871 if (NumRanges > 2) {
3872 APInt FirstLow =
3873 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3874 APInt FirstHigh =
3875 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3876 ConstantRange FirstRange(FirstLow, FirstHigh);
3877 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3878 "Intervals are overlapping", Range);
3879 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3880 Range);
3881 }
3882 }
3883
checkAtomicMemAccessSize(Type * Ty,const Instruction * I)3884 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3885 unsigned Size = DL.getTypeSizeInBits(Ty);
3886 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3887 Check(!(Size & (Size - 1)),
3888 "atomic memory access' operand must have a power-of-two size", Ty, I);
3889 }
3890
visitLoadInst(LoadInst & LI)3891 void Verifier::visitLoadInst(LoadInst &LI) {
3892 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3893 Check(PTy, "Load operand must be a pointer.", &LI);
3894 Type *ElTy = LI.getType();
3895 if (MaybeAlign A = LI.getAlign()) {
3896 Check(A->value() <= Value::MaximumAlignment,
3897 "huge alignment values are unsupported", &LI);
3898 }
3899 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3900 if (LI.isAtomic()) {
3901 Check(LI.getOrdering() != AtomicOrdering::Release &&
3902 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3903 "Load cannot have Release ordering", &LI);
3904 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3905 "atomic load operand must have integer, pointer, or floating point "
3906 "type!",
3907 ElTy, &LI);
3908 checkAtomicMemAccessSize(ElTy, &LI);
3909 } else {
3910 Check(LI.getSyncScopeID() == SyncScope::System,
3911 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3912 }
3913
3914 visitInstruction(LI);
3915 }
3916
visitStoreInst(StoreInst & SI)3917 void Verifier::visitStoreInst(StoreInst &SI) {
3918 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3919 Check(PTy, "Store operand must be a pointer.", &SI);
3920 Type *ElTy = SI.getOperand(0)->getType();
3921 Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3922 "Stored value type does not match pointer operand type!", &SI, ElTy);
3923 if (MaybeAlign A = SI.getAlign()) {
3924 Check(A->value() <= Value::MaximumAlignment,
3925 "huge alignment values are unsupported", &SI);
3926 }
3927 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3928 if (SI.isAtomic()) {
3929 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
3930 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3931 "Store cannot have Acquire ordering", &SI);
3932 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3933 "atomic store operand must have integer, pointer, or floating point "
3934 "type!",
3935 ElTy, &SI);
3936 checkAtomicMemAccessSize(ElTy, &SI);
3937 } else {
3938 Check(SI.getSyncScopeID() == SyncScope::System,
3939 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3940 }
3941 visitInstruction(SI);
3942 }
3943
3944 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
verifySwiftErrorCall(CallBase & Call,const Value * SwiftErrorVal)3945 void Verifier::verifySwiftErrorCall(CallBase &Call,
3946 const Value *SwiftErrorVal) {
3947 for (const auto &I : llvm::enumerate(Call.args())) {
3948 if (I.value() == SwiftErrorVal) {
3949 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3950 "swifterror value when used in a callsite should be marked "
3951 "with swifterror attribute",
3952 SwiftErrorVal, Call);
3953 }
3954 }
3955 }
3956
verifySwiftErrorValue(const Value * SwiftErrorVal)3957 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3958 // Check that swifterror value is only used by loads, stores, or as
3959 // a swifterror argument.
3960 for (const User *U : SwiftErrorVal->users()) {
3961 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3962 isa<InvokeInst>(U),
3963 "swifterror value can only be loaded and stored from, or "
3964 "as a swifterror argument!",
3965 SwiftErrorVal, U);
3966 // If it is used by a store, check it is the second operand.
3967 if (auto StoreI = dyn_cast<StoreInst>(U))
3968 Check(StoreI->getOperand(1) == SwiftErrorVal,
3969 "swifterror value should be the second operand when used "
3970 "by stores",
3971 SwiftErrorVal, U);
3972 if (auto *Call = dyn_cast<CallBase>(U))
3973 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3974 }
3975 }
3976
visitAllocaInst(AllocaInst & AI)3977 void Verifier::visitAllocaInst(AllocaInst &AI) {
3978 SmallPtrSet<Type*, 4> Visited;
3979 Check(AI.getAllocatedType()->isSized(&Visited),
3980 "Cannot allocate unsized type", &AI);
3981 Check(AI.getArraySize()->getType()->isIntegerTy(),
3982 "Alloca array size must have integer type", &AI);
3983 if (MaybeAlign A = AI.getAlign()) {
3984 Check(A->value() <= Value::MaximumAlignment,
3985 "huge alignment values are unsupported", &AI);
3986 }
3987
3988 if (AI.isSwiftError()) {
3989 Check(AI.getAllocatedType()->isPointerTy(),
3990 "swifterror alloca must have pointer type", &AI);
3991 Check(!AI.isArrayAllocation(),
3992 "swifterror alloca must not be array allocation", &AI);
3993 verifySwiftErrorValue(&AI);
3994 }
3995
3996 visitInstruction(AI);
3997 }
3998
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)3999 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4000 Type *ElTy = CXI.getOperand(1)->getType();
4001 Check(ElTy->isIntOrPtrTy(),
4002 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4003 checkAtomicMemAccessSize(ElTy, &CXI);
4004 visitInstruction(CXI);
4005 }
4006
visitAtomicRMWInst(AtomicRMWInst & RMWI)4007 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4008 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4009 "atomicrmw instructions cannot be unordered.", &RMWI);
4010 auto Op = RMWI.getOperation();
4011 Type *ElTy = RMWI.getOperand(1)->getType();
4012 if (Op == AtomicRMWInst::Xchg) {
4013 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4014 ElTy->isPointerTy(),
4015 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4016 " operand must have integer or floating point type!",
4017 &RMWI, ElTy);
4018 } else if (AtomicRMWInst::isFPOperation(Op)) {
4019 Check(ElTy->isFloatingPointTy(),
4020 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4021 " operand must have floating point type!",
4022 &RMWI, ElTy);
4023 } else {
4024 Check(ElTy->isIntegerTy(),
4025 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4026 " operand must have integer type!",
4027 &RMWI, ElTy);
4028 }
4029 checkAtomicMemAccessSize(ElTy, &RMWI);
4030 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4031 "Invalid binary operation!", &RMWI);
4032 visitInstruction(RMWI);
4033 }
4034
visitFenceInst(FenceInst & FI)4035 void Verifier::visitFenceInst(FenceInst &FI) {
4036 const AtomicOrdering Ordering = FI.getOrdering();
4037 Check(Ordering == AtomicOrdering::Acquire ||
4038 Ordering == AtomicOrdering::Release ||
4039 Ordering == AtomicOrdering::AcquireRelease ||
4040 Ordering == AtomicOrdering::SequentiallyConsistent,
4041 "fence instructions may only have acquire, release, acq_rel, or "
4042 "seq_cst ordering.",
4043 &FI);
4044 visitInstruction(FI);
4045 }
4046
visitExtractValueInst(ExtractValueInst & EVI)4047 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4048 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4049 EVI.getIndices()) == EVI.getType(),
4050 "Invalid ExtractValueInst operands!", &EVI);
4051
4052 visitInstruction(EVI);
4053 }
4054
visitInsertValueInst(InsertValueInst & IVI)4055 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4056 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4057 IVI.getIndices()) ==
4058 IVI.getOperand(1)->getType(),
4059 "Invalid InsertValueInst operands!", &IVI);
4060
4061 visitInstruction(IVI);
4062 }
4063
getParentPad(Value * EHPad)4064 static Value *getParentPad(Value *EHPad) {
4065 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4066 return FPI->getParentPad();
4067
4068 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4069 }
4070
visitEHPadPredecessors(Instruction & I)4071 void Verifier::visitEHPadPredecessors(Instruction &I) {
4072 assert(I.isEHPad());
4073
4074 BasicBlock *BB = I.getParent();
4075 Function *F = BB->getParent();
4076
4077 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4078
4079 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4080 // The landingpad instruction defines its parent as a landing pad block. The
4081 // landing pad block may be branched to only by the unwind edge of an
4082 // invoke.
4083 for (BasicBlock *PredBB : predecessors(BB)) {
4084 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4085 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4086 "Block containing LandingPadInst must be jumped to "
4087 "only by the unwind edge of an invoke.",
4088 LPI);
4089 }
4090 return;
4091 }
4092 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4093 if (!pred_empty(BB))
4094 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4095 "Block containg CatchPadInst must be jumped to "
4096 "only by its catchswitch.",
4097 CPI);
4098 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4099 "Catchswitch cannot unwind to one of its catchpads",
4100 CPI->getCatchSwitch(), CPI);
4101 return;
4102 }
4103
4104 // Verify that each pred has a legal terminator with a legal to/from EH
4105 // pad relationship.
4106 Instruction *ToPad = &I;
4107 Value *ToPadParent = getParentPad(ToPad);
4108 for (BasicBlock *PredBB : predecessors(BB)) {
4109 Instruction *TI = PredBB->getTerminator();
4110 Value *FromPad;
4111 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4112 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4113 "EH pad must be jumped to via an unwind edge", ToPad, II);
4114 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4115 FromPad = Bundle->Inputs[0];
4116 else
4117 FromPad = ConstantTokenNone::get(II->getContext());
4118 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4119 FromPad = CRI->getOperand(0);
4120 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4121 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4122 FromPad = CSI;
4123 } else {
4124 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4125 }
4126
4127 // The edge may exit from zero or more nested pads.
4128 SmallSet<Value *, 8> Seen;
4129 for (;; FromPad = getParentPad(FromPad)) {
4130 Check(FromPad != ToPad,
4131 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4132 if (FromPad == ToPadParent) {
4133 // This is a legal unwind edge.
4134 break;
4135 }
4136 Check(!isa<ConstantTokenNone>(FromPad),
4137 "A single unwind edge may only enter one EH pad", TI);
4138 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4139 FromPad);
4140
4141 // This will be diagnosed on the corresponding instruction already. We
4142 // need the extra check here to make sure getParentPad() works.
4143 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4144 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4145 }
4146 }
4147 }
4148
visitLandingPadInst(LandingPadInst & LPI)4149 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4150 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4151 // isn't a cleanup.
4152 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4153 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4154
4155 visitEHPadPredecessors(LPI);
4156
4157 if (!LandingPadResultTy)
4158 LandingPadResultTy = LPI.getType();
4159 else
4160 Check(LandingPadResultTy == LPI.getType(),
4161 "The landingpad instruction should have a consistent result type "
4162 "inside a function.",
4163 &LPI);
4164
4165 Function *F = LPI.getParent()->getParent();
4166 Check(F->hasPersonalityFn(),
4167 "LandingPadInst needs to be in a function with a personality.", &LPI);
4168
4169 // The landingpad instruction must be the first non-PHI instruction in the
4170 // block.
4171 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4172 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4173
4174 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4175 Constant *Clause = LPI.getClause(i);
4176 if (LPI.isCatch(i)) {
4177 Check(isa<PointerType>(Clause->getType()),
4178 "Catch operand does not have pointer type!", &LPI);
4179 } else {
4180 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4181 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4182 "Filter operand is not an array of constants!", &LPI);
4183 }
4184 }
4185
4186 visitInstruction(LPI);
4187 }
4188
visitResumeInst(ResumeInst & RI)4189 void Verifier::visitResumeInst(ResumeInst &RI) {
4190 Check(RI.getFunction()->hasPersonalityFn(),
4191 "ResumeInst needs to be in a function with a personality.", &RI);
4192
4193 if (!LandingPadResultTy)
4194 LandingPadResultTy = RI.getValue()->getType();
4195 else
4196 Check(LandingPadResultTy == RI.getValue()->getType(),
4197 "The resume instruction should have a consistent result type "
4198 "inside a function.",
4199 &RI);
4200
4201 visitTerminator(RI);
4202 }
4203
visitCatchPadInst(CatchPadInst & CPI)4204 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4205 BasicBlock *BB = CPI.getParent();
4206
4207 Function *F = BB->getParent();
4208 Check(F->hasPersonalityFn(),
4209 "CatchPadInst needs to be in a function with a personality.", &CPI);
4210
4211 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4212 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4213 CPI.getParentPad());
4214
4215 // The catchpad instruction must be the first non-PHI instruction in the
4216 // block.
4217 Check(BB->getFirstNonPHI() == &CPI,
4218 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4219
4220 visitEHPadPredecessors(CPI);
4221 visitFuncletPadInst(CPI);
4222 }
4223
visitCatchReturnInst(CatchReturnInst & CatchReturn)4224 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4225 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4226 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4227 CatchReturn.getOperand(0));
4228
4229 visitTerminator(CatchReturn);
4230 }
4231
visitCleanupPadInst(CleanupPadInst & CPI)4232 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4233 BasicBlock *BB = CPI.getParent();
4234
4235 Function *F = BB->getParent();
4236 Check(F->hasPersonalityFn(),
4237 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4238
4239 // The cleanuppad instruction must be the first non-PHI instruction in the
4240 // block.
4241 Check(BB->getFirstNonPHI() == &CPI,
4242 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4243
4244 auto *ParentPad = CPI.getParentPad();
4245 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4246 "CleanupPadInst has an invalid parent.", &CPI);
4247
4248 visitEHPadPredecessors(CPI);
4249 visitFuncletPadInst(CPI);
4250 }
4251
visitFuncletPadInst(FuncletPadInst & FPI)4252 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4253 User *FirstUser = nullptr;
4254 Value *FirstUnwindPad = nullptr;
4255 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4256 SmallSet<FuncletPadInst *, 8> Seen;
4257
4258 while (!Worklist.empty()) {
4259 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4260 Check(Seen.insert(CurrentPad).second,
4261 "FuncletPadInst must not be nested within itself", CurrentPad);
4262 Value *UnresolvedAncestorPad = nullptr;
4263 for (User *U : CurrentPad->users()) {
4264 BasicBlock *UnwindDest;
4265 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4266 UnwindDest = CRI->getUnwindDest();
4267 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4268 // We allow catchswitch unwind to caller to nest
4269 // within an outer pad that unwinds somewhere else,
4270 // because catchswitch doesn't have a nounwind variant.
4271 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4272 if (CSI->unwindsToCaller())
4273 continue;
4274 UnwindDest = CSI->getUnwindDest();
4275 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4276 UnwindDest = II->getUnwindDest();
4277 } else if (isa<CallInst>(U)) {
4278 // Calls which don't unwind may be found inside funclet
4279 // pads that unwind somewhere else. We don't *require*
4280 // such calls to be annotated nounwind.
4281 continue;
4282 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4283 // The unwind dest for a cleanup can only be found by
4284 // recursive search. Add it to the worklist, and we'll
4285 // search for its first use that determines where it unwinds.
4286 Worklist.push_back(CPI);
4287 continue;
4288 } else {
4289 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4290 continue;
4291 }
4292
4293 Value *UnwindPad;
4294 bool ExitsFPI;
4295 if (UnwindDest) {
4296 UnwindPad = UnwindDest->getFirstNonPHI();
4297 if (!cast<Instruction>(UnwindPad)->isEHPad())
4298 continue;
4299 Value *UnwindParent = getParentPad(UnwindPad);
4300 // Ignore unwind edges that don't exit CurrentPad.
4301 if (UnwindParent == CurrentPad)
4302 continue;
4303 // Determine whether the original funclet pad is exited,
4304 // and if we are scanning nested pads determine how many
4305 // of them are exited so we can stop searching their
4306 // children.
4307 Value *ExitedPad = CurrentPad;
4308 ExitsFPI = false;
4309 do {
4310 if (ExitedPad == &FPI) {
4311 ExitsFPI = true;
4312 // Now we can resolve any ancestors of CurrentPad up to
4313 // FPI, but not including FPI since we need to make sure
4314 // to check all direct users of FPI for consistency.
4315 UnresolvedAncestorPad = &FPI;
4316 break;
4317 }
4318 Value *ExitedParent = getParentPad(ExitedPad);
4319 if (ExitedParent == UnwindParent) {
4320 // ExitedPad is the ancestor-most pad which this unwind
4321 // edge exits, so we can resolve up to it, meaning that
4322 // ExitedParent is the first ancestor still unresolved.
4323 UnresolvedAncestorPad = ExitedParent;
4324 break;
4325 }
4326 ExitedPad = ExitedParent;
4327 } while (!isa<ConstantTokenNone>(ExitedPad));
4328 } else {
4329 // Unwinding to caller exits all pads.
4330 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4331 ExitsFPI = true;
4332 UnresolvedAncestorPad = &FPI;
4333 }
4334
4335 if (ExitsFPI) {
4336 // This unwind edge exits FPI. Make sure it agrees with other
4337 // such edges.
4338 if (FirstUser) {
4339 Check(UnwindPad == FirstUnwindPad,
4340 "Unwind edges out of a funclet "
4341 "pad must have the same unwind "
4342 "dest",
4343 &FPI, U, FirstUser);
4344 } else {
4345 FirstUser = U;
4346 FirstUnwindPad = UnwindPad;
4347 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4348 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4349 getParentPad(UnwindPad) == getParentPad(&FPI))
4350 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4351 }
4352 }
4353 // Make sure we visit all uses of FPI, but for nested pads stop as
4354 // soon as we know where they unwind to.
4355 if (CurrentPad != &FPI)
4356 break;
4357 }
4358 if (UnresolvedAncestorPad) {
4359 if (CurrentPad == UnresolvedAncestorPad) {
4360 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4361 // we've found an unwind edge that exits it, because we need to verify
4362 // all direct uses of FPI.
4363 assert(CurrentPad == &FPI);
4364 continue;
4365 }
4366 // Pop off the worklist any nested pads that we've found an unwind
4367 // destination for. The pads on the worklist are the uncles,
4368 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4369 // for all ancestors of CurrentPad up to but not including
4370 // UnresolvedAncestorPad.
4371 Value *ResolvedPad = CurrentPad;
4372 while (!Worklist.empty()) {
4373 Value *UnclePad = Worklist.back();
4374 Value *AncestorPad = getParentPad(UnclePad);
4375 // Walk ResolvedPad up the ancestor list until we either find the
4376 // uncle's parent or the last resolved ancestor.
4377 while (ResolvedPad != AncestorPad) {
4378 Value *ResolvedParent = getParentPad(ResolvedPad);
4379 if (ResolvedParent == UnresolvedAncestorPad) {
4380 break;
4381 }
4382 ResolvedPad = ResolvedParent;
4383 }
4384 // If the resolved ancestor search didn't find the uncle's parent,
4385 // then the uncle is not yet resolved.
4386 if (ResolvedPad != AncestorPad)
4387 break;
4388 // This uncle is resolved, so pop it from the worklist.
4389 Worklist.pop_back();
4390 }
4391 }
4392 }
4393
4394 if (FirstUnwindPad) {
4395 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4396 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4397 Value *SwitchUnwindPad;
4398 if (SwitchUnwindDest)
4399 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4400 else
4401 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4402 Check(SwitchUnwindPad == FirstUnwindPad,
4403 "Unwind edges out of a catch must have the same unwind dest as "
4404 "the parent catchswitch",
4405 &FPI, FirstUser, CatchSwitch);
4406 }
4407 }
4408
4409 visitInstruction(FPI);
4410 }
4411
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)4412 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4413 BasicBlock *BB = CatchSwitch.getParent();
4414
4415 Function *F = BB->getParent();
4416 Check(F->hasPersonalityFn(),
4417 "CatchSwitchInst needs to be in a function with a personality.",
4418 &CatchSwitch);
4419
4420 // The catchswitch instruction must be the first non-PHI instruction in the
4421 // block.
4422 Check(BB->getFirstNonPHI() == &CatchSwitch,
4423 "CatchSwitchInst not the first non-PHI instruction in the block.",
4424 &CatchSwitch);
4425
4426 auto *ParentPad = CatchSwitch.getParentPad();
4427 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4428 "CatchSwitchInst has an invalid parent.", ParentPad);
4429
4430 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4431 Instruction *I = UnwindDest->getFirstNonPHI();
4432 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4433 "CatchSwitchInst must unwind to an EH block which is not a "
4434 "landingpad.",
4435 &CatchSwitch);
4436
4437 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4438 if (getParentPad(I) == ParentPad)
4439 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4440 }
4441
4442 Check(CatchSwitch.getNumHandlers() != 0,
4443 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4444
4445 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4446 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4447 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4448 }
4449
4450 visitEHPadPredecessors(CatchSwitch);
4451 visitTerminator(CatchSwitch);
4452 }
4453
visitCleanupReturnInst(CleanupReturnInst & CRI)4454 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4455 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4456 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4457 CRI.getOperand(0));
4458
4459 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4460 Instruction *I = UnwindDest->getFirstNonPHI();
4461 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4462 "CleanupReturnInst must unwind to an EH block which is not a "
4463 "landingpad.",
4464 &CRI);
4465 }
4466
4467 visitTerminator(CRI);
4468 }
4469
verifyDominatesUse(Instruction & I,unsigned i)4470 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4471 Instruction *Op = cast<Instruction>(I.getOperand(i));
4472 // If the we have an invalid invoke, don't try to compute the dominance.
4473 // We already reject it in the invoke specific checks and the dominance
4474 // computation doesn't handle multiple edges.
4475 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4476 if (II->getNormalDest() == II->getUnwindDest())
4477 return;
4478 }
4479
4480 // Quick check whether the def has already been encountered in the same block.
4481 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4482 // uses are defined to happen on the incoming edge, not at the instruction.
4483 //
4484 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4485 // wrapping an SSA value, assert that we've already encountered it. See
4486 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4487 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4488 return;
4489
4490 const Use &U = I.getOperandUse(i);
4491 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4492 }
4493
visitDereferenceableMetadata(Instruction & I,MDNode * MD)4494 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4495 Check(I.getType()->isPointerTy(),
4496 "dereferenceable, dereferenceable_or_null "
4497 "apply only to pointer types",
4498 &I);
4499 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4500 "dereferenceable, dereferenceable_or_null apply only to load"
4501 " and inttoptr instructions, use attributes for calls or invokes",
4502 &I);
4503 Check(MD->getNumOperands() == 1,
4504 "dereferenceable, dereferenceable_or_null "
4505 "take one operand!",
4506 &I);
4507 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4508 Check(CI && CI->getType()->isIntegerTy(64),
4509 "dereferenceable, "
4510 "dereferenceable_or_null metadata value must be an i64!",
4511 &I);
4512 }
4513
visitProfMetadata(Instruction & I,MDNode * MD)4514 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4515 Check(MD->getNumOperands() >= 2,
4516 "!prof annotations should have no less than 2 operands", MD);
4517
4518 // Check first operand.
4519 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4520 Check(isa<MDString>(MD->getOperand(0)),
4521 "expected string with name of the !prof annotation", MD);
4522 MDString *MDS = cast<MDString>(MD->getOperand(0));
4523 StringRef ProfName = MDS->getString();
4524
4525 // Check consistency of !prof branch_weights metadata.
4526 if (ProfName.equals("branch_weights")) {
4527 if (isa<InvokeInst>(&I)) {
4528 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4529 "Wrong number of InvokeInst branch_weights operands", MD);
4530 } else {
4531 unsigned ExpectedNumOperands = 0;
4532 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4533 ExpectedNumOperands = BI->getNumSuccessors();
4534 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4535 ExpectedNumOperands = SI->getNumSuccessors();
4536 else if (isa<CallInst>(&I))
4537 ExpectedNumOperands = 1;
4538 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4539 ExpectedNumOperands = IBI->getNumDestinations();
4540 else if (isa<SelectInst>(&I))
4541 ExpectedNumOperands = 2;
4542 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4543 ExpectedNumOperands = CI->getNumSuccessors();
4544 else
4545 CheckFailed("!prof branch_weights are not allowed for this instruction",
4546 MD);
4547
4548 Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4549 "Wrong number of operands", MD);
4550 }
4551 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4552 auto &MDO = MD->getOperand(i);
4553 Check(MDO, "second operand should not be null", MD);
4554 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4555 "!prof brunch_weights operand is not a const int");
4556 }
4557 }
4558 }
4559
visitDIAssignIDMetadata(Instruction & I,MDNode * MD)4560 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4561 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4562 bool ExpectedInstTy =
4563 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4564 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4565 I, MD);
4566 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4567 // only be found as DbgAssignIntrinsic operands.
4568 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4569 for (auto *User : AsValue->users()) {
4570 CheckDI(isa<DbgAssignIntrinsic>(User),
4571 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4572 MD, User);
4573 // All of the dbg.assign intrinsics should be in the same function as I.
4574 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4575 CheckDI(DAI->getFunction() == I.getFunction(),
4576 "dbg.assign not in same function as inst", DAI, &I);
4577 }
4578 }
4579 }
4580
visitCallStackMetadata(MDNode * MD)4581 void Verifier::visitCallStackMetadata(MDNode *MD) {
4582 // Call stack metadata should consist of a list of at least 1 constant int
4583 // (representing a hash of the location).
4584 Check(MD->getNumOperands() >= 1,
4585 "call stack metadata should have at least 1 operand", MD);
4586
4587 for (const auto &Op : MD->operands())
4588 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4589 "call stack metadata operand should be constant integer", Op);
4590 }
4591
visitMemProfMetadata(Instruction & I,MDNode * MD)4592 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4593 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4594 Check(MD->getNumOperands() >= 1,
4595 "!memprof annotations should have at least 1 metadata operand "
4596 "(MemInfoBlock)",
4597 MD);
4598
4599 // Check each MIB
4600 for (auto &MIBOp : MD->operands()) {
4601 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4602 // The first operand of an MIB should be the call stack metadata.
4603 // There rest of the operands should be MDString tags, and there should be
4604 // at least one.
4605 Check(MIB->getNumOperands() >= 2,
4606 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4607
4608 // Check call stack metadata (first operand).
4609 Check(MIB->getOperand(0) != nullptr,
4610 "!memprof MemInfoBlock first operand should not be null", MIB);
4611 Check(isa<MDNode>(MIB->getOperand(0)),
4612 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4613 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4614 visitCallStackMetadata(StackMD);
4615
4616 // Check that remaining operands are MDString.
4617 Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4618 [](const MDOperand &Op) { return isa<MDString>(Op); }),
4619 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4620 }
4621 }
4622
visitCallsiteMetadata(Instruction & I,MDNode * MD)4623 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4624 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4625 // Verify the partial callstack annotated from memprof profiles. This callsite
4626 // is a part of a profiled allocation callstack.
4627 visitCallStackMetadata(MD);
4628 }
4629
visitAnnotationMetadata(MDNode * Annotation)4630 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4631 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4632 Check(Annotation->getNumOperands() >= 1,
4633 "annotation must have at least one operand");
4634 for (const MDOperand &Op : Annotation->operands())
4635 Check(isa<MDString>(Op.get()), "operands must be strings");
4636 }
4637
visitAliasScopeMetadata(const MDNode * MD)4638 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4639 unsigned NumOps = MD->getNumOperands();
4640 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4641 MD);
4642 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4643 "first scope operand must be self-referential or string", MD);
4644 if (NumOps == 3)
4645 Check(isa<MDString>(MD->getOperand(2)),
4646 "third scope operand must be string (if used)", MD);
4647
4648 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4649 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4650
4651 unsigned NumDomainOps = Domain->getNumOperands();
4652 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4653 "domain must have one or two operands", Domain);
4654 Check(Domain->getOperand(0).get() == Domain ||
4655 isa<MDString>(Domain->getOperand(0)),
4656 "first domain operand must be self-referential or string", Domain);
4657 if (NumDomainOps == 2)
4658 Check(isa<MDString>(Domain->getOperand(1)),
4659 "second domain operand must be string (if used)", Domain);
4660 }
4661
visitAliasScopeListMetadata(const MDNode * MD)4662 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4663 for (const MDOperand &Op : MD->operands()) {
4664 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4665 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4666 visitAliasScopeMetadata(OpMD);
4667 }
4668 }
4669
visitAccessGroupMetadata(const MDNode * MD)4670 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4671 auto IsValidAccessScope = [](const MDNode *MD) {
4672 return MD->getNumOperands() == 0 && MD->isDistinct();
4673 };
4674
4675 // It must be either an access scope itself...
4676 if (IsValidAccessScope(MD))
4677 return;
4678
4679 // ...or a list of access scopes.
4680 for (const MDOperand &Op : MD->operands()) {
4681 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4682 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4683 Check(IsValidAccessScope(OpMD),
4684 "Access scope list contains invalid access scope", MD);
4685 }
4686 }
4687
4688 /// verifyInstruction - Verify that an instruction is well formed.
4689 ///
visitInstruction(Instruction & I)4690 void Verifier::visitInstruction(Instruction &I) {
4691 BasicBlock *BB = I.getParent();
4692 Check(BB, "Instruction not embedded in basic block!", &I);
4693
4694 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4695 for (User *U : I.users()) {
4696 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4697 "Only PHI nodes may reference their own value!", &I);
4698 }
4699 }
4700
4701 // Check that void typed values don't have names
4702 Check(!I.getType()->isVoidTy() || !I.hasName(),
4703 "Instruction has a name, but provides a void value!", &I);
4704
4705 // Check that the return value of the instruction is either void or a legal
4706 // value type.
4707 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4708 "Instruction returns a non-scalar type!", &I);
4709
4710 // Check that the instruction doesn't produce metadata. Calls are already
4711 // checked against the callee type.
4712 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4713 "Invalid use of metadata!", &I);
4714
4715 // Check that all uses of the instruction, if they are instructions
4716 // themselves, actually have parent basic blocks. If the use is not an
4717 // instruction, it is an error!
4718 for (Use &U : I.uses()) {
4719 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4720 Check(Used->getParent() != nullptr,
4721 "Instruction referencing"
4722 " instruction not embedded in a basic block!",
4723 &I, Used);
4724 else {
4725 CheckFailed("Use of instruction is not an instruction!", U);
4726 return;
4727 }
4728 }
4729
4730 // Get a pointer to the call base of the instruction if it is some form of
4731 // call.
4732 const CallBase *CBI = dyn_cast<CallBase>(&I);
4733
4734 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4735 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4736
4737 // Check to make sure that only first-class-values are operands to
4738 // instructions.
4739 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4740 Check(false, "Instruction operands must be first-class values!", &I);
4741 }
4742
4743 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4744 // This code checks whether the function is used as the operand of a
4745 // clang_arc_attachedcall operand bundle.
4746 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4747 int Idx) {
4748 return CBI && CBI->isOperandBundleOfType(
4749 LLVMContext::OB_clang_arc_attachedcall, Idx);
4750 };
4751
4752 // Check to make sure that the "address of" an intrinsic function is never
4753 // taken. Ignore cases where the address of the intrinsic function is used
4754 // as the argument of operand bundle "clang.arc.attachedcall" as those
4755 // cases are handled in verifyAttachedCallBundle.
4756 Check((!F->isIntrinsic() ||
4757 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4758 IsAttachedCallOperand(F, CBI, i)),
4759 "Cannot take the address of an intrinsic!", &I);
4760 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4761 F->getIntrinsicID() == Intrinsic::donothing ||
4762 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4763 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4764 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4765 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4766 F->getIntrinsicID() == Intrinsic::coro_resume ||
4767 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4768 F->getIntrinsicID() ==
4769 Intrinsic::experimental_patchpoint_void ||
4770 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4771 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4772 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4773 IsAttachedCallOperand(F, CBI, i),
4774 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4775 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4776 &I);
4777 Check(F->getParent() == &M, "Referencing function in another module!", &I,
4778 &M, F, F->getParent());
4779 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4780 Check(OpBB->getParent() == BB->getParent(),
4781 "Referring to a basic block in another function!", &I);
4782 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4783 Check(OpArg->getParent() == BB->getParent(),
4784 "Referring to an argument in another function!", &I);
4785 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4786 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4787 &M, GV, GV->getParent());
4788 } else if (isa<Instruction>(I.getOperand(i))) {
4789 verifyDominatesUse(I, i);
4790 } else if (isa<InlineAsm>(I.getOperand(i))) {
4791 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4792 "Cannot take the address of an inline asm!", &I);
4793 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4794 if (CE->getType()->isPtrOrPtrVectorTy()) {
4795 // If we have a ConstantExpr pointer, we need to see if it came from an
4796 // illegal bitcast.
4797 visitConstantExprsRecursively(CE);
4798 }
4799 }
4800 }
4801
4802 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4803 Check(I.getType()->isFPOrFPVectorTy(),
4804 "fpmath requires a floating point result!", &I);
4805 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4806 if (ConstantFP *CFP0 =
4807 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4808 const APFloat &Accuracy = CFP0->getValueAPF();
4809 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4810 "fpmath accuracy must have float type", &I);
4811 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4812 "fpmath accuracy not a positive number!", &I);
4813 } else {
4814 Check(false, "invalid fpmath accuracy!", &I);
4815 }
4816 }
4817
4818 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4819 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4820 "Ranges are only for loads, calls and invokes!", &I);
4821 visitRangeMetadata(I, Range, I.getType());
4822 }
4823
4824 if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4825 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4826 "invariant.group metadata is only for loads and stores", &I);
4827 }
4828
4829 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
4830 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4831 &I);
4832 Check(isa<LoadInst>(I),
4833 "nonnull applies only to load instructions, use attributes"
4834 " for calls or invokes",
4835 &I);
4836 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
4837 }
4838
4839 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4840 visitDereferenceableMetadata(I, MD);
4841
4842 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4843 visitDereferenceableMetadata(I, MD);
4844
4845 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4846 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4847
4848 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4849 visitAliasScopeListMetadata(MD);
4850 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4851 visitAliasScopeListMetadata(MD);
4852
4853 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4854 visitAccessGroupMetadata(MD);
4855
4856 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4857 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4858 &I);
4859 Check(isa<LoadInst>(I),
4860 "align applies only to load instructions, "
4861 "use attributes for calls or invokes",
4862 &I);
4863 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4864 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4865 Check(CI && CI->getType()->isIntegerTy(64),
4866 "align metadata value must be an i64!", &I);
4867 uint64_t Align = CI->getZExtValue();
4868 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
4869 &I);
4870 Check(Align <= Value::MaximumAlignment,
4871 "alignment is larger that implementation defined limit", &I);
4872 }
4873
4874 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4875 visitProfMetadata(I, MD);
4876
4877 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
4878 visitMemProfMetadata(I, MD);
4879
4880 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
4881 visitCallsiteMetadata(I, MD);
4882
4883 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
4884 visitDIAssignIDMetadata(I, MD);
4885
4886 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4887 visitAnnotationMetadata(Annotation);
4888
4889 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4890 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4891 visitMDNode(*N, AreDebugLocsAllowed::Yes);
4892 }
4893
4894 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4895 verifyFragmentExpression(*DII);
4896 verifyNotEntryValue(*DII);
4897 }
4898
4899 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4900 I.getAllMetadata(MDs);
4901 for (auto Attachment : MDs) {
4902 unsigned Kind = Attachment.first;
4903 auto AllowLocs =
4904 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4905 ? AreDebugLocsAllowed::Yes
4906 : AreDebugLocsAllowed::No;
4907 visitMDNode(*Attachment.second, AllowLocs);
4908 }
4909
4910 InstsInThisBlock.insert(&I);
4911 }
4912
4913 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCall(Intrinsic::ID ID,CallBase & Call)4914 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4915 Function *IF = Call.getCalledFunction();
4916 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4917 IF);
4918
4919 // Verify that the intrinsic prototype lines up with what the .td files
4920 // describe.
4921 FunctionType *IFTy = IF->getFunctionType();
4922 bool IsVarArg = IFTy->isVarArg();
4923
4924 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4925 getIntrinsicInfoTableEntries(ID, Table);
4926 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4927
4928 // Walk the descriptors to extract overloaded types.
4929 SmallVector<Type *, 4> ArgTys;
4930 Intrinsic::MatchIntrinsicTypesResult Res =
4931 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4932 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4933 "Intrinsic has incorrect return type!", IF);
4934 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4935 "Intrinsic has incorrect argument type!", IF);
4936
4937 // Verify if the intrinsic call matches the vararg property.
4938 if (IsVarArg)
4939 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4940 "Intrinsic was not defined with variable arguments!", IF);
4941 else
4942 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4943 "Callsite was not defined with variable arguments!", IF);
4944
4945 // All descriptors should be absorbed by now.
4946 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4947
4948 // Now that we have the intrinsic ID and the actual argument types (and we
4949 // know they are legal for the intrinsic!) get the intrinsic name through the
4950 // usual means. This allows us to verify the mangling of argument types into
4951 // the name.
4952 const std::string ExpectedName =
4953 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4954 Check(ExpectedName == IF->getName(),
4955 "Intrinsic name not mangled correctly for type arguments! "
4956 "Should be: " +
4957 ExpectedName,
4958 IF);
4959
4960 // If the intrinsic takes MDNode arguments, verify that they are either global
4961 // or are local to *this* function.
4962 for (Value *V : Call.args()) {
4963 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4964 visitMetadataAsValue(*MD, Call.getCaller());
4965 if (auto *Const = dyn_cast<Constant>(V))
4966 Check(!Const->getType()->isX86_AMXTy(),
4967 "const x86_amx is not allowed in argument!");
4968 }
4969
4970 switch (ID) {
4971 default:
4972 break;
4973 case Intrinsic::assume: {
4974 for (auto &Elem : Call.bundle_op_infos()) {
4975 unsigned ArgCount = Elem.End - Elem.Begin;
4976 // Separate storage assumptions are special insofar as they're the only
4977 // operand bundles allowed on assumes that aren't parameter attributes.
4978 if (Elem.Tag->getKey() == "separate_storage") {
4979 Check(ArgCount == 2,
4980 "separate_storage assumptions should have 2 arguments", Call);
4981 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
4982 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
4983 "arguments to separate_storage assumptions should be pointers",
4984 Call);
4985 return;
4986 }
4987 Check(Elem.Tag->getKey() == "ignore" ||
4988 Attribute::isExistingAttribute(Elem.Tag->getKey()),
4989 "tags must be valid attribute names", Call);
4990 Attribute::AttrKind Kind =
4991 Attribute::getAttrKindFromName(Elem.Tag->getKey());
4992 if (Kind == Attribute::Alignment) {
4993 Check(ArgCount <= 3 && ArgCount >= 2,
4994 "alignment assumptions should have 2 or 3 arguments", Call);
4995 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4996 "first argument should be a pointer", Call);
4997 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4998 "second argument should be an integer", Call);
4999 if (ArgCount == 3)
5000 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5001 "third argument should be an integer if present", Call);
5002 return;
5003 }
5004 Check(ArgCount <= 2, "too many arguments", Call);
5005 if (Kind == Attribute::None)
5006 break;
5007 if (Attribute::isIntAttrKind(Kind)) {
5008 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5009 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5010 "the second argument should be a constant integral value", Call);
5011 } else if (Attribute::canUseAsParamAttr(Kind)) {
5012 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5013 } else if (Attribute::canUseAsFnAttr(Kind)) {
5014 Check((ArgCount) == 0, "this attribute has no argument", Call);
5015 }
5016 }
5017 break;
5018 }
5019 case Intrinsic::coro_id: {
5020 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5021 if (isa<ConstantPointerNull>(InfoArg))
5022 break;
5023 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5024 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5025 "info argument of llvm.coro.id must refer to an initialized "
5026 "constant");
5027 Constant *Init = GV->getInitializer();
5028 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5029 "info argument of llvm.coro.id must refer to either a struct or "
5030 "an array");
5031 break;
5032 }
5033 case Intrinsic::is_fpclass: {
5034 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5035 Check((TestMask->getZExtValue() & ~fcAllFlags) == 0,
5036 "unsupported bits for llvm.is.fpclass test mask");
5037 break;
5038 }
5039 case Intrinsic::fptrunc_round: {
5040 // Check the rounding mode
5041 Metadata *MD = nullptr;
5042 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5043 if (MAV)
5044 MD = MAV->getMetadata();
5045
5046 Check(MD != nullptr, "missing rounding mode argument", Call);
5047
5048 Check(isa<MDString>(MD),
5049 ("invalid value for llvm.fptrunc.round metadata operand"
5050 " (the operand should be a string)"),
5051 MD);
5052
5053 std::optional<RoundingMode> RoundMode =
5054 convertStrToRoundingMode(cast<MDString>(MD)->getString());
5055 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5056 "unsupported rounding mode argument", Call);
5057 break;
5058 }
5059 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5060 #include "llvm/IR/VPIntrinsics.def"
5061 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5062 break;
5063 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5064 case Intrinsic::INTRINSIC:
5065 #include "llvm/IR/ConstrainedOps.def"
5066 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5067 break;
5068 case Intrinsic::dbg_declare: // llvm.dbg.declare
5069 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5070 "invalid llvm.dbg.declare intrinsic call 1", Call);
5071 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5072 break;
5073 case Intrinsic::dbg_addr: // llvm.dbg.addr
5074 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
5075 break;
5076 case Intrinsic::dbg_value: // llvm.dbg.value
5077 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5078 break;
5079 case Intrinsic::dbg_assign: // llvm.dbg.assign
5080 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5081 break;
5082 case Intrinsic::dbg_label: // llvm.dbg.label
5083 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5084 break;
5085 case Intrinsic::memcpy:
5086 case Intrinsic::memcpy_inline:
5087 case Intrinsic::memmove:
5088 case Intrinsic::memset:
5089 case Intrinsic::memset_inline: {
5090 break;
5091 }
5092 case Intrinsic::memcpy_element_unordered_atomic:
5093 case Intrinsic::memmove_element_unordered_atomic:
5094 case Intrinsic::memset_element_unordered_atomic: {
5095 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5096
5097 ConstantInt *ElementSizeCI =
5098 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5099 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5100 Check(ElementSizeVal.isPowerOf2(),
5101 "element size of the element-wise atomic memory intrinsic "
5102 "must be a power of 2",
5103 Call);
5104
5105 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5106 return Alignment && ElementSizeVal.ule(Alignment->value());
5107 };
5108 Check(IsValidAlignment(AMI->getDestAlign()),
5109 "incorrect alignment of the destination argument", Call);
5110 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5111 Check(IsValidAlignment(AMT->getSourceAlign()),
5112 "incorrect alignment of the source argument", Call);
5113 }
5114 break;
5115 }
5116 case Intrinsic::call_preallocated_setup: {
5117 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5118 Check(NumArgs != nullptr,
5119 "llvm.call.preallocated.setup argument must be a constant");
5120 bool FoundCall = false;
5121 for (User *U : Call.users()) {
5122 auto *UseCall = dyn_cast<CallBase>(U);
5123 Check(UseCall != nullptr,
5124 "Uses of llvm.call.preallocated.setup must be calls");
5125 const Function *Fn = UseCall->getCalledFunction();
5126 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5127 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5128 Check(AllocArgIndex != nullptr,
5129 "llvm.call.preallocated.alloc arg index must be a constant");
5130 auto AllocArgIndexInt = AllocArgIndex->getValue();
5131 Check(AllocArgIndexInt.sge(0) &&
5132 AllocArgIndexInt.slt(NumArgs->getValue()),
5133 "llvm.call.preallocated.alloc arg index must be between 0 and "
5134 "corresponding "
5135 "llvm.call.preallocated.setup's argument count");
5136 } else if (Fn && Fn->getIntrinsicID() ==
5137 Intrinsic::call_preallocated_teardown) {
5138 // nothing to do
5139 } else {
5140 Check(!FoundCall, "Can have at most one call corresponding to a "
5141 "llvm.call.preallocated.setup");
5142 FoundCall = true;
5143 size_t NumPreallocatedArgs = 0;
5144 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5145 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5146 ++NumPreallocatedArgs;
5147 }
5148 }
5149 Check(NumPreallocatedArgs != 0,
5150 "cannot use preallocated intrinsics on a call without "
5151 "preallocated arguments");
5152 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5153 "llvm.call.preallocated.setup arg size must be equal to number "
5154 "of preallocated arguments "
5155 "at call site",
5156 Call, *UseCall);
5157 // getOperandBundle() cannot be called if more than one of the operand
5158 // bundle exists. There is already a check elsewhere for this, so skip
5159 // here if we see more than one.
5160 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5161 1) {
5162 return;
5163 }
5164 auto PreallocatedBundle =
5165 UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5166 Check(PreallocatedBundle,
5167 "Use of llvm.call.preallocated.setup outside intrinsics "
5168 "must be in \"preallocated\" operand bundle");
5169 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5170 "preallocated bundle must have token from corresponding "
5171 "llvm.call.preallocated.setup");
5172 }
5173 }
5174 break;
5175 }
5176 case Intrinsic::call_preallocated_arg: {
5177 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5178 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5179 Intrinsic::call_preallocated_setup,
5180 "llvm.call.preallocated.arg token argument must be a "
5181 "llvm.call.preallocated.setup");
5182 Check(Call.hasFnAttr(Attribute::Preallocated),
5183 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5184 "call site attribute");
5185 break;
5186 }
5187 case Intrinsic::call_preallocated_teardown: {
5188 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5189 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5190 Intrinsic::call_preallocated_setup,
5191 "llvm.call.preallocated.teardown token argument must be a "
5192 "llvm.call.preallocated.setup");
5193 break;
5194 }
5195 case Intrinsic::gcroot:
5196 case Intrinsic::gcwrite:
5197 case Intrinsic::gcread:
5198 if (ID == Intrinsic::gcroot) {
5199 AllocaInst *AI =
5200 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5201 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5202 Check(isa<Constant>(Call.getArgOperand(1)),
5203 "llvm.gcroot parameter #2 must be a constant.", Call);
5204 if (!AI->getAllocatedType()->isPointerTy()) {
5205 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5206 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5207 "or argument #2 must be a non-null constant.",
5208 Call);
5209 }
5210 }
5211
5212 Check(Call.getParent()->getParent()->hasGC(),
5213 "Enclosing function does not use GC.", Call);
5214 break;
5215 case Intrinsic::init_trampoline:
5216 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5217 "llvm.init_trampoline parameter #2 must resolve to a function.",
5218 Call);
5219 break;
5220 case Intrinsic::prefetch:
5221 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5222 "rw argument to llvm.prefetch must be 0-1", Call);
5223 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5224 "locality argument to llvm.prefetch must be 0-4", Call);
5225 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5226 "cache type argument to llvm.prefetch must be 0-1", Call);
5227 break;
5228 case Intrinsic::stackprotector:
5229 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5230 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5231 break;
5232 case Intrinsic::localescape: {
5233 BasicBlock *BB = Call.getParent();
5234 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5235 Call);
5236 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5237 Call);
5238 for (Value *Arg : Call.args()) {
5239 if (isa<ConstantPointerNull>(Arg))
5240 continue; // Null values are allowed as placeholders.
5241 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5242 Check(AI && AI->isStaticAlloca(),
5243 "llvm.localescape only accepts static allocas", Call);
5244 }
5245 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5246 SawFrameEscape = true;
5247 break;
5248 }
5249 case Intrinsic::localrecover: {
5250 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5251 Function *Fn = dyn_cast<Function>(FnArg);
5252 Check(Fn && !Fn->isDeclaration(),
5253 "llvm.localrecover first "
5254 "argument must be function defined in this module",
5255 Call);
5256 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5257 auto &Entry = FrameEscapeInfo[Fn];
5258 Entry.second = unsigned(
5259 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5260 break;
5261 }
5262
5263 case Intrinsic::experimental_gc_statepoint:
5264 if (auto *CI = dyn_cast<CallInst>(&Call))
5265 Check(!CI->isInlineAsm(),
5266 "gc.statepoint support for inline assembly unimplemented", CI);
5267 Check(Call.getParent()->getParent()->hasGC(),
5268 "Enclosing function does not use GC.", Call);
5269
5270 verifyStatepoint(Call);
5271 break;
5272 case Intrinsic::experimental_gc_result: {
5273 Check(Call.getParent()->getParent()->hasGC(),
5274 "Enclosing function does not use GC.", Call);
5275
5276 auto *Statepoint = Call.getArgOperand(0);
5277 if (isa<UndefValue>(Statepoint))
5278 break;
5279
5280 // Are we tied to a statepoint properly?
5281 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5282 const Function *StatepointFn =
5283 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5284 Check(StatepointFn && StatepointFn->isDeclaration() &&
5285 StatepointFn->getIntrinsicID() ==
5286 Intrinsic::experimental_gc_statepoint,
5287 "gc.result operand #1 must be from a statepoint", Call,
5288 Call.getArgOperand(0));
5289
5290 // Check that result type matches wrapped callee.
5291 auto *TargetFuncType =
5292 cast<FunctionType>(StatepointCall->getParamElementType(2));
5293 Check(Call.getType() == TargetFuncType->getReturnType(),
5294 "gc.result result type does not match wrapped callee", Call);
5295 break;
5296 }
5297 case Intrinsic::experimental_gc_relocate: {
5298 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5299
5300 Check(isa<PointerType>(Call.getType()->getScalarType()),
5301 "gc.relocate must return a pointer or a vector of pointers", Call);
5302
5303 // Check that this relocate is correctly tied to the statepoint
5304
5305 // This is case for relocate on the unwinding path of an invoke statepoint
5306 if (LandingPadInst *LandingPad =
5307 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5308
5309 const BasicBlock *InvokeBB =
5310 LandingPad->getParent()->getUniquePredecessor();
5311
5312 // Landingpad relocates should have only one predecessor with invoke
5313 // statepoint terminator
5314 Check(InvokeBB, "safepoints should have unique landingpads",
5315 LandingPad->getParent());
5316 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5317 InvokeBB);
5318 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5319 "gc relocate should be linked to a statepoint", InvokeBB);
5320 } else {
5321 // In all other cases relocate should be tied to the statepoint directly.
5322 // This covers relocates on a normal return path of invoke statepoint and
5323 // relocates of a call statepoint.
5324 auto *Token = Call.getArgOperand(0);
5325 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5326 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5327 }
5328
5329 // Verify rest of the relocate arguments.
5330 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5331
5332 // Both the base and derived must be piped through the safepoint.
5333 Value *Base = Call.getArgOperand(1);
5334 Check(isa<ConstantInt>(Base),
5335 "gc.relocate operand #2 must be integer offset", Call);
5336
5337 Value *Derived = Call.getArgOperand(2);
5338 Check(isa<ConstantInt>(Derived),
5339 "gc.relocate operand #3 must be integer offset", Call);
5340
5341 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5342 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5343
5344 // Check the bounds
5345 if (isa<UndefValue>(StatepointCall))
5346 break;
5347 if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5348 .getOperandBundle(LLVMContext::OB_gc_live)) {
5349 Check(BaseIndex < Opt->Inputs.size(),
5350 "gc.relocate: statepoint base index out of bounds", Call);
5351 Check(DerivedIndex < Opt->Inputs.size(),
5352 "gc.relocate: statepoint derived index out of bounds", Call);
5353 }
5354
5355 // Relocated value must be either a pointer type or vector-of-pointer type,
5356 // but gc_relocate does not need to return the same pointer type as the
5357 // relocated pointer. It can be casted to the correct type later if it's
5358 // desired. However, they must have the same address space and 'vectorness'
5359 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5360 auto *ResultType = Call.getType();
5361 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5362 auto *BaseType = Relocate.getBasePtr()->getType();
5363
5364 Check(BaseType->isPtrOrPtrVectorTy(),
5365 "gc.relocate: relocated value must be a pointer", Call);
5366 Check(DerivedType->isPtrOrPtrVectorTy(),
5367 "gc.relocate: relocated value must be a pointer", Call);
5368
5369 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5370 "gc.relocate: vector relocates to vector and pointer to pointer",
5371 Call);
5372 Check(
5373 ResultType->getPointerAddressSpace() ==
5374 DerivedType->getPointerAddressSpace(),
5375 "gc.relocate: relocating a pointer shouldn't change its address space",
5376 Call);
5377
5378 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5379 Check(GC, "gc.relocate: calling function must have GCStrategy",
5380 Call.getFunction());
5381 if (GC) {
5382 auto isGCPtr = [&GC](Type *PTy) {
5383 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5384 };
5385 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5386 Check(isGCPtr(BaseType),
5387 "gc.relocate: relocated value must be a gc pointer", Call);
5388 Check(isGCPtr(DerivedType),
5389 "gc.relocate: relocated value must be a gc pointer", Call);
5390 }
5391 break;
5392 }
5393 case Intrinsic::eh_exceptioncode:
5394 case Intrinsic::eh_exceptionpointer: {
5395 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5396 "eh.exceptionpointer argument must be a catchpad", Call);
5397 break;
5398 }
5399 case Intrinsic::get_active_lane_mask: {
5400 Check(Call.getType()->isVectorTy(),
5401 "get_active_lane_mask: must return a "
5402 "vector",
5403 Call);
5404 auto *ElemTy = Call.getType()->getScalarType();
5405 Check(ElemTy->isIntegerTy(1),
5406 "get_active_lane_mask: element type is not "
5407 "i1",
5408 Call);
5409 break;
5410 }
5411 case Intrinsic::masked_load: {
5412 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5413 Call);
5414
5415 Value *Ptr = Call.getArgOperand(0);
5416 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5417 Value *Mask = Call.getArgOperand(2);
5418 Value *PassThru = Call.getArgOperand(3);
5419 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5420 Call);
5421 Check(Alignment->getValue().isPowerOf2(),
5422 "masked_load: alignment must be a power of 2", Call);
5423
5424 PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5425 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5426 "masked_load: return must match pointer type", Call);
5427 Check(PassThru->getType() == Call.getType(),
5428 "masked_load: pass through and return type must match", Call);
5429 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5430 cast<VectorType>(Call.getType())->getElementCount(),
5431 "masked_load: vector mask must be same length as return", Call);
5432 break;
5433 }
5434 case Intrinsic::masked_store: {
5435 Value *Val = Call.getArgOperand(0);
5436 Value *Ptr = Call.getArgOperand(1);
5437 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5438 Value *Mask = Call.getArgOperand(3);
5439 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5440 Call);
5441 Check(Alignment->getValue().isPowerOf2(),
5442 "masked_store: alignment must be a power of 2", Call);
5443
5444 PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5445 Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5446 "masked_store: storee must match pointer type", Call);
5447 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5448 cast<VectorType>(Val->getType())->getElementCount(),
5449 "masked_store: vector mask must be same length as value", Call);
5450 break;
5451 }
5452
5453 case Intrinsic::masked_gather: {
5454 const APInt &Alignment =
5455 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5456 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5457 "masked_gather: alignment must be 0 or a power of 2", Call);
5458 break;
5459 }
5460 case Intrinsic::masked_scatter: {
5461 const APInt &Alignment =
5462 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5463 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5464 "masked_scatter: alignment must be 0 or a power of 2", Call);
5465 break;
5466 }
5467
5468 case Intrinsic::experimental_guard: {
5469 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5470 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5471 "experimental_guard must have exactly one "
5472 "\"deopt\" operand bundle");
5473 break;
5474 }
5475
5476 case Intrinsic::experimental_deoptimize: {
5477 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5478 Call);
5479 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5480 "experimental_deoptimize must have exactly one "
5481 "\"deopt\" operand bundle");
5482 Check(Call.getType() == Call.getFunction()->getReturnType(),
5483 "experimental_deoptimize return type must match caller return type");
5484
5485 if (isa<CallInst>(Call)) {
5486 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5487 Check(RI,
5488 "calls to experimental_deoptimize must be followed by a return");
5489
5490 if (!Call.getType()->isVoidTy() && RI)
5491 Check(RI->getReturnValue() == &Call,
5492 "calls to experimental_deoptimize must be followed by a return "
5493 "of the value computed by experimental_deoptimize");
5494 }
5495
5496 break;
5497 }
5498 case Intrinsic::vector_reduce_and:
5499 case Intrinsic::vector_reduce_or:
5500 case Intrinsic::vector_reduce_xor:
5501 case Intrinsic::vector_reduce_add:
5502 case Intrinsic::vector_reduce_mul:
5503 case Intrinsic::vector_reduce_smax:
5504 case Intrinsic::vector_reduce_smin:
5505 case Intrinsic::vector_reduce_umax:
5506 case Intrinsic::vector_reduce_umin: {
5507 Type *ArgTy = Call.getArgOperand(0)->getType();
5508 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5509 "Intrinsic has incorrect argument type!");
5510 break;
5511 }
5512 case Intrinsic::vector_reduce_fmax:
5513 case Intrinsic::vector_reduce_fmin: {
5514 Type *ArgTy = Call.getArgOperand(0)->getType();
5515 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5516 "Intrinsic has incorrect argument type!");
5517 break;
5518 }
5519 case Intrinsic::vector_reduce_fadd:
5520 case Intrinsic::vector_reduce_fmul: {
5521 // Unlike the other reductions, the first argument is a start value. The
5522 // second argument is the vector to be reduced.
5523 Type *ArgTy = Call.getArgOperand(1)->getType();
5524 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5525 "Intrinsic has incorrect argument type!");
5526 break;
5527 }
5528 case Intrinsic::smul_fix:
5529 case Intrinsic::smul_fix_sat:
5530 case Intrinsic::umul_fix:
5531 case Intrinsic::umul_fix_sat:
5532 case Intrinsic::sdiv_fix:
5533 case Intrinsic::sdiv_fix_sat:
5534 case Intrinsic::udiv_fix:
5535 case Intrinsic::udiv_fix_sat: {
5536 Value *Op1 = Call.getArgOperand(0);
5537 Value *Op2 = Call.getArgOperand(1);
5538 Check(Op1->getType()->isIntOrIntVectorTy(),
5539 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5540 "vector of ints");
5541 Check(Op2->getType()->isIntOrIntVectorTy(),
5542 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5543 "vector of ints");
5544
5545 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5546 Check(Op3->getType()->getBitWidth() <= 32,
5547 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5548
5549 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5550 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5551 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5552 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5553 "the operands");
5554 } else {
5555 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5556 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5557 "to the width of the operands");
5558 }
5559 break;
5560 }
5561 case Intrinsic::lround:
5562 case Intrinsic::llround:
5563 case Intrinsic::lrint:
5564 case Intrinsic::llrint: {
5565 Type *ValTy = Call.getArgOperand(0)->getType();
5566 Type *ResultTy = Call.getType();
5567 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5568 "Intrinsic does not support vectors", &Call);
5569 break;
5570 }
5571 case Intrinsic::bswap: {
5572 Type *Ty = Call.getType();
5573 unsigned Size = Ty->getScalarSizeInBits();
5574 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5575 break;
5576 }
5577 case Intrinsic::invariant_start: {
5578 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5579 Check(InvariantSize &&
5580 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5581 "invariant_start parameter must be -1, 0 or a positive number",
5582 &Call);
5583 break;
5584 }
5585 case Intrinsic::matrix_multiply:
5586 case Intrinsic::matrix_transpose:
5587 case Intrinsic::matrix_column_major_load:
5588 case Intrinsic::matrix_column_major_store: {
5589 Function *IF = Call.getCalledFunction();
5590 ConstantInt *Stride = nullptr;
5591 ConstantInt *NumRows;
5592 ConstantInt *NumColumns;
5593 VectorType *ResultTy;
5594 Type *Op0ElemTy = nullptr;
5595 Type *Op1ElemTy = nullptr;
5596 switch (ID) {
5597 case Intrinsic::matrix_multiply:
5598 NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5599 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5600 ResultTy = cast<VectorType>(Call.getType());
5601 Op0ElemTy =
5602 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5603 Op1ElemTy =
5604 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5605 break;
5606 case Intrinsic::matrix_transpose:
5607 NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5608 NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5609 ResultTy = cast<VectorType>(Call.getType());
5610 Op0ElemTy =
5611 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5612 break;
5613 case Intrinsic::matrix_column_major_load: {
5614 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5615 NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5616 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5617 ResultTy = cast<VectorType>(Call.getType());
5618
5619 PointerType *Op0PtrTy =
5620 cast<PointerType>(Call.getArgOperand(0)->getType());
5621 if (!Op0PtrTy->isOpaque())
5622 Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
5623 break;
5624 }
5625 case Intrinsic::matrix_column_major_store: {
5626 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5627 NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5628 NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5629 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5630 Op0ElemTy =
5631 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5632
5633 PointerType *Op1PtrTy =
5634 cast<PointerType>(Call.getArgOperand(1)->getType());
5635 if (!Op1PtrTy->isOpaque())
5636 Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
5637 break;
5638 }
5639 default:
5640 llvm_unreachable("unexpected intrinsic");
5641 }
5642
5643 Check(ResultTy->getElementType()->isIntegerTy() ||
5644 ResultTy->getElementType()->isFloatingPointTy(),
5645 "Result type must be an integer or floating-point type!", IF);
5646
5647 if (Op0ElemTy)
5648 Check(ResultTy->getElementType() == Op0ElemTy,
5649 "Vector element type mismatch of the result and first operand "
5650 "vector!",
5651 IF);
5652
5653 if (Op1ElemTy)
5654 Check(ResultTy->getElementType() == Op1ElemTy,
5655 "Vector element type mismatch of the result and second operand "
5656 "vector!",
5657 IF);
5658
5659 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5660 NumRows->getZExtValue() * NumColumns->getZExtValue(),
5661 "Result of a matrix operation does not fit in the returned vector!");
5662
5663 if (Stride)
5664 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5665 "Stride must be greater or equal than the number of rows!", IF);
5666
5667 break;
5668 }
5669 case Intrinsic::experimental_vector_splice: {
5670 VectorType *VecTy = cast<VectorType>(Call.getType());
5671 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5672 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5673 if (Call.getParent() && Call.getParent()->getParent()) {
5674 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5675 if (Attrs.hasFnAttr(Attribute::VScaleRange))
5676 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5677 }
5678 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5679 (Idx >= 0 && Idx < KnownMinNumElements),
5680 "The splice index exceeds the range [-VL, VL-1] where VL is the "
5681 "known minimum number of elements in the vector. For scalable "
5682 "vectors the minimum number of elements is determined from "
5683 "vscale_range.",
5684 &Call);
5685 break;
5686 }
5687 case Intrinsic::experimental_stepvector: {
5688 VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5689 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5690 VecTy->getScalarSizeInBits() >= 8,
5691 "experimental_stepvector only supported for vectors of integers "
5692 "with a bitwidth of at least 8.",
5693 &Call);
5694 break;
5695 }
5696 case Intrinsic::vector_insert: {
5697 Value *Vec = Call.getArgOperand(0);
5698 Value *SubVec = Call.getArgOperand(1);
5699 Value *Idx = Call.getArgOperand(2);
5700 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5701
5702 VectorType *VecTy = cast<VectorType>(Vec->getType());
5703 VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5704
5705 ElementCount VecEC = VecTy->getElementCount();
5706 ElementCount SubVecEC = SubVecTy->getElementCount();
5707 Check(VecTy->getElementType() == SubVecTy->getElementType(),
5708 "vector_insert parameters must have the same element "
5709 "type.",
5710 &Call);
5711 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5712 "vector_insert index must be a constant multiple of "
5713 "the subvector's known minimum vector length.");
5714
5715 // If this insertion is not the 'mixed' case where a fixed vector is
5716 // inserted into a scalable vector, ensure that the insertion of the
5717 // subvector does not overrun the parent vector.
5718 if (VecEC.isScalable() == SubVecEC.isScalable()) {
5719 Check(IdxN < VecEC.getKnownMinValue() &&
5720 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5721 "subvector operand of vector_insert would overrun the "
5722 "vector being inserted into.");
5723 }
5724 break;
5725 }
5726 case Intrinsic::vector_extract: {
5727 Value *Vec = Call.getArgOperand(0);
5728 Value *Idx = Call.getArgOperand(1);
5729 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5730
5731 VectorType *ResultTy = cast<VectorType>(Call.getType());
5732 VectorType *VecTy = cast<VectorType>(Vec->getType());
5733
5734 ElementCount VecEC = VecTy->getElementCount();
5735 ElementCount ResultEC = ResultTy->getElementCount();
5736
5737 Check(ResultTy->getElementType() == VecTy->getElementType(),
5738 "vector_extract result must have the same element "
5739 "type as the input vector.",
5740 &Call);
5741 Check(IdxN % ResultEC.getKnownMinValue() == 0,
5742 "vector_extract index must be a constant multiple of "
5743 "the result type's known minimum vector length.");
5744
5745 // If this extraction is not the 'mixed' case where a fixed vector is is
5746 // extracted from a scalable vector, ensure that the extraction does not
5747 // overrun the parent vector.
5748 if (VecEC.isScalable() == ResultEC.isScalable()) {
5749 Check(IdxN < VecEC.getKnownMinValue() &&
5750 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5751 "vector_extract would overrun.");
5752 }
5753 break;
5754 }
5755 case Intrinsic::experimental_noalias_scope_decl: {
5756 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5757 break;
5758 }
5759 case Intrinsic::preserve_array_access_index:
5760 case Intrinsic::preserve_struct_access_index:
5761 case Intrinsic::aarch64_ldaxr:
5762 case Intrinsic::aarch64_ldxr:
5763 case Intrinsic::arm_ldaex:
5764 case Intrinsic::arm_ldrex: {
5765 Type *ElemTy = Call.getParamElementType(0);
5766 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5767 &Call);
5768 break;
5769 }
5770 case Intrinsic::aarch64_stlxr:
5771 case Intrinsic::aarch64_stxr:
5772 case Intrinsic::arm_stlex:
5773 case Intrinsic::arm_strex: {
5774 Type *ElemTy = Call.getAttributes().getParamElementType(1);
5775 Check(ElemTy,
5776 "Intrinsic requires elementtype attribute on second argument.",
5777 &Call);
5778 break;
5779 }
5780 case Intrinsic::aarch64_prefetch: {
5781 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5782 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5783 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5784 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5785 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5786 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5787 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5788 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5789 break;
5790 }
5791 };
5792 }
5793
5794 /// Carefully grab the subprogram from a local scope.
5795 ///
5796 /// This carefully grabs the subprogram from a local scope, avoiding the
5797 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)5798 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5799 if (!LocalScope)
5800 return nullptr;
5801
5802 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5803 return SP;
5804
5805 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5806 return getSubprogram(LB->getRawScope());
5807
5808 // Just return null; broken scope chains are checked elsewhere.
5809 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5810 return nullptr;
5811 }
5812
visitVPIntrinsic(VPIntrinsic & VPI)5813 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
5814 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
5815 auto *RetTy = cast<VectorType>(VPCast->getType());
5816 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
5817 Check(RetTy->getElementCount() == ValTy->getElementCount(),
5818 "VP cast intrinsic first argument and result vector lengths must be "
5819 "equal",
5820 *VPCast);
5821
5822 switch (VPCast->getIntrinsicID()) {
5823 default:
5824 llvm_unreachable("Unknown VP cast intrinsic");
5825 case Intrinsic::vp_trunc:
5826 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5827 "llvm.vp.trunc intrinsic first argument and result element type "
5828 "must be integer",
5829 *VPCast);
5830 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5831 "llvm.vp.trunc intrinsic the bit size of first argument must be "
5832 "larger than the bit size of the return type",
5833 *VPCast);
5834 break;
5835 case Intrinsic::vp_zext:
5836 case Intrinsic::vp_sext:
5837 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5838 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
5839 "element type must be integer",
5840 *VPCast);
5841 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5842 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
5843 "argument must be smaller than the bit size of the return type",
5844 *VPCast);
5845 break;
5846 case Intrinsic::vp_fptoui:
5847 case Intrinsic::vp_fptosi:
5848 Check(
5849 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
5850 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
5851 "type must be floating-point and result element type must be integer",
5852 *VPCast);
5853 break;
5854 case Intrinsic::vp_uitofp:
5855 case Intrinsic::vp_sitofp:
5856 Check(
5857 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
5858 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
5859 "type must be integer and result element type must be floating-point",
5860 *VPCast);
5861 break;
5862 case Intrinsic::vp_fptrunc:
5863 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5864 "llvm.vp.fptrunc intrinsic first argument and result element type "
5865 "must be floating-point",
5866 *VPCast);
5867 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5868 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
5869 "larger than the bit size of the return type",
5870 *VPCast);
5871 break;
5872 case Intrinsic::vp_fpext:
5873 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5874 "llvm.vp.fpext intrinsic first argument and result element type "
5875 "must be floating-point",
5876 *VPCast);
5877 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5878 "llvm.vp.fpext intrinsic the bit size of first argument must be "
5879 "smaller than the bit size of the return type",
5880 *VPCast);
5881 break;
5882 case Intrinsic::vp_ptrtoint:
5883 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
5884 "llvm.vp.ptrtoint intrinsic first argument element type must be "
5885 "pointer and result element type must be integer",
5886 *VPCast);
5887 break;
5888 case Intrinsic::vp_inttoptr:
5889 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
5890 "llvm.vp.inttoptr intrinsic first argument element type must be "
5891 "integer and result element type must be pointer",
5892 *VPCast);
5893 break;
5894 }
5895 }
5896 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
5897 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5898 Check(CmpInst::isFPPredicate(Pred),
5899 "invalid predicate for VP FP comparison intrinsic", &VPI);
5900 }
5901 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
5902 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5903 Check(CmpInst::isIntPredicate(Pred),
5904 "invalid predicate for VP integer comparison intrinsic", &VPI);
5905 }
5906 }
5907
visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic & FPI)5908 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5909 unsigned NumOperands;
5910 bool HasRoundingMD;
5911 switch (FPI.getIntrinsicID()) {
5912 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
5913 case Intrinsic::INTRINSIC: \
5914 NumOperands = NARG; \
5915 HasRoundingMD = ROUND_MODE; \
5916 break;
5917 #include "llvm/IR/ConstrainedOps.def"
5918 default:
5919 llvm_unreachable("Invalid constrained FP intrinsic!");
5920 }
5921 NumOperands += (1 + HasRoundingMD);
5922 // Compare intrinsics carry an extra predicate metadata operand.
5923 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5924 NumOperands += 1;
5925 Check((FPI.arg_size() == NumOperands),
5926 "invalid arguments for constrained FP intrinsic", &FPI);
5927
5928 switch (FPI.getIntrinsicID()) {
5929 case Intrinsic::experimental_constrained_lrint:
5930 case Intrinsic::experimental_constrained_llrint: {
5931 Type *ValTy = FPI.getArgOperand(0)->getType();
5932 Type *ResultTy = FPI.getType();
5933 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5934 "Intrinsic does not support vectors", &FPI);
5935 }
5936 break;
5937
5938 case Intrinsic::experimental_constrained_lround:
5939 case Intrinsic::experimental_constrained_llround: {
5940 Type *ValTy = FPI.getArgOperand(0)->getType();
5941 Type *ResultTy = FPI.getType();
5942 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5943 "Intrinsic does not support vectors", &FPI);
5944 break;
5945 }
5946
5947 case Intrinsic::experimental_constrained_fcmp:
5948 case Intrinsic::experimental_constrained_fcmps: {
5949 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5950 Check(CmpInst::isFPPredicate(Pred),
5951 "invalid predicate for constrained FP comparison intrinsic", &FPI);
5952 break;
5953 }
5954
5955 case Intrinsic::experimental_constrained_fptosi:
5956 case Intrinsic::experimental_constrained_fptoui: {
5957 Value *Operand = FPI.getArgOperand(0);
5958 uint64_t NumSrcElem = 0;
5959 Check(Operand->getType()->isFPOrFPVectorTy(),
5960 "Intrinsic first argument must be floating point", &FPI);
5961 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5962 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5963 }
5964
5965 Operand = &FPI;
5966 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5967 "Intrinsic first argument and result disagree on vector use", &FPI);
5968 Check(Operand->getType()->isIntOrIntVectorTy(),
5969 "Intrinsic result must be an integer", &FPI);
5970 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5971 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5972 "Intrinsic first argument and result vector lengths must be equal",
5973 &FPI);
5974 }
5975 }
5976 break;
5977
5978 case Intrinsic::experimental_constrained_sitofp:
5979 case Intrinsic::experimental_constrained_uitofp: {
5980 Value *Operand = FPI.getArgOperand(0);
5981 uint64_t NumSrcElem = 0;
5982 Check(Operand->getType()->isIntOrIntVectorTy(),
5983 "Intrinsic first argument must be integer", &FPI);
5984 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5985 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5986 }
5987
5988 Operand = &FPI;
5989 Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5990 "Intrinsic first argument and result disagree on vector use", &FPI);
5991 Check(Operand->getType()->isFPOrFPVectorTy(),
5992 "Intrinsic result must be a floating point", &FPI);
5993 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5994 Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5995 "Intrinsic first argument and result vector lengths must be equal",
5996 &FPI);
5997 }
5998 } break;
5999
6000 case Intrinsic::experimental_constrained_fptrunc:
6001 case Intrinsic::experimental_constrained_fpext: {
6002 Value *Operand = FPI.getArgOperand(0);
6003 Type *OperandTy = Operand->getType();
6004 Value *Result = &FPI;
6005 Type *ResultTy = Result->getType();
6006 Check(OperandTy->isFPOrFPVectorTy(),
6007 "Intrinsic first argument must be FP or FP vector", &FPI);
6008 Check(ResultTy->isFPOrFPVectorTy(),
6009 "Intrinsic result must be FP or FP vector", &FPI);
6010 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6011 "Intrinsic first argument and result disagree on vector use", &FPI);
6012 if (OperandTy->isVectorTy()) {
6013 Check(cast<FixedVectorType>(OperandTy)->getNumElements() ==
6014 cast<FixedVectorType>(ResultTy)->getNumElements(),
6015 "Intrinsic first argument and result vector lengths must be equal",
6016 &FPI);
6017 }
6018 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6019 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6020 "Intrinsic first argument's type must be larger than result type",
6021 &FPI);
6022 } else {
6023 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6024 "Intrinsic first argument's type must be smaller than result type",
6025 &FPI);
6026 }
6027 }
6028 break;
6029
6030 default:
6031 break;
6032 }
6033
6034 // If a non-metadata argument is passed in a metadata slot then the
6035 // error will be caught earlier when the incorrect argument doesn't
6036 // match the specification in the intrinsic call table. Thus, no
6037 // argument type check is needed here.
6038
6039 Check(FPI.getExceptionBehavior().has_value(),
6040 "invalid exception behavior argument", &FPI);
6041 if (HasRoundingMD) {
6042 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6043 &FPI);
6044 }
6045 }
6046
visitDbgIntrinsic(StringRef Kind,DbgVariableIntrinsic & DII)6047 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6048 auto *MD = DII.getRawLocation();
6049 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6050 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6051 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6052 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6053 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6054 DII.getRawVariable());
6055 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6056 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6057 DII.getRawExpression());
6058
6059 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6060 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6061 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6062 DAI->getRawAssignID());
6063 const auto *RawAddr = DAI->getRawAddress();
6064 CheckDI(
6065 isa<ValueAsMetadata>(RawAddr) ||
6066 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6067 "invalid llvm.dbg.assign intrinsic address", &DII,
6068 DAI->getRawAddress());
6069 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6070 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6071 DAI->getRawAddressExpression());
6072 // All of the linked instructions should be in the same function as DII.
6073 for (Instruction *I : at::getAssignmentInsts(DAI))
6074 CheckDI(DAI->getFunction() == I->getFunction(),
6075 "inst not in same function as dbg.assign", I, DAI);
6076 }
6077
6078 // Ignore broken !dbg attachments; they're checked elsewhere.
6079 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6080 if (!isa<DILocation>(N))
6081 return;
6082
6083 BasicBlock *BB = DII.getParent();
6084 Function *F = BB ? BB->getParent() : nullptr;
6085
6086 // The scopes for variables and !dbg attachments must agree.
6087 DILocalVariable *Var = DII.getVariable();
6088 DILocation *Loc = DII.getDebugLoc();
6089 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6090 &DII, BB, F);
6091
6092 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6093 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6094 if (!VarSP || !LocSP)
6095 return; // Broken scope chains are checked elsewhere.
6096
6097 CheckDI(VarSP == LocSP,
6098 "mismatched subprogram between llvm.dbg." + Kind +
6099 " variable and !dbg attachment",
6100 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6101 Loc->getScope()->getSubprogram());
6102
6103 // This check is redundant with one in visitLocalVariable().
6104 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6105 Var->getRawType());
6106 verifyFnArgs(DII);
6107 }
6108
visitDbgLabelIntrinsic(StringRef Kind,DbgLabelInst & DLI)6109 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6110 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6111 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6112 DLI.getRawLabel());
6113
6114 // Ignore broken !dbg attachments; they're checked elsewhere.
6115 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6116 if (!isa<DILocation>(N))
6117 return;
6118
6119 BasicBlock *BB = DLI.getParent();
6120 Function *F = BB ? BB->getParent() : nullptr;
6121
6122 // The scopes for variables and !dbg attachments must agree.
6123 DILabel *Label = DLI.getLabel();
6124 DILocation *Loc = DLI.getDebugLoc();
6125 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6126 BB, F);
6127
6128 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6129 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6130 if (!LabelSP || !LocSP)
6131 return;
6132
6133 CheckDI(LabelSP == LocSP,
6134 "mismatched subprogram between llvm.dbg." + Kind +
6135 " label and !dbg attachment",
6136 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6137 Loc->getScope()->getSubprogram());
6138 }
6139
verifyFragmentExpression(const DbgVariableIntrinsic & I)6140 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6141 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6142 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6143
6144 // We don't know whether this intrinsic verified correctly.
6145 if (!V || !E || !E->isValid())
6146 return;
6147
6148 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6149 auto Fragment = E->getFragmentInfo();
6150 if (!Fragment)
6151 return;
6152
6153 // The frontend helps out GDB by emitting the members of local anonymous
6154 // unions as artificial local variables with shared storage. When SROA splits
6155 // the storage for artificial local variables that are smaller than the entire
6156 // union, the overhang piece will be outside of the allotted space for the
6157 // variable and this check fails.
6158 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6159 if (V->isArtificial())
6160 return;
6161
6162 verifyFragmentExpression(*V, *Fragment, &I);
6163 }
6164
6165 template <typename ValueOrMetadata>
verifyFragmentExpression(const DIVariable & V,DIExpression::FragmentInfo Fragment,ValueOrMetadata * Desc)6166 void Verifier::verifyFragmentExpression(const DIVariable &V,
6167 DIExpression::FragmentInfo Fragment,
6168 ValueOrMetadata *Desc) {
6169 // If there's no size, the type is broken, but that should be checked
6170 // elsewhere.
6171 auto VarSize = V.getSizeInBits();
6172 if (!VarSize)
6173 return;
6174
6175 unsigned FragSize = Fragment.SizeInBits;
6176 unsigned FragOffset = Fragment.OffsetInBits;
6177 CheckDI(FragSize + FragOffset <= *VarSize,
6178 "fragment is larger than or outside of variable", Desc, &V);
6179 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6180 }
6181
verifyFnArgs(const DbgVariableIntrinsic & I)6182 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6183 // This function does not take the scope of noninlined function arguments into
6184 // account. Don't run it if current function is nodebug, because it may
6185 // contain inlined debug intrinsics.
6186 if (!HasDebugInfo)
6187 return;
6188
6189 // For performance reasons only check non-inlined ones.
6190 if (I.getDebugLoc()->getInlinedAt())
6191 return;
6192
6193 DILocalVariable *Var = I.getVariable();
6194 CheckDI(Var, "dbg intrinsic without variable");
6195
6196 unsigned ArgNo = Var->getArg();
6197 if (!ArgNo)
6198 return;
6199
6200 // Verify there are no duplicate function argument debug info entries.
6201 // These will cause hard-to-debug assertions in the DWARF backend.
6202 if (DebugFnArgs.size() < ArgNo)
6203 DebugFnArgs.resize(ArgNo, nullptr);
6204
6205 auto *Prev = DebugFnArgs[ArgNo - 1];
6206 DebugFnArgs[ArgNo - 1] = Var;
6207 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6208 Prev, Var);
6209 }
6210
verifyNotEntryValue(const DbgVariableIntrinsic & I)6211 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6212 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6213
6214 // We don't know whether this intrinsic verified correctly.
6215 if (!E || !E->isValid())
6216 return;
6217
6218 CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
6219 }
6220
verifyCompileUnits()6221 void Verifier::verifyCompileUnits() {
6222 // When more than one Module is imported into the same context, such as during
6223 // an LTO build before linking the modules, ODR type uniquing may cause types
6224 // to point to a different CU. This check does not make sense in this case.
6225 if (M.getContext().isODRUniquingDebugTypes())
6226 return;
6227 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6228 SmallPtrSet<const Metadata *, 2> Listed;
6229 if (CUs)
6230 Listed.insert(CUs->op_begin(), CUs->op_end());
6231 for (const auto *CU : CUVisited)
6232 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6233 CUVisited.clear();
6234 }
6235
verifyDeoptimizeCallingConvs()6236 void Verifier::verifyDeoptimizeCallingConvs() {
6237 if (DeoptimizeDeclarations.empty())
6238 return;
6239
6240 const Function *First = DeoptimizeDeclarations[0];
6241 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6242 Check(First->getCallingConv() == F->getCallingConv(),
6243 "All llvm.experimental.deoptimize declarations must have the same "
6244 "calling convention",
6245 First, F);
6246 }
6247 }
6248
verifyAttachedCallBundle(const CallBase & Call,const OperandBundleUse & BU)6249 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6250 const OperandBundleUse &BU) {
6251 FunctionType *FTy = Call.getFunctionType();
6252
6253 Check((FTy->getReturnType()->isPointerTy() ||
6254 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6255 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6256 "function returning a pointer or a non-returning function that has a "
6257 "void return type",
6258 Call);
6259
6260 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6261 "operand bundle \"clang.arc.attachedcall\" requires one function as "
6262 "an argument",
6263 Call);
6264
6265 auto *Fn = cast<Function>(BU.Inputs.front());
6266 Intrinsic::ID IID = Fn->getIntrinsicID();
6267
6268 if (IID) {
6269 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6270 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6271 "invalid function argument", Call);
6272 } else {
6273 StringRef FnName = Fn->getName();
6274 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6275 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6276 "invalid function argument", Call);
6277 }
6278 }
6279
verifySourceDebugInfo(const DICompileUnit & U,const DIFile & F)6280 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6281 bool HasSource = F.getSource().has_value();
6282 if (!HasSourceDebugInfo.count(&U))
6283 HasSourceDebugInfo[&U] = HasSource;
6284 CheckDI(HasSource == HasSourceDebugInfo[&U],
6285 "inconsistent use of embedded source");
6286 }
6287
verifyNoAliasScopeDecl()6288 void Verifier::verifyNoAliasScopeDecl() {
6289 if (NoAliasScopeDecls.empty())
6290 return;
6291
6292 // only a single scope must be declared at a time.
6293 for (auto *II : NoAliasScopeDecls) {
6294 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6295 "Not a llvm.experimental.noalias.scope.decl ?");
6296 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6297 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6298 Check(ScopeListMV != nullptr,
6299 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6300 "argument",
6301 II);
6302
6303 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6304 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6305 Check(ScopeListMD->getNumOperands() == 1,
6306 "!id.scope.list must point to a list with a single scope", II);
6307 visitAliasScopeListMetadata(ScopeListMD);
6308 }
6309
6310 // Only check the domination rule when requested. Once all passes have been
6311 // adapted this option can go away.
6312 if (!VerifyNoAliasScopeDomination)
6313 return;
6314
6315 // Now sort the intrinsics based on the scope MDNode so that declarations of
6316 // the same scopes are next to each other.
6317 auto GetScope = [](IntrinsicInst *II) {
6318 const auto *ScopeListMV = cast<MetadataAsValue>(
6319 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6320 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6321 };
6322
6323 // We are sorting on MDNode pointers here. For valid input IR this is ok.
6324 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6325 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6326 return GetScope(Lhs) < GetScope(Rhs);
6327 };
6328
6329 llvm::sort(NoAliasScopeDecls, Compare);
6330
6331 // Go over the intrinsics and check that for the same scope, they are not
6332 // dominating each other.
6333 auto ItCurrent = NoAliasScopeDecls.begin();
6334 while (ItCurrent != NoAliasScopeDecls.end()) {
6335 auto CurScope = GetScope(*ItCurrent);
6336 auto ItNext = ItCurrent;
6337 do {
6338 ++ItNext;
6339 } while (ItNext != NoAliasScopeDecls.end() &&
6340 GetScope(*ItNext) == CurScope);
6341
6342 // [ItCurrent, ItNext) represents the declarations for the same scope.
6343 // Ensure they are not dominating each other.. but only if it is not too
6344 // expensive.
6345 if (ItNext - ItCurrent < 32)
6346 for (auto *I : llvm::make_range(ItCurrent, ItNext))
6347 for (auto *J : llvm::make_range(ItCurrent, ItNext))
6348 if (I != J)
6349 Check(!DT.dominates(I, J),
6350 "llvm.experimental.noalias.scope.decl dominates another one "
6351 "with the same scope",
6352 I);
6353 ItCurrent = ItNext;
6354 }
6355 }
6356
6357 //===----------------------------------------------------------------------===//
6358 // Implement the public interfaces to this file...
6359 //===----------------------------------------------------------------------===//
6360
verifyFunction(const Function & f,raw_ostream * OS)6361 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6362 Function &F = const_cast<Function &>(f);
6363
6364 // Don't use a raw_null_ostream. Printing IR is expensive.
6365 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6366
6367 // Note that this function's return value is inverted from what you would
6368 // expect of a function called "verify".
6369 return !V.verify(F);
6370 }
6371
verifyModule(const Module & M,raw_ostream * OS,bool * BrokenDebugInfo)6372 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6373 bool *BrokenDebugInfo) {
6374 // Don't use a raw_null_ostream. Printing IR is expensive.
6375 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6376
6377 bool Broken = false;
6378 for (const Function &F : M)
6379 Broken |= !V.verify(F);
6380
6381 Broken |= !V.verify();
6382 if (BrokenDebugInfo)
6383 *BrokenDebugInfo = V.hasBrokenDebugInfo();
6384 // Note that this function's return value is inverted from what you would
6385 // expect of a function called "verify".
6386 return Broken;
6387 }
6388
6389 namespace {
6390
6391 struct VerifierLegacyPass : public FunctionPass {
6392 static char ID;
6393
6394 std::unique_ptr<Verifier> V;
6395 bool FatalErrors = true;
6396
VerifierLegacyPass__anon181364e30f11::VerifierLegacyPass6397 VerifierLegacyPass() : FunctionPass(ID) {
6398 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6399 }
VerifierLegacyPass__anon181364e30f11::VerifierLegacyPass6400 explicit VerifierLegacyPass(bool FatalErrors)
6401 : FunctionPass(ID),
6402 FatalErrors(FatalErrors) {
6403 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6404 }
6405
doInitialization__anon181364e30f11::VerifierLegacyPass6406 bool doInitialization(Module &M) override {
6407 V = std::make_unique<Verifier>(
6408 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6409 return false;
6410 }
6411
runOnFunction__anon181364e30f11::VerifierLegacyPass6412 bool runOnFunction(Function &F) override {
6413 if (!V->verify(F) && FatalErrors) {
6414 errs() << "in function " << F.getName() << '\n';
6415 report_fatal_error("Broken function found, compilation aborted!");
6416 }
6417 return false;
6418 }
6419
doFinalization__anon181364e30f11::VerifierLegacyPass6420 bool doFinalization(Module &M) override {
6421 bool HasErrors = false;
6422 for (Function &F : M)
6423 if (F.isDeclaration())
6424 HasErrors |= !V->verify(F);
6425
6426 HasErrors |= !V->verify();
6427 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6428 report_fatal_error("Broken module found, compilation aborted!");
6429 return false;
6430 }
6431
getAnalysisUsage__anon181364e30f11::VerifierLegacyPass6432 void getAnalysisUsage(AnalysisUsage &AU) const override {
6433 AU.setPreservesAll();
6434 }
6435 };
6436
6437 } // end anonymous namespace
6438
6439 /// Helper to issue failure from the TBAA verification
CheckFailed(Tys &&...Args)6440 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6441 if (Diagnostic)
6442 return Diagnostic->CheckFailed(Args...);
6443 }
6444
6445 #define CheckTBAA(C, ...) \
6446 do { \
6447 if (!(C)) { \
6448 CheckFailed(__VA_ARGS__); \
6449 return false; \
6450 } \
6451 } while (false)
6452
6453 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6454 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
6455 /// struct-type node describing an aggregate data structure (like a struct).
6456 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNode(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)6457 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6458 bool IsNewFormat) {
6459 if (BaseNode->getNumOperands() < 2) {
6460 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6461 return {true, ~0u};
6462 }
6463
6464 auto Itr = TBAABaseNodes.find(BaseNode);
6465 if (Itr != TBAABaseNodes.end())
6466 return Itr->second;
6467
6468 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6469 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6470 (void)InsertResult;
6471 assert(InsertResult.second && "We just checked!");
6472 return Result;
6473 }
6474
6475 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNodeImpl(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)6476 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6477 bool IsNewFormat) {
6478 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6479
6480 if (BaseNode->getNumOperands() == 2) {
6481 // Scalar nodes can only be accessed at offset 0.
6482 return isValidScalarTBAANode(BaseNode)
6483 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6484 : InvalidNode;
6485 }
6486
6487 if (IsNewFormat) {
6488 if (BaseNode->getNumOperands() % 3 != 0) {
6489 CheckFailed("Access tag nodes must have the number of operands that is a "
6490 "multiple of 3!", BaseNode);
6491 return InvalidNode;
6492 }
6493 } else {
6494 if (BaseNode->getNumOperands() % 2 != 1) {
6495 CheckFailed("Struct tag nodes must have an odd number of operands!",
6496 BaseNode);
6497 return InvalidNode;
6498 }
6499 }
6500
6501 // Check the type size field.
6502 if (IsNewFormat) {
6503 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6504 BaseNode->getOperand(1));
6505 if (!TypeSizeNode) {
6506 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6507 return InvalidNode;
6508 }
6509 }
6510
6511 // Check the type name field. In the new format it can be anything.
6512 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6513 CheckFailed("Struct tag nodes have a string as their first operand",
6514 BaseNode);
6515 return InvalidNode;
6516 }
6517
6518 bool Failed = false;
6519
6520 std::optional<APInt> PrevOffset;
6521 unsigned BitWidth = ~0u;
6522
6523 // We've already checked that BaseNode is not a degenerate root node with one
6524 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6525 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6526 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6527 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6528 Idx += NumOpsPerField) {
6529 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6530 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6531 if (!isa<MDNode>(FieldTy)) {
6532 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6533 Failed = true;
6534 continue;
6535 }
6536
6537 auto *OffsetEntryCI =
6538 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6539 if (!OffsetEntryCI) {
6540 CheckFailed("Offset entries must be constants!", &I, BaseNode);
6541 Failed = true;
6542 continue;
6543 }
6544
6545 if (BitWidth == ~0u)
6546 BitWidth = OffsetEntryCI->getBitWidth();
6547
6548 if (OffsetEntryCI->getBitWidth() != BitWidth) {
6549 CheckFailed(
6550 "Bitwidth between the offsets and struct type entries must match", &I,
6551 BaseNode);
6552 Failed = true;
6553 continue;
6554 }
6555
6556 // NB! As far as I can tell, we generate a non-strictly increasing offset
6557 // sequence only from structs that have zero size bit fields. When
6558 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6559 // pick the field lexically the latest in struct type metadata node. This
6560 // mirrors the actual behavior of the alias analysis implementation.
6561 bool IsAscending =
6562 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6563
6564 if (!IsAscending) {
6565 CheckFailed("Offsets must be increasing!", &I, BaseNode);
6566 Failed = true;
6567 }
6568
6569 PrevOffset = OffsetEntryCI->getValue();
6570
6571 if (IsNewFormat) {
6572 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6573 BaseNode->getOperand(Idx + 2));
6574 if (!MemberSizeNode) {
6575 CheckFailed("Member size entries must be constants!", &I, BaseNode);
6576 Failed = true;
6577 continue;
6578 }
6579 }
6580 }
6581
6582 return Failed ? InvalidNode
6583 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6584 }
6585
IsRootTBAANode(const MDNode * MD)6586 static bool IsRootTBAANode(const MDNode *MD) {
6587 return MD->getNumOperands() < 2;
6588 }
6589
IsScalarTBAANodeImpl(const MDNode * MD,SmallPtrSetImpl<const MDNode * > & Visited)6590 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6591 SmallPtrSetImpl<const MDNode *> &Visited) {
6592 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6593 return false;
6594
6595 if (!isa<MDString>(MD->getOperand(0)))
6596 return false;
6597
6598 if (MD->getNumOperands() == 3) {
6599 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6600 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6601 return false;
6602 }
6603
6604 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6605 return Parent && Visited.insert(Parent).second &&
6606 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6607 }
6608
isValidScalarTBAANode(const MDNode * MD)6609 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6610 auto ResultIt = TBAAScalarNodes.find(MD);
6611 if (ResultIt != TBAAScalarNodes.end())
6612 return ResultIt->second;
6613
6614 SmallPtrSet<const MDNode *, 4> Visited;
6615 bool Result = IsScalarTBAANodeImpl(MD, Visited);
6616 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6617 (void)InsertResult;
6618 assert(InsertResult.second && "Just checked!");
6619
6620 return Result;
6621 }
6622
6623 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
6624 /// Offset in place to be the offset within the field node returned.
6625 ///
6626 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
getFieldNodeFromTBAABaseNode(Instruction & I,const MDNode * BaseNode,APInt & Offset,bool IsNewFormat)6627 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6628 const MDNode *BaseNode,
6629 APInt &Offset,
6630 bool IsNewFormat) {
6631 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6632
6633 // Scalar nodes have only one possible "field" -- their parent in the access
6634 // hierarchy. Offset must be zero at this point, but our caller is supposed
6635 // to check that.
6636 if (BaseNode->getNumOperands() == 2)
6637 return cast<MDNode>(BaseNode->getOperand(1));
6638
6639 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6640 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6641 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6642 Idx += NumOpsPerField) {
6643 auto *OffsetEntryCI =
6644 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6645 if (OffsetEntryCI->getValue().ugt(Offset)) {
6646 if (Idx == FirstFieldOpNo) {
6647 CheckFailed("Could not find TBAA parent in struct type node", &I,
6648 BaseNode, &Offset);
6649 return nullptr;
6650 }
6651
6652 unsigned PrevIdx = Idx - NumOpsPerField;
6653 auto *PrevOffsetEntryCI =
6654 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6655 Offset -= PrevOffsetEntryCI->getValue();
6656 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6657 }
6658 }
6659
6660 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6661 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6662 BaseNode->getOperand(LastIdx + 1));
6663 Offset -= LastOffsetEntryCI->getValue();
6664 return cast<MDNode>(BaseNode->getOperand(LastIdx));
6665 }
6666
isNewFormatTBAATypeNode(llvm::MDNode * Type)6667 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6668 if (!Type || Type->getNumOperands() < 3)
6669 return false;
6670
6671 // In the new format type nodes shall have a reference to the parent type as
6672 // its first operand.
6673 return isa_and_nonnull<MDNode>(Type->getOperand(0));
6674 }
6675
visitTBAAMetadata(Instruction & I,const MDNode * MD)6676 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6677 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6678 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6679 isa<AtomicCmpXchgInst>(I),
6680 "This instruction shall not have a TBAA access tag!", &I);
6681
6682 bool IsStructPathTBAA =
6683 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6684
6685 CheckTBAA(IsStructPathTBAA,
6686 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6687 &I);
6688
6689 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6690 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6691
6692 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6693
6694 if (IsNewFormat) {
6695 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6696 "Access tag metadata must have either 4 or 5 operands", &I, MD);
6697 } else {
6698 CheckTBAA(MD->getNumOperands() < 5,
6699 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6700 }
6701
6702 // Check the access size field.
6703 if (IsNewFormat) {
6704 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6705 MD->getOperand(3));
6706 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6707 }
6708
6709 // Check the immutability flag.
6710 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6711 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6712 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6713 MD->getOperand(ImmutabilityFlagOpNo));
6714 CheckTBAA(IsImmutableCI,
6715 "Immutability tag on struct tag metadata must be a constant", &I,
6716 MD);
6717 CheckTBAA(
6718 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6719 "Immutability part of the struct tag metadata must be either 0 or 1",
6720 &I, MD);
6721 }
6722
6723 CheckTBAA(BaseNode && AccessType,
6724 "Malformed struct tag metadata: base and access-type "
6725 "should be non-null and point to Metadata nodes",
6726 &I, MD, BaseNode, AccessType);
6727
6728 if (!IsNewFormat) {
6729 CheckTBAA(isValidScalarTBAANode(AccessType),
6730 "Access type node must be a valid scalar type", &I, MD,
6731 AccessType);
6732 }
6733
6734 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6735 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6736
6737 APInt Offset = OffsetCI->getValue();
6738 bool SeenAccessTypeInPath = false;
6739
6740 SmallPtrSet<MDNode *, 4> StructPath;
6741
6742 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6743 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6744 IsNewFormat)) {
6745 if (!StructPath.insert(BaseNode).second) {
6746 CheckFailed("Cycle detected in struct path", &I, MD);
6747 return false;
6748 }
6749
6750 bool Invalid;
6751 unsigned BaseNodeBitWidth;
6752 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6753 IsNewFormat);
6754
6755 // If the base node is invalid in itself, then we've already printed all the
6756 // errors we wanted to print.
6757 if (Invalid)
6758 return false;
6759
6760 SeenAccessTypeInPath |= BaseNode == AccessType;
6761
6762 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6763 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6764 &I, MD, &Offset);
6765
6766 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6767 (BaseNodeBitWidth == 0 && Offset == 0) ||
6768 (IsNewFormat && BaseNodeBitWidth == ~0u),
6769 "Access bit-width not the same as description bit-width", &I, MD,
6770 BaseNodeBitWidth, Offset.getBitWidth());
6771
6772 if (IsNewFormat && SeenAccessTypeInPath)
6773 break;
6774 }
6775
6776 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
6777 MD);
6778 return true;
6779 }
6780
6781 char VerifierLegacyPass::ID = 0;
6782 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6783
createVerifierPass(bool FatalErrors)6784 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6785 return new VerifierLegacyPass(FatalErrors);
6786 }
6787
6788 AnalysisKey VerifierAnalysis::Key;
run(Module & M,ModuleAnalysisManager &)6789 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6790 ModuleAnalysisManager &) {
6791 Result Res;
6792 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6793 return Res;
6794 }
6795
run(Function & F,FunctionAnalysisManager &)6796 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6797 FunctionAnalysisManager &) {
6798 return { llvm::verifyFunction(F, &dbgs()), false };
6799 }
6800
run(Module & M,ModuleAnalysisManager & AM)6801 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6802 auto Res = AM.getResult<VerifierAnalysis>(M);
6803 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6804 report_fatal_error("Broken module found, compilation aborted!");
6805
6806 return PreservedAnalyses::all();
6807 }
6808
run(Function & F,FunctionAnalysisManager & AM)6809 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6810 auto res = AM.getResult<VerifierAnalysis>(F);
6811 if (res.IRBroken && FatalErrors)
6812 report_fatal_error("Broken function found, compilation aborted!");
6813
6814 return PreservedAnalyses::all();
6815 }
6816