xref: /freebsd/sys/net/if_vlan.c (revision bdd12889)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 #include "opt_kern_tls.h"
49 #include "opt_vlan.h"
50 #include "opt_ratelimit.h"
51 
52 #include <sys/param.h>
53 #include <sys/eventhandler.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/module.h>
59 #include <sys/rmlock.h>
60 #include <sys/priv.h>
61 #include <sys/queue.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/sx.h>
67 #include <sys/taskqueue.h>
68 
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/if_clone.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <netlink/netlink.h>
87 #include <netlink/netlink_ctl.h>
88 #include <netlink/netlink_route.h>
89 #include <netlink/route/route_var.h>
90 
91 #define	VLAN_DEF_HWIDTH	4
92 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
93 
94 #define	UP_AND_RUNNING(ifp) \
95     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
96 
97 CK_SLIST_HEAD(ifvlanhead, ifvlan);
98 
99 struct ifvlantrunk {
100 	struct	ifnet   *parent;	/* parent interface of this trunk */
101 	struct	mtx	lock;
102 #ifdef VLAN_ARRAY
103 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
104 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
105 #else
106 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
107 	uint16_t	hmask;
108 	uint16_t	hwidth;
109 #endif
110 	int		refcnt;
111 };
112 
113 #if defined(KERN_TLS) || defined(RATELIMIT)
114 struct vlan_snd_tag {
115 	struct m_snd_tag com;
116 	struct m_snd_tag *tag;
117 };
118 
119 static inline struct vlan_snd_tag *
mst_to_vst(struct m_snd_tag * mst)120 mst_to_vst(struct m_snd_tag *mst)
121 {
122 
123 	return (__containerof(mst, struct vlan_snd_tag, com));
124 }
125 #endif
126 
127 /*
128  * This macro provides a facility to iterate over every vlan on a trunk with
129  * the assumption that none will be added/removed during iteration.
130  */
131 #ifdef VLAN_ARRAY
132 #define VLAN_FOREACH(_ifv, _trunk) \
133 	size_t _i; \
134 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
135 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
136 #else /* VLAN_ARRAY */
137 #define VLAN_FOREACH(_ifv, _trunk) \
138 	struct ifvlan *_next; \
139 	size_t _i; \
140 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
141 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
142 #endif /* VLAN_ARRAY */
143 
144 /*
145  * This macro provides a facility to iterate over every vlan on a trunk while
146  * also modifying the number of vlans on the trunk. The iteration continues
147  * until some condition is met or there are no more vlans on the trunk.
148  */
149 #ifdef VLAN_ARRAY
150 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
151 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
152 	size_t _i; \
153 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
154 		if (((_ifv) = (_trunk)->vlans[_i]))
155 #else /* VLAN_ARRAY */
156 /*
157  * The hash table case is more complicated. We allow for the hash table to be
158  * modified (i.e. vlans removed) while we are iterating over it. To allow for
159  * this we must restart the iteration every time we "touch" something during
160  * the iteration, since removal will resize the hash table and invalidate our
161  * current position. If acting on the touched element causes the trunk to be
162  * emptied, then iteration also stops.
163  */
164 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
165 	size_t _i; \
166 	bool _touch = false; \
167 	for (_i = 0; \
168 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
169 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
170 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
171 		    (_touch = true))
172 #endif /* VLAN_ARRAY */
173 
174 struct vlan_mc_entry {
175 	struct sockaddr_dl		mc_addr;
176 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
177 	struct epoch_context		mc_epoch_ctx;
178 };
179 
180 struct ifvlan {
181 	struct	ifvlantrunk *ifv_trunk;
182 	struct	ifnet *ifv_ifp;
183 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
184 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
185 	void	*ifv_cookie;
186 	int	ifv_pflags;	/* special flags we have set on parent */
187 	int	ifv_capenable;
188 	int	ifv_encaplen;	/* encapsulation length */
189 	int	ifv_mtufudge;	/* MTU fudged by this much */
190 	int	ifv_mintu;	/* min transmission unit */
191 	struct  ether_8021q_tag ifv_qtag;
192 #define ifv_proto	ifv_qtag.proto
193 #define ifv_vid		ifv_qtag.vid
194 #define ifv_pcp		ifv_qtag.pcp
195 	struct task lladdr_task;
196 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
197 #ifndef VLAN_ARRAY
198 	CK_SLIST_ENTRY(ifvlan) ifv_list;
199 #endif
200 };
201 
202 /* Special flags we should propagate to parent. */
203 static struct {
204 	int flag;
205 	int (*func)(struct ifnet *, int);
206 } vlan_pflags[] = {
207 	{IFF_PROMISC, ifpromisc},
208 	{IFF_ALLMULTI, if_allmulti},
209 	{0, NULL}
210 };
211 
212 VNET_DECLARE(int, vlan_mtag_pcp);
213 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
214 
215 static const char vlanname[] = "vlan";
216 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
217 
218 static eventhandler_tag ifdetach_tag;
219 static eventhandler_tag iflladdr_tag;
220 static eventhandler_tag ifevent_tag;
221 
222 /*
223  * if_vlan uses two module-level synchronizations primitives to allow concurrent
224  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
225  * while they are being used for tx/rx. To accomplish this in a way that has
226  * acceptable performance and cooperation with other parts of the network stack
227  * there is a non-sleepable epoch(9) and an sx(9).
228  *
229  * The performance-sensitive paths that warrant using the epoch(9) are
230  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
231  * existence using if_vlantrunk, and being in the network tx/rx paths the use
232  * of an epoch(9) gives a measureable improvement in performance.
233  *
234  * The reason for having an sx(9) is mostly because there are still areas that
235  * must be sleepable and also have safe concurrent access to a vlan interface.
236  * Since the sx(9) exists, it is used by default in most paths unless sleeping
237  * is not permitted, or if it is not clear whether sleeping is permitted.
238  *
239  */
240 #define _VLAN_SX_ID ifv_sx
241 
242 static struct sx _VLAN_SX_ID;
243 
244 #define VLAN_LOCKING_INIT() \
245 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
246 
247 #define VLAN_LOCKING_DESTROY() \
248 	sx_destroy(&_VLAN_SX_ID)
249 
250 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
251 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
252 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
253 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
254 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
255 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
256 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
257 
258 /*
259  * We also have a per-trunk mutex that should be acquired when changing
260  * its state.
261  */
262 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
263 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
264 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
265 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
266 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
267 
268 /*
269  * The VLAN_ARRAY substitutes the dynamic hash with a static array
270  * with 4096 entries. In theory this can give a boost in processing,
271  * however in practice it does not. Probably this is because the array
272  * is too big to fit into CPU cache.
273  */
274 #ifndef VLAN_ARRAY
275 static	void vlan_inithash(struct ifvlantrunk *trunk);
276 static	void vlan_freehash(struct ifvlantrunk *trunk);
277 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
278 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
279 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
280 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
281 	uint16_t vid);
282 #endif
283 static	void trunk_destroy(struct ifvlantrunk *trunk);
284 
285 static	void vlan_init(void *foo);
286 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
287 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
288 #if defined(KERN_TLS) || defined(RATELIMIT)
289 static	int vlan_snd_tag_alloc(struct ifnet *,
290     union if_snd_tag_alloc_params *, struct m_snd_tag **);
291 static	int vlan_snd_tag_modify(struct m_snd_tag *,
292     union if_snd_tag_modify_params *);
293 static	int vlan_snd_tag_query(struct m_snd_tag *,
294     union if_snd_tag_query_params *);
295 static	void vlan_snd_tag_free(struct m_snd_tag *);
296 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
297 static void vlan_ratelimit_query(struct ifnet *,
298     struct if_ratelimit_query_results *);
299 #endif
300 static	void vlan_qflush(struct ifnet *ifp);
301 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
302     int (*func)(struct ifnet *, int));
303 static	int vlan_setflags(struct ifnet *ifp, int status);
304 static	int vlan_setmulti(struct ifnet *ifp);
305 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
306 #ifdef ALTQ
307 static void vlan_altq_start(struct ifnet *ifp);
308 static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
309 #endif
310 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
311     const struct sockaddr *dst, struct route *ro);
312 static	void vlan_unconfig(struct ifnet *ifp);
313 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
314 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
315 	uint16_t proto);
316 static	void vlan_link_state(struct ifnet *ifp);
317 static	void vlan_capabilities(struct ifvlan *ifv);
318 static	void vlan_trunk_capabilities(struct ifnet *ifp);
319 
320 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
321 static	int vlan_clone_match(struct if_clone *, const char *);
322 static	int vlan_clone_create(struct if_clone *, char *, size_t,
323     struct ifc_data *, struct ifnet **);
324 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
325 
326 static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
327     struct ifc_data_nl *ifd);
328 static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd);
329 static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw);
330 
331 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
332 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
333 static  void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
334 
335 static  void vlan_lladdr_fn(void *arg, int pending);
336 
337 static struct if_clone *vlan_cloner;
338 
339 #ifdef VIMAGE
340 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
341 #define	V_vlan_cloner	VNET(vlan_cloner)
342 #endif
343 
344 #ifdef RATELIMIT
345 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
346 	.snd_tag_modify = vlan_snd_tag_modify,
347 	.snd_tag_query = vlan_snd_tag_query,
348 	.snd_tag_free = vlan_snd_tag_free,
349 	.next_snd_tag = vlan_next_snd_tag,
350 	.type = IF_SND_TAG_TYPE_UNLIMITED
351 };
352 
353 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
354 	.snd_tag_modify = vlan_snd_tag_modify,
355 	.snd_tag_query = vlan_snd_tag_query,
356 	.snd_tag_free = vlan_snd_tag_free,
357 	.next_snd_tag = vlan_next_snd_tag,
358 	.type = IF_SND_TAG_TYPE_RATE_LIMIT
359 };
360 #endif
361 
362 #ifdef KERN_TLS
363 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
364 	.snd_tag_modify = vlan_snd_tag_modify,
365 	.snd_tag_query = vlan_snd_tag_query,
366 	.snd_tag_free = vlan_snd_tag_free,
367 	.next_snd_tag = vlan_next_snd_tag,
368 	.type = IF_SND_TAG_TYPE_TLS
369 };
370 
371 #ifdef RATELIMIT
372 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
373 	.snd_tag_modify = vlan_snd_tag_modify,
374 	.snd_tag_query = vlan_snd_tag_query,
375 	.snd_tag_free = vlan_snd_tag_free,
376 	.next_snd_tag = vlan_next_snd_tag,
377 	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
378 };
379 #endif
380 #endif
381 
382 static void
vlan_mc_free(struct epoch_context * ctx)383 vlan_mc_free(struct epoch_context *ctx)
384 {
385 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
386 	free(mc, M_VLAN);
387 }
388 
389 #ifndef VLAN_ARRAY
390 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
391 
392 static void
vlan_inithash(struct ifvlantrunk * trunk)393 vlan_inithash(struct ifvlantrunk *trunk)
394 {
395 	int i, n;
396 
397 	/*
398 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
399 	 * It is OK in case this function is called before the trunk struct
400 	 * gets hooked up and becomes visible from other threads.
401 	 */
402 
403 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
404 	    ("%s: hash already initialized", __func__));
405 
406 	trunk->hwidth = VLAN_DEF_HWIDTH;
407 	n = 1 << trunk->hwidth;
408 	trunk->hmask = n - 1;
409 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
410 	for (i = 0; i < n; i++)
411 		CK_SLIST_INIT(&trunk->hash[i]);
412 }
413 
414 static void
vlan_freehash(struct ifvlantrunk * trunk)415 vlan_freehash(struct ifvlantrunk *trunk)
416 {
417 #ifdef INVARIANTS
418 	int i;
419 
420 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421 	for (i = 0; i < (1 << trunk->hwidth); i++)
422 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
423 		    ("%s: hash table not empty", __func__));
424 #endif
425 	free(trunk->hash, M_VLAN);
426 	trunk->hash = NULL;
427 	trunk->hwidth = trunk->hmask = 0;
428 }
429 
430 static int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)431 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
432 {
433 	int i, b;
434 	struct ifvlan *ifv2;
435 
436 	VLAN_XLOCK_ASSERT();
437 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
438 
439 	b = 1 << trunk->hwidth;
440 	i = HASH(ifv->ifv_vid, trunk->hmask);
441 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
442 		if (ifv->ifv_vid == ifv2->ifv_vid)
443 			return (EEXIST);
444 
445 	/*
446 	 * Grow the hash when the number of vlans exceeds half of the number of
447 	 * hash buckets squared. This will make the average linked-list length
448 	 * buckets/2.
449 	 */
450 	if (trunk->refcnt > (b * b) / 2) {
451 		vlan_growhash(trunk, 1);
452 		i = HASH(ifv->ifv_vid, trunk->hmask);
453 	}
454 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
455 	trunk->refcnt++;
456 
457 	return (0);
458 }
459 
460 static int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)461 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
462 {
463 	int i, b;
464 	struct ifvlan *ifv2;
465 
466 	VLAN_XLOCK_ASSERT();
467 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
468 
469 	b = 1 << (trunk->hwidth - 1);
470 	i = HASH(ifv->ifv_vid, trunk->hmask);
471 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
472 		if (ifv2 == ifv) {
473 			trunk->refcnt--;
474 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
475 			if (trunk->refcnt < (b * b) / 2)
476 				vlan_growhash(trunk, -1);
477 			return (0);
478 		}
479 
480 	panic("%s: vlan not found\n", __func__);
481 	return (ENOENT); /*NOTREACHED*/
482 }
483 
484 /*
485  * Grow the hash larger or smaller if memory permits.
486  */
487 static void
vlan_growhash(struct ifvlantrunk * trunk,int howmuch)488 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
489 {
490 	struct ifvlan *ifv;
491 	struct ifvlanhead *hash2;
492 	int hwidth2, i, j, n, n2;
493 
494 	VLAN_XLOCK_ASSERT();
495 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
496 
497 	if (howmuch == 0) {
498 		/* Harmless yet obvious coding error */
499 		printf("%s: howmuch is 0\n", __func__);
500 		return;
501 	}
502 
503 	hwidth2 = trunk->hwidth + howmuch;
504 	n = 1 << trunk->hwidth;
505 	n2 = 1 << hwidth2;
506 	/* Do not shrink the table below the default */
507 	if (hwidth2 < VLAN_DEF_HWIDTH)
508 		return;
509 
510 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
511 	if (hash2 == NULL) {
512 		printf("%s: out of memory -- hash size not changed\n",
513 		    __func__);
514 		return;		/* We can live with the old hash table */
515 	}
516 	for (j = 0; j < n2; j++)
517 		CK_SLIST_INIT(&hash2[j]);
518 	for (i = 0; i < n; i++)
519 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
520 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
521 			j = HASH(ifv->ifv_vid, n2 - 1);
522 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
523 		}
524 	NET_EPOCH_WAIT();
525 	free(trunk->hash, M_VLAN);
526 	trunk->hash = hash2;
527 	trunk->hwidth = hwidth2;
528 	trunk->hmask = n2 - 1;
529 
530 	if (bootverbose)
531 		if_printf(trunk->parent,
532 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
533 }
534 
535 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)536 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
537 {
538 	struct ifvlan *ifv;
539 
540 	NET_EPOCH_ASSERT();
541 
542 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
543 		if (ifv->ifv_vid == vid)
544 			return (ifv);
545 	return (NULL);
546 }
547 
548 #if 0
549 /* Debugging code to view the hashtables. */
550 static void
551 vlan_dumphash(struct ifvlantrunk *trunk)
552 {
553 	int i;
554 	struct ifvlan *ifv;
555 
556 	for (i = 0; i < (1 << trunk->hwidth); i++) {
557 		printf("%d: ", i);
558 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
559 			printf("%s ", ifv->ifv_ifp->if_xname);
560 		printf("\n");
561 	}
562 }
563 #endif /* 0 */
564 #else
565 
566 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)567 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
568 {
569 
570 	return trunk->vlans[vid];
571 }
572 
573 static __inline int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)574 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
575 {
576 
577 	if (trunk->vlans[ifv->ifv_vid] != NULL)
578 		return EEXIST;
579 	trunk->vlans[ifv->ifv_vid] = ifv;
580 	trunk->refcnt++;
581 
582 	return (0);
583 }
584 
585 static __inline int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)586 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
587 {
588 
589 	trunk->vlans[ifv->ifv_vid] = NULL;
590 	trunk->refcnt--;
591 
592 	return (0);
593 }
594 
595 static __inline void
vlan_freehash(struct ifvlantrunk * trunk)596 vlan_freehash(struct ifvlantrunk *trunk)
597 {
598 }
599 
600 static __inline void
vlan_inithash(struct ifvlantrunk * trunk)601 vlan_inithash(struct ifvlantrunk *trunk)
602 {
603 }
604 
605 #endif /* !VLAN_ARRAY */
606 
607 static void
trunk_destroy(struct ifvlantrunk * trunk)608 trunk_destroy(struct ifvlantrunk *trunk)
609 {
610 	VLAN_XLOCK_ASSERT();
611 
612 	vlan_freehash(trunk);
613 	trunk->parent->if_vlantrunk = NULL;
614 	TRUNK_LOCK_DESTROY(trunk);
615 	if_rele(trunk->parent);
616 	free(trunk, M_VLAN);
617 }
618 
619 /*
620  * Program our multicast filter. What we're actually doing is
621  * programming the multicast filter of the parent. This has the
622  * side effect of causing the parent interface to receive multicast
623  * traffic that it doesn't really want, which ends up being discarded
624  * later by the upper protocol layers. Unfortunately, there's no way
625  * to avoid this: there really is only one physical interface.
626  */
627 static int
vlan_setmulti(struct ifnet * ifp)628 vlan_setmulti(struct ifnet *ifp)
629 {
630 	struct ifnet		*ifp_p;
631 	struct ifmultiaddr	*ifma;
632 	struct ifvlan		*sc;
633 	struct vlan_mc_entry	*mc;
634 	int			error;
635 
636 	VLAN_XLOCK_ASSERT();
637 
638 	/* Find the parent. */
639 	sc = ifp->if_softc;
640 	ifp_p = PARENT(sc);
641 
642 	CURVNET_SET_QUIET(ifp_p->if_vnet);
643 
644 	/* First, remove any existing filter entries. */
645 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
646 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
647 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
648 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
649 	}
650 
651 	/* Now program new ones. */
652 	IF_ADDR_WLOCK(ifp);
653 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
654 		if (ifma->ifma_addr->sa_family != AF_LINK)
655 			continue;
656 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
657 		if (mc == NULL) {
658 			IF_ADDR_WUNLOCK(ifp);
659 			CURVNET_RESTORE();
660 			return (ENOMEM);
661 		}
662 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
663 		mc->mc_addr.sdl_index = ifp_p->if_index;
664 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
665 	}
666 	IF_ADDR_WUNLOCK(ifp);
667 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
668 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
669 		    NULL);
670 		if (error) {
671 			CURVNET_RESTORE();
672 			return (error);
673 		}
674 	}
675 
676 	CURVNET_RESTORE();
677 	return (0);
678 }
679 
680 /*
681  * A handler for interface ifnet events.
682  */
683 static void
vlan_ifevent(void * arg __unused,struct ifnet * ifp,int event)684 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
685 {
686 	struct epoch_tracker et;
687 	struct ifvlan *ifv;
688 	struct ifvlantrunk *trunk;
689 
690 	if (event != IFNET_EVENT_UPDATE_BAUDRATE)
691 		return;
692 
693 	NET_EPOCH_ENTER(et);
694 	trunk = ifp->if_vlantrunk;
695 	if (trunk == NULL) {
696 		NET_EPOCH_EXIT(et);
697 		return;
698 	}
699 
700 	TRUNK_WLOCK(trunk);
701 	VLAN_FOREACH(ifv, trunk) {
702 		ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
703 	}
704 	TRUNK_WUNLOCK(trunk);
705 	NET_EPOCH_EXIT(et);
706 }
707 
708 /*
709  * A handler for parent interface link layer address changes.
710  * If the parent interface link layer address is changed we
711  * should also change it on all children vlans.
712  */
713 static void
vlan_iflladdr(void * arg __unused,struct ifnet * ifp)714 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
715 {
716 	struct epoch_tracker et;
717 	struct ifvlan *ifv;
718 	struct ifnet *ifv_ifp;
719 	struct ifvlantrunk *trunk;
720 	struct sockaddr_dl *sdl;
721 
722 	/* Need the epoch since this is run on taskqueue_swi. */
723 	NET_EPOCH_ENTER(et);
724 	trunk = ifp->if_vlantrunk;
725 	if (trunk == NULL) {
726 		NET_EPOCH_EXIT(et);
727 		return;
728 	}
729 
730 	/*
731 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
732 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
733 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
734 	 */
735 	TRUNK_WLOCK(trunk);
736 	VLAN_FOREACH(ifv, trunk) {
737 		/*
738 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
739 		 * to actually call if_setlladdr. if_setlladdr needs to
740 		 * be deferred to a taskqueue because it will call into
741 		 * the if_vlan ioctl path and try to acquire the global
742 		 * lock.
743 		 */
744 		ifv_ifp = ifv->ifv_ifp;
745 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
746 		    ifp->if_addrlen);
747 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
748 		sdl->sdl_alen = ifp->if_addrlen;
749 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
750 	}
751 	TRUNK_WUNLOCK(trunk);
752 	NET_EPOCH_EXIT(et);
753 }
754 
755 /*
756  * A handler for network interface departure events.
757  * Track departure of trunks here so that we don't access invalid
758  * pointers or whatever if a trunk is ripped from under us, e.g.,
759  * by ejecting its hot-plug card.  However, if an ifnet is simply
760  * being renamed, then there's no need to tear down the state.
761  */
762 static void
vlan_ifdetach(void * arg __unused,struct ifnet * ifp)763 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
764 {
765 	struct ifvlan *ifv;
766 	struct ifvlantrunk *trunk;
767 
768 	/* If the ifnet is just being renamed, don't do anything. */
769 	if (ifp->if_flags & IFF_RENAMING)
770 		return;
771 	VLAN_XLOCK();
772 	trunk = ifp->if_vlantrunk;
773 	if (trunk == NULL) {
774 		VLAN_XUNLOCK();
775 		return;
776 	}
777 
778 	/*
779 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
780 	 * Check trunk pointer after each vlan_unconfig() as it will
781 	 * free it and set to NULL after the last vlan was detached.
782 	 */
783 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
784 	    ifp->if_vlantrunk == NULL)
785 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
786 
787 	/* Trunk should have been destroyed in vlan_unconfig(). */
788 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
789 	VLAN_XUNLOCK();
790 }
791 
792 /*
793  * Return the trunk device for a virtual interface.
794  */
795 static struct ifnet  *
vlan_trunkdev(struct ifnet * ifp)796 vlan_trunkdev(struct ifnet *ifp)
797 {
798 	struct ifvlan *ifv;
799 
800 	NET_EPOCH_ASSERT();
801 
802 	if (ifp->if_type != IFT_L2VLAN)
803 		return (NULL);
804 
805 	ifv = ifp->if_softc;
806 	ifp = NULL;
807 	if (ifv->ifv_trunk)
808 		ifp = PARENT(ifv);
809 	return (ifp);
810 }
811 
812 /*
813  * Return the 12-bit VLAN VID for this interface, for use by external
814  * components such as Infiniband.
815  *
816  * XXXRW: Note that the function name here is historical; it should be named
817  * vlan_vid().
818  */
819 static int
vlan_tag(struct ifnet * ifp,uint16_t * vidp)820 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
821 {
822 	struct ifvlan *ifv;
823 
824 	if (ifp->if_type != IFT_L2VLAN)
825 		return (EINVAL);
826 	ifv = ifp->if_softc;
827 	*vidp = ifv->ifv_vid;
828 	return (0);
829 }
830 
831 static int
vlan_pcp(struct ifnet * ifp,uint16_t * pcpp)832 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
833 {
834 	struct ifvlan *ifv;
835 
836 	if (ifp->if_type != IFT_L2VLAN)
837 		return (EINVAL);
838 	ifv = ifp->if_softc;
839 	*pcpp = ifv->ifv_pcp;
840 	return (0);
841 }
842 
843 /*
844  * Return a driver specific cookie for this interface.  Synchronization
845  * with setcookie must be provided by the driver.
846  */
847 static void *
vlan_cookie(struct ifnet * ifp)848 vlan_cookie(struct ifnet *ifp)
849 {
850 	struct ifvlan *ifv;
851 
852 	if (ifp->if_type != IFT_L2VLAN)
853 		return (NULL);
854 	ifv = ifp->if_softc;
855 	return (ifv->ifv_cookie);
856 }
857 
858 /*
859  * Store a cookie in our softc that drivers can use to store driver
860  * private per-instance data in.
861  */
862 static int
vlan_setcookie(struct ifnet * ifp,void * cookie)863 vlan_setcookie(struct ifnet *ifp, void *cookie)
864 {
865 	struct ifvlan *ifv;
866 
867 	if (ifp->if_type != IFT_L2VLAN)
868 		return (EINVAL);
869 	ifv = ifp->if_softc;
870 	ifv->ifv_cookie = cookie;
871 	return (0);
872 }
873 
874 /*
875  * Return the vlan device present at the specific VID.
876  */
877 static struct ifnet *
vlan_devat(struct ifnet * ifp,uint16_t vid)878 vlan_devat(struct ifnet *ifp, uint16_t vid)
879 {
880 	struct ifvlantrunk *trunk;
881 	struct ifvlan *ifv;
882 
883 	NET_EPOCH_ASSERT();
884 
885 	trunk = ifp->if_vlantrunk;
886 	if (trunk == NULL)
887 		return (NULL);
888 	ifp = NULL;
889 	ifv = vlan_gethash(trunk, vid);
890 	if (ifv)
891 		ifp = ifv->ifv_ifp;
892 	return (ifp);
893 }
894 
895 /*
896  * VLAN support can be loaded as a module.  The only place in the
897  * system that's intimately aware of this is ether_input.  We hook
898  * into this code through vlan_input_p which is defined there and
899  * set here.  No one else in the system should be aware of this so
900  * we use an explicit reference here.
901  */
902 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
903 
904 /* For if_link_state_change() eyes only... */
905 extern	void (*vlan_link_state_p)(struct ifnet *);
906 
907 static struct if_clone_addreq_v2 vlan_addreq = {
908 	.version = 2,
909 	.match_f = vlan_clone_match,
910 	.create_f = vlan_clone_create,
911 	.destroy_f = vlan_clone_destroy,
912 	.create_nl_f = vlan_clone_create_nl,
913 	.modify_nl_f = vlan_clone_modify_nl,
914 	.dump_nl_f = vlan_clone_dump_nl,
915 };
916 
917 static int
vlan_modevent(module_t mod,int type,void * data)918 vlan_modevent(module_t mod, int type, void *data)
919 {
920 
921 	switch (type) {
922 	case MOD_LOAD:
923 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
924 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
925 		if (ifdetach_tag == NULL)
926 			return (ENOMEM);
927 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
928 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
929 		if (iflladdr_tag == NULL)
930 			return (ENOMEM);
931 		ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
932 		    vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
933 		if (ifevent_tag == NULL)
934 			return (ENOMEM);
935 		VLAN_LOCKING_INIT();
936 		vlan_input_p = vlan_input;
937 		vlan_link_state_p = vlan_link_state;
938 		vlan_trunk_cap_p = vlan_trunk_capabilities;
939 		vlan_trunkdev_p = vlan_trunkdev;
940 		vlan_cookie_p = vlan_cookie;
941 		vlan_setcookie_p = vlan_setcookie;
942 		vlan_tag_p = vlan_tag;
943 		vlan_pcp_p = vlan_pcp;
944 		vlan_devat_p = vlan_devat;
945 #ifndef VIMAGE
946 		vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
947 #endif
948 		if (bootverbose)
949 			printf("vlan: initialized, using "
950 #ifdef VLAN_ARRAY
951 			       "full-size arrays"
952 #else
953 			       "hash tables with chaining"
954 #endif
955 
956 			       "\n");
957 		break;
958 	case MOD_UNLOAD:
959 #ifndef VIMAGE
960 		ifc_detach_cloner(vlan_cloner);
961 #endif
962 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
963 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
964 		EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
965 		vlan_input_p = NULL;
966 		vlan_link_state_p = NULL;
967 		vlan_trunk_cap_p = NULL;
968 		vlan_trunkdev_p = NULL;
969 		vlan_tag_p = NULL;
970 		vlan_cookie_p = NULL;
971 		vlan_setcookie_p = NULL;
972 		vlan_devat_p = NULL;
973 		VLAN_LOCKING_DESTROY();
974 		if (bootverbose)
975 			printf("vlan: unloaded\n");
976 		break;
977 	default:
978 		return (EOPNOTSUPP);
979 	}
980 	return (0);
981 }
982 
983 static moduledata_t vlan_mod = {
984 	"if_vlan",
985 	vlan_modevent,
986 	0
987 };
988 
989 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
990 MODULE_VERSION(if_vlan, 3);
991 
992 #ifdef VIMAGE
993 static void
vnet_vlan_init(const void * unused __unused)994 vnet_vlan_init(const void *unused __unused)
995 {
996 	vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
997 	V_vlan_cloner = vlan_cloner;
998 }
999 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
1000     vnet_vlan_init, NULL);
1001 
1002 static void
vnet_vlan_uninit(const void * unused __unused)1003 vnet_vlan_uninit(const void *unused __unused)
1004 {
1005 
1006 	ifc_detach_cloner(V_vlan_cloner);
1007 }
1008 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1009     vnet_vlan_uninit, NULL);
1010 #endif
1011 
1012 /*
1013  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1014  */
1015 static struct ifnet *
vlan_clone_match_ethervid(const char * name,int * vidp)1016 vlan_clone_match_ethervid(const char *name, int *vidp)
1017 {
1018 	char ifname[IFNAMSIZ];
1019 	char *cp;
1020 	struct ifnet *ifp;
1021 	int vid;
1022 
1023 	strlcpy(ifname, name, IFNAMSIZ);
1024 	if ((cp = strrchr(ifname, '.')) == NULL)
1025 		return (NULL);
1026 	*cp = '\0';
1027 	if ((ifp = ifunit_ref(ifname)) == NULL)
1028 		return (NULL);
1029 	/* Parse VID. */
1030 	if (*++cp == '\0') {
1031 		if_rele(ifp);
1032 		return (NULL);
1033 	}
1034 	vid = 0;
1035 	for(; *cp >= '0' && *cp <= '9'; cp++)
1036 		vid = (vid * 10) + (*cp - '0');
1037 	if (*cp != '\0') {
1038 		if_rele(ifp);
1039 		return (NULL);
1040 	}
1041 	if (vidp != NULL)
1042 		*vidp = vid;
1043 
1044 	return (ifp);
1045 }
1046 
1047 static int
vlan_clone_match(struct if_clone * ifc,const char * name)1048 vlan_clone_match(struct if_clone *ifc, const char *name)
1049 {
1050 	struct ifnet *ifp;
1051 	const char *cp;
1052 
1053 	ifp = vlan_clone_match_ethervid(name, NULL);
1054 	if (ifp != NULL) {
1055 		if_rele(ifp);
1056 		return (1);
1057 	}
1058 
1059 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1060 		return (0);
1061 	for (cp = name + 4; *cp != '\0'; cp++) {
1062 		if (*cp < '0' || *cp > '9')
1063 			return (0);
1064 	}
1065 
1066 	return (1);
1067 }
1068 
1069 static int
vlan_clone_create(struct if_clone * ifc,char * name,size_t len,struct ifc_data * ifd,struct ifnet ** ifpp)1070 vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1071     struct ifc_data *ifd, struct ifnet **ifpp)
1072 {
1073 	char *dp;
1074 	bool wildcard = false;
1075 	bool subinterface = false;
1076 	int unit;
1077 	int error;
1078 	int vid = 0;
1079 	uint16_t proto = ETHERTYPE_VLAN;
1080 	struct ifvlan *ifv;
1081 	struct ifnet *ifp;
1082 	struct ifnet *p = NULL;
1083 	struct ifaddr *ifa;
1084 	struct sockaddr_dl *sdl;
1085 	struct vlanreq vlr;
1086 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1087 
1088 
1089 	/*
1090 	 * There are three ways to specify the cloned device:
1091 	 * o pass a parameter block with the clone request.
1092 	 * o specify parameters in the text of the clone device name
1093 	 * o specify no parameters and get an unattached device that
1094 	 *   must be configured separately.
1095 	 * The first technique is preferred; the latter two are supported
1096 	 * for backwards compatibility.
1097 	 *
1098 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1099 	 * called for.
1100 	 */
1101 
1102 	if (ifd->params != NULL) {
1103 		error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1104 		if (error)
1105 			return error;
1106 		vid = vlr.vlr_tag;
1107 		proto = vlr.vlr_proto;
1108 		if (proto == 0)
1109 			proto = ETHERTYPE_VLAN;
1110 		p = ifunit_ref(vlr.vlr_parent);
1111 		if (p == NULL)
1112 			return (ENXIO);
1113 	}
1114 
1115 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1116 
1117 		/*
1118 		 * vlanX interface. Set wildcard to true if the unit number
1119 		 * is not fixed (-1)
1120 		 */
1121 		wildcard = (unit < 0);
1122 	} else {
1123 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1124 		if (p_tmp != NULL) {
1125 			error = 0;
1126 			subinterface = true;
1127 			unit = IF_DUNIT_NONE;
1128 			wildcard = false;
1129 			if (p != NULL) {
1130 				if_rele(p_tmp);
1131 				if (p != p_tmp)
1132 					error = EINVAL;
1133 			} else
1134 				p = p_tmp;
1135 		} else
1136 			error = ENXIO;
1137 	}
1138 
1139 	if (error != 0) {
1140 		if (p != NULL)
1141 			if_rele(p);
1142 		return (error);
1143 	}
1144 
1145 	if (!subinterface) {
1146 		/* vlanX interface, mark X as busy or allocate new unit # */
1147 		error = ifc_alloc_unit(ifc, &unit);
1148 		if (error != 0) {
1149 			if (p != NULL)
1150 				if_rele(p);
1151 			return (error);
1152 		}
1153 	}
1154 
1155 	/* In the wildcard case, we need to update the name. */
1156 	if (wildcard) {
1157 		for (dp = name; *dp != '\0'; dp++);
1158 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1159 		    len - (dp-name) - 1) {
1160 			panic("%s: interface name too long", __func__);
1161 		}
1162 	}
1163 
1164 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1165 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1166 	if (ifp == NULL) {
1167 		if (!subinterface)
1168 			ifc_free_unit(ifc, unit);
1169 		free(ifv, M_VLAN);
1170 		if (p != NULL)
1171 			if_rele(p);
1172 		return (ENOSPC);
1173 	}
1174 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1175 	ifp->if_softc = ifv;
1176 	/*
1177 	 * Set the name manually rather than using if_initname because
1178 	 * we don't conform to the default naming convention for interfaces.
1179 	 */
1180 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1181 	ifp->if_dname = vlanname;
1182 	ifp->if_dunit = unit;
1183 
1184 	ifp->if_init = vlan_init;
1185 #ifdef ALTQ
1186 	ifp->if_start = vlan_altq_start;
1187 	ifp->if_transmit = vlan_altq_transmit;
1188 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1189 	ifp->if_snd.ifq_drv_maxlen = 0;
1190 	IFQ_SET_READY(&ifp->if_snd);
1191 #else
1192 	ifp->if_transmit = vlan_transmit;
1193 #endif
1194 	ifp->if_qflush = vlan_qflush;
1195 	ifp->if_ioctl = vlan_ioctl;
1196 #if defined(KERN_TLS) || defined(RATELIMIT)
1197 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1198 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1199 #endif
1200 	ifp->if_flags = VLAN_IFFLAGS;
1201 	ether_ifattach(ifp, eaddr);
1202 	/* Now undo some of the damage... */
1203 	ifp->if_baudrate = 0;
1204 	ifp->if_type = IFT_L2VLAN;
1205 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1206 	ifa = ifp->if_addr;
1207 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1208 	sdl->sdl_type = IFT_L2VLAN;
1209 
1210 	if (p != NULL) {
1211 		error = vlan_config(ifv, p, vid, proto);
1212 		if_rele(p);
1213 		if (error != 0) {
1214 			/*
1215 			 * Since we've partially failed, we need to back
1216 			 * out all the way, otherwise userland could get
1217 			 * confused.  Thus, we destroy the interface.
1218 			 */
1219 			ether_ifdetach(ifp);
1220 			vlan_unconfig(ifp);
1221 			if_free(ifp);
1222 			if (!subinterface)
1223 				ifc_free_unit(ifc, unit);
1224 			free(ifv, M_VLAN);
1225 
1226 			return (error);
1227 		}
1228 	}
1229 	*ifpp = ifp;
1230 
1231 	return (0);
1232 }
1233 
1234 /*
1235  *
1236  * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK
1237  *    {{nla_len=8, nla_type=IFLA_LINK}, 2},
1238  *    {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"},
1239  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1240  *     [
1241  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1242  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1243  */
1244 
1245 struct nl_parsed_vlan {
1246 	uint16_t vlan_id;
1247 	uint16_t vlan_proto;
1248 	struct ifla_vlan_flags vlan_flags;
1249 };
1250 
1251 #define	_OUT(_field)	offsetof(struct nl_parsed_vlan, _field)
1252 static const struct nlattr_parser nla_p_vlan[] = {
1253 	{ .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 },
1254 	{ .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla },
1255 	{ .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 },
1256 };
1257 #undef _OUT
1258 NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan);
1259 
1260 static int
vlan_clone_create_nl(struct if_clone * ifc,char * name,size_t len,struct ifc_data_nl * ifd)1261 vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
1262     struct ifc_data_nl *ifd)
1263 {
1264 	struct epoch_tracker et;
1265         struct ifnet *ifp_parent;
1266 	struct nl_pstate *npt = ifd->npt;
1267 	struct nl_parsed_link *lattrs = ifd->lattrs;
1268 	int error;
1269 
1270 	/*
1271 	 * lattrs.ifla_ifname is the new interface name
1272 	 * lattrs.ifi_index contains parent interface index
1273 	 * lattrs.ifla_idata contains un-parsed vlan data
1274 	 */
1275 	struct nl_parsed_vlan attrs = {
1276 		.vlan_id = 0xFEFE,
1277 		.vlan_proto = ETHERTYPE_VLAN
1278 	};
1279 
1280 	if (lattrs->ifla_idata == NULL) {
1281 		nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported");
1282 		return (ENOTSUP);
1283 	}
1284 
1285 	error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs);
1286 	if (error != 0)
1287 		return (error);
1288 	if (attrs.vlan_id > 4095) {
1289 		nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id);
1290 		return (EINVAL);
1291 	}
1292 	if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) {
1293 		nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto);
1294 		return (ENOTSUP);
1295 	}
1296 
1297 	struct vlanreq params = {
1298 		.vlr_tag = attrs.vlan_id,
1299 		.vlr_proto = attrs.vlan_proto,
1300 	};
1301 	struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = &params };
1302 
1303 	NET_EPOCH_ENTER(et);
1304 	ifp_parent = ifnet_byindex(lattrs->ifi_index);
1305 	if (ifp_parent != NULL)
1306 		strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent));
1307 	NET_EPOCH_EXIT(et);
1308 
1309 	if (ifp_parent == NULL) {
1310 		nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index);
1311 		return (ENOENT);
1312 	}
1313 
1314 	error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp);
1315 
1316 	return (error);
1317 }
1318 
1319 static int
vlan_clone_modify_nl(struct ifnet * ifp,struct ifc_data_nl * ifd)1320 vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd)
1321 {
1322 	struct nl_parsed_link *lattrs = ifd->lattrs;
1323 
1324 	if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) {
1325 		struct epoch_tracker et;
1326 		struct nl_parsed_vlan attrs = {
1327 			.vlan_proto = ETHERTYPE_VLAN,
1328 		};
1329 		int error;
1330 
1331 		error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs);
1332 		if (error != 0)
1333 			return (error);
1334 
1335 		NET_EPOCH_ENTER(et);
1336 		struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link);
1337 		NET_EPOCH_EXIT(et);
1338 
1339 		if (ifp_parent == NULL) {
1340 			nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u",
1341 			    lattrs->ifla_link);
1342 			return (ENOENT);
1343 		}
1344 
1345 		struct ifvlan *ifv = ifp->if_softc;
1346 		error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto);
1347 
1348 		if_rele(ifp_parent);
1349 		if (error != 0)
1350 			return (error);
1351 	}
1352 
1353 	return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt));
1354 }
1355 
1356 /*
1357  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1358  *     [
1359  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1360  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1361  */
1362 static void
vlan_clone_dump_nl(struct ifnet * ifp,struct nl_writer * nw)1363 vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw)
1364 {
1365 	uint32_t parent_index = 0;
1366 	uint16_t vlan_id = 0;
1367 	uint16_t vlan_proto = 0;
1368 
1369 	VLAN_SLOCK();
1370 	struct ifvlan *ifv = ifp->if_softc;
1371 	if (TRUNK(ifv) != NULL)
1372 		parent_index = PARENT(ifv)->if_index;
1373 	vlan_id = ifv->ifv_vid;
1374 	vlan_proto = ifv->ifv_proto;
1375 	VLAN_SUNLOCK();
1376 
1377 	if (parent_index != 0)
1378 		nlattr_add_u32(nw, IFLA_LINK, parent_index);
1379 
1380 	int off = nlattr_add_nested(nw, IFLA_LINKINFO);
1381 	if (off != 0) {
1382 		nlattr_add_string(nw, IFLA_INFO_KIND, "vlan");
1383 		int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA);
1384 		if (off2 != 0) {
1385 			nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id);
1386 			nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto);
1387 			nlattr_set_len(nw, off2);
1388 		}
1389 		nlattr_set_len(nw, off);
1390 	}
1391 }
1392 
1393 static int
vlan_clone_destroy(struct if_clone * ifc,struct ifnet * ifp,uint32_t flags)1394 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1395 {
1396 	struct ifvlan *ifv = ifp->if_softc;
1397 	int unit = ifp->if_dunit;
1398 
1399 	if (ifp->if_vlantrunk)
1400 		return (EBUSY);
1401 
1402 #ifdef ALTQ
1403 	IFQ_PURGE(&ifp->if_snd);
1404 #endif
1405 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1406 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1407 	/*
1408 	 * We should have the only reference to the ifv now, so we can now
1409 	 * drain any remaining lladdr task before freeing the ifnet and the
1410 	 * ifvlan.
1411 	 */
1412 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1413 	NET_EPOCH_WAIT();
1414 	if_free(ifp);
1415 	free(ifv, M_VLAN);
1416 	if (unit != IF_DUNIT_NONE)
1417 		ifc_free_unit(ifc, unit);
1418 
1419 	return (0);
1420 }
1421 
1422 /*
1423  * The ifp->if_init entry point for vlan(4) is a no-op.
1424  */
1425 static void
vlan_init(void * foo __unused)1426 vlan_init(void *foo __unused)
1427 {
1428 }
1429 
1430 /*
1431  * The if_transmit method for vlan(4) interface.
1432  */
1433 static int
vlan_transmit(struct ifnet * ifp,struct mbuf * m)1434 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1435 {
1436 	struct ifvlan *ifv;
1437 	struct ifnet *p;
1438 	int error, len, mcast;
1439 
1440 	NET_EPOCH_ASSERT();
1441 
1442 	ifv = ifp->if_softc;
1443 	if (TRUNK(ifv) == NULL) {
1444 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1445 		m_freem(m);
1446 		return (ENETDOWN);
1447 	}
1448 	p = PARENT(ifv);
1449 	len = m->m_pkthdr.len;
1450 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1451 
1452 	BPF_MTAP(ifp, m);
1453 
1454 #if defined(KERN_TLS) || defined(RATELIMIT)
1455 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1456 		struct vlan_snd_tag *vst;
1457 		struct m_snd_tag *mst;
1458 
1459 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1460 		mst = m->m_pkthdr.snd_tag;
1461 		vst = mst_to_vst(mst);
1462 		if (vst->tag->ifp != p) {
1463 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1464 			m_freem(m);
1465 			return (EAGAIN);
1466 		}
1467 
1468 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1469 		m_snd_tag_rele(mst);
1470 	}
1471 #endif
1472 
1473 	/*
1474 	 * Do not run parent's if_transmit() if the parent is not up,
1475 	 * or parent's driver will cause a system crash.
1476 	 */
1477 	if (!UP_AND_RUNNING(p)) {
1478 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1479 		m_freem(m);
1480 		return (ENETDOWN);
1481 	}
1482 
1483 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1484 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1485 		return (0);
1486 	}
1487 
1488 	/*
1489 	 * Send it, precisely as ether_output() would have.
1490 	 */
1491 	error = (p->if_transmit)(p, m);
1492 	if (error == 0) {
1493 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1494 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1495 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1496 	} else
1497 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1498 	return (error);
1499 }
1500 
1501 static int
vlan_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)1502 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1503     struct route *ro)
1504 {
1505 	struct ifvlan *ifv;
1506 	struct ifnet *p;
1507 
1508 	NET_EPOCH_ASSERT();
1509 
1510 	/*
1511 	 * Find the first non-VLAN parent interface.
1512 	 */
1513 	ifv = ifp->if_softc;
1514 	do {
1515 		if (TRUNK(ifv) == NULL) {
1516 			m_freem(m);
1517 			return (ENETDOWN);
1518 		}
1519 		p = PARENT(ifv);
1520 		ifv = p->if_softc;
1521 	} while (p->if_type == IFT_L2VLAN);
1522 
1523 	return p->if_output(ifp, m, dst, ro);
1524 }
1525 
1526 #ifdef ALTQ
1527 static void
vlan_altq_start(if_t ifp)1528 vlan_altq_start(if_t ifp)
1529 {
1530 	struct ifaltq *ifq = &ifp->if_snd;
1531 	struct mbuf *m;
1532 
1533 	IFQ_LOCK(ifq);
1534 	IFQ_DEQUEUE_NOLOCK(ifq, m);
1535 	while (m != NULL) {
1536 		vlan_transmit(ifp, m);
1537 		IFQ_DEQUEUE_NOLOCK(ifq, m);
1538 	}
1539 	IFQ_UNLOCK(ifq);
1540 }
1541 
1542 static int
vlan_altq_transmit(if_t ifp,struct mbuf * m)1543 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1544 {
1545 	int err;
1546 
1547 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1548 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1549 		if (err == 0)
1550 			vlan_altq_start(ifp);
1551 	} else
1552 		err = vlan_transmit(ifp, m);
1553 
1554 	return (err);
1555 }
1556 #endif	/* ALTQ */
1557 
1558 /*
1559  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1560  */
1561 static void
vlan_qflush(struct ifnet * ifp __unused)1562 vlan_qflush(struct ifnet *ifp __unused)
1563 {
1564 }
1565 
1566 static void
vlan_input(struct ifnet * ifp,struct mbuf * m)1567 vlan_input(struct ifnet *ifp, struct mbuf *m)
1568 {
1569 	struct ifvlantrunk *trunk;
1570 	struct ifvlan *ifv;
1571 	struct m_tag *mtag;
1572 	uint16_t vid, tag;
1573 
1574 	NET_EPOCH_ASSERT();
1575 
1576 	trunk = ifp->if_vlantrunk;
1577 	if (trunk == NULL) {
1578 		m_freem(m);
1579 		return;
1580 	}
1581 
1582 	if (m->m_flags & M_VLANTAG) {
1583 		/*
1584 		 * Packet is tagged, but m contains a normal
1585 		 * Ethernet frame; the tag is stored out-of-band.
1586 		 */
1587 		tag = m->m_pkthdr.ether_vtag;
1588 		m->m_flags &= ~M_VLANTAG;
1589 	} else {
1590 		struct ether_vlan_header *evl;
1591 
1592 		/*
1593 		 * Packet is tagged in-band as specified by 802.1q.
1594 		 */
1595 		switch (ifp->if_type) {
1596 		case IFT_ETHER:
1597 			if (m->m_len < sizeof(*evl) &&
1598 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1599 				if_printf(ifp, "cannot pullup VLAN header\n");
1600 				return;
1601 			}
1602 			evl = mtod(m, struct ether_vlan_header *);
1603 			tag = ntohs(evl->evl_tag);
1604 
1605 			/*
1606 			 * Remove the 802.1q header by copying the Ethernet
1607 			 * addresses over it and adjusting the beginning of
1608 			 * the data in the mbuf.  The encapsulated Ethernet
1609 			 * type field is already in place.
1610 			 */
1611 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1612 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1613 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1614 			break;
1615 
1616 		default:
1617 #ifdef INVARIANTS
1618 			panic("%s: %s has unsupported if_type %u",
1619 			      __func__, ifp->if_xname, ifp->if_type);
1620 #endif
1621 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1622 			m_freem(m);
1623 			return;
1624 		}
1625 	}
1626 
1627 	vid = EVL_VLANOFTAG(tag);
1628 
1629 	ifv = vlan_gethash(trunk, vid);
1630 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1631 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1632 		m_freem(m);
1633 		return;
1634 	}
1635 
1636 	if (V_vlan_mtag_pcp) {
1637 		/*
1638 		 * While uncommon, it is possible that we will find a 802.1q
1639 		 * packet encapsulated inside another packet that also had an
1640 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1641 		 * arriving over ethernet.  In that case, we replace the
1642 		 * existing 802.1q PCP m_tag value.
1643 		 */
1644 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1645 		if (mtag == NULL) {
1646 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1647 			    sizeof(uint8_t), M_NOWAIT);
1648 			if (mtag == NULL) {
1649 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1650 				m_freem(m);
1651 				return;
1652 			}
1653 			m_tag_prepend(m, mtag);
1654 		}
1655 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1656 	}
1657 
1658 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1659 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1660 
1661 	/* Pass it back through the parent's input routine. */
1662 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1663 }
1664 
1665 static void
vlan_lladdr_fn(void * arg,int pending __unused)1666 vlan_lladdr_fn(void *arg, int pending __unused)
1667 {
1668 	struct ifvlan *ifv;
1669 	struct ifnet *ifp;
1670 
1671 	ifv = (struct ifvlan *)arg;
1672 	ifp = ifv->ifv_ifp;
1673 
1674 	CURVNET_SET(ifp->if_vnet);
1675 
1676 	/* The ifv_ifp already has the lladdr copied in. */
1677 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1678 
1679 	CURVNET_RESTORE();
1680 }
1681 
1682 static int
vlan_config(struct ifvlan * ifv,struct ifnet * p,uint16_t vid,uint16_t proto)1683 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1684 	uint16_t proto)
1685 {
1686 	struct epoch_tracker et;
1687 	struct ifvlantrunk *trunk;
1688 	struct ifnet *ifp;
1689 	int error = 0;
1690 
1691 	/*
1692 	 * We can handle non-ethernet hardware types as long as
1693 	 * they handle the tagging and headers themselves.
1694 	 */
1695 	if (p->if_type != IFT_ETHER &&
1696 	    p->if_type != IFT_L2VLAN &&
1697 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1698 		return (EPROTONOSUPPORT);
1699 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1700 		return (EPROTONOSUPPORT);
1701 	/*
1702 	 * Don't let the caller set up a VLAN VID with
1703 	 * anything except VLID bits.
1704 	 * VID numbers 0x0 and 0xFFF are reserved.
1705 	 */
1706 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1707 		return (EINVAL);
1708 	if (ifv->ifv_trunk) {
1709 		trunk = ifv->ifv_trunk;
1710 		if (trunk->parent != p)
1711 			return (EBUSY);
1712 
1713 		VLAN_XLOCK();
1714 
1715 		ifv->ifv_proto = proto;
1716 
1717 		if (ifv->ifv_vid != vid) {
1718 			int oldvid = ifv->ifv_vid;
1719 
1720 			/* Re-hash */
1721 			vlan_remhash(trunk, ifv);
1722 			ifv->ifv_vid = vid;
1723 			error = vlan_inshash(trunk, ifv);
1724 			if (error) {
1725 				int ret __diagused;
1726 
1727 				ifv->ifv_vid = oldvid;
1728 				/* Re-insert back where we found it. */
1729 				ret = vlan_inshash(trunk, ifv);
1730 				MPASS(ret == 0);
1731 			}
1732 		}
1733 		/* Will unlock */
1734 		goto done;
1735 	}
1736 
1737 	VLAN_XLOCK();
1738 	if (p->if_vlantrunk == NULL) {
1739 		trunk = malloc(sizeof(struct ifvlantrunk),
1740 		    M_VLAN, M_WAITOK | M_ZERO);
1741 		vlan_inithash(trunk);
1742 		TRUNK_LOCK_INIT(trunk);
1743 		TRUNK_WLOCK(trunk);
1744 		p->if_vlantrunk = trunk;
1745 		trunk->parent = p;
1746 		if_ref(trunk->parent);
1747 		TRUNK_WUNLOCK(trunk);
1748 	} else {
1749 		trunk = p->if_vlantrunk;
1750 	}
1751 
1752 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1753 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1754 	error = vlan_inshash(trunk, ifv);
1755 	if (error)
1756 		goto done;
1757 	ifv->ifv_proto = proto;
1758 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1759 	ifv->ifv_mintu = ETHERMIN;
1760 	ifv->ifv_pflags = 0;
1761 	ifv->ifv_capenable = -1;
1762 
1763 	/*
1764 	 * If the parent supports the VLAN_MTU capability,
1765 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1766 	 * use it.
1767 	 */
1768 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1769 		/*
1770 		 * No need to fudge the MTU since the parent can
1771 		 * handle extended frames.
1772 		 */
1773 		ifv->ifv_mtufudge = 0;
1774 	} else {
1775 		/*
1776 		 * Fudge the MTU by the encapsulation size.  This
1777 		 * makes us incompatible with strictly compliant
1778 		 * 802.1Q implementations, but allows us to use
1779 		 * the feature with other NetBSD implementations,
1780 		 * which might still be useful.
1781 		 */
1782 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1783 	}
1784 
1785 	ifv->ifv_trunk = trunk;
1786 	ifp = ifv->ifv_ifp;
1787 	/*
1788 	 * Initialize fields from our parent.  This duplicates some
1789 	 * work with ether_ifattach() but allows for non-ethernet
1790 	 * interfaces to also work.
1791 	 */
1792 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1793 	ifp->if_baudrate = p->if_baudrate;
1794 	ifp->if_input = p->if_input;
1795 	ifp->if_resolvemulti = p->if_resolvemulti;
1796 	ifp->if_addrlen = p->if_addrlen;
1797 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1798 	ifp->if_pcp = ifv->ifv_pcp;
1799 
1800 	/*
1801 	 * We wrap the parent's if_output using vlan_output to ensure that it
1802 	 * can't become stale.
1803 	 */
1804 	ifp->if_output = vlan_output;
1805 
1806 	/*
1807 	 * Copy only a selected subset of flags from the parent.
1808 	 * Other flags are none of our business.
1809 	 */
1810 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1811 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1812 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1813 #undef VLAN_COPY_FLAGS
1814 
1815 	ifp->if_link_state = p->if_link_state;
1816 
1817 	NET_EPOCH_ENTER(et);
1818 	vlan_capabilities(ifv);
1819 	NET_EPOCH_EXIT(et);
1820 
1821 	/*
1822 	 * Set up our interface address to reflect the underlying
1823 	 * physical interface's.
1824 	 */
1825 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1826 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1827 	    p->if_addrlen;
1828 
1829 	/*
1830 	 * Do not schedule link address update if it was the same
1831 	 * as previous parent's. This helps avoid updating for each
1832 	 * associated llentry.
1833 	 */
1834 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1835 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1836 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1837 	}
1838 
1839 	/* We are ready for operation now. */
1840 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1841 
1842 	/* Update flags on the parent, if necessary. */
1843 	vlan_setflags(ifp, 1);
1844 
1845 	/*
1846 	 * Configure multicast addresses that may already be
1847 	 * joined on the vlan device.
1848 	 */
1849 	(void)vlan_setmulti(ifp);
1850 
1851 done:
1852 	if (error == 0)
1853 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1854 	VLAN_XUNLOCK();
1855 
1856 	return (error);
1857 }
1858 
1859 static void
vlan_unconfig(struct ifnet * ifp)1860 vlan_unconfig(struct ifnet *ifp)
1861 {
1862 
1863 	VLAN_XLOCK();
1864 	vlan_unconfig_locked(ifp, 0);
1865 	VLAN_XUNLOCK();
1866 }
1867 
1868 static void
vlan_unconfig_locked(struct ifnet * ifp,int departing)1869 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1870 {
1871 	struct ifvlantrunk *trunk;
1872 	struct vlan_mc_entry *mc;
1873 	struct ifvlan *ifv;
1874 	struct ifnet  *parent;
1875 	int error;
1876 
1877 	VLAN_XLOCK_ASSERT();
1878 
1879 	ifv = ifp->if_softc;
1880 	trunk = ifv->ifv_trunk;
1881 	parent = NULL;
1882 
1883 	if (trunk != NULL) {
1884 		parent = trunk->parent;
1885 
1886 		/*
1887 		 * Since the interface is being unconfigured, we need to
1888 		 * empty the list of multicast groups that we may have joined
1889 		 * while we were alive from the parent's list.
1890 		 */
1891 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1892 			/*
1893 			 * If the parent interface is being detached,
1894 			 * all its multicast addresses have already
1895 			 * been removed.  Warn about errors if
1896 			 * if_delmulti() does fail, but don't abort as
1897 			 * all callers expect vlan destruction to
1898 			 * succeed.
1899 			 */
1900 			if (!departing) {
1901 				error = if_delmulti(parent,
1902 				    (struct sockaddr *)&mc->mc_addr);
1903 				if (error)
1904 					if_printf(ifp,
1905 		    "Failed to delete multicast address from parent: %d\n",
1906 					    error);
1907 			}
1908 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1909 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1910 		}
1911 
1912 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1913 
1914 		vlan_remhash(trunk, ifv);
1915 		ifv->ifv_trunk = NULL;
1916 
1917 		/*
1918 		 * Check if we were the last.
1919 		 */
1920 		if (trunk->refcnt == 0) {
1921 			parent->if_vlantrunk = NULL;
1922 			NET_EPOCH_WAIT();
1923 			trunk_destroy(trunk);
1924 		}
1925 	}
1926 
1927 	/* Disconnect from parent. */
1928 	if (ifv->ifv_pflags)
1929 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1930 	ifp->if_mtu = ETHERMTU;
1931 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1932 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1933 
1934 	/*
1935 	 * Only dispatch an event if vlan was
1936 	 * attached, otherwise there is nothing
1937 	 * to cleanup anyway.
1938 	 */
1939 	if (parent != NULL)
1940 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1941 }
1942 
1943 /* Handle a reference counted flag that should be set on the parent as well */
1944 static int
vlan_setflag(struct ifnet * ifp,int flag,int status,int (* func)(struct ifnet *,int))1945 vlan_setflag(struct ifnet *ifp, int flag, int status,
1946 	     int (*func)(struct ifnet *, int))
1947 {
1948 	struct ifvlan *ifv;
1949 	int error;
1950 
1951 	VLAN_SXLOCK_ASSERT();
1952 
1953 	ifv = ifp->if_softc;
1954 	status = status ? (ifp->if_flags & flag) : 0;
1955 	/* Now "status" contains the flag value or 0 */
1956 
1957 	/*
1958 	 * See if recorded parent's status is different from what
1959 	 * we want it to be.  If it is, flip it.  We record parent's
1960 	 * status in ifv_pflags so that we won't clear parent's flag
1961 	 * we haven't set.  In fact, we don't clear or set parent's
1962 	 * flags directly, but get or release references to them.
1963 	 * That's why we can be sure that recorded flags still are
1964 	 * in accord with actual parent's flags.
1965 	 */
1966 	if (status != (ifv->ifv_pflags & flag)) {
1967 		error = (*func)(PARENT(ifv), status);
1968 		if (error)
1969 			return (error);
1970 		ifv->ifv_pflags &= ~flag;
1971 		ifv->ifv_pflags |= status;
1972 	}
1973 	return (0);
1974 }
1975 
1976 /*
1977  * Handle IFF_* flags that require certain changes on the parent:
1978  * if "status" is true, update parent's flags respective to our if_flags;
1979  * if "status" is false, forcedly clear the flags set on parent.
1980  */
1981 static int
vlan_setflags(struct ifnet * ifp,int status)1982 vlan_setflags(struct ifnet *ifp, int status)
1983 {
1984 	int error, i;
1985 
1986 	for (i = 0; vlan_pflags[i].flag; i++) {
1987 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1988 				     status, vlan_pflags[i].func);
1989 		if (error)
1990 			return (error);
1991 	}
1992 	return (0);
1993 }
1994 
1995 /* Inform all vlans that their parent has changed link state */
1996 static void
vlan_link_state(struct ifnet * ifp)1997 vlan_link_state(struct ifnet *ifp)
1998 {
1999 	struct epoch_tracker et;
2000 	struct ifvlantrunk *trunk;
2001 	struct ifvlan *ifv;
2002 
2003 	NET_EPOCH_ENTER(et);
2004 	trunk = ifp->if_vlantrunk;
2005 	if (trunk == NULL) {
2006 		NET_EPOCH_EXIT(et);
2007 		return;
2008 	}
2009 
2010 	TRUNK_WLOCK(trunk);
2011 	VLAN_FOREACH(ifv, trunk) {
2012 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
2013 		if_link_state_change(ifv->ifv_ifp,
2014 		    trunk->parent->if_link_state);
2015 	}
2016 	TRUNK_WUNLOCK(trunk);
2017 	NET_EPOCH_EXIT(et);
2018 }
2019 
2020 static void
vlan_capabilities(struct ifvlan * ifv)2021 vlan_capabilities(struct ifvlan *ifv)
2022 {
2023 	struct ifnet *p;
2024 	struct ifnet *ifp;
2025 	struct ifnet_hw_tsomax hw_tsomax;
2026 	int cap = 0, ena = 0, mena;
2027 	u_long hwa = 0;
2028 
2029 	NET_EPOCH_ASSERT();
2030 	VLAN_SXLOCK_ASSERT();
2031 
2032 	p = PARENT(ifv);
2033 	ifp = ifv->ifv_ifp;
2034 
2035 	/* Mask parent interface enabled capabilities disabled by user. */
2036 	mena = p->if_capenable & ifv->ifv_capenable;
2037 
2038 	/*
2039 	 * If the parent interface can do checksum offloading
2040 	 * on VLANs, then propagate its hardware-assisted
2041 	 * checksumming flags. Also assert that checksum
2042 	 * offloading requires hardware VLAN tagging.
2043 	 */
2044 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2045 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2046 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
2047 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
2048 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2049 		if (ena & IFCAP_TXCSUM)
2050 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
2051 			    CSUM_UDP | CSUM_SCTP);
2052 		if (ena & IFCAP_TXCSUM_IPV6)
2053 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
2054 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
2055 	}
2056 
2057 	/*
2058 	 * If the parent interface can do TSO on VLANs then
2059 	 * propagate the hardware-assisted flag. TSO on VLANs
2060 	 * does not necessarily require hardware VLAN tagging.
2061 	 */
2062 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
2063 	if_hw_tsomax_common(p, &hw_tsomax);
2064 	if_hw_tsomax_update(ifp, &hw_tsomax);
2065 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
2066 		cap |= p->if_capabilities & IFCAP_TSO;
2067 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
2068 		ena |= mena & IFCAP_TSO;
2069 		if (ena & IFCAP_TSO)
2070 			hwa |= p->if_hwassist & CSUM_TSO;
2071 	}
2072 
2073 	/*
2074 	 * If the parent interface can do LRO and checksum offloading on
2075 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
2076 	 * cost nothing, while false negative may lead to some confusions.
2077 	 */
2078 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2079 		cap |= p->if_capabilities & IFCAP_LRO;
2080 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
2081 		ena |= mena & IFCAP_LRO;
2082 
2083 	/*
2084 	 * If the parent interface can offload TCP connections over VLANs then
2085 	 * propagate its TOE capability to the VLAN interface.
2086 	 *
2087 	 * All TOE drivers in the tree today can deal with VLANs.  If this
2088 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
2089 	 * with its own bit.
2090 	 */
2091 #define	IFCAP_VLAN_TOE IFCAP_TOE
2092 	if (p->if_capabilities & IFCAP_VLAN_TOE)
2093 		cap |= p->if_capabilities & IFCAP_TOE;
2094 	if (p->if_capenable & IFCAP_VLAN_TOE) {
2095 		SETTOEDEV(ifp, TOEDEV(p));
2096 		ena |= mena & IFCAP_TOE;
2097 	}
2098 
2099 	/*
2100 	 * If the parent interface supports dynamic link state, so does the
2101 	 * VLAN interface.
2102 	 */
2103 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
2104 	ena |= (mena & IFCAP_LINKSTATE);
2105 
2106 #ifdef RATELIMIT
2107 	/*
2108 	 * If the parent interface supports ratelimiting, so does the
2109 	 * VLAN interface.
2110 	 */
2111 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
2112 	ena |= (mena & IFCAP_TXRTLMT);
2113 #endif
2114 
2115 	/*
2116 	 * If the parent interface supports unmapped mbufs, so does
2117 	 * the VLAN interface.  Note that this should be fine even for
2118 	 * interfaces that don't support hardware tagging as headers
2119 	 * are prepended in normal mbufs to unmapped mbufs holding
2120 	 * payload data.
2121 	 */
2122 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
2123 	ena |= (mena & IFCAP_MEXTPG);
2124 
2125 	/*
2126 	 * If the parent interface can offload encryption and segmentation
2127 	 * of TLS records over TCP, propagate it's capability to the VLAN
2128 	 * interface.
2129 	 *
2130 	 * All TLS drivers in the tree today can deal with VLANs.  If
2131 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
2132 	 * defined.
2133 	 */
2134 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2135 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2136 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2137 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2138 
2139 	ifp->if_capabilities = cap;
2140 	ifp->if_capenable = ena;
2141 	ifp->if_hwassist = hwa;
2142 }
2143 
2144 static void
vlan_trunk_capabilities(struct ifnet * ifp)2145 vlan_trunk_capabilities(struct ifnet *ifp)
2146 {
2147 	struct epoch_tracker et;
2148 	struct ifvlantrunk *trunk;
2149 	struct ifvlan *ifv;
2150 
2151 	VLAN_SLOCK();
2152 	trunk = ifp->if_vlantrunk;
2153 	if (trunk == NULL) {
2154 		VLAN_SUNLOCK();
2155 		return;
2156 	}
2157 	NET_EPOCH_ENTER(et);
2158 	VLAN_FOREACH(ifv, trunk)
2159 		vlan_capabilities(ifv);
2160 	NET_EPOCH_EXIT(et);
2161 	VLAN_SUNLOCK();
2162 }
2163 
2164 static int
vlan_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)2165 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2166 {
2167 	struct ifnet *p;
2168 	struct ifreq *ifr;
2169 #ifdef INET
2170 	struct ifaddr *ifa;
2171 #endif
2172 	struct ifvlan *ifv;
2173 	struct ifvlantrunk *trunk;
2174 	struct vlanreq vlr;
2175 	int error = 0, oldmtu;
2176 
2177 	ifr = (struct ifreq *)data;
2178 #ifdef INET
2179 	ifa = (struct ifaddr *) data;
2180 #endif
2181 	ifv = ifp->if_softc;
2182 
2183 	switch (cmd) {
2184 	case SIOCSIFADDR:
2185 		ifp->if_flags |= IFF_UP;
2186 #ifdef INET
2187 		if (ifa->ifa_addr->sa_family == AF_INET)
2188 			arp_ifinit(ifp, ifa);
2189 #endif
2190 		break;
2191 	case SIOCGIFADDR:
2192 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2193 		    ifp->if_addrlen);
2194 		break;
2195 	case SIOCGIFMEDIA:
2196 		VLAN_SLOCK();
2197 		if (TRUNK(ifv) != NULL) {
2198 			p = PARENT(ifv);
2199 			if_ref(p);
2200 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2201 			if_rele(p);
2202 			/* Limit the result to the parent's current config. */
2203 			if (error == 0) {
2204 				struct ifmediareq *ifmr;
2205 
2206 				ifmr = (struct ifmediareq *)data;
2207 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2208 					ifmr->ifm_count = 1;
2209 					error = copyout(&ifmr->ifm_current,
2210 						ifmr->ifm_ulist,
2211 						sizeof(int));
2212 				}
2213 			}
2214 		} else {
2215 			error = EINVAL;
2216 		}
2217 		VLAN_SUNLOCK();
2218 		break;
2219 
2220 	case SIOCSIFMEDIA:
2221 		error = EINVAL;
2222 		break;
2223 
2224 	case SIOCSIFMTU:
2225 		/*
2226 		 * Set the interface MTU.
2227 		 */
2228 		VLAN_SLOCK();
2229 		trunk = TRUNK(ifv);
2230 		if (trunk != NULL) {
2231 			TRUNK_WLOCK(trunk);
2232 			if (ifr->ifr_mtu >
2233 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2234 			    ifr->ifr_mtu <
2235 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2236 				error = EINVAL;
2237 			else
2238 				ifp->if_mtu = ifr->ifr_mtu;
2239 			TRUNK_WUNLOCK(trunk);
2240 		} else
2241 			error = EINVAL;
2242 		VLAN_SUNLOCK();
2243 		break;
2244 
2245 	case SIOCSETVLAN:
2246 #ifdef VIMAGE
2247 		/*
2248 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2249 		 * interface to be delegated to a jail without allowing the
2250 		 * jail to change what underlying interface/VID it is
2251 		 * associated with.  We are not entirely convinced that this
2252 		 * is the right way to accomplish that policy goal.
2253 		 */
2254 		if (ifp->if_vnet != ifp->if_home_vnet) {
2255 			error = EPERM;
2256 			break;
2257 		}
2258 #endif
2259 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2260 		if (error)
2261 			break;
2262 		if (vlr.vlr_parent[0] == '\0') {
2263 			vlan_unconfig(ifp);
2264 			break;
2265 		}
2266 		p = ifunit_ref(vlr.vlr_parent);
2267 		if (p == NULL) {
2268 			error = ENOENT;
2269 			break;
2270 		}
2271 		if (vlr.vlr_proto == 0)
2272 			vlr.vlr_proto = ETHERTYPE_VLAN;
2273 		oldmtu = ifp->if_mtu;
2274 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2275 		if_rele(p);
2276 
2277 		/*
2278 		 * VLAN MTU may change during addition of the vlandev.
2279 		 * If it did, do network layer specific procedure.
2280 		 */
2281 		if (ifp->if_mtu != oldmtu)
2282 			if_notifymtu(ifp);
2283 		break;
2284 
2285 	case SIOCGETVLAN:
2286 #ifdef VIMAGE
2287 		if (ifp->if_vnet != ifp->if_home_vnet) {
2288 			error = EPERM;
2289 			break;
2290 		}
2291 #endif
2292 		bzero(&vlr, sizeof(vlr));
2293 		VLAN_SLOCK();
2294 		if (TRUNK(ifv) != NULL) {
2295 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2296 			    sizeof(vlr.vlr_parent));
2297 			vlr.vlr_tag = ifv->ifv_vid;
2298 			vlr.vlr_proto = ifv->ifv_proto;
2299 		}
2300 		VLAN_SUNLOCK();
2301 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2302 		break;
2303 
2304 	case SIOCSIFFLAGS:
2305 		/*
2306 		 * We should propagate selected flags to the parent,
2307 		 * e.g., promiscuous mode.
2308 		 */
2309 		VLAN_SLOCK();
2310 		if (TRUNK(ifv) != NULL)
2311 			error = vlan_setflags(ifp, 1);
2312 		VLAN_SUNLOCK();
2313 		break;
2314 
2315 	case SIOCADDMULTI:
2316 	case SIOCDELMULTI:
2317 		/*
2318 		 * If we don't have a parent, just remember the membership for
2319 		 * when we do.
2320 		 *
2321 		 * XXX We need the rmlock here to avoid sleeping while
2322 		 * holding in6_multi_mtx.
2323 		 */
2324 		VLAN_XLOCK();
2325 		trunk = TRUNK(ifv);
2326 		if (trunk != NULL)
2327 			error = vlan_setmulti(ifp);
2328 		VLAN_XUNLOCK();
2329 
2330 		break;
2331 	case SIOCGVLANPCP:
2332 #ifdef VIMAGE
2333 		if (ifp->if_vnet != ifp->if_home_vnet) {
2334 			error = EPERM;
2335 			break;
2336 		}
2337 #endif
2338 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2339 		break;
2340 
2341 	case SIOCSVLANPCP:
2342 #ifdef VIMAGE
2343 		if (ifp->if_vnet != ifp->if_home_vnet) {
2344 			error = EPERM;
2345 			break;
2346 		}
2347 #endif
2348 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2349 		if (error)
2350 			break;
2351 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2352 			error = EINVAL;
2353 			break;
2354 		}
2355 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2356 		ifp->if_pcp = ifv->ifv_pcp;
2357 		/* broadcast event about PCP change */
2358 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2359 		break;
2360 
2361 	case SIOCSIFCAP:
2362 		VLAN_SLOCK();
2363 		ifv->ifv_capenable = ifr->ifr_reqcap;
2364 		trunk = TRUNK(ifv);
2365 		if (trunk != NULL) {
2366 			struct epoch_tracker et;
2367 
2368 			NET_EPOCH_ENTER(et);
2369 			vlan_capabilities(ifv);
2370 			NET_EPOCH_EXIT(et);
2371 		}
2372 		VLAN_SUNLOCK();
2373 		break;
2374 
2375 	default:
2376 		error = EINVAL;
2377 		break;
2378 	}
2379 
2380 	return (error);
2381 }
2382 
2383 #if defined(KERN_TLS) || defined(RATELIMIT)
2384 static int
vlan_snd_tag_alloc(struct ifnet * ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** ppmt)2385 vlan_snd_tag_alloc(struct ifnet *ifp,
2386     union if_snd_tag_alloc_params *params,
2387     struct m_snd_tag **ppmt)
2388 {
2389 	struct epoch_tracker et;
2390 	const struct if_snd_tag_sw *sw;
2391 	struct vlan_snd_tag *vst;
2392 	struct ifvlan *ifv;
2393 	struct ifnet *parent;
2394 	struct m_snd_tag *mst;
2395 	int error;
2396 
2397 	NET_EPOCH_ENTER(et);
2398 	ifv = ifp->if_softc;
2399 
2400 	switch (params->hdr.type) {
2401 #ifdef RATELIMIT
2402 	case IF_SND_TAG_TYPE_UNLIMITED:
2403 		sw = &vlan_snd_tag_ul_sw;
2404 		break;
2405 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2406 		sw = &vlan_snd_tag_rl_sw;
2407 		break;
2408 #endif
2409 #ifdef KERN_TLS
2410 	case IF_SND_TAG_TYPE_TLS:
2411 		sw = &vlan_snd_tag_tls_sw;
2412 		break;
2413 	case IF_SND_TAG_TYPE_TLS_RX:
2414 		sw = NULL;
2415 		if (params->tls_rx.vlan_id != 0)
2416 			goto failure;
2417 		params->tls_rx.vlan_id = ifv->ifv_vid;
2418 		break;
2419 #ifdef RATELIMIT
2420 	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2421 		sw = &vlan_snd_tag_tls_rl_sw;
2422 		break;
2423 #endif
2424 #endif
2425 	default:
2426 		goto failure;
2427 	}
2428 
2429 	if (ifv->ifv_trunk != NULL)
2430 		parent = PARENT(ifv);
2431 	else
2432 		parent = NULL;
2433 	if (parent == NULL)
2434 		goto failure;
2435 	if_ref(parent);
2436 	NET_EPOCH_EXIT(et);
2437 
2438 	if (sw != NULL) {
2439 		vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2440 		if (vst == NULL) {
2441 			if_rele(parent);
2442 			return (ENOMEM);
2443 		}
2444 	} else
2445 		vst = NULL;
2446 
2447 	error = m_snd_tag_alloc(parent, params, &mst);
2448 	if_rele(parent);
2449 	if (error) {
2450 		free(vst, M_VLAN);
2451 		return (error);
2452 	}
2453 
2454 	if (sw != NULL) {
2455 		m_snd_tag_init(&vst->com, ifp, sw);
2456 		vst->tag = mst;
2457 
2458 		*ppmt = &vst->com;
2459 	} else
2460 		*ppmt = mst;
2461 
2462 	return (0);
2463 failure:
2464 	NET_EPOCH_EXIT(et);
2465 	return (EOPNOTSUPP);
2466 }
2467 
2468 static struct m_snd_tag *
vlan_next_snd_tag(struct m_snd_tag * mst)2469 vlan_next_snd_tag(struct m_snd_tag *mst)
2470 {
2471 	struct vlan_snd_tag *vst;
2472 
2473 	vst = mst_to_vst(mst);
2474 	return (vst->tag);
2475 }
2476 
2477 static int
vlan_snd_tag_modify(struct m_snd_tag * mst,union if_snd_tag_modify_params * params)2478 vlan_snd_tag_modify(struct m_snd_tag *mst,
2479     union if_snd_tag_modify_params *params)
2480 {
2481 	struct vlan_snd_tag *vst;
2482 
2483 	vst = mst_to_vst(mst);
2484 	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2485 }
2486 
2487 static int
vlan_snd_tag_query(struct m_snd_tag * mst,union if_snd_tag_query_params * params)2488 vlan_snd_tag_query(struct m_snd_tag *mst,
2489     union if_snd_tag_query_params *params)
2490 {
2491 	struct vlan_snd_tag *vst;
2492 
2493 	vst = mst_to_vst(mst);
2494 	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2495 }
2496 
2497 static void
vlan_snd_tag_free(struct m_snd_tag * mst)2498 vlan_snd_tag_free(struct m_snd_tag *mst)
2499 {
2500 	struct vlan_snd_tag *vst;
2501 
2502 	vst = mst_to_vst(mst);
2503 	m_snd_tag_rele(vst->tag);
2504 	free(vst, M_VLAN);
2505 }
2506 
2507 static void
vlan_ratelimit_query(struct ifnet * ifp __unused,struct if_ratelimit_query_results * q)2508 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2509 {
2510 	/*
2511 	 * For vlan, we have an indirect
2512 	 * interface. The caller needs to
2513 	 * get a ratelimit tag on the actual
2514 	 * interface the flow will go on.
2515 	 */
2516 	q->rate_table = NULL;
2517 	q->flags = RT_IS_INDIRECT;
2518 	q->max_flows = 0;
2519 	q->number_of_rates = 0;
2520 }
2521 
2522 #endif
2523