xref: /linux/include/linux/mm.h (revision fd1a745c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 struct folio_batch;
40 
41 extern int sysctl_page_lock_unfairness;
42 
43 void mm_core_init(void);
44 void init_mm_internals(void);
45 
46 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48 
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 	max_mapnr = limit;
52 }
53 #else
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56 
57 extern atomic_long_t _totalram_pages;
totalram_pages(void)58 static inline unsigned long totalram_pages(void)
59 {
60 	return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62 
totalram_pages_inc(void)63 static inline void totalram_pages_inc(void)
64 {
65 	atomic_long_inc(&_totalram_pages);
66 }
67 
totalram_pages_dec(void)68 static inline void totalram_pages_dec(void)
69 {
70 	atomic_long_dec(&_totalram_pages);
71 }
72 
totalram_pages_add(long count)73 static inline void totalram_pages_add(long count)
74 {
75 	atomic_long_add(count, &_totalram_pages);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 extern const int page_cluster_max;
81 
82 #ifdef CONFIG_SYSCTL
83 extern int sysctl_legacy_va_layout;
84 #else
85 #define sysctl_legacy_va_layout 0
86 #endif
87 
88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
89 extern const int mmap_rnd_bits_min;
90 extern int mmap_rnd_bits_max __ro_after_init;
91 extern int mmap_rnd_bits __read_mostly;
92 #endif
93 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
94 extern const int mmap_rnd_compat_bits_min;
95 extern const int mmap_rnd_compat_bits_max;
96 extern int mmap_rnd_compat_bits __read_mostly;
97 #endif
98 
99 #include <asm/page.h>
100 #include <asm/processor.h>
101 
102 #ifndef __pa_symbol
103 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
104 #endif
105 
106 #ifndef page_to_virt
107 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
108 #endif
109 
110 #ifndef lm_alias
111 #define lm_alias(x)	__va(__pa_symbol(x))
112 #endif
113 
114 /*
115  * To prevent common memory management code establishing
116  * a zero page mapping on a read fault.
117  * This macro should be defined within <asm/pgtable.h>.
118  * s390 does this to prevent multiplexing of hardware bits
119  * related to the physical page in case of virtualization.
120  */
121 #ifndef mm_forbids_zeropage
122 #define mm_forbids_zeropage(X)	(0)
123 #endif
124 
125 /*
126  * On some architectures it is expensive to call memset() for small sizes.
127  * If an architecture decides to implement their own version of
128  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129  * define their own version of this macro in <asm/pgtable.h>
130  */
131 #if BITS_PER_LONG == 64
132 /* This function must be updated when the size of struct page grows above 96
133  * or reduces below 56. The idea that compiler optimizes out switch()
134  * statement, and only leaves move/store instructions. Also the compiler can
135  * combine write statements if they are both assignments and can be reordered,
136  * this can result in several of the writes here being dropped.
137  */
138 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)139 static inline void __mm_zero_struct_page(struct page *page)
140 {
141 	unsigned long *_pp = (void *)page;
142 
143 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
144 	BUILD_BUG_ON(sizeof(struct page) & 7);
145 	BUILD_BUG_ON(sizeof(struct page) < 56);
146 	BUILD_BUG_ON(sizeof(struct page) > 96);
147 
148 	switch (sizeof(struct page)) {
149 	case 96:
150 		_pp[11] = 0;
151 		fallthrough;
152 	case 88:
153 		_pp[10] = 0;
154 		fallthrough;
155 	case 80:
156 		_pp[9] = 0;
157 		fallthrough;
158 	case 72:
159 		_pp[8] = 0;
160 		fallthrough;
161 	case 64:
162 		_pp[7] = 0;
163 		fallthrough;
164 	case 56:
165 		_pp[6] = 0;
166 		_pp[5] = 0;
167 		_pp[4] = 0;
168 		_pp[3] = 0;
169 		_pp[2] = 0;
170 		_pp[1] = 0;
171 		_pp[0] = 0;
172 	}
173 }
174 #else
175 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177 
178 /*
179  * Default maximum number of active map areas, this limits the number of vmas
180  * per mm struct. Users can overwrite this number by sysctl but there is a
181  * problem.
182  *
183  * When a program's coredump is generated as ELF format, a section is created
184  * per a vma. In ELF, the number of sections is represented in unsigned short.
185  * This means the number of sections should be smaller than 65535 at coredump.
186  * Because the kernel adds some informative sections to a image of program at
187  * generating coredump, we need some margin. The number of extra sections is
188  * 1-3 now and depends on arch. We use "5" as safe margin, here.
189  *
190  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191  * not a hard limit any more. Although some userspace tools can be surprised by
192  * that.
193  */
194 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
195 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196 
197 extern int sysctl_max_map_count;
198 
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201 
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205 
206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
216 #else
217 #define nth_page(page,n) ((page) + (n))
218 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
219 #endif
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* to align the pointer to the (prev) page boundary */
225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226 
227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229 
lru_to_folio(struct list_head * head)230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
334 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
335 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
336 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
337 #ifdef CONFIG_PPC
338 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
339 #else
340 # define VM_PKEY_BIT4  0
341 #endif
342 #endif /* CONFIG_ARCH_HAS_PKEYS */
343 
344 #ifdef CONFIG_X86_USER_SHADOW_STACK
345 /*
346  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347  * support core mm.
348  *
349  * These VMAs will get a single end guard page. This helps userspace protect
350  * itself from attacks. A single page is enough for current shadow stack archs
351  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352  * for more details on the guard size.
353  */
354 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
355 #else
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /*
395  * This flag is used to connect VFIO to arch specific KVM code. It
396  * indicates that the memory under this VMA is safe for use with any
397  * non-cachable memory type inside KVM. Some VFIO devices, on some
398  * platforms, are thought to be unsafe and can cause machine crashes
399  * if KVM does not lock down the memory type.
400  */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT	39
403 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
406 #endif
407 
408 /* Bits set in the VMA until the stack is in its final location */
409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
410 
411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
412 
413 /* Common data flag combinations */
414 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
415 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
416 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
417 				 VM_MAYWRITE | VM_MAYEXEC)
418 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
419 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
420 
421 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
422 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
423 #endif
424 
425 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
427 #endif
428 
429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
430 
431 #ifdef CONFIG_STACK_GROWSUP
432 #define VM_STACK	VM_GROWSUP
433 #define VM_STACK_EARLY	VM_GROWSDOWN
434 #else
435 #define VM_STACK	VM_GROWSDOWN
436 #define VM_STACK_EARLY	0
437 #endif
438 
439 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
440 
441 /* VMA basic access permission flags */
442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
443 
444 
445 /*
446  * Special vmas that are non-mergable, non-mlock()able.
447  */
448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
449 
450 /* This mask prevents VMA from being scanned with khugepaged */
451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
452 
453 /* This mask defines which mm->def_flags a process can inherit its parent */
454 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
455 
456 /* This mask represents all the VMA flag bits used by mlock */
457 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
458 
459 /* Arch-specific flags to clear when updating VM flags on protection change */
460 #ifndef VM_ARCH_CLEAR
461 # define VM_ARCH_CLEAR	VM_NONE
462 #endif
463 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
464 
465 /*
466  * mapping from the currently active vm_flags protection bits (the
467  * low four bits) to a page protection mask..
468  */
469 
470 /*
471  * The default fault flags that should be used by most of the
472  * arch-specific page fault handlers.
473  */
474 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
475 			     FAULT_FLAG_KILLABLE | \
476 			     FAULT_FLAG_INTERRUPTIBLE)
477 
478 /**
479  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
480  * @flags: Fault flags.
481  *
482  * This is mostly used for places where we want to try to avoid taking
483  * the mmap_lock for too long a time when waiting for another condition
484  * to change, in which case we can try to be polite to release the
485  * mmap_lock in the first round to avoid potential starvation of other
486  * processes that would also want the mmap_lock.
487  *
488  * Return: true if the page fault allows retry and this is the first
489  * attempt of the fault handling; false otherwise.
490  */
fault_flag_allow_retry_first(enum fault_flag flags)491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
492 {
493 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
494 	    (!(flags & FAULT_FLAG_TRIED));
495 }
496 
497 #define FAULT_FLAG_TRACE \
498 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
499 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
500 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
501 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
502 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
503 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
504 	{ FAULT_FLAG_USER,		"USER" }, \
505 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
506 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
507 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
508 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
509 
510 /*
511  * vm_fault is filled by the pagefault handler and passed to the vma's
512  * ->fault function. The vma's ->fault is responsible for returning a bitmask
513  * of VM_FAULT_xxx flags that give details about how the fault was handled.
514  *
515  * MM layer fills up gfp_mask for page allocations but fault handler might
516  * alter it if its implementation requires a different allocation context.
517  *
518  * pgoff should be used in favour of virtual_address, if possible.
519  */
520 struct vm_fault {
521 	const struct {
522 		struct vm_area_struct *vma;	/* Target VMA */
523 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
524 		pgoff_t pgoff;			/* Logical page offset based on vma */
525 		unsigned long address;		/* Faulting virtual address - masked */
526 		unsigned long real_address;	/* Faulting virtual address - unmasked */
527 	};
528 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
529 					 * XXX: should really be 'const' */
530 	pmd_t *pmd;			/* Pointer to pmd entry matching
531 					 * the 'address' */
532 	pud_t *pud;			/* Pointer to pud entry matching
533 					 * the 'address'
534 					 */
535 	union {
536 		pte_t orig_pte;		/* Value of PTE at the time of fault */
537 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
538 					 * used by PMD fault only.
539 					 */
540 	};
541 
542 	struct page *cow_page;		/* Page handler may use for COW fault */
543 	struct page *page;		/* ->fault handlers should return a
544 					 * page here, unless VM_FAULT_NOPAGE
545 					 * is set (which is also implied by
546 					 * VM_FAULT_ERROR).
547 					 */
548 	/* These three entries are valid only while holding ptl lock */
549 	pte_t *pte;			/* Pointer to pte entry matching
550 					 * the 'address'. NULL if the page
551 					 * table hasn't been allocated.
552 					 */
553 	spinlock_t *ptl;		/* Page table lock.
554 					 * Protects pte page table if 'pte'
555 					 * is not NULL, otherwise pmd.
556 					 */
557 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
558 					 * vm_ops->map_pages() sets up a page
559 					 * table from atomic context.
560 					 * do_fault_around() pre-allocates
561 					 * page table to avoid allocation from
562 					 * atomic context.
563 					 */
564 };
565 
566 /*
567  * These are the virtual MM functions - opening of an area, closing and
568  * unmapping it (needed to keep files on disk up-to-date etc), pointer
569  * to the functions called when a no-page or a wp-page exception occurs.
570  */
571 struct vm_operations_struct {
572 	void (*open)(struct vm_area_struct * area);
573 	/**
574 	 * @close: Called when the VMA is being removed from the MM.
575 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
576 	 */
577 	void (*close)(struct vm_area_struct * area);
578 	/* Called any time before splitting to check if it's allowed */
579 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
580 	int (*mremap)(struct vm_area_struct *area);
581 	/*
582 	 * Called by mprotect() to make driver-specific permission
583 	 * checks before mprotect() is finalised.   The VMA must not
584 	 * be modified.  Returns 0 if mprotect() can proceed.
585 	 */
586 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
587 			unsigned long end, unsigned long newflags);
588 	vm_fault_t (*fault)(struct vm_fault *vmf);
589 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
590 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
591 			pgoff_t start_pgoff, pgoff_t end_pgoff);
592 	unsigned long (*pagesize)(struct vm_area_struct * area);
593 
594 	/* notification that a previously read-only page is about to become
595 	 * writable, if an error is returned it will cause a SIGBUS */
596 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
597 
598 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
599 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
600 
601 	/* called by access_process_vm when get_user_pages() fails, typically
602 	 * for use by special VMAs. See also generic_access_phys() for a generic
603 	 * implementation useful for any iomem mapping.
604 	 */
605 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
606 		      void *buf, int len, int write);
607 
608 	/* Called by the /proc/PID/maps code to ask the vma whether it
609 	 * has a special name.  Returning non-NULL will also cause this
610 	 * vma to be dumped unconditionally. */
611 	const char *(*name)(struct vm_area_struct *vma);
612 
613 #ifdef CONFIG_NUMA
614 	/*
615 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
616 	 * to hold the policy upon return.  Caller should pass NULL @new to
617 	 * remove a policy and fall back to surrounding context--i.e. do not
618 	 * install a MPOL_DEFAULT policy, nor the task or system default
619 	 * mempolicy.
620 	 */
621 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
622 
623 	/*
624 	 * get_policy() op must add reference [mpol_get()] to any policy at
625 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
626 	 * in mm/mempolicy.c will do this automatically.
627 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
628 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
629 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
630 	 * must return NULL--i.e., do not "fallback" to task or system default
631 	 * policy.
632 	 */
633 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
634 					unsigned long addr, pgoff_t *ilx);
635 #endif
636 	/*
637 	 * Called by vm_normal_page() for special PTEs to find the
638 	 * page for @addr.  This is useful if the default behavior
639 	 * (using pte_page()) would not find the correct page.
640 	 */
641 	struct page *(*find_special_page)(struct vm_area_struct *vma,
642 					  unsigned long addr);
643 };
644 
645 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)646 static inline void vma_numab_state_init(struct vm_area_struct *vma)
647 {
648 	vma->numab_state = NULL;
649 }
vma_numab_state_free(struct vm_area_struct * vma)650 static inline void vma_numab_state_free(struct vm_area_struct *vma)
651 {
652 	kfree(vma->numab_state);
653 }
654 #else
vma_numab_state_init(struct vm_area_struct * vma)655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
657 #endif /* CONFIG_NUMA_BALANCING */
658 
659 #ifdef CONFIG_PER_VMA_LOCK
660 /*
661  * Try to read-lock a vma. The function is allowed to occasionally yield false
662  * locked result to avoid performance overhead, in which case we fall back to
663  * using mmap_lock. The function should never yield false unlocked result.
664  */
vma_start_read(struct vm_area_struct * vma)665 static inline bool vma_start_read(struct vm_area_struct *vma)
666 {
667 	/*
668 	 * Check before locking. A race might cause false locked result.
669 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
670 	 * ACQUIRE semantics, because this is just a lockless check whose result
671 	 * we don't rely on for anything - the mm_lock_seq read against which we
672 	 * need ordering is below.
673 	 */
674 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
675 		return false;
676 
677 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
678 		return false;
679 
680 	/*
681 	 * Overflow might produce false locked result.
682 	 * False unlocked result is impossible because we modify and check
683 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
684 	 * modification invalidates all existing locks.
685 	 *
686 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
687 	 * racing with vma_end_write_all(), we only start reading from the VMA
688 	 * after it has been unlocked.
689 	 * This pairs with RELEASE semantics in vma_end_write_all().
690 	 */
691 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
692 		up_read(&vma->vm_lock->lock);
693 		return false;
694 	}
695 	return true;
696 }
697 
vma_end_read(struct vm_area_struct * vma)698 static inline void vma_end_read(struct vm_area_struct *vma)
699 {
700 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
701 	up_read(&vma->vm_lock->lock);
702 	rcu_read_unlock();
703 }
704 
705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
707 {
708 	mmap_assert_write_locked(vma->vm_mm);
709 
710 	/*
711 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
712 	 * mm->mm_lock_seq can't be concurrently modified.
713 	 */
714 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
715 	return (vma->vm_lock_seq == *mm_lock_seq);
716 }
717 
718 /*
719  * Begin writing to a VMA.
720  * Exclude concurrent readers under the per-VMA lock until the currently
721  * write-locked mmap_lock is dropped or downgraded.
722  */
vma_start_write(struct vm_area_struct * vma)723 static inline void vma_start_write(struct vm_area_struct *vma)
724 {
725 	int mm_lock_seq;
726 
727 	if (__is_vma_write_locked(vma, &mm_lock_seq))
728 		return;
729 
730 	down_write(&vma->vm_lock->lock);
731 	/*
732 	 * We should use WRITE_ONCE() here because we can have concurrent reads
733 	 * from the early lockless pessimistic check in vma_start_read().
734 	 * We don't really care about the correctness of that early check, but
735 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
736 	 */
737 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
738 	up_write(&vma->vm_lock->lock);
739 }
740 
vma_assert_write_locked(struct vm_area_struct * vma)741 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
742 {
743 	int mm_lock_seq;
744 
745 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
746 }
747 
vma_assert_locked(struct vm_area_struct * vma)748 static inline void vma_assert_locked(struct vm_area_struct *vma)
749 {
750 	if (!rwsem_is_locked(&vma->vm_lock->lock))
751 		vma_assert_write_locked(vma);
752 }
753 
vma_mark_detached(struct vm_area_struct * vma,bool detached)754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
755 {
756 	/* When detaching vma should be write-locked */
757 	if (detached)
758 		vma_assert_write_locked(vma);
759 	vma->detached = detached;
760 }
761 
release_fault_lock(struct vm_fault * vmf)762 static inline void release_fault_lock(struct vm_fault *vmf)
763 {
764 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
765 		vma_end_read(vmf->vma);
766 	else
767 		mmap_read_unlock(vmf->vma->vm_mm);
768 }
769 
assert_fault_locked(struct vm_fault * vmf)770 static inline void assert_fault_locked(struct vm_fault *vmf)
771 {
772 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
773 		vma_assert_locked(vmf->vma);
774 	else
775 		mmap_assert_locked(vmf->vma->vm_mm);
776 }
777 
778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 					  unsigned long address);
780 
781 #else /* CONFIG_PER_VMA_LOCK */
782 
vma_start_read(struct vm_area_struct * vma)783 static inline bool vma_start_read(struct vm_area_struct *vma)
784 		{ return false; }
vma_end_read(struct vm_area_struct * vma)785 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)786 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)787 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
788 		{ mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)789 static inline void vma_mark_detached(struct vm_area_struct *vma,
790 				     bool detached) {}
791 
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
793 		unsigned long address)
794 {
795 	return NULL;
796 }
797 
vma_assert_locked(struct vm_area_struct * vma)798 static inline void vma_assert_locked(struct vm_area_struct *vma)
799 {
800 	mmap_assert_locked(vma->vm_mm);
801 }
802 
release_fault_lock(struct vm_fault * vmf)803 static inline void release_fault_lock(struct vm_fault *vmf)
804 {
805 	mmap_read_unlock(vmf->vma->vm_mm);
806 }
807 
assert_fault_locked(struct vm_fault * vmf)808 static inline void assert_fault_locked(struct vm_fault *vmf)
809 {
810 	mmap_assert_locked(vmf->vma->vm_mm);
811 }
812 
813 #endif /* CONFIG_PER_VMA_LOCK */
814 
815 extern const struct vm_operations_struct vma_dummy_vm_ops;
816 
817 /*
818  * WARNING: vma_init does not initialize vma->vm_lock.
819  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
820  */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)821 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
822 {
823 	memset(vma, 0, sizeof(*vma));
824 	vma->vm_mm = mm;
825 	vma->vm_ops = &vma_dummy_vm_ops;
826 	INIT_LIST_HEAD(&vma->anon_vma_chain);
827 	vma_mark_detached(vma, false);
828 	vma_numab_state_init(vma);
829 }
830 
831 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)832 static inline void vm_flags_init(struct vm_area_struct *vma,
833 				 vm_flags_t flags)
834 {
835 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
836 }
837 
838 /*
839  * Use when VMA is part of the VMA tree and modifications need coordination
840  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
841  * it should be locked explicitly beforehand.
842  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)843 static inline void vm_flags_reset(struct vm_area_struct *vma,
844 				  vm_flags_t flags)
845 {
846 	vma_assert_write_locked(vma);
847 	vm_flags_init(vma, flags);
848 }
849 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)850 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
851 				       vm_flags_t flags)
852 {
853 	vma_assert_write_locked(vma);
854 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
855 }
856 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)857 static inline void vm_flags_set(struct vm_area_struct *vma,
858 				vm_flags_t flags)
859 {
860 	vma_start_write(vma);
861 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
862 }
863 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)864 static inline void vm_flags_clear(struct vm_area_struct *vma,
865 				  vm_flags_t flags)
866 {
867 	vma_start_write(vma);
868 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
869 }
870 
871 /*
872  * Use only if VMA is not part of the VMA tree or has no other users and
873  * therefore needs no locking.
874  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)875 static inline void __vm_flags_mod(struct vm_area_struct *vma,
876 				  vm_flags_t set, vm_flags_t clear)
877 {
878 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
879 }
880 
881 /*
882  * Use only when the order of set/clear operations is unimportant, otherwise
883  * use vm_flags_{set|clear} explicitly.
884  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)885 static inline void vm_flags_mod(struct vm_area_struct *vma,
886 				vm_flags_t set, vm_flags_t clear)
887 {
888 	vma_start_write(vma);
889 	__vm_flags_mod(vma, set, clear);
890 }
891 
vma_set_anonymous(struct vm_area_struct * vma)892 static inline void vma_set_anonymous(struct vm_area_struct *vma)
893 {
894 	vma->vm_ops = NULL;
895 }
896 
vma_is_anonymous(struct vm_area_struct * vma)897 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
898 {
899 	return !vma->vm_ops;
900 }
901 
902 /*
903  * Indicate if the VMA is a heap for the given task; for
904  * /proc/PID/maps that is the heap of the main task.
905  */
vma_is_initial_heap(const struct vm_area_struct * vma)906 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
907 {
908 	return vma->vm_start < vma->vm_mm->brk &&
909 		vma->vm_end > vma->vm_mm->start_brk;
910 }
911 
912 /*
913  * Indicate if the VMA is a stack for the given task; for
914  * /proc/PID/maps that is the stack of the main task.
915  */
vma_is_initial_stack(const struct vm_area_struct * vma)916 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
917 {
918 	/*
919 	 * We make no effort to guess what a given thread considers to be
920 	 * its "stack".  It's not even well-defined for programs written
921 	 * languages like Go.
922 	 */
923 	return vma->vm_start <= vma->vm_mm->start_stack &&
924 		vma->vm_end >= vma->vm_mm->start_stack;
925 }
926 
vma_is_temporary_stack(struct vm_area_struct * vma)927 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
928 {
929 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
930 
931 	if (!maybe_stack)
932 		return false;
933 
934 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
935 						VM_STACK_INCOMPLETE_SETUP)
936 		return true;
937 
938 	return false;
939 }
940 
vma_is_foreign(struct vm_area_struct * vma)941 static inline bool vma_is_foreign(struct vm_area_struct *vma)
942 {
943 	if (!current->mm)
944 		return true;
945 
946 	if (current->mm != vma->vm_mm)
947 		return true;
948 
949 	return false;
950 }
951 
vma_is_accessible(struct vm_area_struct * vma)952 static inline bool vma_is_accessible(struct vm_area_struct *vma)
953 {
954 	return vma->vm_flags & VM_ACCESS_FLAGS;
955 }
956 
is_shared_maywrite(vm_flags_t vm_flags)957 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
958 {
959 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
960 		(VM_SHARED | VM_MAYWRITE);
961 }
962 
vma_is_shared_maywrite(struct vm_area_struct * vma)963 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
964 {
965 	return is_shared_maywrite(vma->vm_flags);
966 }
967 
968 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)969 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
970 {
971 	return mas_find(&vmi->mas, max - 1);
972 }
973 
vma_next(struct vma_iterator * vmi)974 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
975 {
976 	/*
977 	 * Uses mas_find() to get the first VMA when the iterator starts.
978 	 * Calling mas_next() could skip the first entry.
979 	 */
980 	return mas_find(&vmi->mas, ULONG_MAX);
981 }
982 
983 static inline
vma_iter_next_range(struct vma_iterator * vmi)984 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
985 {
986 	return mas_next_range(&vmi->mas, ULONG_MAX);
987 }
988 
989 
vma_prev(struct vma_iterator * vmi)990 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
991 {
992 	return mas_prev(&vmi->mas, 0);
993 }
994 
995 static inline
vma_iter_prev_range(struct vma_iterator * vmi)996 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
997 {
998 	return mas_prev_range(&vmi->mas, 0);
999 }
1000 
vma_iter_addr(struct vma_iterator * vmi)1001 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1002 {
1003 	return vmi->mas.index;
1004 }
1005 
vma_iter_end(struct vma_iterator * vmi)1006 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1007 {
1008 	return vmi->mas.last + 1;
1009 }
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)1010 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1011 				      unsigned long count)
1012 {
1013 	return mas_expected_entries(&vmi->mas, count);
1014 }
1015 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1016 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1017 			unsigned long start, unsigned long end, gfp_t gfp)
1018 {
1019 	__mas_set_range(&vmi->mas, start, end - 1);
1020 	mas_store_gfp(&vmi->mas, NULL, gfp);
1021 	if (unlikely(mas_is_err(&vmi->mas)))
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1028 static inline void vma_iter_free(struct vma_iterator *vmi)
1029 {
1030 	mas_destroy(&vmi->mas);
1031 }
1032 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1033 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1034 				      struct vm_area_struct *vma)
1035 {
1036 	vmi->mas.index = vma->vm_start;
1037 	vmi->mas.last = vma->vm_end - 1;
1038 	mas_store(&vmi->mas, vma);
1039 	if (unlikely(mas_is_err(&vmi->mas)))
1040 		return -ENOMEM;
1041 
1042 	return 0;
1043 }
1044 
vma_iter_invalidate(struct vma_iterator * vmi)1045 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1046 {
1047 	mas_pause(&vmi->mas);
1048 }
1049 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1050 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1051 {
1052 	mas_set(&vmi->mas, addr);
1053 }
1054 
1055 #define for_each_vma(__vmi, __vma)					\
1056 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1057 
1058 /* The MM code likes to work with exclusive end addresses */
1059 #define for_each_vma_range(__vmi, __vma, __end)				\
1060 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1061 
1062 #ifdef CONFIG_SHMEM
1063 /*
1064  * The vma_is_shmem is not inline because it is used only by slow
1065  * paths in userfault.
1066  */
1067 bool vma_is_shmem(struct vm_area_struct *vma);
1068 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1069 #else
vma_is_shmem(struct vm_area_struct * vma)1070 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1071 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1072 #endif
1073 
1074 int vma_is_stack_for_current(struct vm_area_struct *vma);
1075 
1076 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1077 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1078 
1079 struct mmu_gather;
1080 struct inode;
1081 
1082 /*
1083  * compound_order() can be called without holding a reference, which means
1084  * that niceties like page_folio() don't work.  These callers should be
1085  * prepared to handle wild return values.  For example, PG_head may be
1086  * set before the order is initialised, or this may be a tail page.
1087  * See compaction.c for some good examples.
1088  */
compound_order(struct page * page)1089 static inline unsigned int compound_order(struct page *page)
1090 {
1091 	struct folio *folio = (struct folio *)page;
1092 
1093 	if (!test_bit(PG_head, &folio->flags))
1094 		return 0;
1095 	return folio->_flags_1 & 0xff;
1096 }
1097 
1098 /**
1099  * folio_order - The allocation order of a folio.
1100  * @folio: The folio.
1101  *
1102  * A folio is composed of 2^order pages.  See get_order() for the definition
1103  * of order.
1104  *
1105  * Return: The order of the folio.
1106  */
folio_order(struct folio * folio)1107 static inline unsigned int folio_order(struct folio *folio)
1108 {
1109 	if (!folio_test_large(folio))
1110 		return 0;
1111 	return folio->_flags_1 & 0xff;
1112 }
1113 
1114 #include <linux/huge_mm.h>
1115 
1116 /*
1117  * Methods to modify the page usage count.
1118  *
1119  * What counts for a page usage:
1120  * - cache mapping   (page->mapping)
1121  * - private data    (page->private)
1122  * - page mapped in a task's page tables, each mapping
1123  *   is counted separately
1124  *
1125  * Also, many kernel routines increase the page count before a critical
1126  * routine so they can be sure the page doesn't go away from under them.
1127  */
1128 
1129 /*
1130  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1131  */
put_page_testzero(struct page * page)1132 static inline int put_page_testzero(struct page *page)
1133 {
1134 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1135 	return page_ref_dec_and_test(page);
1136 }
1137 
folio_put_testzero(struct folio * folio)1138 static inline int folio_put_testzero(struct folio *folio)
1139 {
1140 	return put_page_testzero(&folio->page);
1141 }
1142 
1143 /*
1144  * Try to grab a ref unless the page has a refcount of zero, return false if
1145  * that is the case.
1146  * This can be called when MMU is off so it must not access
1147  * any of the virtual mappings.
1148  */
get_page_unless_zero(struct page * page)1149 static inline bool get_page_unless_zero(struct page *page)
1150 {
1151 	return page_ref_add_unless(page, 1, 0);
1152 }
1153 
folio_get_nontail_page(struct page * page)1154 static inline struct folio *folio_get_nontail_page(struct page *page)
1155 {
1156 	if (unlikely(!get_page_unless_zero(page)))
1157 		return NULL;
1158 	return (struct folio *)page;
1159 }
1160 
1161 extern int page_is_ram(unsigned long pfn);
1162 
1163 enum {
1164 	REGION_INTERSECTS,
1165 	REGION_DISJOINT,
1166 	REGION_MIXED,
1167 };
1168 
1169 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1170 		      unsigned long desc);
1171 
1172 /* Support for virtually mapped pages */
1173 struct page *vmalloc_to_page(const void *addr);
1174 unsigned long vmalloc_to_pfn(const void *addr);
1175 
1176 /*
1177  * Determine if an address is within the vmalloc range
1178  *
1179  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1180  * is no special casing required.
1181  */
1182 #ifdef CONFIG_MMU
1183 extern bool is_vmalloc_addr(const void *x);
1184 extern int is_vmalloc_or_module_addr(const void *x);
1185 #else
is_vmalloc_addr(const void * x)1186 static inline bool is_vmalloc_addr(const void *x)
1187 {
1188 	return false;
1189 }
is_vmalloc_or_module_addr(const void * x)1190 static inline int is_vmalloc_or_module_addr(const void *x)
1191 {
1192 	return 0;
1193 }
1194 #endif
1195 
1196 /*
1197  * How many times the entire folio is mapped as a single unit (eg by a
1198  * PMD or PUD entry).  This is probably not what you want, except for
1199  * debugging purposes - it does not include PTE-mapped sub-pages; look
1200  * at folio_mapcount() or page_mapcount() instead.
1201  */
folio_entire_mapcount(struct folio * folio)1202 static inline int folio_entire_mapcount(struct folio *folio)
1203 {
1204 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1205 	return atomic_read(&folio->_entire_mapcount) + 1;
1206 }
1207 
1208 /*
1209  * The atomic page->_mapcount, starts from -1: so that transitions
1210  * both from it and to it can be tracked, using atomic_inc_and_test
1211  * and atomic_add_negative(-1).
1212  */
page_mapcount_reset(struct page * page)1213 static inline void page_mapcount_reset(struct page *page)
1214 {
1215 	atomic_set(&(page)->_mapcount, -1);
1216 }
1217 
1218 /**
1219  * page_mapcount() - Number of times this precise page is mapped.
1220  * @page: The page.
1221  *
1222  * The number of times this page is mapped.  If this page is part of
1223  * a large folio, it includes the number of times this page is mapped
1224  * as part of that folio.
1225  *
1226  * Will report 0 for pages which cannot be mapped into userspace, eg
1227  * slab, page tables and similar.
1228  */
page_mapcount(struct page * page)1229 static inline int page_mapcount(struct page *page)
1230 {
1231 	int mapcount = atomic_read(&page->_mapcount) + 1;
1232 
1233 	/* Handle page_has_type() pages */
1234 	if (mapcount < 0)
1235 		mapcount = 0;
1236 	if (unlikely(PageCompound(page)))
1237 		mapcount += folio_entire_mapcount(page_folio(page));
1238 
1239 	return mapcount;
1240 }
1241 
1242 int folio_total_mapcount(struct folio *folio);
1243 
1244 /**
1245  * folio_mapcount() - Calculate the number of mappings of this folio.
1246  * @folio: The folio.
1247  *
1248  * A large folio tracks both how many times the entire folio is mapped,
1249  * and how many times each individual page in the folio is mapped.
1250  * This function calculates the total number of times the folio is
1251  * mapped.
1252  *
1253  * Return: The number of times this folio is mapped.
1254  */
folio_mapcount(struct folio * folio)1255 static inline int folio_mapcount(struct folio *folio)
1256 {
1257 	if (likely(!folio_test_large(folio)))
1258 		return atomic_read(&folio->_mapcount) + 1;
1259 	return folio_total_mapcount(folio);
1260 }
1261 
folio_large_is_mapped(struct folio * folio)1262 static inline bool folio_large_is_mapped(struct folio *folio)
1263 {
1264 	/*
1265 	 * Reading _entire_mapcount below could be omitted if hugetlb
1266 	 * participated in incrementing nr_pages_mapped when compound mapped.
1267 	 */
1268 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1269 		atomic_read(&folio->_entire_mapcount) >= 0;
1270 }
1271 
1272 /**
1273  * folio_mapped - Is this folio mapped into userspace?
1274  * @folio: The folio.
1275  *
1276  * Return: True if any page in this folio is referenced by user page tables.
1277  */
folio_mapped(struct folio * folio)1278 static inline bool folio_mapped(struct folio *folio)
1279 {
1280 	if (likely(!folio_test_large(folio)))
1281 		return atomic_read(&folio->_mapcount) >= 0;
1282 	return folio_large_is_mapped(folio);
1283 }
1284 
1285 /*
1286  * Return true if this page is mapped into pagetables.
1287  * For compound page it returns true if any sub-page of compound page is mapped,
1288  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1289  */
page_mapped(struct page * page)1290 static inline bool page_mapped(struct page *page)
1291 {
1292 	if (likely(!PageCompound(page)))
1293 		return atomic_read(&page->_mapcount) >= 0;
1294 	return folio_large_is_mapped(page_folio(page));
1295 }
1296 
virt_to_head_page(const void * x)1297 static inline struct page *virt_to_head_page(const void *x)
1298 {
1299 	struct page *page = virt_to_page(x);
1300 
1301 	return compound_head(page);
1302 }
1303 
virt_to_folio(const void * x)1304 static inline struct folio *virt_to_folio(const void *x)
1305 {
1306 	struct page *page = virt_to_page(x);
1307 
1308 	return page_folio(page);
1309 }
1310 
1311 void __folio_put(struct folio *folio);
1312 
1313 void put_pages_list(struct list_head *pages);
1314 
1315 void split_page(struct page *page, unsigned int order);
1316 void folio_copy(struct folio *dst, struct folio *src);
1317 
1318 unsigned long nr_free_buffer_pages(void);
1319 
1320 void destroy_large_folio(struct folio *folio);
1321 
1322 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1323 static inline unsigned long page_size(struct page *page)
1324 {
1325 	return PAGE_SIZE << compound_order(page);
1326 }
1327 
1328 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1329 static inline unsigned int page_shift(struct page *page)
1330 {
1331 	return PAGE_SHIFT + compound_order(page);
1332 }
1333 
1334 /**
1335  * thp_order - Order of a transparent huge page.
1336  * @page: Head page of a transparent huge page.
1337  */
thp_order(struct page * page)1338 static inline unsigned int thp_order(struct page *page)
1339 {
1340 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1341 	return compound_order(page);
1342 }
1343 
1344 /**
1345  * thp_size - Size of a transparent huge page.
1346  * @page: Head page of a transparent huge page.
1347  *
1348  * Return: Number of bytes in this page.
1349  */
thp_size(struct page * page)1350 static inline unsigned long thp_size(struct page *page)
1351 {
1352 	return PAGE_SIZE << thp_order(page);
1353 }
1354 
1355 #ifdef CONFIG_MMU
1356 /*
1357  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1358  * servicing faults for write access.  In the normal case, do always want
1359  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1360  * that do not have writing enabled, when used by access_process_vm.
1361  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1362 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1363 {
1364 	if (likely(vma->vm_flags & VM_WRITE))
1365 		pte = pte_mkwrite(pte, vma);
1366 	return pte;
1367 }
1368 
1369 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1370 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1371 		struct page *page, unsigned int nr, unsigned long addr);
1372 
1373 vm_fault_t finish_fault(struct vm_fault *vmf);
1374 #endif
1375 
1376 /*
1377  * Multiple processes may "see" the same page. E.g. for untouched
1378  * mappings of /dev/null, all processes see the same page full of
1379  * zeroes, and text pages of executables and shared libraries have
1380  * only one copy in memory, at most, normally.
1381  *
1382  * For the non-reserved pages, page_count(page) denotes a reference count.
1383  *   page_count() == 0 means the page is free. page->lru is then used for
1384  *   freelist management in the buddy allocator.
1385  *   page_count() > 0  means the page has been allocated.
1386  *
1387  * Pages are allocated by the slab allocator in order to provide memory
1388  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1389  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1390  * unless a particular usage is carefully commented. (the responsibility of
1391  * freeing the kmalloc memory is the caller's, of course).
1392  *
1393  * A page may be used by anyone else who does a __get_free_page().
1394  * In this case, page_count still tracks the references, and should only
1395  * be used through the normal accessor functions. The top bits of page->flags
1396  * and page->virtual store page management information, but all other fields
1397  * are unused and could be used privately, carefully. The management of this
1398  * page is the responsibility of the one who allocated it, and those who have
1399  * subsequently been given references to it.
1400  *
1401  * The other pages (we may call them "pagecache pages") are completely
1402  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1403  * The following discussion applies only to them.
1404  *
1405  * A pagecache page contains an opaque `private' member, which belongs to the
1406  * page's address_space. Usually, this is the address of a circular list of
1407  * the page's disk buffers. PG_private must be set to tell the VM to call
1408  * into the filesystem to release these pages.
1409  *
1410  * A page may belong to an inode's memory mapping. In this case, page->mapping
1411  * is the pointer to the inode, and page->index is the file offset of the page,
1412  * in units of PAGE_SIZE.
1413  *
1414  * If pagecache pages are not associated with an inode, they are said to be
1415  * anonymous pages. These may become associated with the swapcache, and in that
1416  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1417  *
1418  * In either case (swapcache or inode backed), the pagecache itself holds one
1419  * reference to the page. Setting PG_private should also increment the
1420  * refcount. The each user mapping also has a reference to the page.
1421  *
1422  * The pagecache pages are stored in a per-mapping radix tree, which is
1423  * rooted at mapping->i_pages, and indexed by offset.
1424  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1425  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1426  *
1427  * All pagecache pages may be subject to I/O:
1428  * - inode pages may need to be read from disk,
1429  * - inode pages which have been modified and are MAP_SHARED may need
1430  *   to be written back to the inode on disk,
1431  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1432  *   modified may need to be swapped out to swap space and (later) to be read
1433  *   back into memory.
1434  */
1435 
1436 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1437 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1438 
1439 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1440 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1441 {
1442 	if (!static_branch_unlikely(&devmap_managed_key))
1443 		return false;
1444 	if (!is_zone_device_page(page))
1445 		return false;
1446 	return __put_devmap_managed_page_refs(page, refs);
1447 }
1448 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1449 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1450 {
1451 	return false;
1452 }
1453 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1454 
put_devmap_managed_page(struct page * page)1455 static inline bool put_devmap_managed_page(struct page *page)
1456 {
1457 	return put_devmap_managed_page_refs(page, 1);
1458 }
1459 
1460 /* 127: arbitrary random number, small enough to assemble well */
1461 #define folio_ref_zero_or_close_to_overflow(folio) \
1462 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1463 
1464 /**
1465  * folio_get - Increment the reference count on a folio.
1466  * @folio: The folio.
1467  *
1468  * Context: May be called in any context, as long as you know that
1469  * you have a refcount on the folio.  If you do not already have one,
1470  * folio_try_get() may be the right interface for you to use.
1471  */
folio_get(struct folio * folio)1472 static inline void folio_get(struct folio *folio)
1473 {
1474 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1475 	folio_ref_inc(folio);
1476 }
1477 
get_page(struct page * page)1478 static inline void get_page(struct page *page)
1479 {
1480 	folio_get(page_folio(page));
1481 }
1482 
try_get_page(struct page * page)1483 static inline __must_check bool try_get_page(struct page *page)
1484 {
1485 	page = compound_head(page);
1486 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1487 		return false;
1488 	page_ref_inc(page);
1489 	return true;
1490 }
1491 
1492 /**
1493  * folio_put - Decrement the reference count on a folio.
1494  * @folio: The folio.
1495  *
1496  * If the folio's reference count reaches zero, the memory will be
1497  * released back to the page allocator and may be used by another
1498  * allocation immediately.  Do not access the memory or the struct folio
1499  * after calling folio_put() unless you can be sure that it wasn't the
1500  * last reference.
1501  *
1502  * Context: May be called in process or interrupt context, but not in NMI
1503  * context.  May be called while holding a spinlock.
1504  */
folio_put(struct folio * folio)1505 static inline void folio_put(struct folio *folio)
1506 {
1507 	if (folio_put_testzero(folio))
1508 		__folio_put(folio);
1509 }
1510 
1511 /**
1512  * folio_put_refs - Reduce the reference count on a folio.
1513  * @folio: The folio.
1514  * @refs: The amount to subtract from the folio's reference count.
1515  *
1516  * If the folio's reference count reaches zero, the memory will be
1517  * released back to the page allocator and may be used by another
1518  * allocation immediately.  Do not access the memory or the struct folio
1519  * after calling folio_put_refs() unless you can be sure that these weren't
1520  * the last references.
1521  *
1522  * Context: May be called in process or interrupt context, but not in NMI
1523  * context.  May be called while holding a spinlock.
1524  */
folio_put_refs(struct folio * folio,int refs)1525 static inline void folio_put_refs(struct folio *folio, int refs)
1526 {
1527 	if (folio_ref_sub_and_test(folio, refs))
1528 		__folio_put(folio);
1529 }
1530 
1531 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1532 
1533 /*
1534  * union release_pages_arg - an array of pages or folios
1535  *
1536  * release_pages() releases a simple array of multiple pages, and
1537  * accepts various different forms of said page array: either
1538  * a regular old boring array of pages, an array of folios, or
1539  * an array of encoded page pointers.
1540  *
1541  * The transparent union syntax for this kind of "any of these
1542  * argument types" is all kinds of ugly, so look away.
1543  */
1544 typedef union {
1545 	struct page **pages;
1546 	struct folio **folios;
1547 	struct encoded_page **encoded_pages;
1548 } release_pages_arg __attribute__ ((__transparent_union__));
1549 
1550 void release_pages(release_pages_arg, int nr);
1551 
1552 /**
1553  * folios_put - Decrement the reference count on an array of folios.
1554  * @folios: The folios.
1555  *
1556  * Like folio_put(), but for a batch of folios.  This is more efficient
1557  * than writing the loop yourself as it will optimise the locks which need
1558  * to be taken if the folios are freed.  The folios batch is returned
1559  * empty and ready to be reused for another batch; there is no need to
1560  * reinitialise it.
1561  *
1562  * Context: May be called in process or interrupt context, but not in NMI
1563  * context.  May be called while holding a spinlock.
1564  */
folios_put(struct folio_batch * folios)1565 static inline void folios_put(struct folio_batch *folios)
1566 {
1567 	folios_put_refs(folios, NULL);
1568 }
1569 
put_page(struct page * page)1570 static inline void put_page(struct page *page)
1571 {
1572 	struct folio *folio = page_folio(page);
1573 
1574 	/*
1575 	 * For some devmap managed pages we need to catch refcount transition
1576 	 * from 2 to 1:
1577 	 */
1578 	if (put_devmap_managed_page(&folio->page))
1579 		return;
1580 	folio_put(folio);
1581 }
1582 
1583 /*
1584  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1585  * the page's refcount so that two separate items are tracked: the original page
1586  * reference count, and also a new count of how many pin_user_pages() calls were
1587  * made against the page. ("gup-pinned" is another term for the latter).
1588  *
1589  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1590  * distinct from normal pages. As such, the unpin_user_page() call (and its
1591  * variants) must be used in order to release gup-pinned pages.
1592  *
1593  * Choice of value:
1594  *
1595  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1596  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1597  * simpler, due to the fact that adding an even power of two to the page
1598  * refcount has the effect of using only the upper N bits, for the code that
1599  * counts up using the bias value. This means that the lower bits are left for
1600  * the exclusive use of the original code that increments and decrements by one
1601  * (or at least, by much smaller values than the bias value).
1602  *
1603  * Of course, once the lower bits overflow into the upper bits (and this is
1604  * OK, because subtraction recovers the original values), then visual inspection
1605  * no longer suffices to directly view the separate counts. However, for normal
1606  * applications that don't have huge page reference counts, this won't be an
1607  * issue.
1608  *
1609  * Locking: the lockless algorithm described in folio_try_get_rcu()
1610  * provides safe operation for get_user_pages(), page_mkclean() and
1611  * other calls that race to set up page table entries.
1612  */
1613 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1614 
1615 void unpin_user_page(struct page *page);
1616 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1617 				 bool make_dirty);
1618 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1619 				      bool make_dirty);
1620 void unpin_user_pages(struct page **pages, unsigned long npages);
1621 
is_cow_mapping(vm_flags_t flags)1622 static inline bool is_cow_mapping(vm_flags_t flags)
1623 {
1624 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1625 }
1626 
1627 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1628 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1629 {
1630 	/*
1631 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1632 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1633 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1634 	 * underlying memory if ptrace is active, so this is only possible if
1635 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1636 	 * write permissions later.
1637 	 */
1638 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1639 }
1640 #endif
1641 
1642 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1643 #define SECTION_IN_PAGE_FLAGS
1644 #endif
1645 
1646 /*
1647  * The identification function is mainly used by the buddy allocator for
1648  * determining if two pages could be buddies. We are not really identifying
1649  * the zone since we could be using the section number id if we do not have
1650  * node id available in page flags.
1651  * We only guarantee that it will return the same value for two combinable
1652  * pages in a zone.
1653  */
page_zone_id(struct page * page)1654 static inline int page_zone_id(struct page *page)
1655 {
1656 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1657 }
1658 
1659 #ifdef NODE_NOT_IN_PAGE_FLAGS
1660 int page_to_nid(const struct page *page);
1661 #else
page_to_nid(const struct page * page)1662 static inline int page_to_nid(const struct page *page)
1663 {
1664 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1665 }
1666 #endif
1667 
folio_nid(const struct folio * folio)1668 static inline int folio_nid(const struct folio *folio)
1669 {
1670 	return page_to_nid(&folio->page);
1671 }
1672 
1673 #ifdef CONFIG_NUMA_BALANCING
1674 /* page access time bits needs to hold at least 4 seconds */
1675 #define PAGE_ACCESS_TIME_MIN_BITS	12
1676 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1677 #define PAGE_ACCESS_TIME_BUCKETS				\
1678 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1679 #else
1680 #define PAGE_ACCESS_TIME_BUCKETS	0
1681 #endif
1682 
1683 #define PAGE_ACCESS_TIME_MASK				\
1684 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1685 
cpu_pid_to_cpupid(int cpu,int pid)1686 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1687 {
1688 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1689 }
1690 
cpupid_to_pid(int cpupid)1691 static inline int cpupid_to_pid(int cpupid)
1692 {
1693 	return cpupid & LAST__PID_MASK;
1694 }
1695 
cpupid_to_cpu(int cpupid)1696 static inline int cpupid_to_cpu(int cpupid)
1697 {
1698 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1699 }
1700 
cpupid_to_nid(int cpupid)1701 static inline int cpupid_to_nid(int cpupid)
1702 {
1703 	return cpu_to_node(cpupid_to_cpu(cpupid));
1704 }
1705 
cpupid_pid_unset(int cpupid)1706 static inline bool cpupid_pid_unset(int cpupid)
1707 {
1708 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1709 }
1710 
cpupid_cpu_unset(int cpupid)1711 static inline bool cpupid_cpu_unset(int cpupid)
1712 {
1713 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1714 }
1715 
__cpupid_match_pid(pid_t task_pid,int cpupid)1716 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1717 {
1718 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1719 }
1720 
1721 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1722 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1723 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1724 {
1725 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1726 }
1727 
folio_last_cpupid(struct folio * folio)1728 static inline int folio_last_cpupid(struct folio *folio)
1729 {
1730 	return folio->_last_cpupid;
1731 }
page_cpupid_reset_last(struct page * page)1732 static inline void page_cpupid_reset_last(struct page *page)
1733 {
1734 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1735 }
1736 #else
folio_last_cpupid(struct folio * folio)1737 static inline int folio_last_cpupid(struct folio *folio)
1738 {
1739 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1740 }
1741 
1742 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1743 
page_cpupid_reset_last(struct page * page)1744 static inline void page_cpupid_reset_last(struct page *page)
1745 {
1746 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1747 }
1748 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1749 
folio_xchg_access_time(struct folio * folio,int time)1750 static inline int folio_xchg_access_time(struct folio *folio, int time)
1751 {
1752 	int last_time;
1753 
1754 	last_time = folio_xchg_last_cpupid(folio,
1755 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1756 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1757 }
1758 
vma_set_access_pid_bit(struct vm_area_struct * vma)1759 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1760 {
1761 	unsigned int pid_bit;
1762 
1763 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1764 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1765 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1766 	}
1767 }
1768 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1769 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1770 {
1771 	return folio_nid(folio); /* XXX */
1772 }
1773 
folio_xchg_access_time(struct folio * folio,int time)1774 static inline int folio_xchg_access_time(struct folio *folio, int time)
1775 {
1776 	return 0;
1777 }
1778 
folio_last_cpupid(struct folio * folio)1779 static inline int folio_last_cpupid(struct folio *folio)
1780 {
1781 	return folio_nid(folio); /* XXX */
1782 }
1783 
cpupid_to_nid(int cpupid)1784 static inline int cpupid_to_nid(int cpupid)
1785 {
1786 	return -1;
1787 }
1788 
cpupid_to_pid(int cpupid)1789 static inline int cpupid_to_pid(int cpupid)
1790 {
1791 	return -1;
1792 }
1793 
cpupid_to_cpu(int cpupid)1794 static inline int cpupid_to_cpu(int cpupid)
1795 {
1796 	return -1;
1797 }
1798 
cpu_pid_to_cpupid(int nid,int pid)1799 static inline int cpu_pid_to_cpupid(int nid, int pid)
1800 {
1801 	return -1;
1802 }
1803 
cpupid_pid_unset(int cpupid)1804 static inline bool cpupid_pid_unset(int cpupid)
1805 {
1806 	return true;
1807 }
1808 
page_cpupid_reset_last(struct page * page)1809 static inline void page_cpupid_reset_last(struct page *page)
1810 {
1811 }
1812 
cpupid_match_pid(struct task_struct * task,int cpupid)1813 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1814 {
1815 	return false;
1816 }
1817 
vma_set_access_pid_bit(struct vm_area_struct * vma)1818 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1819 {
1820 }
1821 #endif /* CONFIG_NUMA_BALANCING */
1822 
1823 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1824 
1825 /*
1826  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1827  * setting tags for all pages to native kernel tag value 0xff, as the default
1828  * value 0x00 maps to 0xff.
1829  */
1830 
page_kasan_tag(const struct page * page)1831 static inline u8 page_kasan_tag(const struct page *page)
1832 {
1833 	u8 tag = KASAN_TAG_KERNEL;
1834 
1835 	if (kasan_enabled()) {
1836 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1837 		tag ^= 0xff;
1838 	}
1839 
1840 	return tag;
1841 }
1842 
page_kasan_tag_set(struct page * page,u8 tag)1843 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1844 {
1845 	unsigned long old_flags, flags;
1846 
1847 	if (!kasan_enabled())
1848 		return;
1849 
1850 	tag ^= 0xff;
1851 	old_flags = READ_ONCE(page->flags);
1852 	do {
1853 		flags = old_flags;
1854 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1855 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1856 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1857 }
1858 
page_kasan_tag_reset(struct page * page)1859 static inline void page_kasan_tag_reset(struct page *page)
1860 {
1861 	if (kasan_enabled())
1862 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1863 }
1864 
1865 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1866 
page_kasan_tag(const struct page * page)1867 static inline u8 page_kasan_tag(const struct page *page)
1868 {
1869 	return 0xff;
1870 }
1871 
page_kasan_tag_set(struct page * page,u8 tag)1872 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1873 static inline void page_kasan_tag_reset(struct page *page) { }
1874 
1875 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1876 
page_zone(const struct page * page)1877 static inline struct zone *page_zone(const struct page *page)
1878 {
1879 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1880 }
1881 
page_pgdat(const struct page * page)1882 static inline pg_data_t *page_pgdat(const struct page *page)
1883 {
1884 	return NODE_DATA(page_to_nid(page));
1885 }
1886 
folio_zone(const struct folio * folio)1887 static inline struct zone *folio_zone(const struct folio *folio)
1888 {
1889 	return page_zone(&folio->page);
1890 }
1891 
folio_pgdat(const struct folio * folio)1892 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1893 {
1894 	return page_pgdat(&folio->page);
1895 }
1896 
1897 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1898 static inline void set_page_section(struct page *page, unsigned long section)
1899 {
1900 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1901 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1902 }
1903 
page_to_section(const struct page * page)1904 static inline unsigned long page_to_section(const struct page *page)
1905 {
1906 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1907 }
1908 #endif
1909 
1910 /**
1911  * folio_pfn - Return the Page Frame Number of a folio.
1912  * @folio: The folio.
1913  *
1914  * A folio may contain multiple pages.  The pages have consecutive
1915  * Page Frame Numbers.
1916  *
1917  * Return: The Page Frame Number of the first page in the folio.
1918  */
folio_pfn(struct folio * folio)1919 static inline unsigned long folio_pfn(struct folio *folio)
1920 {
1921 	return page_to_pfn(&folio->page);
1922 }
1923 
pfn_folio(unsigned long pfn)1924 static inline struct folio *pfn_folio(unsigned long pfn)
1925 {
1926 	return page_folio(pfn_to_page(pfn));
1927 }
1928 
1929 /**
1930  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1931  * @folio: The folio.
1932  *
1933  * This function checks if a folio has been pinned via a call to
1934  * a function in the pin_user_pages() family.
1935  *
1936  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1937  * because it means "definitely not pinned for DMA", but true means "probably
1938  * pinned for DMA, but possibly a false positive due to having at least
1939  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1940  *
1941  * False positives are OK, because: a) it's unlikely for a folio to
1942  * get that many refcounts, and b) all the callers of this routine are
1943  * expected to be able to deal gracefully with a false positive.
1944  *
1945  * For large folios, the result will be exactly correct. That's because
1946  * we have more tracking data available: the _pincount field is used
1947  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1948  *
1949  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1950  *
1951  * Return: True, if it is likely that the page has been "dma-pinned".
1952  * False, if the page is definitely not dma-pinned.
1953  */
folio_maybe_dma_pinned(struct folio * folio)1954 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1955 {
1956 	if (folio_test_large(folio))
1957 		return atomic_read(&folio->_pincount) > 0;
1958 
1959 	/*
1960 	 * folio_ref_count() is signed. If that refcount overflows, then
1961 	 * folio_ref_count() returns a negative value, and callers will avoid
1962 	 * further incrementing the refcount.
1963 	 *
1964 	 * Here, for that overflow case, use the sign bit to count a little
1965 	 * bit higher via unsigned math, and thus still get an accurate result.
1966 	 */
1967 	return ((unsigned int)folio_ref_count(folio)) >=
1968 		GUP_PIN_COUNTING_BIAS;
1969 }
1970 
page_maybe_dma_pinned(struct page * page)1971 static inline bool page_maybe_dma_pinned(struct page *page)
1972 {
1973 	return folio_maybe_dma_pinned(page_folio(page));
1974 }
1975 
1976 /*
1977  * This should most likely only be called during fork() to see whether we
1978  * should break the cow immediately for an anon page on the src mm.
1979  *
1980  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1981  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1982 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1983 					  struct folio *folio)
1984 {
1985 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1986 
1987 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1988 		return false;
1989 
1990 	return folio_maybe_dma_pinned(folio);
1991 }
1992 
1993 /**
1994  * is_zero_page - Query if a page is a zero page
1995  * @page: The page to query
1996  *
1997  * This returns true if @page is one of the permanent zero pages.
1998  */
is_zero_page(const struct page * page)1999 static inline bool is_zero_page(const struct page *page)
2000 {
2001 	return is_zero_pfn(page_to_pfn(page));
2002 }
2003 
2004 /**
2005  * is_zero_folio - Query if a folio is a zero page
2006  * @folio: The folio to query
2007  *
2008  * This returns true if @folio is one of the permanent zero pages.
2009  */
is_zero_folio(const struct folio * folio)2010 static inline bool is_zero_folio(const struct folio *folio)
2011 {
2012 	return is_zero_page(&folio->page);
2013 }
2014 
2015 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2016 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2017 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2018 {
2019 #ifdef CONFIG_CMA
2020 	int mt = folio_migratetype(folio);
2021 
2022 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2023 		return false;
2024 #endif
2025 	/* The zero page can be "pinned" but gets special handling. */
2026 	if (is_zero_folio(folio))
2027 		return true;
2028 
2029 	/* Coherent device memory must always allow eviction. */
2030 	if (folio_is_device_coherent(folio))
2031 		return false;
2032 
2033 	/* Otherwise, non-movable zone folios can be pinned. */
2034 	return !folio_is_zone_movable(folio);
2035 
2036 }
2037 #else
folio_is_longterm_pinnable(struct folio * folio)2038 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2039 {
2040 	return true;
2041 }
2042 #endif
2043 
set_page_zone(struct page * page,enum zone_type zone)2044 static inline void set_page_zone(struct page *page, enum zone_type zone)
2045 {
2046 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2047 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2048 }
2049 
set_page_node(struct page * page,unsigned long node)2050 static inline void set_page_node(struct page *page, unsigned long node)
2051 {
2052 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2053 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2054 }
2055 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2056 static inline void set_page_links(struct page *page, enum zone_type zone,
2057 	unsigned long node, unsigned long pfn)
2058 {
2059 	set_page_zone(page, zone);
2060 	set_page_node(page, node);
2061 #ifdef SECTION_IN_PAGE_FLAGS
2062 	set_page_section(page, pfn_to_section_nr(pfn));
2063 #endif
2064 }
2065 
2066 /**
2067  * folio_nr_pages - The number of pages in the folio.
2068  * @folio: The folio.
2069  *
2070  * Return: A positive power of two.
2071  */
folio_nr_pages(struct folio * folio)2072 static inline long folio_nr_pages(struct folio *folio)
2073 {
2074 	if (!folio_test_large(folio))
2075 		return 1;
2076 #ifdef CONFIG_64BIT
2077 	return folio->_folio_nr_pages;
2078 #else
2079 	return 1L << (folio->_flags_1 & 0xff);
2080 #endif
2081 }
2082 
2083 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2084 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2085 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2086 #else
2087 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2088 #endif
2089 
2090 /*
2091  * compound_nr() returns the number of pages in this potentially compound
2092  * page.  compound_nr() can be called on a tail page, and is defined to
2093  * return 1 in that case.
2094  */
compound_nr(struct page * page)2095 static inline unsigned long compound_nr(struct page *page)
2096 {
2097 	struct folio *folio = (struct folio *)page;
2098 
2099 	if (!test_bit(PG_head, &folio->flags))
2100 		return 1;
2101 #ifdef CONFIG_64BIT
2102 	return folio->_folio_nr_pages;
2103 #else
2104 	return 1L << (folio->_flags_1 & 0xff);
2105 #endif
2106 }
2107 
2108 /**
2109  * thp_nr_pages - The number of regular pages in this huge page.
2110  * @page: The head page of a huge page.
2111  */
thp_nr_pages(struct page * page)2112 static inline int thp_nr_pages(struct page *page)
2113 {
2114 	return folio_nr_pages((struct folio *)page);
2115 }
2116 
2117 /**
2118  * folio_next - Move to the next physical folio.
2119  * @folio: The folio we're currently operating on.
2120  *
2121  * If you have physically contiguous memory which may span more than
2122  * one folio (eg a &struct bio_vec), use this function to move from one
2123  * folio to the next.  Do not use it if the memory is only virtually
2124  * contiguous as the folios are almost certainly not adjacent to each
2125  * other.  This is the folio equivalent to writing ``page++``.
2126  *
2127  * Context: We assume that the folios are refcounted and/or locked at a
2128  * higher level and do not adjust the reference counts.
2129  * Return: The next struct folio.
2130  */
folio_next(struct folio * folio)2131 static inline struct folio *folio_next(struct folio *folio)
2132 {
2133 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2134 }
2135 
2136 /**
2137  * folio_shift - The size of the memory described by this folio.
2138  * @folio: The folio.
2139  *
2140  * A folio represents a number of bytes which is a power-of-two in size.
2141  * This function tells you which power-of-two the folio is.  See also
2142  * folio_size() and folio_order().
2143  *
2144  * Context: The caller should have a reference on the folio to prevent
2145  * it from being split.  It is not necessary for the folio to be locked.
2146  * Return: The base-2 logarithm of the size of this folio.
2147  */
folio_shift(struct folio * folio)2148 static inline unsigned int folio_shift(struct folio *folio)
2149 {
2150 	return PAGE_SHIFT + folio_order(folio);
2151 }
2152 
2153 /**
2154  * folio_size - The number of bytes in a folio.
2155  * @folio: The folio.
2156  *
2157  * Context: The caller should have a reference on the folio to prevent
2158  * it from being split.  It is not necessary for the folio to be locked.
2159  * Return: The number of bytes in this folio.
2160  */
folio_size(struct folio * folio)2161 static inline size_t folio_size(struct folio *folio)
2162 {
2163 	return PAGE_SIZE << folio_order(folio);
2164 }
2165 
2166 /**
2167  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2168  * @folio: The folio.
2169  *
2170  * folio_estimated_sharers() aims to serve as a function to efficiently
2171  * estimate the number of processes sharing a folio. This is done by
2172  * looking at the precise mapcount of the first subpage in the folio, and
2173  * assuming the other subpages are the same. This may not be true for large
2174  * folios. If you want exact mapcounts for exact calculations, look at
2175  * page_mapcount() or folio_total_mapcount().
2176  *
2177  * Return: The estimated number of processes sharing a folio.
2178  */
folio_estimated_sharers(struct folio * folio)2179 static inline int folio_estimated_sharers(struct folio *folio)
2180 {
2181 	return page_mapcount(folio_page(folio, 0));
2182 }
2183 
2184 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)2185 static inline int arch_make_page_accessible(struct page *page)
2186 {
2187 	return 0;
2188 }
2189 #endif
2190 
2191 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2192 static inline int arch_make_folio_accessible(struct folio *folio)
2193 {
2194 	int ret;
2195 	long i, nr = folio_nr_pages(folio);
2196 
2197 	for (i = 0; i < nr; i++) {
2198 		ret = arch_make_page_accessible(folio_page(folio, i));
2199 		if (ret)
2200 			break;
2201 	}
2202 
2203 	return ret;
2204 }
2205 #endif
2206 
2207 /*
2208  * Some inline functions in vmstat.h depend on page_zone()
2209  */
2210 #include <linux/vmstat.h>
2211 
2212 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2213 #define HASHED_PAGE_VIRTUAL
2214 #endif
2215 
2216 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2217 static inline void *page_address(const struct page *page)
2218 {
2219 	return page->virtual;
2220 }
set_page_address(struct page * page,void * address)2221 static inline void set_page_address(struct page *page, void *address)
2222 {
2223 	page->virtual = address;
2224 }
2225 #define page_address_init()  do { } while(0)
2226 #endif
2227 
2228 #if defined(HASHED_PAGE_VIRTUAL)
2229 void *page_address(const struct page *page);
2230 void set_page_address(struct page *page, void *virtual);
2231 void page_address_init(void);
2232 #endif
2233 
lowmem_page_address(const struct page * page)2234 static __always_inline void *lowmem_page_address(const struct page *page)
2235 {
2236 	return page_to_virt(page);
2237 }
2238 
2239 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2240 #define page_address(page) lowmem_page_address(page)
2241 #define set_page_address(page, address)  do { } while(0)
2242 #define page_address_init()  do { } while(0)
2243 #endif
2244 
folio_address(const struct folio * folio)2245 static inline void *folio_address(const struct folio *folio)
2246 {
2247 	return page_address(&folio->page);
2248 }
2249 
2250 extern pgoff_t __page_file_index(struct page *page);
2251 
2252 /*
2253  * Return the pagecache index of the passed page.  Regular pagecache pages
2254  * use ->index whereas swapcache pages use swp_offset(->private)
2255  */
page_index(struct page * page)2256 static inline pgoff_t page_index(struct page *page)
2257 {
2258 	if (unlikely(PageSwapCache(page)))
2259 		return __page_file_index(page);
2260 	return page->index;
2261 }
2262 
2263 /*
2264  * Return true only if the page has been allocated with
2265  * ALLOC_NO_WATERMARKS and the low watermark was not
2266  * met implying that the system is under some pressure.
2267  */
page_is_pfmemalloc(const struct page * page)2268 static inline bool page_is_pfmemalloc(const struct page *page)
2269 {
2270 	/*
2271 	 * lru.next has bit 1 set if the page is allocated from the
2272 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2273 	 * they do not need to preserve that information.
2274 	 */
2275 	return (uintptr_t)page->lru.next & BIT(1);
2276 }
2277 
2278 /*
2279  * Return true only if the folio has been allocated with
2280  * ALLOC_NO_WATERMARKS and the low watermark was not
2281  * met implying that the system is under some pressure.
2282  */
folio_is_pfmemalloc(const struct folio * folio)2283 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2284 {
2285 	/*
2286 	 * lru.next has bit 1 set if the page is allocated from the
2287 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2288 	 * they do not need to preserve that information.
2289 	 */
2290 	return (uintptr_t)folio->lru.next & BIT(1);
2291 }
2292 
2293 /*
2294  * Only to be called by the page allocator on a freshly allocated
2295  * page.
2296  */
set_page_pfmemalloc(struct page * page)2297 static inline void set_page_pfmemalloc(struct page *page)
2298 {
2299 	page->lru.next = (void *)BIT(1);
2300 }
2301 
clear_page_pfmemalloc(struct page * page)2302 static inline void clear_page_pfmemalloc(struct page *page)
2303 {
2304 	page->lru.next = NULL;
2305 }
2306 
2307 /*
2308  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2309  */
2310 extern void pagefault_out_of_memory(void);
2311 
2312 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2313 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2314 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2315 
2316 /*
2317  * Parameter block passed down to zap_pte_range in exceptional cases.
2318  */
2319 struct zap_details {
2320 	struct folio *single_folio;	/* Locked folio to be unmapped */
2321 	bool even_cows;			/* Zap COWed private pages too? */
2322 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2323 };
2324 
2325 /*
2326  * Whether to drop the pte markers, for example, the uffd-wp information for
2327  * file-backed memory.  This should only be specified when we will completely
2328  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2329  * default, the flag is not set.
2330  */
2331 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2332 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2333 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2334 
2335 #ifdef CONFIG_SCHED_MM_CID
2336 void sched_mm_cid_before_execve(struct task_struct *t);
2337 void sched_mm_cid_after_execve(struct task_struct *t);
2338 void sched_mm_cid_fork(struct task_struct *t);
2339 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2340 static inline int task_mm_cid(struct task_struct *t)
2341 {
2342 	return t->mm_cid;
2343 }
2344 #else
sched_mm_cid_before_execve(struct task_struct * t)2345 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2346 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2347 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2348 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2349 static inline int task_mm_cid(struct task_struct *t)
2350 {
2351 	/*
2352 	 * Use the processor id as a fall-back when the mm cid feature is
2353 	 * disabled. This provides functional per-cpu data structure accesses
2354 	 * in user-space, althrough it won't provide the memory usage benefits.
2355 	 */
2356 	return raw_smp_processor_id();
2357 }
2358 #endif
2359 
2360 #ifdef CONFIG_MMU
2361 extern bool can_do_mlock(void);
2362 #else
can_do_mlock(void)2363 static inline bool can_do_mlock(void) { return false; }
2364 #endif
2365 extern int user_shm_lock(size_t, struct ucounts *);
2366 extern void user_shm_unlock(size_t, struct ucounts *);
2367 
2368 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2369 			     pte_t pte);
2370 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2371 			     pte_t pte);
2372 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2373 				  unsigned long addr, pmd_t pmd);
2374 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2375 				pmd_t pmd);
2376 
2377 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2378 		  unsigned long size);
2379 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2380 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2381 static inline void zap_vma_pages(struct vm_area_struct *vma)
2382 {
2383 	zap_page_range_single(vma, vma->vm_start,
2384 			      vma->vm_end - vma->vm_start, NULL);
2385 }
2386 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2387 		struct vm_area_struct *start_vma, unsigned long start,
2388 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2389 
2390 struct mmu_notifier_range;
2391 
2392 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2393 		unsigned long end, unsigned long floor, unsigned long ceiling);
2394 int
2395 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2396 int follow_pte(struct mm_struct *mm, unsigned long address,
2397 	       pte_t **ptepp, spinlock_t **ptlp);
2398 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2399 	unsigned long *pfn);
2400 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2401 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2403 			void *buf, int len, int write);
2404 
2405 extern void truncate_pagecache(struct inode *inode, loff_t new);
2406 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2407 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2408 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2409 int generic_error_remove_folio(struct address_space *mapping,
2410 		struct folio *folio);
2411 
2412 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2413 		unsigned long address, struct pt_regs *regs);
2414 
2415 #ifdef CONFIG_MMU
2416 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2417 				  unsigned long address, unsigned int flags,
2418 				  struct pt_regs *regs);
2419 extern int fixup_user_fault(struct mm_struct *mm,
2420 			    unsigned long address, unsigned int fault_flags,
2421 			    bool *unlocked);
2422 void unmap_mapping_pages(struct address_space *mapping,
2423 		pgoff_t start, pgoff_t nr, bool even_cows);
2424 void unmap_mapping_range(struct address_space *mapping,
2425 		loff_t const holebegin, loff_t const holelen, int even_cows);
2426 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2427 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2428 					 unsigned long address, unsigned int flags,
2429 					 struct pt_regs *regs)
2430 {
2431 	/* should never happen if there's no MMU */
2432 	BUG();
2433 	return VM_FAULT_SIGBUS;
2434 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2435 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2436 		unsigned int fault_flags, bool *unlocked)
2437 {
2438 	/* should never happen if there's no MMU */
2439 	BUG();
2440 	return -EFAULT;
2441 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2442 static inline void unmap_mapping_pages(struct address_space *mapping,
2443 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2444 static inline void unmap_mapping_range(struct address_space *mapping,
2445 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2446 #endif
2447 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2448 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2449 		loff_t const holebegin, loff_t const holelen)
2450 {
2451 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2452 }
2453 
2454 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2455 						unsigned long addr);
2456 
2457 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2458 		void *buf, int len, unsigned int gup_flags);
2459 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2460 		void *buf, int len, unsigned int gup_flags);
2461 
2462 long get_user_pages_remote(struct mm_struct *mm,
2463 			   unsigned long start, unsigned long nr_pages,
2464 			   unsigned int gup_flags, struct page **pages,
2465 			   int *locked);
2466 long pin_user_pages_remote(struct mm_struct *mm,
2467 			   unsigned long start, unsigned long nr_pages,
2468 			   unsigned int gup_flags, struct page **pages,
2469 			   int *locked);
2470 
2471 /*
2472  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2473  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2474 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2475 						    unsigned long addr,
2476 						    int gup_flags,
2477 						    struct vm_area_struct **vmap)
2478 {
2479 	struct page *page;
2480 	struct vm_area_struct *vma;
2481 	int got;
2482 
2483 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2484 		return ERR_PTR(-EINVAL);
2485 
2486 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2487 
2488 	if (got < 0)
2489 		return ERR_PTR(got);
2490 
2491 	vma = vma_lookup(mm, addr);
2492 	if (WARN_ON_ONCE(!vma)) {
2493 		put_page(page);
2494 		return ERR_PTR(-EINVAL);
2495 	}
2496 
2497 	*vmap = vma;
2498 	return page;
2499 }
2500 
2501 long get_user_pages(unsigned long start, unsigned long nr_pages,
2502 		    unsigned int gup_flags, struct page **pages);
2503 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2504 		    unsigned int gup_flags, struct page **pages);
2505 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2506 		    struct page **pages, unsigned int gup_flags);
2507 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2508 		    struct page **pages, unsigned int gup_flags);
2509 
2510 int get_user_pages_fast(unsigned long start, int nr_pages,
2511 			unsigned int gup_flags, struct page **pages);
2512 int pin_user_pages_fast(unsigned long start, int nr_pages,
2513 			unsigned int gup_flags, struct page **pages);
2514 void folio_add_pin(struct folio *folio);
2515 
2516 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2517 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2518 			struct task_struct *task, bool bypass_rlim);
2519 
2520 struct kvec;
2521 struct page *get_dump_page(unsigned long addr);
2522 
2523 bool folio_mark_dirty(struct folio *folio);
2524 bool set_page_dirty(struct page *page);
2525 int set_page_dirty_lock(struct page *page);
2526 
2527 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2528 
2529 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2530 		unsigned long old_addr, struct vm_area_struct *new_vma,
2531 		unsigned long new_addr, unsigned long len,
2532 		bool need_rmap_locks, bool for_stack);
2533 
2534 /*
2535  * Flags used by change_protection().  For now we make it a bitmap so
2536  * that we can pass in multiple flags just like parameters.  However
2537  * for now all the callers are only use one of the flags at the same
2538  * time.
2539  */
2540 /*
2541  * Whether we should manually check if we can map individual PTEs writable,
2542  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2543  * PTEs automatically in a writable mapping.
2544  */
2545 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2546 /* Whether this protection change is for NUMA hints */
2547 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2548 /* Whether this change is for write protecting */
2549 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2550 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2551 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2552 					    MM_CP_UFFD_WP_RESOLVE)
2553 
2554 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2555 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)2556 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2557 {
2558 	/*
2559 	 * We want to check manually if we can change individual PTEs writable
2560 	 * if we can't do that automatically for all PTEs in a mapping. For
2561 	 * private mappings, that's always the case when we have write
2562 	 * permissions as we properly have to handle COW.
2563 	 */
2564 	if (vma->vm_flags & VM_SHARED)
2565 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2566 	return !!(vma->vm_flags & VM_WRITE);
2567 
2568 }
2569 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2570 			     pte_t pte);
2571 extern long change_protection(struct mmu_gather *tlb,
2572 			      struct vm_area_struct *vma, unsigned long start,
2573 			      unsigned long end, unsigned long cp_flags);
2574 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2575 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2576 	  unsigned long start, unsigned long end, unsigned long newflags);
2577 
2578 /*
2579  * doesn't attempt to fault and will return short.
2580  */
2581 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2582 			     unsigned int gup_flags, struct page **pages);
2583 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2584 static inline bool get_user_page_fast_only(unsigned long addr,
2585 			unsigned int gup_flags, struct page **pagep)
2586 {
2587 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2588 }
2589 /*
2590  * per-process(per-mm_struct) statistics.
2591  */
get_mm_counter(struct mm_struct * mm,int member)2592 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2593 {
2594 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2595 }
2596 
2597 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2598 
add_mm_counter(struct mm_struct * mm,int member,long value)2599 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2600 {
2601 	percpu_counter_add(&mm->rss_stat[member], value);
2602 
2603 	mm_trace_rss_stat(mm, member);
2604 }
2605 
inc_mm_counter(struct mm_struct * mm,int member)2606 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2607 {
2608 	percpu_counter_inc(&mm->rss_stat[member]);
2609 
2610 	mm_trace_rss_stat(mm, member);
2611 }
2612 
dec_mm_counter(struct mm_struct * mm,int member)2613 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2614 {
2615 	percpu_counter_dec(&mm->rss_stat[member]);
2616 
2617 	mm_trace_rss_stat(mm, member);
2618 }
2619 
2620 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2621 static inline int mm_counter_file(struct folio *folio)
2622 {
2623 	if (folio_test_swapbacked(folio))
2624 		return MM_SHMEMPAGES;
2625 	return MM_FILEPAGES;
2626 }
2627 
mm_counter(struct folio * folio)2628 static inline int mm_counter(struct folio *folio)
2629 {
2630 	if (folio_test_anon(folio))
2631 		return MM_ANONPAGES;
2632 	return mm_counter_file(folio);
2633 }
2634 
get_mm_rss(struct mm_struct * mm)2635 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2636 {
2637 	return get_mm_counter(mm, MM_FILEPAGES) +
2638 		get_mm_counter(mm, MM_ANONPAGES) +
2639 		get_mm_counter(mm, MM_SHMEMPAGES);
2640 }
2641 
get_mm_hiwater_rss(struct mm_struct * mm)2642 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2643 {
2644 	return max(mm->hiwater_rss, get_mm_rss(mm));
2645 }
2646 
get_mm_hiwater_vm(struct mm_struct * mm)2647 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2648 {
2649 	return max(mm->hiwater_vm, mm->total_vm);
2650 }
2651 
update_hiwater_rss(struct mm_struct * mm)2652 static inline void update_hiwater_rss(struct mm_struct *mm)
2653 {
2654 	unsigned long _rss = get_mm_rss(mm);
2655 
2656 	if ((mm)->hiwater_rss < _rss)
2657 		(mm)->hiwater_rss = _rss;
2658 }
2659 
update_hiwater_vm(struct mm_struct * mm)2660 static inline void update_hiwater_vm(struct mm_struct *mm)
2661 {
2662 	if (mm->hiwater_vm < mm->total_vm)
2663 		mm->hiwater_vm = mm->total_vm;
2664 }
2665 
reset_mm_hiwater_rss(struct mm_struct * mm)2666 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2667 {
2668 	mm->hiwater_rss = get_mm_rss(mm);
2669 }
2670 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2671 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2672 					 struct mm_struct *mm)
2673 {
2674 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2675 
2676 	if (*maxrss < hiwater_rss)
2677 		*maxrss = hiwater_rss;
2678 }
2679 
2680 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2681 static inline int pte_special(pte_t pte)
2682 {
2683 	return 0;
2684 }
2685 
pte_mkspecial(pte_t pte)2686 static inline pte_t pte_mkspecial(pte_t pte)
2687 {
2688 	return pte;
2689 }
2690 #endif
2691 
2692 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2693 static inline int pte_devmap(pte_t pte)
2694 {
2695 	return 0;
2696 }
2697 #endif
2698 
2699 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2700 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2701 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2702 				    spinlock_t **ptl)
2703 {
2704 	pte_t *ptep;
2705 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2706 	return ptep;
2707 }
2708 
2709 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2710 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2711 						unsigned long address)
2712 {
2713 	return 0;
2714 }
2715 #else
2716 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2717 #endif
2718 
2719 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2720 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2721 						unsigned long address)
2722 {
2723 	return 0;
2724 }
mm_inc_nr_puds(struct mm_struct * mm)2725 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2726 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2727 
2728 #else
2729 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2730 
mm_inc_nr_puds(struct mm_struct * mm)2731 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2732 {
2733 	if (mm_pud_folded(mm))
2734 		return;
2735 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2736 }
2737 
mm_dec_nr_puds(struct mm_struct * mm)2738 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2739 {
2740 	if (mm_pud_folded(mm))
2741 		return;
2742 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2743 }
2744 #endif
2745 
2746 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2747 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2748 						unsigned long address)
2749 {
2750 	return 0;
2751 }
2752 
mm_inc_nr_pmds(struct mm_struct * mm)2753 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2754 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2755 
2756 #else
2757 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2758 
mm_inc_nr_pmds(struct mm_struct * mm)2759 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2760 {
2761 	if (mm_pmd_folded(mm))
2762 		return;
2763 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2764 }
2765 
mm_dec_nr_pmds(struct mm_struct * mm)2766 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2767 {
2768 	if (mm_pmd_folded(mm))
2769 		return;
2770 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2771 }
2772 #endif
2773 
2774 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2775 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2776 {
2777 	atomic_long_set(&mm->pgtables_bytes, 0);
2778 }
2779 
mm_pgtables_bytes(const struct mm_struct * mm)2780 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2781 {
2782 	return atomic_long_read(&mm->pgtables_bytes);
2783 }
2784 
mm_inc_nr_ptes(struct mm_struct * mm)2785 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2786 {
2787 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2788 }
2789 
mm_dec_nr_ptes(struct mm_struct * mm)2790 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2791 {
2792 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2793 }
2794 #else
2795 
mm_pgtables_bytes_init(struct mm_struct * mm)2796 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2797 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2798 {
2799 	return 0;
2800 }
2801 
mm_inc_nr_ptes(struct mm_struct * mm)2802 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2803 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2804 #endif
2805 
2806 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2807 int __pte_alloc_kernel(pmd_t *pmd);
2808 
2809 #if defined(CONFIG_MMU)
2810 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2811 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2812 		unsigned long address)
2813 {
2814 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2815 		NULL : p4d_offset(pgd, address);
2816 }
2817 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2818 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2819 		unsigned long address)
2820 {
2821 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2822 		NULL : pud_offset(p4d, address);
2823 }
2824 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2825 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2826 {
2827 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2828 		NULL: pmd_offset(pud, address);
2829 }
2830 #endif /* CONFIG_MMU */
2831 
virt_to_ptdesc(const void * x)2832 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2833 {
2834 	return page_ptdesc(virt_to_page(x));
2835 }
2836 
ptdesc_to_virt(const struct ptdesc * pt)2837 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2838 {
2839 	return page_to_virt(ptdesc_page(pt));
2840 }
2841 
ptdesc_address(const struct ptdesc * pt)2842 static inline void *ptdesc_address(const struct ptdesc *pt)
2843 {
2844 	return folio_address(ptdesc_folio(pt));
2845 }
2846 
pagetable_is_reserved(struct ptdesc * pt)2847 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2848 {
2849 	return folio_test_reserved(ptdesc_folio(pt));
2850 }
2851 
2852 /**
2853  * pagetable_alloc - Allocate pagetables
2854  * @gfp:    GFP flags
2855  * @order:  desired pagetable order
2856  *
2857  * pagetable_alloc allocates memory for page tables as well as a page table
2858  * descriptor to describe that memory.
2859  *
2860  * Return: The ptdesc describing the allocated page tables.
2861  */
pagetable_alloc(gfp_t gfp,unsigned int order)2862 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2863 {
2864 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2865 
2866 	return page_ptdesc(page);
2867 }
2868 
2869 /**
2870  * pagetable_free - Free pagetables
2871  * @pt:	The page table descriptor
2872  *
2873  * pagetable_free frees the memory of all page tables described by a page
2874  * table descriptor and the memory for the descriptor itself.
2875  */
pagetable_free(struct ptdesc * pt)2876 static inline void pagetable_free(struct ptdesc *pt)
2877 {
2878 	struct page *page = ptdesc_page(pt);
2879 
2880 	__free_pages(page, compound_order(page));
2881 }
2882 
2883 #if USE_SPLIT_PTE_PTLOCKS
2884 #if ALLOC_SPLIT_PTLOCKS
2885 void __init ptlock_cache_init(void);
2886 bool ptlock_alloc(struct ptdesc *ptdesc);
2887 void ptlock_free(struct ptdesc *ptdesc);
2888 
ptlock_ptr(struct ptdesc * ptdesc)2889 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2890 {
2891 	return ptdesc->ptl;
2892 }
2893 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2894 static inline void ptlock_cache_init(void)
2895 {
2896 }
2897 
ptlock_alloc(struct ptdesc * ptdesc)2898 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2899 {
2900 	return true;
2901 }
2902 
ptlock_free(struct ptdesc * ptdesc)2903 static inline void ptlock_free(struct ptdesc *ptdesc)
2904 {
2905 }
2906 
ptlock_ptr(struct ptdesc * ptdesc)2907 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2908 {
2909 	return &ptdesc->ptl;
2910 }
2911 #endif /* ALLOC_SPLIT_PTLOCKS */
2912 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2913 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2914 {
2915 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2916 }
2917 
ptlock_init(struct ptdesc * ptdesc)2918 static inline bool ptlock_init(struct ptdesc *ptdesc)
2919 {
2920 	/*
2921 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2922 	 * with 0. Make sure nobody took it in use in between.
2923 	 *
2924 	 * It can happen if arch try to use slab for page table allocation:
2925 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2926 	 */
2927 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2928 	if (!ptlock_alloc(ptdesc))
2929 		return false;
2930 	spin_lock_init(ptlock_ptr(ptdesc));
2931 	return true;
2932 }
2933 
2934 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2935 /*
2936  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2937  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2938 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2939 {
2940 	return &mm->page_table_lock;
2941 }
ptlock_cache_init(void)2942 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2943 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2944 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2945 #endif /* USE_SPLIT_PTE_PTLOCKS */
2946 
pagetable_pte_ctor(struct ptdesc * ptdesc)2947 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2948 {
2949 	struct folio *folio = ptdesc_folio(ptdesc);
2950 
2951 	if (!ptlock_init(ptdesc))
2952 		return false;
2953 	__folio_set_pgtable(folio);
2954 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2955 	return true;
2956 }
2957 
pagetable_pte_dtor(struct ptdesc * ptdesc)2958 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2959 {
2960 	struct folio *folio = ptdesc_folio(ptdesc);
2961 
2962 	ptlock_free(ptdesc);
2963 	__folio_clear_pgtable(folio);
2964 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2965 }
2966 
2967 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)2968 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2969 {
2970 	return __pte_offset_map(pmd, addr, NULL);
2971 }
2972 
2973 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2974 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)2975 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2976 			unsigned long addr, spinlock_t **ptlp)
2977 {
2978 	pte_t *pte;
2979 
2980 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2981 	return pte;
2982 }
2983 
2984 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2985 			unsigned long addr, spinlock_t **ptlp);
2986 
2987 #define pte_unmap_unlock(pte, ptl)	do {		\
2988 	spin_unlock(ptl);				\
2989 	pte_unmap(pte);					\
2990 } while (0)
2991 
2992 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2993 
2994 #define pte_alloc_map(mm, pmd, address)			\
2995 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2996 
2997 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2998 	(pte_alloc(mm, pmd) ?			\
2999 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3000 
3001 #define pte_alloc_kernel(pmd, address)			\
3002 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3003 		NULL: pte_offset_kernel(pmd, address))
3004 
3005 #if USE_SPLIT_PMD_PTLOCKS
3006 
pmd_pgtable_page(pmd_t * pmd)3007 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3008 {
3009 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3010 	return virt_to_page((void *)((unsigned long) pmd & mask));
3011 }
3012 
pmd_ptdesc(pmd_t * pmd)3013 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3014 {
3015 	return page_ptdesc(pmd_pgtable_page(pmd));
3016 }
3017 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3018 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3019 {
3020 	return ptlock_ptr(pmd_ptdesc(pmd));
3021 }
3022 
pmd_ptlock_init(struct ptdesc * ptdesc)3023 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3024 {
3025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3026 	ptdesc->pmd_huge_pte = NULL;
3027 #endif
3028 	return ptlock_init(ptdesc);
3029 }
3030 
pmd_ptlock_free(struct ptdesc * ptdesc)3031 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3032 {
3033 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3034 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3035 #endif
3036 	ptlock_free(ptdesc);
3037 }
3038 
3039 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3040 
3041 #else
3042 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3043 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3044 {
3045 	return &mm->page_table_lock;
3046 }
3047 
pmd_ptlock_init(struct ptdesc * ptdesc)3048 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3049 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3050 
3051 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3052 
3053 #endif
3054 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3055 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3056 {
3057 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3058 	spin_lock(ptl);
3059 	return ptl;
3060 }
3061 
pagetable_pmd_ctor(struct ptdesc * ptdesc)3062 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3063 {
3064 	struct folio *folio = ptdesc_folio(ptdesc);
3065 
3066 	if (!pmd_ptlock_init(ptdesc))
3067 		return false;
3068 	__folio_set_pgtable(folio);
3069 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3070 	return true;
3071 }
3072 
pagetable_pmd_dtor(struct ptdesc * ptdesc)3073 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3074 {
3075 	struct folio *folio = ptdesc_folio(ptdesc);
3076 
3077 	pmd_ptlock_free(ptdesc);
3078 	__folio_clear_pgtable(folio);
3079 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3080 }
3081 
3082 /*
3083  * No scalability reason to split PUD locks yet, but follow the same pattern
3084  * as the PMD locks to make it easier if we decide to.  The VM should not be
3085  * considered ready to switch to split PUD locks yet; there may be places
3086  * which need to be converted from page_table_lock.
3087  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3088 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3089 {
3090 	return &mm->page_table_lock;
3091 }
3092 
pud_lock(struct mm_struct * mm,pud_t * pud)3093 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3094 {
3095 	spinlock_t *ptl = pud_lockptr(mm, pud);
3096 
3097 	spin_lock(ptl);
3098 	return ptl;
3099 }
3100 
pagetable_pud_ctor(struct ptdesc * ptdesc)3101 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3102 {
3103 	struct folio *folio = ptdesc_folio(ptdesc);
3104 
3105 	__folio_set_pgtable(folio);
3106 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3107 }
3108 
pagetable_pud_dtor(struct ptdesc * ptdesc)3109 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3110 {
3111 	struct folio *folio = ptdesc_folio(ptdesc);
3112 
3113 	__folio_clear_pgtable(folio);
3114 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3115 }
3116 
3117 extern void __init pagecache_init(void);
3118 extern void free_initmem(void);
3119 
3120 /*
3121  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3122  * into the buddy system. The freed pages will be poisoned with pattern
3123  * "poison" if it's within range [0, UCHAR_MAX].
3124  * Return pages freed into the buddy system.
3125  */
3126 extern unsigned long free_reserved_area(void *start, void *end,
3127 					int poison, const char *s);
3128 
3129 extern void adjust_managed_page_count(struct page *page, long count);
3130 
3131 extern void reserve_bootmem_region(phys_addr_t start,
3132 				   phys_addr_t end, int nid);
3133 
3134 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)3135 static inline void free_reserved_page(struct page *page)
3136 {
3137 	ClearPageReserved(page);
3138 	init_page_count(page);
3139 	__free_page(page);
3140 	adjust_managed_page_count(page, 1);
3141 }
3142 #define free_highmem_page(page) free_reserved_page(page)
3143 
mark_page_reserved(struct page * page)3144 static inline void mark_page_reserved(struct page *page)
3145 {
3146 	SetPageReserved(page);
3147 	adjust_managed_page_count(page, -1);
3148 }
3149 
free_reserved_ptdesc(struct ptdesc * pt)3150 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3151 {
3152 	free_reserved_page(ptdesc_page(pt));
3153 }
3154 
3155 /*
3156  * Default method to free all the __init memory into the buddy system.
3157  * The freed pages will be poisoned with pattern "poison" if it's within
3158  * range [0, UCHAR_MAX].
3159  * Return pages freed into the buddy system.
3160  */
free_initmem_default(int poison)3161 static inline unsigned long free_initmem_default(int poison)
3162 {
3163 	extern char __init_begin[], __init_end[];
3164 
3165 	return free_reserved_area(&__init_begin, &__init_end,
3166 				  poison, "unused kernel image (initmem)");
3167 }
3168 
get_num_physpages(void)3169 static inline unsigned long get_num_physpages(void)
3170 {
3171 	int nid;
3172 	unsigned long phys_pages = 0;
3173 
3174 	for_each_online_node(nid)
3175 		phys_pages += node_present_pages(nid);
3176 
3177 	return phys_pages;
3178 }
3179 
3180 /*
3181  * Using memblock node mappings, an architecture may initialise its
3182  * zones, allocate the backing mem_map and account for memory holes in an
3183  * architecture independent manner.
3184  *
3185  * An architecture is expected to register range of page frames backed by
3186  * physical memory with memblock_add[_node]() before calling
3187  * free_area_init() passing in the PFN each zone ends at. At a basic
3188  * usage, an architecture is expected to do something like
3189  *
3190  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3191  * 							 max_highmem_pfn};
3192  * for_each_valid_physical_page_range()
3193  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3194  * free_area_init(max_zone_pfns);
3195  */
3196 void free_area_init(unsigned long *max_zone_pfn);
3197 unsigned long node_map_pfn_alignment(void);
3198 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3199 						unsigned long end_pfn);
3200 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3201 						unsigned long end_pfn);
3202 extern void get_pfn_range_for_nid(unsigned int nid,
3203 			unsigned long *start_pfn, unsigned long *end_pfn);
3204 
3205 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3206 static inline int early_pfn_to_nid(unsigned long pfn)
3207 {
3208 	return 0;
3209 }
3210 #else
3211 /* please see mm/page_alloc.c */
3212 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3213 #endif
3214 
3215 extern void set_dma_reserve(unsigned long new_dma_reserve);
3216 extern void mem_init(void);
3217 extern void __init mmap_init(void);
3218 
3219 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3220 static inline void show_mem(void)
3221 {
3222 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3223 }
3224 extern long si_mem_available(void);
3225 extern void si_meminfo(struct sysinfo * val);
3226 extern void si_meminfo_node(struct sysinfo *val, int nid);
3227 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3228 extern unsigned long arch_reserved_kernel_pages(void);
3229 #endif
3230 
3231 extern __printf(3, 4)
3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3233 
3234 extern void setup_per_cpu_pageset(void);
3235 
3236 /* nommu.c */
3237 extern atomic_long_t mmap_pages_allocated;
3238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3239 
3240 /* interval_tree.c */
3241 void vma_interval_tree_insert(struct vm_area_struct *node,
3242 			      struct rb_root_cached *root);
3243 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3244 				    struct vm_area_struct *prev,
3245 				    struct rb_root_cached *root);
3246 void vma_interval_tree_remove(struct vm_area_struct *node,
3247 			      struct rb_root_cached *root);
3248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3249 				unsigned long start, unsigned long last);
3250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3251 				unsigned long start, unsigned long last);
3252 
3253 #define vma_interval_tree_foreach(vma, root, start, last)		\
3254 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3255 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3256 
3257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3258 				   struct rb_root_cached *root);
3259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3260 				   struct rb_root_cached *root);
3261 struct anon_vma_chain *
3262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3263 				  unsigned long start, unsigned long last);
3264 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3265 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3266 #ifdef CONFIG_DEBUG_VM_RB
3267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3268 #endif
3269 
3270 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3271 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3272 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3273 
3274 /* mmap.c */
3275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3276 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3277 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3278 		      struct vm_area_struct *next);
3279 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3280 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3281 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283 extern void unlink_file_vma(struct vm_area_struct *);
3284 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3285 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3286 	bool *need_rmap_locks);
3287 extern void exit_mmap(struct mm_struct *);
3288 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3289 				  struct vm_area_struct *prev,
3290 				  struct vm_area_struct *vma,
3291 				  unsigned long start, unsigned long end,
3292 				  unsigned long vm_flags,
3293 				  struct mempolicy *policy,
3294 				  struct vm_userfaultfd_ctx uffd_ctx,
3295 				  struct anon_vma_name *anon_name);
3296 
3297 /* We are about to modify the VMA's flags. */
3298 static inline struct vm_area_struct
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags)3299 *vma_modify_flags(struct vma_iterator *vmi,
3300 		  struct vm_area_struct *prev,
3301 		  struct vm_area_struct *vma,
3302 		  unsigned long start, unsigned long end,
3303 		  unsigned long new_flags)
3304 {
3305 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3306 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3307 			  anon_vma_name(vma));
3308 }
3309 
3310 /* We are about to modify the VMA's flags and/or anon_name. */
3311 static inline struct vm_area_struct
vma_modify_flags_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * new_name)3312 *vma_modify_flags_name(struct vma_iterator *vmi,
3313 		       struct vm_area_struct *prev,
3314 		       struct vm_area_struct *vma,
3315 		       unsigned long start,
3316 		       unsigned long end,
3317 		       unsigned long new_flags,
3318 		       struct anon_vma_name *new_name)
3319 {
3320 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3321 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3322 }
3323 
3324 /* We are about to modify the VMA's memory policy. */
3325 static inline struct vm_area_struct
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)3326 *vma_modify_policy(struct vma_iterator *vmi,
3327 		   struct vm_area_struct *prev,
3328 		   struct vm_area_struct *vma,
3329 		   unsigned long start, unsigned long end,
3330 		   struct mempolicy *new_pol)
3331 {
3332 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3333 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3334 }
3335 
3336 /* We are about to modify the VMA's flags and/or uffd context. */
3337 static inline struct vm_area_struct
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct vm_userfaultfd_ctx new_ctx)3338 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3339 		       struct vm_area_struct *prev,
3340 		       struct vm_area_struct *vma,
3341 		       unsigned long start, unsigned long end,
3342 		       unsigned long new_flags,
3343 		       struct vm_userfaultfd_ctx new_ctx)
3344 {
3345 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3346 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3347 }
3348 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3349 static inline int check_data_rlimit(unsigned long rlim,
3350 				    unsigned long new,
3351 				    unsigned long start,
3352 				    unsigned long end_data,
3353 				    unsigned long start_data)
3354 {
3355 	if (rlim < RLIM_INFINITY) {
3356 		if (((new - start) + (end_data - start_data)) > rlim)
3357 			return -ENOSPC;
3358 	}
3359 
3360 	return 0;
3361 }
3362 
3363 extern int mm_take_all_locks(struct mm_struct *mm);
3364 extern void mm_drop_all_locks(struct mm_struct *mm);
3365 
3366 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3367 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3368 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3369 extern struct file *get_task_exe_file(struct task_struct *task);
3370 
3371 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3372 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3373 
3374 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3375 				   const struct vm_special_mapping *sm);
3376 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3377 				   unsigned long addr, unsigned long len,
3378 				   unsigned long flags,
3379 				   const struct vm_special_mapping *spec);
3380 /* This is an obsolete alternative to _install_special_mapping. */
3381 extern int install_special_mapping(struct mm_struct *mm,
3382 				   unsigned long addr, unsigned long len,
3383 				   unsigned long flags, struct page **pages);
3384 
3385 unsigned long randomize_stack_top(unsigned long stack_top);
3386 unsigned long randomize_page(unsigned long start, unsigned long range);
3387 
3388 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3389 
3390 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3391 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3392 	struct list_head *uf);
3393 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3394 	unsigned long len, unsigned long prot, unsigned long flags,
3395 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3396 	struct list_head *uf);
3397 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3398 			 unsigned long start, size_t len, struct list_head *uf,
3399 			 bool unlock);
3400 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3401 		     struct list_head *uf);
3402 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3403 
3404 #ifdef CONFIG_MMU
3405 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3406 			 unsigned long start, unsigned long end,
3407 			 struct list_head *uf, bool unlock);
3408 extern int __mm_populate(unsigned long addr, unsigned long len,
3409 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3410 static inline void mm_populate(unsigned long addr, unsigned long len)
3411 {
3412 	/* Ignore errors */
3413 	(void) __mm_populate(addr, len, 1);
3414 }
3415 #else
mm_populate(unsigned long addr,unsigned long len)3416 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3417 #endif
3418 
3419 /* This takes the mm semaphore itself */
3420 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3421 extern int vm_munmap(unsigned long, size_t);
3422 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3423         unsigned long, unsigned long,
3424         unsigned long, unsigned long);
3425 
3426 struct vm_unmapped_area_info {
3427 #define VM_UNMAPPED_AREA_TOPDOWN 1
3428 	unsigned long flags;
3429 	unsigned long length;
3430 	unsigned long low_limit;
3431 	unsigned long high_limit;
3432 	unsigned long align_mask;
3433 	unsigned long align_offset;
3434 };
3435 
3436 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3437 
3438 /* truncate.c */
3439 extern void truncate_inode_pages(struct address_space *, loff_t);
3440 extern void truncate_inode_pages_range(struct address_space *,
3441 				       loff_t lstart, loff_t lend);
3442 extern void truncate_inode_pages_final(struct address_space *);
3443 
3444 /* generic vm_area_ops exported for stackable file systems */
3445 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3446 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3447 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3448 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3449 
3450 extern unsigned long stack_guard_gap;
3451 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3452 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3453 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3454 
3455 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3456 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3457 
3458 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3459 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3460 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3461 					     struct vm_area_struct **pprev);
3462 
3463 /*
3464  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3465  * NULL if none.  Assume start_addr < end_addr.
3466  */
3467 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3468 			unsigned long start_addr, unsigned long end_addr);
3469 
3470 /**
3471  * vma_lookup() - Find a VMA at a specific address
3472  * @mm: The process address space.
3473  * @addr: The user address.
3474  *
3475  * Return: The vm_area_struct at the given address, %NULL otherwise.
3476  */
3477 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3478 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3479 {
3480 	return mtree_load(&mm->mm_mt, addr);
3481 }
3482 
stack_guard_start_gap(struct vm_area_struct * vma)3483 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3484 {
3485 	if (vma->vm_flags & VM_GROWSDOWN)
3486 		return stack_guard_gap;
3487 
3488 	/* See reasoning around the VM_SHADOW_STACK definition */
3489 	if (vma->vm_flags & VM_SHADOW_STACK)
3490 		return PAGE_SIZE;
3491 
3492 	return 0;
3493 }
3494 
vm_start_gap(struct vm_area_struct * vma)3495 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3496 {
3497 	unsigned long gap = stack_guard_start_gap(vma);
3498 	unsigned long vm_start = vma->vm_start;
3499 
3500 	vm_start -= gap;
3501 	if (vm_start > vma->vm_start)
3502 		vm_start = 0;
3503 	return vm_start;
3504 }
3505 
vm_end_gap(struct vm_area_struct * vma)3506 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3507 {
3508 	unsigned long vm_end = vma->vm_end;
3509 
3510 	if (vma->vm_flags & VM_GROWSUP) {
3511 		vm_end += stack_guard_gap;
3512 		if (vm_end < vma->vm_end)
3513 			vm_end = -PAGE_SIZE;
3514 	}
3515 	return vm_end;
3516 }
3517 
vma_pages(struct vm_area_struct * vma)3518 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3519 {
3520 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3521 }
3522 
3523 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3524 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3525 				unsigned long vm_start, unsigned long vm_end)
3526 {
3527 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3528 
3529 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3530 		vma = NULL;
3531 
3532 	return vma;
3533 }
3534 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3535 static inline bool range_in_vma(struct vm_area_struct *vma,
3536 				unsigned long start, unsigned long end)
3537 {
3538 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3539 }
3540 
3541 #ifdef CONFIG_MMU
3542 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3543 void vma_set_page_prot(struct vm_area_struct *vma);
3544 #else
vm_get_page_prot(unsigned long vm_flags)3545 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3546 {
3547 	return __pgprot(0);
3548 }
vma_set_page_prot(struct vm_area_struct * vma)3549 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3550 {
3551 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3552 }
3553 #endif
3554 
3555 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3556 
3557 #ifdef CONFIG_NUMA_BALANCING
3558 unsigned long change_prot_numa(struct vm_area_struct *vma,
3559 			unsigned long start, unsigned long end);
3560 #endif
3561 
3562 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3563 		unsigned long addr);
3564 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3565 			unsigned long pfn, unsigned long size, pgprot_t);
3566 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3567 		unsigned long pfn, unsigned long size, pgprot_t prot);
3568 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3569 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3570 			struct page **pages, unsigned long *num);
3571 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3572 				unsigned long num);
3573 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3574 				unsigned long num);
3575 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3576 			unsigned long pfn);
3577 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3578 			unsigned long pfn, pgprot_t pgprot);
3579 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3580 			pfn_t pfn);
3581 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3582 		unsigned long addr, pfn_t pfn);
3583 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3584 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3585 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3586 				unsigned long addr, struct page *page)
3587 {
3588 	int err = vm_insert_page(vma, addr, page);
3589 
3590 	if (err == -ENOMEM)
3591 		return VM_FAULT_OOM;
3592 	if (err < 0 && err != -EBUSY)
3593 		return VM_FAULT_SIGBUS;
3594 
3595 	return VM_FAULT_NOPAGE;
3596 }
3597 
3598 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3599 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3600 				     unsigned long addr, unsigned long pfn,
3601 				     unsigned long size, pgprot_t prot)
3602 {
3603 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3604 }
3605 #endif
3606 
vmf_error(int err)3607 static inline vm_fault_t vmf_error(int err)
3608 {
3609 	if (err == -ENOMEM)
3610 		return VM_FAULT_OOM;
3611 	else if (err == -EHWPOISON)
3612 		return VM_FAULT_HWPOISON;
3613 	return VM_FAULT_SIGBUS;
3614 }
3615 
3616 /*
3617  * Convert errno to return value for ->page_mkwrite() calls.
3618  *
3619  * This should eventually be merged with vmf_error() above, but will need a
3620  * careful audit of all vmf_error() callers.
3621  */
vmf_fs_error(int err)3622 static inline vm_fault_t vmf_fs_error(int err)
3623 {
3624 	if (err == 0)
3625 		return VM_FAULT_LOCKED;
3626 	if (err == -EFAULT || err == -EAGAIN)
3627 		return VM_FAULT_NOPAGE;
3628 	if (err == -ENOMEM)
3629 		return VM_FAULT_OOM;
3630 	/* -ENOSPC, -EDQUOT, -EIO ... */
3631 	return VM_FAULT_SIGBUS;
3632 }
3633 
3634 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3635 			 unsigned int foll_flags);
3636 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3637 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3638 {
3639 	if (vm_fault & VM_FAULT_OOM)
3640 		return -ENOMEM;
3641 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3642 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3643 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3644 		return -EFAULT;
3645 	return 0;
3646 }
3647 
3648 /*
3649  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3650  * a (NUMA hinting) fault is required.
3651  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3652 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3653 					   unsigned int flags)
3654 {
3655 	/*
3656 	 * If callers don't want to honor NUMA hinting faults, no need to
3657 	 * determine if we would actually have to trigger a NUMA hinting fault.
3658 	 */
3659 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3660 		return true;
3661 
3662 	/*
3663 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3664 	 *
3665 	 * Requiring a fault here even for inaccessible VMAs would mean that
3666 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3667 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3668 	 */
3669 	return !vma_is_accessible(vma);
3670 }
3671 
3672 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3673 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3674 			       unsigned long size, pte_fn_t fn, void *data);
3675 extern int apply_to_existing_page_range(struct mm_struct *mm,
3676 				   unsigned long address, unsigned long size,
3677 				   pte_fn_t fn, void *data);
3678 
3679 #ifdef CONFIG_PAGE_POISONING
3680 extern void __kernel_poison_pages(struct page *page, int numpages);
3681 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3682 extern bool _page_poisoning_enabled_early;
3683 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3684 static inline bool page_poisoning_enabled(void)
3685 {
3686 	return _page_poisoning_enabled_early;
3687 }
3688 /*
3689  * For use in fast paths after init_mem_debugging() has run, or when a
3690  * false negative result is not harmful when called too early.
3691  */
page_poisoning_enabled_static(void)3692 static inline bool page_poisoning_enabled_static(void)
3693 {
3694 	return static_branch_unlikely(&_page_poisoning_enabled);
3695 }
kernel_poison_pages(struct page * page,int numpages)3696 static inline void kernel_poison_pages(struct page *page, int numpages)
3697 {
3698 	if (page_poisoning_enabled_static())
3699 		__kernel_poison_pages(page, numpages);
3700 }
kernel_unpoison_pages(struct page * page,int numpages)3701 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3702 {
3703 	if (page_poisoning_enabled_static())
3704 		__kernel_unpoison_pages(page, numpages);
3705 }
3706 #else
page_poisoning_enabled(void)3707 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3708 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3709 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3710 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3711 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3712 #endif
3713 
3714 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3715 static inline bool want_init_on_alloc(gfp_t flags)
3716 {
3717 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3718 				&init_on_alloc))
3719 		return true;
3720 	return flags & __GFP_ZERO;
3721 }
3722 
3723 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3724 static inline bool want_init_on_free(void)
3725 {
3726 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3727 				   &init_on_free);
3728 }
3729 
3730 extern bool _debug_pagealloc_enabled_early;
3731 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3732 
debug_pagealloc_enabled(void)3733 static inline bool debug_pagealloc_enabled(void)
3734 {
3735 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3736 		_debug_pagealloc_enabled_early;
3737 }
3738 
3739 /*
3740  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3741  * or when a false negative result is not harmful when called too early.
3742  */
debug_pagealloc_enabled_static(void)3743 static inline bool debug_pagealloc_enabled_static(void)
3744 {
3745 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3746 		return false;
3747 
3748 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3749 }
3750 
3751 /*
3752  * To support DEBUG_PAGEALLOC architecture must ensure that
3753  * __kernel_map_pages() never fails
3754  */
3755 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3756 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3757 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3758 {
3759 	if (debug_pagealloc_enabled_static())
3760 		__kernel_map_pages(page, numpages, 1);
3761 }
3762 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3763 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3764 {
3765 	if (debug_pagealloc_enabled_static())
3766 		__kernel_map_pages(page, numpages, 0);
3767 }
3768 
3769 extern unsigned int _debug_guardpage_minorder;
3770 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3771 
debug_guardpage_minorder(void)3772 static inline unsigned int debug_guardpage_minorder(void)
3773 {
3774 	return _debug_guardpage_minorder;
3775 }
3776 
debug_guardpage_enabled(void)3777 static inline bool debug_guardpage_enabled(void)
3778 {
3779 	return static_branch_unlikely(&_debug_guardpage_enabled);
3780 }
3781 
page_is_guard(struct page * page)3782 static inline bool page_is_guard(struct page *page)
3783 {
3784 	if (!debug_guardpage_enabled())
3785 		return false;
3786 
3787 	return PageGuard(page);
3788 }
3789 
3790 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3791 		      int migratetype);
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3792 static inline bool set_page_guard(struct zone *zone, struct page *page,
3793 				  unsigned int order, int migratetype)
3794 {
3795 	if (!debug_guardpage_enabled())
3796 		return false;
3797 	return __set_page_guard(zone, page, order, migratetype);
3798 }
3799 
3800 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3801 			int migratetype);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3802 static inline void clear_page_guard(struct zone *zone, struct page *page,
3803 				    unsigned int order, int migratetype)
3804 {
3805 	if (!debug_guardpage_enabled())
3806 		return;
3807 	__clear_page_guard(zone, page, order, migratetype);
3808 }
3809 
3810 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3811 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3812 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3813 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3814 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3815 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3816 static inline bool set_page_guard(struct zone *zone, struct page *page,
3817 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3818 static inline void clear_page_guard(struct zone *zone, struct page *page,
3819 				unsigned int order, int migratetype) {}
3820 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3821 
3822 #ifdef __HAVE_ARCH_GATE_AREA
3823 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3824 extern int in_gate_area_no_mm(unsigned long addr);
3825 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3826 #else
get_gate_vma(struct mm_struct * mm)3827 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3828 {
3829 	return NULL;
3830 }
in_gate_area_no_mm(unsigned long addr)3831 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3832 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3833 {
3834 	return 0;
3835 }
3836 #endif	/* __HAVE_ARCH_GATE_AREA */
3837 
3838 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3839 
3840 #ifdef CONFIG_SYSCTL
3841 extern int sysctl_drop_caches;
3842 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3843 		loff_t *);
3844 #endif
3845 
3846 void drop_slab(void);
3847 
3848 #ifndef CONFIG_MMU
3849 #define randomize_va_space 0
3850 #else
3851 extern int randomize_va_space;
3852 #endif
3853 
3854 const char * arch_vma_name(struct vm_area_struct *vma);
3855 #ifdef CONFIG_MMU
3856 void print_vma_addr(char *prefix, unsigned long rip);
3857 #else
print_vma_addr(char * prefix,unsigned long rip)3858 static inline void print_vma_addr(char *prefix, unsigned long rip)
3859 {
3860 }
3861 #endif
3862 
3863 void *sparse_buffer_alloc(unsigned long size);
3864 struct page * __populate_section_memmap(unsigned long pfn,
3865 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3866 		struct dev_pagemap *pgmap);
3867 void pmd_init(void *addr);
3868 void pud_init(void *addr);
3869 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3870 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3871 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3872 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3873 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3874 			    struct vmem_altmap *altmap, struct page *reuse);
3875 void *vmemmap_alloc_block(unsigned long size, int node);
3876 struct vmem_altmap;
3877 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3878 			      struct vmem_altmap *altmap);
3879 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3880 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3881 		     unsigned long addr, unsigned long next);
3882 int vmemmap_check_pmd(pmd_t *pmd, int node,
3883 		      unsigned long addr, unsigned long next);
3884 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3885 			       int node, struct vmem_altmap *altmap);
3886 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3887 			       int node, struct vmem_altmap *altmap);
3888 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3889 		struct vmem_altmap *altmap);
3890 void vmemmap_populate_print_last(void);
3891 #ifdef CONFIG_MEMORY_HOTPLUG
3892 void vmemmap_free(unsigned long start, unsigned long end,
3893 		struct vmem_altmap *altmap);
3894 #endif
3895 
3896 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3897 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3898 {
3899 	/* number of pfns from base where pfn_to_page() is valid */
3900 	if (altmap)
3901 		return altmap->reserve + altmap->free;
3902 	return 0;
3903 }
3904 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3905 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3906 				    unsigned long nr_pfns)
3907 {
3908 	altmap->alloc -= nr_pfns;
3909 }
3910 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3911 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3912 {
3913 	return 0;
3914 }
3915 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3916 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3917 				    unsigned long nr_pfns)
3918 {
3919 }
3920 #endif
3921 
3922 #define VMEMMAP_RESERVE_NR	2
3923 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3924 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3925 					  struct dev_pagemap *pgmap)
3926 {
3927 	unsigned long nr_pages;
3928 	unsigned long nr_vmemmap_pages;
3929 
3930 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3931 		return false;
3932 
3933 	nr_pages = pgmap_vmemmap_nr(pgmap);
3934 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3935 	/*
3936 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3937 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3938 	 */
3939 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3940 }
3941 /*
3942  * If we don't have an architecture override, use the generic rule
3943  */
3944 #ifndef vmemmap_can_optimize
3945 #define vmemmap_can_optimize __vmemmap_can_optimize
3946 #endif
3947 
3948 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3949 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3950 					   struct dev_pagemap *pgmap)
3951 {
3952 	return false;
3953 }
3954 #endif
3955 
3956 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3957 				  unsigned long nr_pages);
3958 
3959 enum mf_flags {
3960 	MF_COUNT_INCREASED = 1 << 0,
3961 	MF_ACTION_REQUIRED = 1 << 1,
3962 	MF_MUST_KILL = 1 << 2,
3963 	MF_SOFT_OFFLINE = 1 << 3,
3964 	MF_UNPOISON = 1 << 4,
3965 	MF_SW_SIMULATED = 1 << 5,
3966 	MF_NO_RETRY = 1 << 6,
3967 	MF_MEM_PRE_REMOVE = 1 << 7,
3968 };
3969 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3970 		      unsigned long count, int mf_flags);
3971 extern int memory_failure(unsigned long pfn, int flags);
3972 extern void memory_failure_queue_kick(int cpu);
3973 extern int unpoison_memory(unsigned long pfn);
3974 extern void shake_page(struct page *p);
3975 extern atomic_long_t num_poisoned_pages __read_mostly;
3976 extern int soft_offline_page(unsigned long pfn, int flags);
3977 #ifdef CONFIG_MEMORY_FAILURE
3978 /*
3979  * Sysfs entries for memory failure handling statistics.
3980  */
3981 extern const struct attribute_group memory_failure_attr_group;
3982 extern void memory_failure_queue(unsigned long pfn, int flags);
3983 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3984 					bool *migratable_cleared);
3985 void num_poisoned_pages_inc(unsigned long pfn);
3986 void num_poisoned_pages_sub(unsigned long pfn, long i);
3987 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3988 #else
memory_failure_queue(unsigned long pfn,int flags)3989 static inline void memory_failure_queue(unsigned long pfn, int flags)
3990 {
3991 }
3992 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3993 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3994 					bool *migratable_cleared)
3995 {
3996 	return 0;
3997 }
3998 
num_poisoned_pages_inc(unsigned long pfn)3999 static inline void num_poisoned_pages_inc(unsigned long pfn)
4000 {
4001 }
4002 
num_poisoned_pages_sub(unsigned long pfn,long i)4003 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4004 {
4005 }
4006 #endif
4007 
4008 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4009 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4010 		     struct vm_area_struct *vma, struct list_head *to_kill,
4011 		     unsigned long ksm_addr);
4012 #endif
4013 
4014 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4015 extern void memblk_nr_poison_inc(unsigned long pfn);
4016 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4017 #else
memblk_nr_poison_inc(unsigned long pfn)4018 static inline void memblk_nr_poison_inc(unsigned long pfn)
4019 {
4020 }
4021 
memblk_nr_poison_sub(unsigned long pfn,long i)4022 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4023 {
4024 }
4025 #endif
4026 
4027 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4028 static inline int arch_memory_failure(unsigned long pfn, int flags)
4029 {
4030 	return -ENXIO;
4031 }
4032 #endif
4033 
4034 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4035 static inline bool arch_is_platform_page(u64 paddr)
4036 {
4037 	return false;
4038 }
4039 #endif
4040 
4041 /*
4042  * Error handlers for various types of pages.
4043  */
4044 enum mf_result {
4045 	MF_IGNORED,	/* Error: cannot be handled */
4046 	MF_FAILED,	/* Error: handling failed */
4047 	MF_DELAYED,	/* Will be handled later */
4048 	MF_RECOVERED,	/* Successfully recovered */
4049 };
4050 
4051 enum mf_action_page_type {
4052 	MF_MSG_KERNEL,
4053 	MF_MSG_KERNEL_HIGH_ORDER,
4054 	MF_MSG_SLAB,
4055 	MF_MSG_DIFFERENT_COMPOUND,
4056 	MF_MSG_HUGE,
4057 	MF_MSG_FREE_HUGE,
4058 	MF_MSG_UNMAP_FAILED,
4059 	MF_MSG_DIRTY_SWAPCACHE,
4060 	MF_MSG_CLEAN_SWAPCACHE,
4061 	MF_MSG_DIRTY_MLOCKED_LRU,
4062 	MF_MSG_CLEAN_MLOCKED_LRU,
4063 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4064 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4065 	MF_MSG_DIRTY_LRU,
4066 	MF_MSG_CLEAN_LRU,
4067 	MF_MSG_TRUNCATED_LRU,
4068 	MF_MSG_BUDDY,
4069 	MF_MSG_DAX,
4070 	MF_MSG_UNSPLIT_THP,
4071 	MF_MSG_UNKNOWN,
4072 };
4073 
4074 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4075 extern void clear_huge_page(struct page *page,
4076 			    unsigned long addr_hint,
4077 			    unsigned int pages_per_huge_page);
4078 int copy_user_large_folio(struct folio *dst, struct folio *src,
4079 			  unsigned long addr_hint,
4080 			  struct vm_area_struct *vma);
4081 long copy_folio_from_user(struct folio *dst_folio,
4082 			   const void __user *usr_src,
4083 			   bool allow_pagefault);
4084 
4085 /**
4086  * vma_is_special_huge - Are transhuge page-table entries considered special?
4087  * @vma: Pointer to the struct vm_area_struct to consider
4088  *
4089  * Whether transhuge page-table entries are considered "special" following
4090  * the definition in vm_normal_page().
4091  *
4092  * Return: true if transhuge page-table entries should be considered special,
4093  * false otherwise.
4094  */
vma_is_special_huge(const struct vm_area_struct * vma)4095 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4096 {
4097 	return vma_is_dax(vma) || (vma->vm_file &&
4098 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4099 }
4100 
4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4102 
4103 #if MAX_NUMNODES > 1
4104 void __init setup_nr_node_ids(void);
4105 #else
setup_nr_node_ids(void)4106 static inline void setup_nr_node_ids(void) {}
4107 #endif
4108 
4109 extern int memcmp_pages(struct page *page1, struct page *page2);
4110 
pages_identical(struct page * page1,struct page * page2)4111 static inline int pages_identical(struct page *page1, struct page *page2)
4112 {
4113 	return !memcmp_pages(page1, page2);
4114 }
4115 
4116 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4117 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4118 						pgoff_t first_index, pgoff_t nr,
4119 						pgoff_t bitmap_pgoff,
4120 						unsigned long *bitmap,
4121 						pgoff_t *start,
4122 						pgoff_t *end);
4123 
4124 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4125 				      pgoff_t first_index, pgoff_t nr);
4126 #endif
4127 
4128 extern int sysctl_nr_trim_pages;
4129 
4130 #ifdef CONFIG_PRINTK
4131 void mem_dump_obj(void *object);
4132 #else
mem_dump_obj(void * object)4133 static inline void mem_dump_obj(void *object) {}
4134 #endif
4135 
4136 /**
4137  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4138  *                    handle them.
4139  * @seals: the seals to check
4140  * @vma: the vma to operate on
4141  *
4142  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4143  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4144  */
seal_check_write(int seals,struct vm_area_struct * vma)4145 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4146 {
4147 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4148 		/*
4149 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4150 		 * write seals are active.
4151 		 */
4152 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4153 			return -EPERM;
4154 
4155 		/*
4156 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4157 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4158 		 * revert protections on such mappings. Do this only for shared
4159 		 * mappings. For private mappings, don't need to mask
4160 		 * VM_MAYWRITE as we still want them to be COW-writable.
4161 		 */
4162 		if (vma->vm_flags & VM_SHARED)
4163 			vm_flags_clear(vma, VM_MAYWRITE);
4164 	}
4165 
4166 	return 0;
4167 }
4168 
4169 #ifdef CONFIG_ANON_VMA_NAME
4170 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4171 			  unsigned long len_in,
4172 			  struct anon_vma_name *anon_name);
4173 #else
4174 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4175 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4176 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4177 	return 0;
4178 }
4179 #endif
4180 
4181 #ifdef CONFIG_UNACCEPTED_MEMORY
4182 
4183 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4184 void accept_memory(phys_addr_t start, phys_addr_t end);
4185 
4186 #else
4187 
range_contains_unaccepted_memory(phys_addr_t start,phys_addr_t end)4188 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4189 						    phys_addr_t end)
4190 {
4191 	return false;
4192 }
4193 
accept_memory(phys_addr_t start,phys_addr_t end)4194 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4195 {
4196 }
4197 
4198 #endif
4199 
pfn_is_unaccepted_memory(unsigned long pfn)4200 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4201 {
4202 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4203 
4204 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4205 }
4206 
4207 #endif /* _LINUX_MM_H */
4208