xref: /freebsd/sys/amd64/include/vmm.h (revision aede0d3b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #ifndef _VMM_H_
30 #define	_VMM_H_
31 
32 #include <sys/cpuset.h>
33 #include <sys/sdt.h>
34 #include <x86/segments.h>
35 
36 struct vcpu;
37 struct vm_snapshot_meta;
38 
39 #ifdef _KERNEL
40 SDT_PROVIDER_DECLARE(vmm);
41 #endif
42 
43 enum vm_suspend_how {
44 	VM_SUSPEND_NONE,
45 	VM_SUSPEND_RESET,
46 	VM_SUSPEND_POWEROFF,
47 	VM_SUSPEND_HALT,
48 	VM_SUSPEND_TRIPLEFAULT,
49 	VM_SUSPEND_LAST
50 };
51 
52 /*
53  * Identifiers for architecturally defined registers.
54  */
55 enum vm_reg_name {
56 	VM_REG_GUEST_RAX,
57 	VM_REG_GUEST_RBX,
58 	VM_REG_GUEST_RCX,
59 	VM_REG_GUEST_RDX,
60 	VM_REG_GUEST_RSI,
61 	VM_REG_GUEST_RDI,
62 	VM_REG_GUEST_RBP,
63 	VM_REG_GUEST_R8,
64 	VM_REG_GUEST_R9,
65 	VM_REG_GUEST_R10,
66 	VM_REG_GUEST_R11,
67 	VM_REG_GUEST_R12,
68 	VM_REG_GUEST_R13,
69 	VM_REG_GUEST_R14,
70 	VM_REG_GUEST_R15,
71 	VM_REG_GUEST_CR0,
72 	VM_REG_GUEST_CR3,
73 	VM_REG_GUEST_CR4,
74 	VM_REG_GUEST_DR7,
75 	VM_REG_GUEST_RSP,
76 	VM_REG_GUEST_RIP,
77 	VM_REG_GUEST_RFLAGS,
78 	VM_REG_GUEST_ES,
79 	VM_REG_GUEST_CS,
80 	VM_REG_GUEST_SS,
81 	VM_REG_GUEST_DS,
82 	VM_REG_GUEST_FS,
83 	VM_REG_GUEST_GS,
84 	VM_REG_GUEST_LDTR,
85 	VM_REG_GUEST_TR,
86 	VM_REG_GUEST_IDTR,
87 	VM_REG_GUEST_GDTR,
88 	VM_REG_GUEST_EFER,
89 	VM_REG_GUEST_CR2,
90 	VM_REG_GUEST_PDPTE0,
91 	VM_REG_GUEST_PDPTE1,
92 	VM_REG_GUEST_PDPTE2,
93 	VM_REG_GUEST_PDPTE3,
94 	VM_REG_GUEST_INTR_SHADOW,
95 	VM_REG_GUEST_DR0,
96 	VM_REG_GUEST_DR1,
97 	VM_REG_GUEST_DR2,
98 	VM_REG_GUEST_DR3,
99 	VM_REG_GUEST_DR6,
100 	VM_REG_GUEST_ENTRY_INST_LENGTH,
101 	VM_REG_GUEST_FS_BASE,
102 	VM_REG_GUEST_GS_BASE,
103 	VM_REG_GUEST_KGS_BASE,
104 	VM_REG_GUEST_TPR,
105 	VM_REG_LAST
106 };
107 
108 enum x2apic_state {
109 	X2APIC_DISABLED,
110 	X2APIC_ENABLED,
111 	X2APIC_STATE_LAST
112 };
113 
114 #define	VM_INTINFO_VECTOR(info)	((info) & 0xff)
115 #define	VM_INTINFO_DEL_ERRCODE	0x800
116 #define	VM_INTINFO_RSVD		0x7ffff000
117 #define	VM_INTINFO_VALID	0x80000000
118 #define	VM_INTINFO_TYPE		0x700
119 #define	VM_INTINFO_HWINTR	(0 << 8)
120 #define	VM_INTINFO_NMI		(2 << 8)
121 #define	VM_INTINFO_HWEXCEPTION	(3 << 8)
122 #define	VM_INTINFO_SWINTR	(4 << 8)
123 
124 /*
125  * The VM name has to fit into the pathname length constraints of devfs,
126  * governed primarily by SPECNAMELEN.  The length is the total number of
127  * characters in the full path, relative to the mount point and not
128  * including any leading '/' characters.
129  * A prefix and a suffix are added to the name specified by the user.
130  * The prefix is usually "vmm/" or "vmm.io/", but can be a few characters
131  * longer for future use.
132  * The suffix is a string that identifies a bootrom image or some similar
133  * image that is attached to the VM. A separator character gets added to
134  * the suffix automatically when generating the full path, so it must be
135  * accounted for, reducing the effective length by 1.
136  * The effective length of a VM name is 229 bytes for FreeBSD 13 and 37
137  * bytes for FreeBSD 12.  A minimum length is set for safety and supports
138  * a SPECNAMELEN as small as 32 on old systems.
139  */
140 #define VM_MAX_PREFIXLEN 10
141 #define VM_MAX_SUFFIXLEN 15
142 #define VM_MIN_NAMELEN   6
143 #define VM_MAX_NAMELEN \
144     (SPECNAMELEN - VM_MAX_PREFIXLEN - VM_MAX_SUFFIXLEN - 1)
145 
146 #ifdef _KERNEL
147 #include <sys/kassert.h>
148 
149 CTASSERT(VM_MAX_NAMELEN >= VM_MIN_NAMELEN);
150 
151 struct vm;
152 struct vm_exception;
153 struct seg_desc;
154 struct vm_exit;
155 struct vm_run;
156 struct vhpet;
157 struct vioapic;
158 struct vlapic;
159 struct vmspace;
160 struct vm_object;
161 struct vm_guest_paging;
162 struct pmap;
163 enum snapshot_req;
164 
165 struct vm_eventinfo {
166 	cpuset_t *rptr;		/* rendezvous cookie */
167 	int	*sptr;		/* suspend cookie */
168 	int	*iptr;		/* reqidle cookie */
169 };
170 
171 typedef int	(*vmm_init_func_t)(int ipinum);
172 typedef int	(*vmm_cleanup_func_t)(void);
173 typedef void	(*vmm_resume_func_t)(void);
174 typedef void *	(*vmi_init_func_t)(struct vm *vm, struct pmap *pmap);
175 typedef int	(*vmi_run_func_t)(void *vcpui, register_t rip,
176 		    struct pmap *pmap, struct vm_eventinfo *info);
177 typedef void	(*vmi_cleanup_func_t)(void *vmi);
178 typedef void *	(*vmi_vcpu_init_func_t)(void *vmi, struct vcpu *vcpu,
179 		    int vcpu_id);
180 typedef void	(*vmi_vcpu_cleanup_func_t)(void *vcpui);
181 typedef int	(*vmi_get_register_t)(void *vcpui, int num, uint64_t *retval);
182 typedef int	(*vmi_set_register_t)(void *vcpui, int num, uint64_t val);
183 typedef int	(*vmi_get_desc_t)(void *vcpui, int num, struct seg_desc *desc);
184 typedef int	(*vmi_set_desc_t)(void *vcpui, int num, struct seg_desc *desc);
185 typedef int	(*vmi_get_cap_t)(void *vcpui, int num, int *retval);
186 typedef int	(*vmi_set_cap_t)(void *vcpui, int num, int val);
187 typedef struct vmspace * (*vmi_vmspace_alloc)(vm_offset_t min, vm_offset_t max);
188 typedef void	(*vmi_vmspace_free)(struct vmspace *vmspace);
189 typedef struct vlapic * (*vmi_vlapic_init)(void *vcpui);
190 typedef void	(*vmi_vlapic_cleanup)(struct vlapic *vlapic);
191 typedef int	(*vmi_snapshot_vcpu_t)(void *vcpui, struct vm_snapshot_meta *meta);
192 typedef int	(*vmi_restore_tsc_t)(void *vcpui, uint64_t now);
193 
194 struct vmm_ops {
195 	vmm_init_func_t		modinit;	/* module wide initialization */
196 	vmm_cleanup_func_t	modcleanup;
197 	vmm_resume_func_t	modresume;
198 
199 	vmi_init_func_t		init;		/* vm-specific initialization */
200 	vmi_run_func_t		run;
201 	vmi_cleanup_func_t	cleanup;
202 	vmi_vcpu_init_func_t	vcpu_init;
203 	vmi_vcpu_cleanup_func_t	vcpu_cleanup;
204 	vmi_get_register_t	getreg;
205 	vmi_set_register_t	setreg;
206 	vmi_get_desc_t		getdesc;
207 	vmi_set_desc_t		setdesc;
208 	vmi_get_cap_t		getcap;
209 	vmi_set_cap_t		setcap;
210 	vmi_vmspace_alloc	vmspace_alloc;
211 	vmi_vmspace_free	vmspace_free;
212 	vmi_vlapic_init		vlapic_init;
213 	vmi_vlapic_cleanup	vlapic_cleanup;
214 
215 	/* checkpoint operations */
216 	vmi_snapshot_vcpu_t	vcpu_snapshot;
217 	vmi_restore_tsc_t	restore_tsc;
218 };
219 
220 extern const struct vmm_ops vmm_ops_intel;
221 extern const struct vmm_ops vmm_ops_amd;
222 
223 extern u_int vm_maxcpu;			/* maximum virtual cpus */
224 
225 int vm_create(const char *name, struct vm **retvm);
226 struct vcpu *vm_alloc_vcpu(struct vm *vm, int vcpuid);
227 void vm_disable_vcpu_creation(struct vm *vm);
228 void vm_slock_vcpus(struct vm *vm);
229 void vm_unlock_vcpus(struct vm *vm);
230 void vm_destroy(struct vm *vm);
231 int vm_reinit(struct vm *vm);
232 const char *vm_name(struct vm *vm);
233 uint16_t vm_get_maxcpus(struct vm *vm);
234 void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
235     uint16_t *threads, uint16_t *maxcpus);
236 int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
237     uint16_t threads, uint16_t maxcpus);
238 
239 /*
240  * APIs that modify the guest memory map require all vcpus to be frozen.
241  */
242 void vm_slock_memsegs(struct vm *vm);
243 void vm_xlock_memsegs(struct vm *vm);
244 void vm_unlock_memsegs(struct vm *vm);
245 int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off,
246     size_t len, int prot, int flags);
247 int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len);
248 int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem);
249 void vm_free_memseg(struct vm *vm, int ident);
250 int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa);
251 int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len);
252 int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func);
253 int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func);
254 
255 /*
256  * APIs that inspect the guest memory map require only a *single* vcpu to
257  * be frozen. This acts like a read lock on the guest memory map since any
258  * modification requires *all* vcpus to be frozen.
259  */
260 int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
261     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags);
262 int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
263     struct vm_object **objptr);
264 vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm);
265 void *vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len,
266     int prot, void **cookie);
267 void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len,
268     int prot, void **cookie);
269 void vm_gpa_release(void *cookie);
270 bool vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa);
271 
272 int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval);
273 int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val);
274 int vm_get_seg_desc(struct vcpu *vcpu, int reg,
275 		    struct seg_desc *ret_desc);
276 int vm_set_seg_desc(struct vcpu *vcpu, int reg,
277 		    struct seg_desc *desc);
278 int vm_run(struct vcpu *vcpu);
279 int vm_suspend(struct vm *vm, enum vm_suspend_how how);
280 int vm_inject_nmi(struct vcpu *vcpu);
281 int vm_nmi_pending(struct vcpu *vcpu);
282 void vm_nmi_clear(struct vcpu *vcpu);
283 int vm_inject_extint(struct vcpu *vcpu);
284 int vm_extint_pending(struct vcpu *vcpu);
285 void vm_extint_clear(struct vcpu *vcpu);
286 int vcpu_vcpuid(struct vcpu *vcpu);
287 struct vm *vcpu_vm(struct vcpu *vcpu);
288 struct vcpu *vm_vcpu(struct vm *vm, int cpu);
289 struct vlapic *vm_lapic(struct vcpu *vcpu);
290 struct vioapic *vm_ioapic(struct vm *vm);
291 struct vhpet *vm_hpet(struct vm *vm);
292 int vm_get_capability(struct vcpu *vcpu, int type, int *val);
293 int vm_set_capability(struct vcpu *vcpu, int type, int val);
294 int vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state);
295 int vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state);
296 int vm_apicid2vcpuid(struct vm *vm, int apicid);
297 int vm_activate_cpu(struct vcpu *vcpu);
298 int vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu);
299 int vm_resume_cpu(struct vm *vm, struct vcpu *vcpu);
300 int vm_restart_instruction(struct vcpu *vcpu);
301 struct vm_exit *vm_exitinfo(struct vcpu *vcpu);
302 cpuset_t *vm_exitinfo_cpuset(struct vcpu *vcpu);
303 void vm_exit_suspended(struct vcpu *vcpu, uint64_t rip);
304 void vm_exit_debug(struct vcpu *vcpu, uint64_t rip);
305 void vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip);
306 void vm_exit_astpending(struct vcpu *vcpu, uint64_t rip);
307 void vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip);
308 int vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta);
309 int vm_restore_time(struct vm *vm);
310 
311 #ifdef _SYS__CPUSET_H_
312 /*
313  * Rendezvous all vcpus specified in 'dest' and execute 'func(arg)'.
314  * The rendezvous 'func(arg)' is not allowed to do anything that will
315  * cause the thread to be put to sleep.
316  *
317  * The caller cannot hold any locks when initiating the rendezvous.
318  *
319  * The implementation of this API may cause vcpus other than those specified
320  * by 'dest' to be stalled. The caller should not rely on any vcpus making
321  * forward progress when the rendezvous is in progress.
322  */
323 typedef void (*vm_rendezvous_func_t)(struct vcpu *vcpu, void *arg);
324 int vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
325     vm_rendezvous_func_t func, void *arg);
326 
327 cpuset_t vm_active_cpus(struct vm *vm);
328 cpuset_t vm_debug_cpus(struct vm *vm);
329 cpuset_t vm_suspended_cpus(struct vm *vm);
330 cpuset_t vm_start_cpus(struct vm *vm, const cpuset_t *tostart);
331 void vm_await_start(struct vm *vm, const cpuset_t *waiting);
332 #endif	/* _SYS__CPUSET_H_ */
333 
334 static __inline int
vcpu_rendezvous_pending(struct vcpu * vcpu,struct vm_eventinfo * info)335 vcpu_rendezvous_pending(struct vcpu *vcpu, struct vm_eventinfo *info)
336 {
337 	/*
338 	 * This check isn't done with atomic operations or under a lock because
339 	 * there's no need to. If the vcpuid bit is set, the vcpu is part of a
340 	 * rendezvous and the bit won't be cleared until the vcpu enters the
341 	 * rendezvous. On rendezvous exit, the cpuset is cleared and the vcpu
342 	 * will see an empty cpuset. So, the races are harmless.
343 	 */
344 	return (CPU_ISSET(vcpu_vcpuid(vcpu), info->rptr));
345 }
346 
347 static __inline int
vcpu_suspended(struct vm_eventinfo * info)348 vcpu_suspended(struct vm_eventinfo *info)
349 {
350 
351 	return (*info->sptr);
352 }
353 
354 static __inline int
vcpu_reqidle(struct vm_eventinfo * info)355 vcpu_reqidle(struct vm_eventinfo *info)
356 {
357 
358 	return (*info->iptr);
359 }
360 
361 int vcpu_debugged(struct vcpu *vcpu);
362 
363 /*
364  * Return true if device indicated by bus/slot/func is supposed to be a
365  * pci passthrough device.
366  *
367  * Return false otherwise.
368  */
369 bool vmm_is_pptdev(int bus, int slot, int func);
370 
371 void *vm_iommu_domain(struct vm *vm);
372 
373 enum vcpu_state {
374 	VCPU_IDLE,
375 	VCPU_FROZEN,
376 	VCPU_RUNNING,
377 	VCPU_SLEEPING,
378 };
379 
380 int vcpu_set_state(struct vcpu *vcpu, enum vcpu_state state, bool from_idle);
381 enum vcpu_state vcpu_get_state(struct vcpu *vcpu, int *hostcpu);
382 
383 static int __inline
vcpu_is_running(struct vcpu * vcpu,int * hostcpu)384 vcpu_is_running(struct vcpu *vcpu, int *hostcpu)
385 {
386 	return (vcpu_get_state(vcpu, hostcpu) == VCPU_RUNNING);
387 }
388 
389 #ifdef _SYS_PROC_H_
390 static int __inline
vcpu_should_yield(struct vcpu * vcpu)391 vcpu_should_yield(struct vcpu *vcpu)
392 {
393 	struct thread *td;
394 
395 	td = curthread;
396 	return (td->td_ast != 0 || td->td_owepreempt != 0);
397 }
398 #endif
399 
400 void *vcpu_stats(struct vcpu *vcpu);
401 void vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr);
402 struct vmspace *vm_get_vmspace(struct vm *vm);
403 struct vatpic *vm_atpic(struct vm *vm);
404 struct vatpit *vm_atpit(struct vm *vm);
405 struct vpmtmr *vm_pmtmr(struct vm *vm);
406 struct vrtc *vm_rtc(struct vm *vm);
407 
408 /*
409  * Inject exception 'vector' into the guest vcpu. This function returns 0 on
410  * success and non-zero on failure.
411  *
412  * Wrapper functions like 'vm_inject_gp()' should be preferred to calling
413  * this function directly because they enforce the trap-like or fault-like
414  * behavior of an exception.
415  *
416  * This function should only be called in the context of the thread that is
417  * executing this vcpu.
418  */
419 int vm_inject_exception(struct vcpu *vcpu, int vector, int err_valid,
420     uint32_t errcode, int restart_instruction);
421 
422 /*
423  * This function is called after a VM-exit that occurred during exception or
424  * interrupt delivery through the IDT. The format of 'intinfo' is described
425  * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2.
426  *
427  * If a VM-exit handler completes the event delivery successfully then it
428  * should call vm_exit_intinfo() to extinguish the pending event. For e.g.,
429  * if the task switch emulation is triggered via a task gate then it should
430  * call this function with 'intinfo=0' to indicate that the external event
431  * is not pending anymore.
432  *
433  * Return value is 0 on success and non-zero on failure.
434  */
435 int vm_exit_intinfo(struct vcpu *vcpu, uint64_t intinfo);
436 
437 /*
438  * This function is called before every VM-entry to retrieve a pending
439  * event that should be injected into the guest. This function combines
440  * nested events into a double or triple fault.
441  *
442  * Returns 0 if there are no events that need to be injected into the guest
443  * and non-zero otherwise.
444  */
445 int vm_entry_intinfo(struct vcpu *vcpu, uint64_t *info);
446 
447 int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2);
448 
449 /*
450  * Function used to keep track of the guest's TSC offset. The
451  * offset is used by the virtualization extensions to provide a consistent
452  * value for the Time Stamp Counter to the guest.
453  */
454 void vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset);
455 
456 enum vm_reg_name vm_segment_name(int seg_encoding);
457 
458 struct vm_copyinfo {
459 	uint64_t	gpa;
460 	size_t		len;
461 	void		*hva;
462 	void		*cookie;
463 };
464 
465 /*
466  * Set up 'copyinfo[]' to copy to/from guest linear address space starting
467  * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for
468  * a copyin or PROT_WRITE for a copyout.
469  *
470  * retval	is_fault	Interpretation
471  *   0		   0		Success
472  *   0		   1		An exception was injected into the guest
473  * EFAULT	  N/A		Unrecoverable error
474  *
475  * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if
476  * the return value is 0. The 'copyinfo[]' resources should be freed by calling
477  * 'vm_copy_teardown()' after the copy is done.
478  */
479 int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
480     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
481     int num_copyinfo, int *is_fault);
482 void vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo);
483 void vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len);
484 void vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len);
485 
486 int vcpu_trace_exceptions(struct vcpu *vcpu);
487 int vcpu_trap_wbinvd(struct vcpu *vcpu);
488 #endif	/* KERNEL */
489 
490 /*
491  * Identifiers for optional vmm capabilities
492  */
493 enum vm_cap_type {
494 	VM_CAP_HALT_EXIT,
495 	VM_CAP_MTRAP_EXIT,
496 	VM_CAP_PAUSE_EXIT,
497 	VM_CAP_UNRESTRICTED_GUEST,
498 	VM_CAP_ENABLE_INVPCID,
499 	VM_CAP_BPT_EXIT,
500 	VM_CAP_RDPID,
501 	VM_CAP_RDTSCP,
502 	VM_CAP_IPI_EXIT,
503 	VM_CAP_MASK_HWINTR,
504 	VM_CAP_RFLAGS_TF,
505 	VM_CAP_MAX
506 };
507 
508 enum vm_intr_trigger {
509 	EDGE_TRIGGER,
510 	LEVEL_TRIGGER
511 };
512 
513 /*
514  * The 'access' field has the format specified in Table 21-2 of the Intel
515  * Architecture Manual vol 3b.
516  *
517  * XXX The contents of the 'access' field are architecturally defined except
518  * bit 16 - Segment Unusable.
519  */
520 struct seg_desc {
521 	uint64_t	base;
522 	uint32_t	limit;
523 	uint32_t	access;
524 };
525 #define	SEG_DESC_TYPE(access)		((access) & 0x001f)
526 #define	SEG_DESC_DPL(access)		(((access) >> 5) & 0x3)
527 #define	SEG_DESC_PRESENT(access)	(((access) & 0x0080) ? 1 : 0)
528 #define	SEG_DESC_DEF32(access)		(((access) & 0x4000) ? 1 : 0)
529 #define	SEG_DESC_GRANULARITY(access)	(((access) & 0x8000) ? 1 : 0)
530 #define	SEG_DESC_UNUSABLE(access)	(((access) & 0x10000) ? 1 : 0)
531 
532 enum vm_cpu_mode {
533 	CPU_MODE_REAL,
534 	CPU_MODE_PROTECTED,
535 	CPU_MODE_COMPATIBILITY,		/* IA-32E mode (CS.L = 0) */
536 	CPU_MODE_64BIT,			/* IA-32E mode (CS.L = 1) */
537 };
538 
539 enum vm_paging_mode {
540 	PAGING_MODE_FLAT,
541 	PAGING_MODE_32,
542 	PAGING_MODE_PAE,
543 	PAGING_MODE_64,
544 	PAGING_MODE_64_LA57,
545 };
546 
547 struct vm_guest_paging {
548 	uint64_t	cr3;
549 	int		cpl;
550 	enum vm_cpu_mode cpu_mode;
551 	enum vm_paging_mode paging_mode;
552 };
553 
554 /*
555  * The data structures 'vie' and 'vie_op' are meant to be opaque to the
556  * consumers of instruction decoding. The only reason why their contents
557  * need to be exposed is because they are part of the 'vm_exit' structure.
558  */
559 struct vie_op {
560 	uint8_t		op_byte;	/* actual opcode byte */
561 	uint8_t		op_type;	/* type of operation (e.g. MOV) */
562 	uint16_t	op_flags;
563 };
564 _Static_assert(sizeof(struct vie_op) == 4, "ABI");
565 _Static_assert(_Alignof(struct vie_op) == 2, "ABI");
566 
567 #define	VIE_INST_SIZE	15
568 struct vie {
569 	uint8_t		inst[VIE_INST_SIZE];	/* instruction bytes */
570 	uint8_t		num_valid;		/* size of the instruction */
571 
572 /* The following fields are all zeroed upon restart. */
573 #define	vie_startzero	num_processed
574 	uint8_t		num_processed;
575 
576 	uint8_t		addrsize:4, opsize:4;	/* address and operand sizes */
577 	uint8_t		rex_w:1,		/* REX prefix */
578 			rex_r:1,
579 			rex_x:1,
580 			rex_b:1,
581 			rex_present:1,
582 			repz_present:1,		/* REP/REPE/REPZ prefix */
583 			repnz_present:1,	/* REPNE/REPNZ prefix */
584 			opsize_override:1,	/* Operand size override */
585 			addrsize_override:1,	/* Address size override */
586 			segment_override:1;	/* Segment override */
587 
588 	uint8_t		mod:2,			/* ModRM byte */
589 			reg:4,
590 			rm:4;
591 
592 	uint8_t		ss:2,			/* SIB byte */
593 			vex_present:1,		/* VEX prefixed */
594 			vex_l:1,		/* L bit */
595 			index:4,		/* SIB byte */
596 			base:4;			/* SIB byte */
597 
598 	uint8_t		disp_bytes;
599 	uint8_t		imm_bytes;
600 
601 	uint8_t		scale;
602 
603 	uint8_t		vex_reg:4,		/* vvvv: first source register specifier */
604 			vex_pp:2,		/* pp */
605 			_sparebits:2;
606 
607 	uint8_t		_sparebytes[2];
608 
609 	int		base_register;		/* VM_REG_GUEST_xyz */
610 	int		index_register;		/* VM_REG_GUEST_xyz */
611 	int		segment_register;	/* VM_REG_GUEST_xyz */
612 
613 	int64_t		displacement;		/* optional addr displacement */
614 	int64_t		immediate;		/* optional immediate operand */
615 
616 	uint8_t		decoded;	/* set to 1 if successfully decoded */
617 
618 	uint8_t		_sparebyte;
619 
620 	struct vie_op	op;			/* opcode description */
621 };
622 _Static_assert(sizeof(struct vie) == 64, "ABI");
623 _Static_assert(__offsetof(struct vie, disp_bytes) == 22, "ABI");
624 _Static_assert(__offsetof(struct vie, scale) == 24, "ABI");
625 _Static_assert(__offsetof(struct vie, base_register) == 28, "ABI");
626 
627 enum vm_exitcode {
628 	VM_EXITCODE_INOUT,
629 	VM_EXITCODE_VMX,
630 	VM_EXITCODE_BOGUS,
631 	VM_EXITCODE_RDMSR,
632 	VM_EXITCODE_WRMSR,
633 	VM_EXITCODE_HLT,
634 	VM_EXITCODE_MTRAP,
635 	VM_EXITCODE_PAUSE,
636 	VM_EXITCODE_PAGING,
637 	VM_EXITCODE_INST_EMUL,
638 	VM_EXITCODE_SPINUP_AP,
639 	VM_EXITCODE_DEPRECATED1,	/* used to be SPINDOWN_CPU */
640 	VM_EXITCODE_RENDEZVOUS,
641 	VM_EXITCODE_IOAPIC_EOI,
642 	VM_EXITCODE_SUSPENDED,
643 	VM_EXITCODE_INOUT_STR,
644 	VM_EXITCODE_TASK_SWITCH,
645 	VM_EXITCODE_MONITOR,
646 	VM_EXITCODE_MWAIT,
647 	VM_EXITCODE_SVM,
648 	VM_EXITCODE_REQIDLE,
649 	VM_EXITCODE_DEBUG,
650 	VM_EXITCODE_VMINSN,
651 	VM_EXITCODE_BPT,
652 	VM_EXITCODE_IPI,
653 	VM_EXITCODE_DB,
654 	VM_EXITCODE_MAX
655 };
656 
657 struct vm_inout {
658 	uint16_t	bytes:3;	/* 1 or 2 or 4 */
659 	uint16_t	in:1;
660 	uint16_t	string:1;
661 	uint16_t	rep:1;
662 	uint16_t	port;
663 	uint32_t	eax;		/* valid for out */
664 };
665 
666 struct vm_inout_str {
667 	struct vm_inout	inout;		/* must be the first element */
668 	struct vm_guest_paging paging;
669 	uint64_t	rflags;
670 	uint64_t	cr0;
671 	uint64_t	index;
672 	uint64_t	count;		/* rep=1 (%rcx), rep=0 (1) */
673 	int		addrsize;
674 	enum vm_reg_name seg_name;
675 	struct seg_desc seg_desc;
676 };
677 
678 enum task_switch_reason {
679 	TSR_CALL,
680 	TSR_IRET,
681 	TSR_JMP,
682 	TSR_IDT_GATE,	/* task gate in IDT */
683 };
684 
685 struct vm_task_switch {
686 	uint16_t	tsssel;		/* new TSS selector */
687 	int		ext;		/* task switch due to external event */
688 	uint32_t	errcode;
689 	int		errcode_valid;	/* push 'errcode' on the new stack */
690 	enum task_switch_reason reason;
691 	struct vm_guest_paging paging;
692 };
693 
694 struct vm_exit {
695 	enum vm_exitcode	exitcode;
696 	int			inst_length;	/* 0 means unknown */
697 	uint64_t		rip;
698 	union {
699 		struct vm_inout	inout;
700 		struct vm_inout_str inout_str;
701 		struct {
702 			uint64_t	gpa;
703 			int		fault_type;
704 		} paging;
705 		struct {
706 			uint64_t	gpa;
707 			uint64_t	gla;
708 			uint64_t	cs_base;
709 			int		cs_d;		/* CS.D */
710 			struct vm_guest_paging paging;
711 			struct vie	vie;
712 		} inst_emul;
713 		/*
714 		 * VMX specific payload. Used when there is no "better"
715 		 * exitcode to represent the VM-exit.
716 		 */
717 		struct {
718 			int		status;		/* vmx inst status */
719 			/*
720 			 * 'exit_reason' and 'exit_qualification' are valid
721 			 * only if 'status' is zero.
722 			 */
723 			uint32_t	exit_reason;
724 			uint64_t	exit_qualification;
725 			/*
726 			 * 'inst_error' and 'inst_type' are valid
727 			 * only if 'status' is non-zero.
728 			 */
729 			int		inst_type;
730 			int		inst_error;
731 		} vmx;
732 		/*
733 		 * SVM specific payload.
734 		 */
735 		struct {
736 			uint64_t	exitcode;
737 			uint64_t	exitinfo1;
738 			uint64_t	exitinfo2;
739 		} svm;
740 		struct {
741 			int		inst_length;
742 		} bpt;
743 		struct {
744 			int		trace_trap;
745 			int		pushf_intercept;
746 			int		tf_shadow_val;
747 			struct		vm_guest_paging paging;
748 		} dbg;
749 		struct {
750 			uint32_t	code;		/* ecx value */
751 			uint64_t	wval;
752 		} msr;
753 		struct {
754 			int		vcpu;
755 			uint64_t	rip;
756 		} spinup_ap;
757 		struct {
758 			uint64_t	rflags;
759 			uint64_t	intr_status;
760 		} hlt;
761 		struct {
762 			int		vector;
763 		} ioapic_eoi;
764 		struct {
765 			enum vm_suspend_how how;
766 		} suspended;
767 		struct {
768 			/*
769 			 * The destination vCPU mask is saved in vcpu->cpuset
770 			 * and is copied out to userspace separately to avoid
771 			 * ABI concerns.
772 			 */
773 			uint32_t mode;
774 			uint8_t vector;
775 		} ipi;
776 		struct vm_task_switch task_switch;
777 	} u;
778 };
779 
780 /* APIs to inject faults into the guest */
781 void vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid,
782     int errcode);
783 
784 static __inline void
vm_inject_ud(struct vcpu * vcpu)785 vm_inject_ud(struct vcpu *vcpu)
786 {
787 	vm_inject_fault(vcpu, IDT_UD, 0, 0);
788 }
789 
790 static __inline void
vm_inject_gp(struct vcpu * vcpu)791 vm_inject_gp(struct vcpu *vcpu)
792 {
793 	vm_inject_fault(vcpu, IDT_GP, 1, 0);
794 }
795 
796 static __inline void
vm_inject_ac(struct vcpu * vcpu,int errcode)797 vm_inject_ac(struct vcpu *vcpu, int errcode)
798 {
799 	vm_inject_fault(vcpu, IDT_AC, 1, errcode);
800 }
801 
802 static __inline void
vm_inject_ss(struct vcpu * vcpu,int errcode)803 vm_inject_ss(struct vcpu *vcpu, int errcode)
804 {
805 	vm_inject_fault(vcpu, IDT_SS, 1, errcode);
806 }
807 
808 void vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2);
809 
810 #endif	/* _VMM_H_ */
811