xref: /freebsd/sys/kern/vfs_cache.c (revision 0cd9cde7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/capsicum.h>
42 #include <sys/counter.h>
43 #include <sys/filedesc.h>
44 #include <sys/fnv_hash.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/jail.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/seqc.h>
55 #include <sys/sdt.h>
56 #include <sys/smr.h>
57 #include <sys/smp.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vnode.h>
62 #include <ck_queue.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #ifdef INVARIANTS
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #include <security/audit/audit.h>
71 #include <security/mac/mac_framework.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 
79 /*
80  * High level overview of name caching in the VFS layer.
81  *
82  * Originally caching was implemented as part of UFS, later extracted to allow
83  * use by other filesystems. A decision was made to make it optional and
84  * completely detached from the rest of the kernel, which comes with limitations
85  * outlined near the end of this comment block.
86  *
87  * This fundamental choice needs to be revisited. In the meantime, the current
88  * state is described below. Significance of all notable routines is explained
89  * in comments placed above their implementation. Scattered thoroughout the
90  * file are TODO comments indicating shortcomings which can be fixed without
91  * reworking everything (most of the fixes will likely be reusable). Various
92  * details are omitted from this explanation to not clutter the overview, they
93  * have to be checked by reading the code and associated commentary.
94  *
95  * Keep in mind that it's individual path components which are cached, not full
96  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
97  * one for each name.
98  *
99  * I. Data organization
100  *
101  * Entries are described by "struct namecache" objects and stored in a hash
102  * table. See cache_get_hash for more information.
103  *
104  * "struct vnode" contains pointers to source entries (names which can be found
105  * when traversing through said vnode), destination entries (names of that
106  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
107  * the parent vnode.
108  *
109  * The (directory vnode; name) tuple reliably determines the target entry if
110  * it exists.
111  *
112  * Since there are no small locks at this time (all are 32 bytes in size on
113  * LP64), the code works around the problem by introducing lock arrays to
114  * protect hash buckets and vnode lists.
115  *
116  * II. Filesystem integration
117  *
118  * Filesystems participating in name caching do the following:
119  * - set vop_lookup routine to vfs_cache_lookup
120  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
121  * - if they support lockless lookup (see below), vop_fplookup_vexec and
122  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
123  *   mount point
124  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
125  *   applicable
126  * - call cache_enter to add entries depending on the MAKEENTRY flag
127  *
128  * With the above in mind, there are 2 entry points when doing lookups:
129  * - ... -> namei -> cache_fplookup -- this is the default
130  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
131  *   should the above fail
132  *
133  * Example code flow how an entry is added:
134  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
135  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
136  *
137  * III. Performance considerations
138  *
139  * For lockless case forward lookup avoids any writes to shared areas apart
140  * from the terminal path component. In other words non-modifying lookups of
141  * different files don't suffer any scalability problems in the namecache.
142  * Looking up the same file is limited by VFS and goes beyond the scope of this
143  * file.
144  *
145  * At least on amd64 the single-threaded bottleneck for long paths is hashing
146  * (see cache_get_hash). There are cases where the code issues acquire fence
147  * multiple times, they can be combined on architectures which suffer from it.
148  *
149  * For locked case each encountered vnode has to be referenced and locked in
150  * order to be handed out to the caller (normally that's namei). This
151  * introduces significant hit single-threaded and serialization multi-threaded.
152  *
153  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
154  * avoids any writes to shared areas to any components.
155  *
156  * Unrelated insertions are partially serialized on updating the global entry
157  * counter and possibly serialized on colliding bucket or vnode locks.
158  *
159  * IV. Observability
160  *
161  * Note not everything has an explicit dtrace probe nor it should have, thus
162  * some of the one-liners below depend on implementation details.
163  *
164  * Examples:
165  *
166  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
167  * # line number, column 2 is status code (see cache_fpl_status)
168  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
169  *
170  * # Lengths of names added by binary name
171  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
172  *
173  * # Same as above but only those which exceed 64 characters
174  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
175  *
176  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
177  * # path is it
178  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
179  *
180  * V. Limitations and implementation defects
181  *
182  * - since it is possible there is no entry for an open file, tools like
183  *   "procstat" may fail to resolve fd -> vnode -> path to anything
184  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
185  *   shortage) in which case the above problem applies
186  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
187  *   way, resolving a name may return a different path than the one used to
188  *   open it (even if said path is still valid)
189  * - by default entries are not added for newly created files
190  * - adding an entry may need to evict negative entry first, which happens in 2
191  *   distinct places (evicting on lookup, adding in a later VOP) making it
192  *   impossible to simply reuse it
193  * - there is a simple scheme to evict negative entries as the cache is approaching
194  *   its capacity, but it is very unclear if doing so is a good idea to begin with
195  * - vnodes are subject to being recycled even if target inode is left in memory,
196  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
197  *   names get duplicated -- kept by filesystem itself and namecache separately
198  * - struct namecache has a fixed size and comes in 2 variants, often wasting
199  *   space.  now hard to replace with malloc due to dependence on SMR, which
200  *   requires UMA zones to opt in
201  * - lack of better integration with the kernel also turns nullfs into a layered
202  *   filesystem instead of something which can take advantage of caching
203  *
204  * Appendix A: where is the time lost, expanding on paragraph III
205  *
206  * While some care went into optimizing lookups, there is still plenty of
207  * performance left on the table, most notably from single-threaded standpoint.
208  * Below is a woefully incomplete list of changes which can help.  Ideas are
209  * mostly sketched out, no claim is made all kinks or prerequisites are laid
210  * out.
211  *
212  * Note there is performance lost all over VFS.
213  *
214  * === SMR-only lookup
215  *
216  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
217  * lockless lookup could refrain from refing/locking the found vnode and
218  * instead return while within the SMR section. Then a call to, say,
219  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
220  * would be validated with seqc not changing. This would be faster
221  * single-threaded as it dodges atomics and would provide full scalability for
222  * multicore uses. This would *not* work for open(2) or other calls which need
223  * the vnode to hang around for the long haul, but would work for aforementioned
224  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
225  *
226  * === hotpatching for sdt probes
227  *
228  * They result in *tons* of branches all over with rather regrettable codegen
229  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
230  * Reworking the code to patch itself at runtime with asm goto would solve it.
231  * asm goto is fully supported by gcc and clang.
232  *
233  * === copyinstr
234  *
235  * On all architectures it operates one byte at a time, while it could be
236  * word-sized instead thanks to the Mycroft trick.
237  *
238  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
239  * *optionally* filling in the length parameter.
240  *
241  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
242  * size which is a multiply of the word (and never zero), with the length
243  * always returned. On top of it the routine could be allowed to transform the
244  * buffer in arbitrary ways, most notably writing past the found length (not to
245  * be confused with writing past buffer size) -- this would allow word-sized
246  * movs while checking for '\0' later.
247  *
248  * === detour through namei
249  *
250  * Currently one suffers being called from namei, which then has to check if
251  * things worked out locklessly. Instead the lockless lookup could be the
252  * actual entry point which calls what is currently namei as a fallback.
253  *
254  * === avoidable branches in cache_can_fplookup
255  *
256  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
257  * this is off, none of fplookup code should execute).
258  *
259  * Both audit and capsicum branches can be combined into one, but it requires
260  * paying off a lot of tech debt first.
261  *
262  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
263  * branch.
264  *
265  * === mount stacks
266  *
267  * Crossing a mount requires checking if perhaps something is mounted on top.
268  * Instead, an additional entry could be added to struct mount with a pointer
269  * to the final mount on the stack. This would be recalculated on each
270  * mount/unmount.
271  *
272  * === root vnodes
273  *
274  * It could become part of the API contract to *always* have a rootvnode set in
275  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
276  * to be modified to always skip them.
277  *
278  * === inactive on v_usecount reaching 0
279  *
280  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
281  * processing with a bit in usecount.
282  *
283  * === v_holdcnt
284  *
285  * Hold count should probably get eliminated, but one can argue it is a useful
286  * feature. Even if so, handling of v_usecount could be decoupled from it --
287  * vnlru et al would consider the vnode not-freeable if has either hold or
288  * usecount on it.
289  *
290  * This would eliminate 2 atomics.
291  */
292 
293 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
294     "Name cache");
295 
296 SDT_PROVIDER_DECLARE(vfs);
297 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
298     "struct vnode *");
299 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
300     "struct vnode *");
301 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
302     "char *");
303 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
304     "const char *");
305 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
306     "struct namecache *", "int", "int");
307 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
308 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
309     "char *", "struct vnode *");
310 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
311 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
312     "struct vnode *", "char *");
313 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
314     "struct vnode *");
315 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
316     "struct vnode *", "char *");
317 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
318     "char *");
319 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
320     "struct componentname *");
321 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
322     "struct componentname *");
323 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
325 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
326 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
327 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
328     "struct vnode *");
329 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
330     "char *");
331 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
332     "char *");
333 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
334 
335 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
336 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
337 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
338 
339 static char __read_frequently cache_fast_lookup_enabled = true;
340 
341 /*
342  * This structure describes the elements in the cache of recent
343  * names looked up by namei.
344  */
345 struct negstate {
346 	u_char neg_flag;
347 	u_char neg_hit;
348 };
349 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
350     "the state must fit in a union with a pointer without growing it");
351 
352 struct	namecache {
353 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
354 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
355 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
356 	struct	vnode *nc_dvp;		/* vnode of parent of name */
357 	union {
358 		struct	vnode *nu_vp;	/* vnode the name refers to */
359 		struct	negstate nu_neg;/* negative entry state */
360 	} n_un;
361 	u_char	nc_flag;		/* flag bits */
362 	u_char	nc_nlen;		/* length of name */
363 	char	nc_name[];		/* segment name + nul */
364 };
365 
366 /*
367  * struct namecache_ts repeats struct namecache layout up to the
368  * nc_nlen member.
369  * struct namecache_ts is used in place of struct namecache when time(s) need
370  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
371  * both a non-dotdot directory name plus dotdot for the directory's
372  * parent.
373  *
374  * See below for alignment requirement.
375  */
376 struct	namecache_ts {
377 	struct	timespec nc_time;	/* timespec provided by fs */
378 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
379 	int	nc_ticks;		/* ticks value when entry was added */
380 	int	nc_pad;
381 	struct namecache nc_nc;
382 };
383 
384 TAILQ_HEAD(cache_freebatch, namecache);
385 
386 /*
387  * At least mips n32 performs 64-bit accesses to timespec as found
388  * in namecache_ts and requires them to be aligned. Since others
389  * may be in the same spot suffer a little bit and enforce the
390  * alignment for everyone. Note this is a nop for 64-bit platforms.
391  */
392 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
393 
394 /*
395  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
396  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
397  * smaller and the value was bumped to retain the total size, but it
398  * was never re-evaluated for suitability. A simple test counting
399  * lengths during package building shows that the value of 45 covers
400  * about 86% of all added entries, reaching 99% at 65.
401  *
402  * Regardless of the above, use of dedicated zones instead of malloc may be
403  * inducing additional waste. This may be hard to address as said zones are
404  * tied to VFS SMR. Even if retaining them, the current split should be
405  * re-evaluated.
406  */
407 #ifdef __LP64__
408 #define	CACHE_PATH_CUTOFF	45
409 #define	CACHE_LARGE_PAD		6
410 #else
411 #define	CACHE_PATH_CUTOFF	41
412 #define	CACHE_LARGE_PAD		2
413 #endif
414 
415 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
416 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
417 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
418 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
419 
420 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
421 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
424 
425 #define	nc_vp		n_un.nu_vp
426 #define	nc_neg		n_un.nu_neg
427 
428 /*
429  * Flags in namecache.nc_flag
430  */
431 #define NCF_WHITE	0x01
432 #define NCF_ISDOTDOT	0x02
433 #define	NCF_TS		0x04
434 #define	NCF_DTS		0x08
435 #define	NCF_DVDROP	0x10
436 #define	NCF_NEGATIVE	0x20
437 #define	NCF_INVALID	0x40
438 #define	NCF_WIP		0x80
439 
440 /*
441  * Flags in negstate.neg_flag
442  */
443 #define NEG_HOT		0x01
444 
445 static bool	cache_neg_evict_cond(u_long lnumcache);
446 
447 /*
448  * Mark an entry as invalid.
449  *
450  * This is called before it starts getting deconstructed.
451  */
452 static void
cache_ncp_invalidate(struct namecache * ncp)453 cache_ncp_invalidate(struct namecache *ncp)
454 {
455 
456 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
457 	    ("%s: entry %p already invalid", __func__, ncp));
458 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
459 	atomic_thread_fence_rel();
460 }
461 
462 /*
463  * Check whether the entry can be safely used.
464  *
465  * All places which elide locks are supposed to call this after they are
466  * done with reading from an entry.
467  */
468 #define cache_ncp_canuse(ncp)	({					\
469 	struct namecache *_ncp = (ncp);					\
470 	u_char _nc_flag;						\
471 									\
472 	atomic_thread_fence_acq();					\
473 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
474 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
475 })
476 
477 /*
478  * Like the above but also checks NCF_WHITE.
479  */
480 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
481 	struct namecache *_ncp = (ncp);					\
482 	u_char _nc_flag;						\
483 									\
484 	atomic_thread_fence_acq();					\
485 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
486 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
487 })
488 
489 VFS_SMR_DECLARE;
490 
491 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
492     "Name cache parameters");
493 
494 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
495 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
496     "Total namecache capacity");
497 
498 u_int ncsizefactor = 2;
499 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
500     "Size factor for namecache");
501 
502 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
503 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
504     "Ratio of negative namecache entries");
505 
506 /*
507  * Negative entry % of namecache capacity above which automatic eviction is allowed.
508  *
509  * Check cache_neg_evict_cond for details.
510  */
511 static u_int ncnegminpct = 3;
512 
513 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
514 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
515     "Negative entry count above which automatic eviction is allowed");
516 
517 /*
518  * Structures associated with name caching.
519  */
520 #define NCHHASH(hash) \
521 	(&nchashtbl[(hash) & nchash])
522 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
523 static u_long __read_mostly	nchash;			/* size of hash table */
524 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
525     "Size of namecache hash table");
526 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
527 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
528 
529 struct nchstats	nchstats;		/* cache effectiveness statistics */
530 
531 static u_int __exclusive_cache_line neg_cycle;
532 
533 #define ncneghash	3
534 #define	numneglists	(ncneghash + 1)
535 
536 struct neglist {
537 	struct mtx		nl_evict_lock;
538 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
539 	TAILQ_HEAD(, namecache) nl_list;
540 	TAILQ_HEAD(, namecache) nl_hotlist;
541 	u_long			nl_hotnum;
542 } __aligned(CACHE_LINE_SIZE);
543 
544 static struct neglist neglists[numneglists];
545 
546 static inline struct neglist *
NCP2NEGLIST(struct namecache * ncp)547 NCP2NEGLIST(struct namecache *ncp)
548 {
549 
550 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
551 }
552 
553 static inline struct negstate *
NCP2NEGSTATE(struct namecache * ncp)554 NCP2NEGSTATE(struct namecache *ncp)
555 {
556 
557 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
558 	return (&ncp->nc_neg);
559 }
560 
561 #define	numbucketlocks (ncbuckethash + 1)
562 static u_int __read_mostly  ncbuckethash;
563 static struct mtx_padalign __read_mostly  *bucketlocks;
564 #define	HASH2BUCKETLOCK(hash) \
565 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
566 
567 #define	numvnodelocks (ncvnodehash + 1)
568 static u_int __read_mostly  ncvnodehash;
569 static struct mtx __read_mostly *vnodelocks;
570 static inline struct mtx *
VP2VNODELOCK(struct vnode * vp)571 VP2VNODELOCK(struct vnode *vp)
572 {
573 
574 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
575 }
576 
577 static void
cache_out_ts(struct namecache * ncp,struct timespec * tsp,int * ticksp)578 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
579 {
580 	struct namecache_ts *ncp_ts;
581 
582 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
583 	    (tsp == NULL && ticksp == NULL),
584 	    ("No NCF_TS"));
585 
586 	if (tsp == NULL)
587 		return;
588 
589 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
590 	*tsp = ncp_ts->nc_time;
591 	*ticksp = ncp_ts->nc_ticks;
592 }
593 
594 #ifdef DEBUG_CACHE
595 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
596 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
597     "VFS namecache enabled");
598 #endif
599 
600 /* Export size information to userland */
601 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
602     sizeof(struct namecache), "sizeof(struct namecache)");
603 
604 /*
605  * The new name cache statistics
606  */
607 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
608     "Name cache statistics");
609 
610 #define STATNODE_ULONG(name, varname, descr)					\
611 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
612 #define STATNODE_COUNTER(name, varname, descr)					\
613 	static COUNTER_U64_DEFINE_EARLY(varname);				\
614 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
615 	    descr);
616 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
617 STATNODE_ULONG(count, numcache, "Number of cache entries");
618 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
619 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
620 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
621 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
622 STATNODE_COUNTER(poszaps, numposzaps,
623     "Number of cache hits (positive) we do not want to cache");
624 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
625 STATNODE_COUNTER(negzaps, numnegzaps,
626     "Number of cache hits (negative) we do not want to cache");
627 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
628 /* These count for vn_getcwd(), too. */
629 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
630 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
631     "Number of fullpath search errors (VOP_VPTOCNP failures)");
632 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
633 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
634 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
635 
636 /*
637  * Debug or developer statistics.
638  */
639 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
640     "Name cache debugging");
641 #define DEBUGNODE_ULONG(name, varname, descr)					\
642 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
643 static u_long zap_bucket_relock_success;
644 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
645     "Number of successful removals after relocking");
646 static u_long zap_bucket_fail;
647 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
648 static u_long zap_bucket_fail2;
649 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
650 static u_long cache_lock_vnodes_cel_3_failures;
651 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
652     "Number of times 3-way vnode locking failed");
653 
654 static void cache_zap_locked(struct namecache *ncp);
655 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
656     char **retbuf, size_t *buflen, size_t addend);
657 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
658     char **retbuf, size_t *buflen);
659 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
660     char **retbuf, size_t *len, size_t addend);
661 
662 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
663 
664 static inline void
cache_assert_vlp_locked(struct mtx * vlp)665 cache_assert_vlp_locked(struct mtx *vlp)
666 {
667 
668 	if (vlp != NULL)
669 		mtx_assert(vlp, MA_OWNED);
670 }
671 
672 static inline void
cache_assert_vnode_locked(struct vnode * vp)673 cache_assert_vnode_locked(struct vnode *vp)
674 {
675 	struct mtx *vlp;
676 
677 	vlp = VP2VNODELOCK(vp);
678 	cache_assert_vlp_locked(vlp);
679 }
680 
681 /*
682  * Directory vnodes with entries are held for two reasons:
683  * 1. make them less of a target for reclamation in vnlru
684  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
685  *
686  * It will be feasible to stop doing it altogether if all filesystems start
687  * supporting lockless lookup.
688  */
689 static void
cache_hold_vnode(struct vnode * vp)690 cache_hold_vnode(struct vnode *vp)
691 {
692 
693 	cache_assert_vnode_locked(vp);
694 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
695 	vhold(vp);
696 	counter_u64_add(numcachehv, 1);
697 }
698 
699 static void
cache_drop_vnode(struct vnode * vp)700 cache_drop_vnode(struct vnode *vp)
701 {
702 
703 	/*
704 	 * Called after all locks are dropped, meaning we can't assert
705 	 * on the state of v_cache_src.
706 	 */
707 	vdrop(vp);
708 	counter_u64_add(numcachehv, -1);
709 }
710 
711 /*
712  * UMA zones.
713  */
714 static uma_zone_t __read_mostly cache_zone_small;
715 static uma_zone_t __read_mostly cache_zone_small_ts;
716 static uma_zone_t __read_mostly cache_zone_large;
717 static uma_zone_t __read_mostly cache_zone_large_ts;
718 
719 char *
cache_symlink_alloc(size_t size,int flags)720 cache_symlink_alloc(size_t size, int flags)
721 {
722 
723 	if (size < CACHE_ZONE_SMALL_SIZE) {
724 		return (uma_zalloc_smr(cache_zone_small, flags));
725 	}
726 	if (size < CACHE_ZONE_LARGE_SIZE) {
727 		return (uma_zalloc_smr(cache_zone_large, flags));
728 	}
729 	counter_u64_add(symlinktoobig, 1);
730 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
731 	return (NULL);
732 }
733 
734 void
cache_symlink_free(char * string,size_t size)735 cache_symlink_free(char *string, size_t size)
736 {
737 
738 	MPASS(string != NULL);
739 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
740 	    ("%s: size %zu too big", __func__, size));
741 
742 	if (size < CACHE_ZONE_SMALL_SIZE) {
743 		uma_zfree_smr(cache_zone_small, string);
744 		return;
745 	}
746 	if (size < CACHE_ZONE_LARGE_SIZE) {
747 		uma_zfree_smr(cache_zone_large, string);
748 		return;
749 	}
750 	__assert_unreachable();
751 }
752 
753 static struct namecache *
cache_alloc_uma(int len,bool ts)754 cache_alloc_uma(int len, bool ts)
755 {
756 	struct namecache_ts *ncp_ts;
757 	struct namecache *ncp;
758 
759 	if (__predict_false(ts)) {
760 		if (len <= CACHE_PATH_CUTOFF)
761 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
762 		else
763 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
764 		ncp = &ncp_ts->nc_nc;
765 	} else {
766 		if (len <= CACHE_PATH_CUTOFF)
767 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
768 		else
769 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
770 	}
771 	return (ncp);
772 }
773 
774 static void
cache_free_uma(struct namecache * ncp)775 cache_free_uma(struct namecache *ncp)
776 {
777 	struct namecache_ts *ncp_ts;
778 
779 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
780 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
781 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
782 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
783 		else
784 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
785 	} else {
786 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
787 			uma_zfree_smr(cache_zone_small, ncp);
788 		else
789 			uma_zfree_smr(cache_zone_large, ncp);
790 	}
791 }
792 
793 static struct namecache *
cache_alloc(int len,bool ts)794 cache_alloc(int len, bool ts)
795 {
796 	u_long lnumcache;
797 
798 	/*
799 	 * Avoid blowout in namecache entries.
800 	 *
801 	 * Bugs:
802 	 * 1. filesystems may end up trying to add an already existing entry
803 	 * (for example this can happen after a cache miss during concurrent
804 	 * lookup), in which case we will call cache_neg_evict despite not
805 	 * adding anything.
806 	 * 2. the routine may fail to free anything and no provisions are made
807 	 * to make it try harder (see the inside for failure modes)
808 	 * 3. it only ever looks at negative entries.
809 	 */
810 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
811 	if (cache_neg_evict_cond(lnumcache)) {
812 		lnumcache = atomic_load_long(&numcache);
813 	}
814 	if (__predict_false(lnumcache >= ncsize)) {
815 		atomic_subtract_long(&numcache, 1);
816 		counter_u64_add(numdrops, 1);
817 		return (NULL);
818 	}
819 	return (cache_alloc_uma(len, ts));
820 }
821 
822 static void
cache_free(struct namecache * ncp)823 cache_free(struct namecache *ncp)
824 {
825 
826 	MPASS(ncp != NULL);
827 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
828 		cache_drop_vnode(ncp->nc_dvp);
829 	}
830 	cache_free_uma(ncp);
831 	atomic_subtract_long(&numcache, 1);
832 }
833 
834 static void
cache_free_batch(struct cache_freebatch * batch)835 cache_free_batch(struct cache_freebatch *batch)
836 {
837 	struct namecache *ncp, *nnp;
838 	int i;
839 
840 	i = 0;
841 	if (TAILQ_EMPTY(batch))
842 		goto out;
843 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
844 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
845 			cache_drop_vnode(ncp->nc_dvp);
846 		}
847 		cache_free_uma(ncp);
848 		i++;
849 	}
850 	atomic_subtract_long(&numcache, i);
851 out:
852 	SDT_PROBE1(vfs, namecache, purge, batch, i);
853 }
854 
855 /*
856  * Hashing.
857  *
858  * The code was made to use FNV in 2001 and this choice needs to be revisited.
859  *
860  * Short summary of the difficulty:
861  * The longest name which can be inserted is NAME_MAX characters in length (or
862  * 255 at the time of writing this comment), while majority of names used in
863  * practice are significantly shorter (mostly below 10). More importantly
864  * majority of lookups performed find names are even shorter than that.
865  *
866  * This poses a problem where hashes which do better than FNV past word size
867  * (or so) tend to come with additional overhead when finalizing the result,
868  * making them noticeably slower for the most commonly used range.
869  *
870  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
871  *
872  * When looking it up the most time consuming part by a large margin (at least
873  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
874  * input would make the slowest part stand out even more.
875  */
876 
877 /*
878  * TODO: With the value stored we can do better than computing the hash based
879  * on the address.
880  */
881 static void
cache_prehash(struct vnode * vp)882 cache_prehash(struct vnode *vp)
883 {
884 
885 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
886 }
887 
888 static uint32_t
cache_get_hash(char * name,u_char len,struct vnode * dvp)889 cache_get_hash(char *name, u_char len, struct vnode *dvp)
890 {
891 
892 	return (fnv_32_buf(name, len, dvp->v_nchash));
893 }
894 
895 static uint32_t
cache_get_hash_iter_start(struct vnode * dvp)896 cache_get_hash_iter_start(struct vnode *dvp)
897 {
898 
899 	return (dvp->v_nchash);
900 }
901 
902 static uint32_t
cache_get_hash_iter(char c,uint32_t hash)903 cache_get_hash_iter(char c, uint32_t hash)
904 {
905 
906 	return (fnv_32_buf(&c, 1, hash));
907 }
908 
909 static uint32_t
cache_get_hash_iter_finish(uint32_t hash)910 cache_get_hash_iter_finish(uint32_t hash)
911 {
912 
913 	return (hash);
914 }
915 
916 static inline struct nchashhead *
NCP2BUCKET(struct namecache * ncp)917 NCP2BUCKET(struct namecache *ncp)
918 {
919 	uint32_t hash;
920 
921 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
922 	return (NCHHASH(hash));
923 }
924 
925 static inline struct mtx *
NCP2BUCKETLOCK(struct namecache * ncp)926 NCP2BUCKETLOCK(struct namecache *ncp)
927 {
928 	uint32_t hash;
929 
930 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
931 	return (HASH2BUCKETLOCK(hash));
932 }
933 
934 #ifdef INVARIANTS
935 static void
cache_assert_bucket_locked(struct namecache * ncp)936 cache_assert_bucket_locked(struct namecache *ncp)
937 {
938 	struct mtx *blp;
939 
940 	blp = NCP2BUCKETLOCK(ncp);
941 	mtx_assert(blp, MA_OWNED);
942 }
943 
944 static void
cache_assert_bucket_unlocked(struct namecache * ncp)945 cache_assert_bucket_unlocked(struct namecache *ncp)
946 {
947 	struct mtx *blp;
948 
949 	blp = NCP2BUCKETLOCK(ncp);
950 	mtx_assert(blp, MA_NOTOWNED);
951 }
952 #else
953 #define cache_assert_bucket_locked(x) do { } while (0)
954 #define cache_assert_bucket_unlocked(x) do { } while (0)
955 #endif
956 
957 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
958 static void
_cache_sort_vnodes(void ** p1,void ** p2)959 _cache_sort_vnodes(void **p1, void **p2)
960 {
961 	void *tmp;
962 
963 	MPASS(*p1 != NULL || *p2 != NULL);
964 
965 	if (*p1 > *p2) {
966 		tmp = *p2;
967 		*p2 = *p1;
968 		*p1 = tmp;
969 	}
970 }
971 
972 static void
cache_lock_all_buckets(void)973 cache_lock_all_buckets(void)
974 {
975 	u_int i;
976 
977 	for (i = 0; i < numbucketlocks; i++)
978 		mtx_lock(&bucketlocks[i]);
979 }
980 
981 static void
cache_unlock_all_buckets(void)982 cache_unlock_all_buckets(void)
983 {
984 	u_int i;
985 
986 	for (i = 0; i < numbucketlocks; i++)
987 		mtx_unlock(&bucketlocks[i]);
988 }
989 
990 static void
cache_lock_all_vnodes(void)991 cache_lock_all_vnodes(void)
992 {
993 	u_int i;
994 
995 	for (i = 0; i < numvnodelocks; i++)
996 		mtx_lock(&vnodelocks[i]);
997 }
998 
999 static void
cache_unlock_all_vnodes(void)1000 cache_unlock_all_vnodes(void)
1001 {
1002 	u_int i;
1003 
1004 	for (i = 0; i < numvnodelocks; i++)
1005 		mtx_unlock(&vnodelocks[i]);
1006 }
1007 
1008 static int
cache_trylock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1009 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1010 {
1011 
1012 	cache_sort_vnodes(&vlp1, &vlp2);
1013 
1014 	if (vlp1 != NULL) {
1015 		if (!mtx_trylock(vlp1))
1016 			return (EAGAIN);
1017 	}
1018 	if (!mtx_trylock(vlp2)) {
1019 		if (vlp1 != NULL)
1020 			mtx_unlock(vlp1);
1021 		return (EAGAIN);
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 static void
cache_lock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1028 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1029 {
1030 
1031 	MPASS(vlp1 != NULL || vlp2 != NULL);
1032 	MPASS(vlp1 <= vlp2);
1033 
1034 	if (vlp1 != NULL)
1035 		mtx_lock(vlp1);
1036 	if (vlp2 != NULL)
1037 		mtx_lock(vlp2);
1038 }
1039 
1040 static void
cache_unlock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1041 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1042 {
1043 
1044 	MPASS(vlp1 != NULL || vlp2 != NULL);
1045 
1046 	if (vlp1 != NULL)
1047 		mtx_unlock(vlp1);
1048 	if (vlp2 != NULL)
1049 		mtx_unlock(vlp2);
1050 }
1051 
1052 static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)1053 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1054 {
1055 	struct nchstats snap;
1056 
1057 	if (req->oldptr == NULL)
1058 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1059 
1060 	snap = nchstats;
1061 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1062 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1063 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1064 	    counter_u64_fetch(numnegzaps);
1065 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1066 	    counter_u64_fetch(nummiss);
1067 
1068 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1069 }
1070 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1071     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1072     "VFS cache effectiveness statistics");
1073 
1074 static void
cache_recalc_neg_min(void)1075 cache_recalc_neg_min(void)
1076 {
1077 
1078 	neg_min = (ncsize * ncnegminpct) / 100;
1079 }
1080 
1081 static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)1082 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1083 {
1084 	u_int val;
1085 	int error;
1086 
1087 	val = ncnegminpct;
1088 	error = sysctl_handle_int(oidp, &val, 0, req);
1089 	if (error != 0 || req->newptr == NULL)
1090 		return (error);
1091 
1092 	if (val == ncnegminpct)
1093 		return (0);
1094 	if (val < 0 || val > 99)
1095 		return (EINVAL);
1096 	ncnegminpct = val;
1097 	cache_recalc_neg_min();
1098 	return (0);
1099 }
1100 
1101 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1102     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1103     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1104 
1105 #ifdef DEBUG_CACHE
1106 /*
1107  * Grab an atomic snapshot of the name cache hash chain lengths
1108  */
1109 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1110     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1111     "hash table stats");
1112 
1113 static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)1114 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1115 {
1116 	struct nchashhead *ncpp;
1117 	struct namecache *ncp;
1118 	int i, error, n_nchash, *cntbuf;
1119 
1120 retry:
1121 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1122 	if (req->oldptr == NULL)
1123 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1124 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1125 	cache_lock_all_buckets();
1126 	if (n_nchash != nchash + 1) {
1127 		cache_unlock_all_buckets();
1128 		free(cntbuf, M_TEMP);
1129 		goto retry;
1130 	}
1131 	/* Scan hash tables counting entries */
1132 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1133 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1134 			cntbuf[i]++;
1135 	cache_unlock_all_buckets();
1136 	for (error = 0, i = 0; i < n_nchash; i++)
1137 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1138 			break;
1139 	free(cntbuf, M_TEMP);
1140 	return (error);
1141 }
1142 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1143     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1144     "nchash chain lengths");
1145 
1146 static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)1147 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1148 {
1149 	int error;
1150 	struct nchashhead *ncpp;
1151 	struct namecache *ncp;
1152 	int n_nchash;
1153 	int count, maxlength, used, pct;
1154 
1155 	if (!req->oldptr)
1156 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1157 
1158 	cache_lock_all_buckets();
1159 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1160 	used = 0;
1161 	maxlength = 0;
1162 
1163 	/* Scan hash tables for applicable entries */
1164 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1165 		count = 0;
1166 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1167 			count++;
1168 		}
1169 		if (count)
1170 			used++;
1171 		if (maxlength < count)
1172 			maxlength = count;
1173 	}
1174 	n_nchash = nchash + 1;
1175 	cache_unlock_all_buckets();
1176 	pct = (used * 100) / (n_nchash / 100);
1177 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1178 	if (error)
1179 		return (error);
1180 	error = SYSCTL_OUT(req, &used, sizeof(used));
1181 	if (error)
1182 		return (error);
1183 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1184 	if (error)
1185 		return (error);
1186 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1187 	if (error)
1188 		return (error);
1189 	return (0);
1190 }
1191 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1192     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1193     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1194 #endif
1195 
1196 /*
1197  * Negative entries management
1198  *
1199  * Various workloads create plenty of negative entries and barely use them
1200  * afterwards. Moreover malicious users can keep performing bogus lookups
1201  * adding even more entries. For example "make tinderbox" as of writing this
1202  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1203  * negative.
1204  *
1205  * As such, a rather aggressive eviction method is needed. The currently
1206  * employed method is a placeholder.
1207  *
1208  * Entries are split over numneglists separate lists, each of which is further
1209  * split into hot and cold entries. Entries get promoted after getting a hit.
1210  * Eviction happens on addition of new entry.
1211  */
1212 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1213     "Name cache negative entry statistics");
1214 
1215 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1216     "Number of negative cache entries");
1217 
1218 static COUNTER_U64_DEFINE_EARLY(neg_created);
1219 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1220     "Number of created negative entries");
1221 
1222 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1223 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1224     "Number of evicted negative entries");
1225 
1226 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1227 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1228     &neg_evict_skipped_empty,
1229     "Number of times evicting failed due to lack of entries");
1230 
1231 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1232 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1233     &neg_evict_skipped_missed,
1234     "Number of times evicting failed due to target entry disappearing");
1235 
1236 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1237 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1238     &neg_evict_skipped_contended,
1239     "Number of times evicting failed due to contention");
1240 
1241 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1242     "Number of cache hits (negative)");
1243 
1244 static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)1245 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1246 {
1247 	int i, out;
1248 
1249 	out = 0;
1250 	for (i = 0; i < numneglists; i++)
1251 		out += neglists[i].nl_hotnum;
1252 
1253 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1254 }
1255 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1256     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1257     "Number of hot negative entries");
1258 
1259 static void
cache_neg_init(struct namecache * ncp)1260 cache_neg_init(struct namecache *ncp)
1261 {
1262 	struct negstate *ns;
1263 
1264 	ncp->nc_flag |= NCF_NEGATIVE;
1265 	ns = NCP2NEGSTATE(ncp);
1266 	ns->neg_flag = 0;
1267 	ns->neg_hit = 0;
1268 	counter_u64_add(neg_created, 1);
1269 }
1270 
1271 #define CACHE_NEG_PROMOTION_THRESH 2
1272 
1273 static bool
cache_neg_hit_prep(struct namecache * ncp)1274 cache_neg_hit_prep(struct namecache *ncp)
1275 {
1276 	struct negstate *ns;
1277 	u_char n;
1278 
1279 	ns = NCP2NEGSTATE(ncp);
1280 	n = atomic_load_char(&ns->neg_hit);
1281 	for (;;) {
1282 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1283 			return (false);
1284 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1285 			break;
1286 	}
1287 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1288 }
1289 
1290 /*
1291  * Nothing to do here but it is provided for completeness as some
1292  * cache_neg_hit_prep callers may end up returning without even
1293  * trying to promote.
1294  */
1295 #define cache_neg_hit_abort(ncp)	do { } while (0)
1296 
1297 static void
cache_neg_hit_finish(struct namecache * ncp)1298 cache_neg_hit_finish(struct namecache *ncp)
1299 {
1300 
1301 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1302 	counter_u64_add(numneghits, 1);
1303 }
1304 
1305 /*
1306  * Move a negative entry to the hot list.
1307  */
1308 static void
cache_neg_promote_locked(struct namecache * ncp)1309 cache_neg_promote_locked(struct namecache *ncp)
1310 {
1311 	struct neglist *nl;
1312 	struct negstate *ns;
1313 
1314 	ns = NCP2NEGSTATE(ncp);
1315 	nl = NCP2NEGLIST(ncp);
1316 	mtx_assert(&nl->nl_lock, MA_OWNED);
1317 	if ((ns->neg_flag & NEG_HOT) == 0) {
1318 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1319 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1320 		nl->nl_hotnum++;
1321 		ns->neg_flag |= NEG_HOT;
1322 	}
1323 }
1324 
1325 /*
1326  * Move a hot negative entry to the cold list.
1327  */
1328 static void
cache_neg_demote_locked(struct namecache * ncp)1329 cache_neg_demote_locked(struct namecache *ncp)
1330 {
1331 	struct neglist *nl;
1332 	struct negstate *ns;
1333 
1334 	ns = NCP2NEGSTATE(ncp);
1335 	nl = NCP2NEGLIST(ncp);
1336 	mtx_assert(&nl->nl_lock, MA_OWNED);
1337 	MPASS(ns->neg_flag & NEG_HOT);
1338 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1339 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1340 	nl->nl_hotnum--;
1341 	ns->neg_flag &= ~NEG_HOT;
1342 	atomic_store_char(&ns->neg_hit, 0);
1343 }
1344 
1345 /*
1346  * Move a negative entry to the hot list if it matches the lookup.
1347  *
1348  * We have to take locks, but they may be contended and in the worst
1349  * case we may need to go off CPU. We don't want to spin within the
1350  * smr section and we can't block with it. Exiting the section means
1351  * the found entry could have been evicted. We are going to look it
1352  * up again.
1353  */
1354 static bool
cache_neg_promote_cond(struct vnode * dvp,struct componentname * cnp,struct namecache * oncp,uint32_t hash)1355 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1356     struct namecache *oncp, uint32_t hash)
1357 {
1358 	struct namecache *ncp;
1359 	struct neglist *nl;
1360 	u_char nc_flag;
1361 
1362 	nl = NCP2NEGLIST(oncp);
1363 
1364 	mtx_lock(&nl->nl_lock);
1365 	/*
1366 	 * For hash iteration.
1367 	 */
1368 	vfs_smr_enter();
1369 
1370 	/*
1371 	 * Avoid all surprises by only succeeding if we got the same entry and
1372 	 * bailing completely otherwise.
1373 	 * XXX There are no provisions to keep the vnode around, meaning we may
1374 	 * end up promoting a negative entry for a *new* vnode and returning
1375 	 * ENOENT on its account. This is the error we want to return anyway
1376 	 * and promotion is harmless.
1377 	 *
1378 	 * In particular at this point there can be a new ncp which matches the
1379 	 * search but hashes to a different neglist.
1380 	 */
1381 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1382 		if (ncp == oncp)
1383 			break;
1384 	}
1385 
1386 	/*
1387 	 * No match to begin with.
1388 	 */
1389 	if (__predict_false(ncp == NULL)) {
1390 		goto out_abort;
1391 	}
1392 
1393 	/*
1394 	 * The newly found entry may be something different...
1395 	 */
1396 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1397 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1398 		goto out_abort;
1399 	}
1400 
1401 	/*
1402 	 * ... and not even negative.
1403 	 */
1404 	nc_flag = atomic_load_char(&ncp->nc_flag);
1405 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1406 		goto out_abort;
1407 	}
1408 
1409 	if (!cache_ncp_canuse(ncp)) {
1410 		goto out_abort;
1411 	}
1412 
1413 	cache_neg_promote_locked(ncp);
1414 	cache_neg_hit_finish(ncp);
1415 	vfs_smr_exit();
1416 	mtx_unlock(&nl->nl_lock);
1417 	return (true);
1418 out_abort:
1419 	vfs_smr_exit();
1420 	mtx_unlock(&nl->nl_lock);
1421 	return (false);
1422 }
1423 
1424 static void
cache_neg_promote(struct namecache * ncp)1425 cache_neg_promote(struct namecache *ncp)
1426 {
1427 	struct neglist *nl;
1428 
1429 	nl = NCP2NEGLIST(ncp);
1430 	mtx_lock(&nl->nl_lock);
1431 	cache_neg_promote_locked(ncp);
1432 	mtx_unlock(&nl->nl_lock);
1433 }
1434 
1435 static void
cache_neg_insert(struct namecache * ncp)1436 cache_neg_insert(struct namecache *ncp)
1437 {
1438 	struct neglist *nl;
1439 
1440 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1441 	cache_assert_bucket_locked(ncp);
1442 	nl = NCP2NEGLIST(ncp);
1443 	mtx_lock(&nl->nl_lock);
1444 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1445 	mtx_unlock(&nl->nl_lock);
1446 	atomic_add_long(&numneg, 1);
1447 }
1448 
1449 static void
cache_neg_remove(struct namecache * ncp)1450 cache_neg_remove(struct namecache *ncp)
1451 {
1452 	struct neglist *nl;
1453 	struct negstate *ns;
1454 
1455 	cache_assert_bucket_locked(ncp);
1456 	nl = NCP2NEGLIST(ncp);
1457 	ns = NCP2NEGSTATE(ncp);
1458 	mtx_lock(&nl->nl_lock);
1459 	if ((ns->neg_flag & NEG_HOT) != 0) {
1460 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1461 		nl->nl_hotnum--;
1462 	} else {
1463 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1464 	}
1465 	mtx_unlock(&nl->nl_lock);
1466 	atomic_subtract_long(&numneg, 1);
1467 }
1468 
1469 static struct neglist *
cache_neg_evict_select_list(void)1470 cache_neg_evict_select_list(void)
1471 {
1472 	struct neglist *nl;
1473 	u_int c;
1474 
1475 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1476 	nl = &neglists[c % numneglists];
1477 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1478 		counter_u64_add(neg_evict_skipped_contended, 1);
1479 		return (NULL);
1480 	}
1481 	return (nl);
1482 }
1483 
1484 static struct namecache *
cache_neg_evict_select_entry(struct neglist * nl)1485 cache_neg_evict_select_entry(struct neglist *nl)
1486 {
1487 	struct namecache *ncp, *lncp;
1488 	struct negstate *ns, *lns;
1489 	int i;
1490 
1491 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1492 	mtx_assert(&nl->nl_lock, MA_OWNED);
1493 	ncp = TAILQ_FIRST(&nl->nl_list);
1494 	if (ncp == NULL)
1495 		return (NULL);
1496 	lncp = ncp;
1497 	lns = NCP2NEGSTATE(lncp);
1498 	for (i = 1; i < 4; i++) {
1499 		ncp = TAILQ_NEXT(ncp, nc_dst);
1500 		if (ncp == NULL)
1501 			break;
1502 		ns = NCP2NEGSTATE(ncp);
1503 		if (ns->neg_hit < lns->neg_hit) {
1504 			lncp = ncp;
1505 			lns = ns;
1506 		}
1507 	}
1508 	return (lncp);
1509 }
1510 
1511 static bool
cache_neg_evict(void)1512 cache_neg_evict(void)
1513 {
1514 	struct namecache *ncp, *ncp2;
1515 	struct neglist *nl;
1516 	struct vnode *dvp;
1517 	struct mtx *dvlp;
1518 	struct mtx *blp;
1519 	uint32_t hash;
1520 	u_char nlen;
1521 	bool evicted;
1522 
1523 	nl = cache_neg_evict_select_list();
1524 	if (nl == NULL) {
1525 		return (false);
1526 	}
1527 
1528 	mtx_lock(&nl->nl_lock);
1529 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1530 	if (ncp != NULL) {
1531 		cache_neg_demote_locked(ncp);
1532 	}
1533 	ncp = cache_neg_evict_select_entry(nl);
1534 	if (ncp == NULL) {
1535 		counter_u64_add(neg_evict_skipped_empty, 1);
1536 		mtx_unlock(&nl->nl_lock);
1537 		mtx_unlock(&nl->nl_evict_lock);
1538 		return (false);
1539 	}
1540 	nlen = ncp->nc_nlen;
1541 	dvp = ncp->nc_dvp;
1542 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1543 	dvlp = VP2VNODELOCK(dvp);
1544 	blp = HASH2BUCKETLOCK(hash);
1545 	mtx_unlock(&nl->nl_lock);
1546 	mtx_unlock(&nl->nl_evict_lock);
1547 	mtx_lock(dvlp);
1548 	mtx_lock(blp);
1549 	/*
1550 	 * Note that since all locks were dropped above, the entry may be
1551 	 * gone or reallocated to be something else.
1552 	 */
1553 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1554 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1555 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1556 			break;
1557 	}
1558 	if (ncp2 == NULL) {
1559 		counter_u64_add(neg_evict_skipped_missed, 1);
1560 		ncp = NULL;
1561 		evicted = false;
1562 	} else {
1563 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1564 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1565 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1566 		    ncp->nc_name);
1567 		cache_zap_locked(ncp);
1568 		counter_u64_add(neg_evicted, 1);
1569 		evicted = true;
1570 	}
1571 	mtx_unlock(blp);
1572 	mtx_unlock(dvlp);
1573 	if (ncp != NULL)
1574 		cache_free(ncp);
1575 	return (evicted);
1576 }
1577 
1578 /*
1579  * Maybe evict a negative entry to create more room.
1580  *
1581  * The ncnegfactor parameter limits what fraction of the total count
1582  * can comprise of negative entries. However, if the cache is just
1583  * warming up this leads to excessive evictions.  As such, ncnegminpct
1584  * (recomputed to neg_min) dictates whether the above should be
1585  * applied.
1586  *
1587  * Try evicting if the cache is close to full capacity regardless of
1588  * other considerations.
1589  */
1590 static bool
cache_neg_evict_cond(u_long lnumcache)1591 cache_neg_evict_cond(u_long lnumcache)
1592 {
1593 	u_long lnumneg;
1594 
1595 	if (ncsize - 1000 < lnumcache)
1596 		goto out_evict;
1597 	lnumneg = atomic_load_long(&numneg);
1598 	if (lnumneg < neg_min)
1599 		return (false);
1600 	if (lnumneg * ncnegfactor < lnumcache)
1601 		return (false);
1602 out_evict:
1603 	return (cache_neg_evict());
1604 }
1605 
1606 /*
1607  * cache_zap_locked():
1608  *
1609  *   Removes a namecache entry from cache, whether it contains an actual
1610  *   pointer to a vnode or if it is just a negative cache entry.
1611  */
1612 static void
cache_zap_locked(struct namecache * ncp)1613 cache_zap_locked(struct namecache *ncp)
1614 {
1615 	struct nchashhead *ncpp;
1616 	struct vnode *dvp, *vp;
1617 
1618 	dvp = ncp->nc_dvp;
1619 	vp = ncp->nc_vp;
1620 
1621 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1622 		cache_assert_vnode_locked(vp);
1623 	cache_assert_vnode_locked(dvp);
1624 	cache_assert_bucket_locked(ncp);
1625 
1626 	cache_ncp_invalidate(ncp);
1627 
1628 	ncpp = NCP2BUCKET(ncp);
1629 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1630 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1631 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1632 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1633 		if (ncp == vp->v_cache_dd) {
1634 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1635 		}
1636 	} else {
1637 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1638 		cache_neg_remove(ncp);
1639 	}
1640 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1641 		if (ncp == dvp->v_cache_dd) {
1642 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1643 		}
1644 	} else {
1645 		LIST_REMOVE(ncp, nc_src);
1646 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1647 			ncp->nc_flag |= NCF_DVDROP;
1648 		}
1649 	}
1650 }
1651 
1652 static void
cache_zap_negative_locked_vnode_kl(struct namecache * ncp,struct vnode * vp)1653 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1654 {
1655 	struct mtx *blp;
1656 
1657 	MPASS(ncp->nc_dvp == vp);
1658 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1659 	cache_assert_vnode_locked(vp);
1660 
1661 	blp = NCP2BUCKETLOCK(ncp);
1662 	mtx_lock(blp);
1663 	cache_zap_locked(ncp);
1664 	mtx_unlock(blp);
1665 }
1666 
1667 static bool
cache_zap_locked_vnode_kl2(struct namecache * ncp,struct vnode * vp,struct mtx ** vlpp)1668 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1669     struct mtx **vlpp)
1670 {
1671 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1672 	struct mtx *blp;
1673 
1674 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1675 	cache_assert_vnode_locked(vp);
1676 
1677 	if (ncp->nc_flag & NCF_NEGATIVE) {
1678 		if (*vlpp != NULL) {
1679 			mtx_unlock(*vlpp);
1680 			*vlpp = NULL;
1681 		}
1682 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1683 		return (true);
1684 	}
1685 
1686 	pvlp = VP2VNODELOCK(vp);
1687 	blp = NCP2BUCKETLOCK(ncp);
1688 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1689 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1690 
1691 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1692 		to_unlock = *vlpp;
1693 		*vlpp = NULL;
1694 	} else {
1695 		if (*vlpp != NULL) {
1696 			mtx_unlock(*vlpp);
1697 			*vlpp = NULL;
1698 		}
1699 		cache_sort_vnodes(&vlp1, &vlp2);
1700 		if (vlp1 == pvlp) {
1701 			mtx_lock(vlp2);
1702 			to_unlock = vlp2;
1703 		} else {
1704 			if (!mtx_trylock(vlp1))
1705 				goto out_relock;
1706 			to_unlock = vlp1;
1707 		}
1708 	}
1709 	mtx_lock(blp);
1710 	cache_zap_locked(ncp);
1711 	mtx_unlock(blp);
1712 	if (to_unlock != NULL)
1713 		mtx_unlock(to_unlock);
1714 	return (true);
1715 
1716 out_relock:
1717 	mtx_unlock(vlp2);
1718 	mtx_lock(vlp1);
1719 	mtx_lock(vlp2);
1720 	MPASS(*vlpp == NULL);
1721 	*vlpp = vlp1;
1722 	return (false);
1723 }
1724 
1725 /*
1726  * If trylocking failed we can get here. We know enough to take all needed locks
1727  * in the right order and re-lookup the entry.
1728  */
1729 static int
cache_zap_unlocked_bucket(struct namecache * ncp,struct componentname * cnp,struct vnode * dvp,struct mtx * dvlp,struct mtx * vlp,uint32_t hash,struct mtx * blp)1730 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1731     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1732     struct mtx *blp)
1733 {
1734 	struct namecache *rncp;
1735 	struct mtx *rvlp;
1736 
1737 	cache_assert_bucket_unlocked(ncp);
1738 
1739 	cache_sort_vnodes(&dvlp, &vlp);
1740 	cache_lock_vnodes(dvlp, vlp);
1741 	mtx_lock(blp);
1742 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1743 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1744 		    rncp->nc_nlen == cnp->cn_namelen &&
1745 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1746 			break;
1747 	}
1748 
1749 	if (rncp == NULL)
1750 		goto out_mismatch;
1751 
1752 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1753 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1754 	else
1755 		rvlp = NULL;
1756 	if (rvlp != vlp)
1757 		goto out_mismatch;
1758 
1759 	cache_zap_locked(rncp);
1760 	mtx_unlock(blp);
1761 	cache_unlock_vnodes(dvlp, vlp);
1762 	atomic_add_long(&zap_bucket_relock_success, 1);
1763 	return (0);
1764 
1765 out_mismatch:
1766 	mtx_unlock(blp);
1767 	cache_unlock_vnodes(dvlp, vlp);
1768 	return (EAGAIN);
1769 }
1770 
1771 static int __noinline
cache_zap_locked_bucket(struct namecache * ncp,struct componentname * cnp,uint32_t hash,struct mtx * blp)1772 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1773     uint32_t hash, struct mtx *blp)
1774 {
1775 	struct mtx *dvlp, *vlp;
1776 	struct vnode *dvp;
1777 
1778 	cache_assert_bucket_locked(ncp);
1779 
1780 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1781 	vlp = NULL;
1782 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1783 		vlp = VP2VNODELOCK(ncp->nc_vp);
1784 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1785 		cache_zap_locked(ncp);
1786 		mtx_unlock(blp);
1787 		cache_unlock_vnodes(dvlp, vlp);
1788 		return (0);
1789 	}
1790 
1791 	dvp = ncp->nc_dvp;
1792 	mtx_unlock(blp);
1793 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1794 }
1795 
1796 static __noinline int
cache_remove_cnp(struct vnode * dvp,struct componentname * cnp)1797 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1798 {
1799 	struct namecache *ncp;
1800 	struct mtx *blp;
1801 	struct mtx *dvlp, *dvlp2;
1802 	uint32_t hash;
1803 	int error;
1804 
1805 	if (cnp->cn_namelen == 2 &&
1806 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1807 		dvlp = VP2VNODELOCK(dvp);
1808 		dvlp2 = NULL;
1809 		mtx_lock(dvlp);
1810 retry_dotdot:
1811 		ncp = dvp->v_cache_dd;
1812 		if (ncp == NULL) {
1813 			mtx_unlock(dvlp);
1814 			if (dvlp2 != NULL)
1815 				mtx_unlock(dvlp2);
1816 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1817 			return (0);
1818 		}
1819 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1820 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1821 				goto retry_dotdot;
1822 			MPASS(dvp->v_cache_dd == NULL);
1823 			mtx_unlock(dvlp);
1824 			if (dvlp2 != NULL)
1825 				mtx_unlock(dvlp2);
1826 			cache_free(ncp);
1827 		} else {
1828 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1829 			mtx_unlock(dvlp);
1830 			if (dvlp2 != NULL)
1831 				mtx_unlock(dvlp2);
1832 		}
1833 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1834 		return (1);
1835 	}
1836 
1837 	/*
1838 	 * XXX note that access here is completely unlocked with no provisions
1839 	 * to keep the hash allocated. If one is sufficiently unlucky a
1840 	 * parallel cache resize can reallocate the hash, unmap backing pages
1841 	 * and cause the empty check below to fault.
1842 	 *
1843 	 * Fixing this has epsilon priority, but can be done with no overhead
1844 	 * for this codepath with sufficient effort.
1845 	 */
1846 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1847 	blp = HASH2BUCKETLOCK(hash);
1848 retry:
1849 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1850 		goto out_no_entry;
1851 
1852 	mtx_lock(blp);
1853 
1854 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1855 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1856 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1857 			break;
1858 	}
1859 
1860 	if (ncp == NULL) {
1861 		mtx_unlock(blp);
1862 		goto out_no_entry;
1863 	}
1864 
1865 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1866 	if (__predict_false(error != 0)) {
1867 		atomic_add_long(&zap_bucket_fail, 1);
1868 		goto retry;
1869 	}
1870 	counter_u64_add(numposzaps, 1);
1871 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1872 	cache_free(ncp);
1873 	return (1);
1874 out_no_entry:
1875 	counter_u64_add(nummisszap, 1);
1876 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1877 	return (0);
1878 }
1879 
1880 static int __noinline
cache_lookup_dot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1881 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1882     struct timespec *tsp, int *ticksp)
1883 {
1884 	int ltype;
1885 
1886 	*vpp = dvp;
1887 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1888 	if (tsp != NULL)
1889 		timespecclear(tsp);
1890 	if (ticksp != NULL)
1891 		*ticksp = ticks;
1892 	vrefact(*vpp);
1893 	/*
1894 	 * When we lookup "." we still can be asked to lock it
1895 	 * differently...
1896 	 */
1897 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1898 	if (ltype != VOP_ISLOCKED(*vpp)) {
1899 		if (ltype == LK_EXCLUSIVE) {
1900 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1901 			if (VN_IS_DOOMED((*vpp))) {
1902 				/* forced unmount */
1903 				vrele(*vpp);
1904 				*vpp = NULL;
1905 				return (ENOENT);
1906 			}
1907 		} else
1908 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1909 	}
1910 	return (-1);
1911 }
1912 
1913 static int __noinline
cache_lookup_dotdot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1914 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1915     struct timespec *tsp, int *ticksp)
1916 {
1917 	struct namecache_ts *ncp_ts;
1918 	struct namecache *ncp;
1919 	struct mtx *dvlp;
1920 	enum vgetstate vs;
1921 	int error, ltype;
1922 	bool whiteout;
1923 
1924 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1925 
1926 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1927 		cache_remove_cnp(dvp, cnp);
1928 		return (0);
1929 	}
1930 
1931 retry:
1932 	dvlp = VP2VNODELOCK(dvp);
1933 	mtx_lock(dvlp);
1934 	ncp = dvp->v_cache_dd;
1935 	if (ncp == NULL) {
1936 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1937 		mtx_unlock(dvlp);
1938 		return (0);
1939 	}
1940 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1941 		if (ncp->nc_flag & NCF_NEGATIVE)
1942 			*vpp = NULL;
1943 		else
1944 			*vpp = ncp->nc_vp;
1945 	} else
1946 		*vpp = ncp->nc_dvp;
1947 	if (*vpp == NULL)
1948 		goto negative_success;
1949 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1950 	cache_out_ts(ncp, tsp, ticksp);
1951 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1952 	    NCF_DTS && tsp != NULL) {
1953 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1954 		*tsp = ncp_ts->nc_dotdottime;
1955 	}
1956 
1957 	MPASS(dvp != *vpp);
1958 	ltype = VOP_ISLOCKED(dvp);
1959 	VOP_UNLOCK(dvp);
1960 	vs = vget_prep(*vpp);
1961 	mtx_unlock(dvlp);
1962 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1963 	vn_lock(dvp, ltype | LK_RETRY);
1964 	if (VN_IS_DOOMED(dvp)) {
1965 		if (error == 0)
1966 			vput(*vpp);
1967 		*vpp = NULL;
1968 		return (ENOENT);
1969 	}
1970 	if (error) {
1971 		*vpp = NULL;
1972 		goto retry;
1973 	}
1974 	return (-1);
1975 negative_success:
1976 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1977 		if (cnp->cn_flags & ISLASTCN) {
1978 			counter_u64_add(numnegzaps, 1);
1979 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1980 			mtx_unlock(dvlp);
1981 			cache_free(ncp);
1982 			return (0);
1983 		}
1984 	}
1985 
1986 	whiteout = (ncp->nc_flag & NCF_WHITE);
1987 	cache_out_ts(ncp, tsp, ticksp);
1988 	if (cache_neg_hit_prep(ncp))
1989 		cache_neg_promote(ncp);
1990 	else
1991 		cache_neg_hit_finish(ncp);
1992 	mtx_unlock(dvlp);
1993 	if (whiteout)
1994 		cnp->cn_flags |= ISWHITEOUT;
1995 	return (ENOENT);
1996 }
1997 
1998 /**
1999  * Lookup a name in the name cache
2000  *
2001  * # Arguments
2002  *
2003  * - dvp:	Parent directory in which to search.
2004  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2005  * - cnp:	Parameters of the name search.  The most interesting bits of
2006  *   		the cn_flags field have the following meanings:
2007  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2008  *   			it up.
2009  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2010  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2011  *   		or negative) lookup, tsp will be filled with any timespec that
2012  *   		was stored when this cache entry was created.  However, it will
2013  *   		be clear for "." entries.
2014  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2015  *   		(positive or negative) lookup, it will contain the ticks value
2016  *   		that was current when the cache entry was created, unless cnp
2017  *   		was ".".
2018  *
2019  * Either both tsp and ticks have to be provided or neither of them.
2020  *
2021  * # Returns
2022  *
2023  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2024  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2025  *		to a forced unmount.  vpp will not be modified.  If the entry
2026  *		is a whiteout, then the ISWHITEOUT flag will be set in
2027  *		cnp->cn_flags.
2028  * - 0:		A cache miss.  vpp will not be modified.
2029  *
2030  * # Locking
2031  *
2032  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2033  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2034  * lock is not recursively acquired.
2035  */
2036 static int __noinline
cache_lookup_fallback(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2037 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2038     struct timespec *tsp, int *ticksp)
2039 {
2040 	struct namecache *ncp;
2041 	struct mtx *blp;
2042 	uint32_t hash;
2043 	enum vgetstate vs;
2044 	int error;
2045 	bool whiteout;
2046 
2047 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2048 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2049 
2050 retry:
2051 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2052 	blp = HASH2BUCKETLOCK(hash);
2053 	mtx_lock(blp);
2054 
2055 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2056 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2057 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2058 			break;
2059 	}
2060 
2061 	if (__predict_false(ncp == NULL)) {
2062 		mtx_unlock(blp);
2063 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2064 		counter_u64_add(nummiss, 1);
2065 		return (0);
2066 	}
2067 
2068 	if (ncp->nc_flag & NCF_NEGATIVE)
2069 		goto negative_success;
2070 
2071 	counter_u64_add(numposhits, 1);
2072 	*vpp = ncp->nc_vp;
2073 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2074 	cache_out_ts(ncp, tsp, ticksp);
2075 	MPASS(dvp != *vpp);
2076 	vs = vget_prep(*vpp);
2077 	mtx_unlock(blp);
2078 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2079 	if (error) {
2080 		*vpp = NULL;
2081 		goto retry;
2082 	}
2083 	return (-1);
2084 negative_success:
2085 	/*
2086 	 * We don't get here with regular lookup apart from corner cases.
2087 	 */
2088 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2089 		if (cnp->cn_flags & ISLASTCN) {
2090 			counter_u64_add(numnegzaps, 1);
2091 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2092 			if (__predict_false(error != 0)) {
2093 				atomic_add_long(&zap_bucket_fail2, 1);
2094 				goto retry;
2095 			}
2096 			cache_free(ncp);
2097 			return (0);
2098 		}
2099 	}
2100 
2101 	whiteout = (ncp->nc_flag & NCF_WHITE);
2102 	cache_out_ts(ncp, tsp, ticksp);
2103 	if (cache_neg_hit_prep(ncp))
2104 		cache_neg_promote(ncp);
2105 	else
2106 		cache_neg_hit_finish(ncp);
2107 	mtx_unlock(blp);
2108 	if (whiteout)
2109 		cnp->cn_flags |= ISWHITEOUT;
2110 	return (ENOENT);
2111 }
2112 
2113 int
cache_lookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2114 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2115     struct timespec *tsp, int *ticksp)
2116 {
2117 	struct namecache *ncp;
2118 	uint32_t hash;
2119 	enum vgetstate vs;
2120 	int error;
2121 	bool whiteout, neg_promote;
2122 	u_short nc_flag;
2123 
2124 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2125 
2126 #ifdef DEBUG_CACHE
2127 	if (__predict_false(!doingcache)) {
2128 		cnp->cn_flags &= ~MAKEENTRY;
2129 		return (0);
2130 	}
2131 #endif
2132 
2133 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2134 		if (cnp->cn_namelen == 1)
2135 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2136 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2137 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2138 	}
2139 
2140 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2141 
2142 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2143 		cache_remove_cnp(dvp, cnp);
2144 		return (0);
2145 	}
2146 
2147 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2148 	vfs_smr_enter();
2149 
2150 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2151 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2152 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2153 			break;
2154 	}
2155 
2156 	if (__predict_false(ncp == NULL)) {
2157 		vfs_smr_exit();
2158 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2159 		counter_u64_add(nummiss, 1);
2160 		return (0);
2161 	}
2162 
2163 	nc_flag = atomic_load_char(&ncp->nc_flag);
2164 	if (nc_flag & NCF_NEGATIVE)
2165 		goto negative_success;
2166 
2167 	counter_u64_add(numposhits, 1);
2168 	*vpp = ncp->nc_vp;
2169 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2170 	cache_out_ts(ncp, tsp, ticksp);
2171 	MPASS(dvp != *vpp);
2172 	if (!cache_ncp_canuse(ncp)) {
2173 		vfs_smr_exit();
2174 		*vpp = NULL;
2175 		goto out_fallback;
2176 	}
2177 	vs = vget_prep_smr(*vpp);
2178 	vfs_smr_exit();
2179 	if (__predict_false(vs == VGET_NONE)) {
2180 		*vpp = NULL;
2181 		goto out_fallback;
2182 	}
2183 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2184 	if (error) {
2185 		*vpp = NULL;
2186 		goto out_fallback;
2187 	}
2188 	return (-1);
2189 negative_success:
2190 	if (cnp->cn_nameiop == CREATE) {
2191 		if (cnp->cn_flags & ISLASTCN) {
2192 			vfs_smr_exit();
2193 			goto out_fallback;
2194 		}
2195 	}
2196 
2197 	cache_out_ts(ncp, tsp, ticksp);
2198 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2199 	neg_promote = cache_neg_hit_prep(ncp);
2200 	if (!cache_ncp_canuse(ncp)) {
2201 		cache_neg_hit_abort(ncp);
2202 		vfs_smr_exit();
2203 		goto out_fallback;
2204 	}
2205 	if (neg_promote) {
2206 		vfs_smr_exit();
2207 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2208 			goto out_fallback;
2209 	} else {
2210 		cache_neg_hit_finish(ncp);
2211 		vfs_smr_exit();
2212 	}
2213 	if (whiteout)
2214 		cnp->cn_flags |= ISWHITEOUT;
2215 	return (ENOENT);
2216 out_fallback:
2217 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2218 }
2219 
2220 struct celockstate {
2221 	struct mtx *vlp[3];
2222 	struct mtx *blp[2];
2223 };
2224 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2225 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2226 
2227 static inline void
cache_celockstate_init(struct celockstate * cel)2228 cache_celockstate_init(struct celockstate *cel)
2229 {
2230 
2231 	bzero(cel, sizeof(*cel));
2232 }
2233 
2234 static void
cache_lock_vnodes_cel(struct celockstate * cel,struct vnode * vp,struct vnode * dvp)2235 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2236     struct vnode *dvp)
2237 {
2238 	struct mtx *vlp1, *vlp2;
2239 
2240 	MPASS(cel->vlp[0] == NULL);
2241 	MPASS(cel->vlp[1] == NULL);
2242 	MPASS(cel->vlp[2] == NULL);
2243 
2244 	MPASS(vp != NULL || dvp != NULL);
2245 
2246 	vlp1 = VP2VNODELOCK(vp);
2247 	vlp2 = VP2VNODELOCK(dvp);
2248 	cache_sort_vnodes(&vlp1, &vlp2);
2249 
2250 	if (vlp1 != NULL) {
2251 		mtx_lock(vlp1);
2252 		cel->vlp[0] = vlp1;
2253 	}
2254 	mtx_lock(vlp2);
2255 	cel->vlp[1] = vlp2;
2256 }
2257 
2258 static void
cache_unlock_vnodes_cel(struct celockstate * cel)2259 cache_unlock_vnodes_cel(struct celockstate *cel)
2260 {
2261 
2262 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2263 
2264 	if (cel->vlp[0] != NULL)
2265 		mtx_unlock(cel->vlp[0]);
2266 	if (cel->vlp[1] != NULL)
2267 		mtx_unlock(cel->vlp[1]);
2268 	if (cel->vlp[2] != NULL)
2269 		mtx_unlock(cel->vlp[2]);
2270 }
2271 
2272 static bool
cache_lock_vnodes_cel_3(struct celockstate * cel,struct vnode * vp)2273 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2274 {
2275 	struct mtx *vlp;
2276 	bool ret;
2277 
2278 	cache_assert_vlp_locked(cel->vlp[0]);
2279 	cache_assert_vlp_locked(cel->vlp[1]);
2280 	MPASS(cel->vlp[2] == NULL);
2281 
2282 	MPASS(vp != NULL);
2283 	vlp = VP2VNODELOCK(vp);
2284 
2285 	ret = true;
2286 	if (vlp >= cel->vlp[1]) {
2287 		mtx_lock(vlp);
2288 	} else {
2289 		if (mtx_trylock(vlp))
2290 			goto out;
2291 		cache_unlock_vnodes_cel(cel);
2292 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2293 		if (vlp < cel->vlp[0]) {
2294 			mtx_lock(vlp);
2295 			mtx_lock(cel->vlp[0]);
2296 			mtx_lock(cel->vlp[1]);
2297 		} else {
2298 			if (cel->vlp[0] != NULL)
2299 				mtx_lock(cel->vlp[0]);
2300 			mtx_lock(vlp);
2301 			mtx_lock(cel->vlp[1]);
2302 		}
2303 		ret = false;
2304 	}
2305 out:
2306 	cel->vlp[2] = vlp;
2307 	return (ret);
2308 }
2309 
2310 static void
cache_lock_buckets_cel(struct celockstate * cel,struct mtx * blp1,struct mtx * blp2)2311 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2312     struct mtx *blp2)
2313 {
2314 
2315 	MPASS(cel->blp[0] == NULL);
2316 	MPASS(cel->blp[1] == NULL);
2317 
2318 	cache_sort_vnodes(&blp1, &blp2);
2319 
2320 	if (blp1 != NULL) {
2321 		mtx_lock(blp1);
2322 		cel->blp[0] = blp1;
2323 	}
2324 	mtx_lock(blp2);
2325 	cel->blp[1] = blp2;
2326 }
2327 
2328 static void
cache_unlock_buckets_cel(struct celockstate * cel)2329 cache_unlock_buckets_cel(struct celockstate *cel)
2330 {
2331 
2332 	if (cel->blp[0] != NULL)
2333 		mtx_unlock(cel->blp[0]);
2334 	mtx_unlock(cel->blp[1]);
2335 }
2336 
2337 /*
2338  * Lock part of the cache affected by the insertion.
2339  *
2340  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2341  * However, insertion can result in removal of an old entry. In this
2342  * case we have an additional vnode and bucketlock pair to lock.
2343  *
2344  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2345  * preserving the locking order (smaller address first).
2346  */
2347 static void
cache_enter_lock(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2348 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2349     uint32_t hash)
2350 {
2351 	struct namecache *ncp;
2352 	struct mtx *blps[2];
2353 	u_char nc_flag;
2354 
2355 	blps[0] = HASH2BUCKETLOCK(hash);
2356 	for (;;) {
2357 		blps[1] = NULL;
2358 		cache_lock_vnodes_cel(cel, dvp, vp);
2359 		if (vp == NULL || vp->v_type != VDIR)
2360 			break;
2361 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2362 		if (ncp == NULL)
2363 			break;
2364 		nc_flag = atomic_load_char(&ncp->nc_flag);
2365 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2366 			break;
2367 		MPASS(ncp->nc_dvp == vp);
2368 		blps[1] = NCP2BUCKETLOCK(ncp);
2369 		if ((nc_flag & NCF_NEGATIVE) != 0)
2370 			break;
2371 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2372 			break;
2373 		/*
2374 		 * All vnodes got re-locked. Re-validate the state and if
2375 		 * nothing changed we are done. Otherwise restart.
2376 		 */
2377 		if (ncp == vp->v_cache_dd &&
2378 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2379 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2380 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2381 			break;
2382 		cache_unlock_vnodes_cel(cel);
2383 		cel->vlp[0] = NULL;
2384 		cel->vlp[1] = NULL;
2385 		cel->vlp[2] = NULL;
2386 	}
2387 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2388 }
2389 
2390 static void
cache_enter_lock_dd(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2391 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2392     uint32_t hash)
2393 {
2394 	struct namecache *ncp;
2395 	struct mtx *blps[2];
2396 	u_char nc_flag;
2397 
2398 	blps[0] = HASH2BUCKETLOCK(hash);
2399 	for (;;) {
2400 		blps[1] = NULL;
2401 		cache_lock_vnodes_cel(cel, dvp, vp);
2402 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2403 		if (ncp == NULL)
2404 			break;
2405 		nc_flag = atomic_load_char(&ncp->nc_flag);
2406 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2407 			break;
2408 		MPASS(ncp->nc_dvp == dvp);
2409 		blps[1] = NCP2BUCKETLOCK(ncp);
2410 		if ((nc_flag & NCF_NEGATIVE) != 0)
2411 			break;
2412 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2413 			break;
2414 		if (ncp == dvp->v_cache_dd &&
2415 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2416 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2417 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2418 			break;
2419 		cache_unlock_vnodes_cel(cel);
2420 		cel->vlp[0] = NULL;
2421 		cel->vlp[1] = NULL;
2422 		cel->vlp[2] = NULL;
2423 	}
2424 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2425 }
2426 
2427 static void
cache_enter_unlock(struct celockstate * cel)2428 cache_enter_unlock(struct celockstate *cel)
2429 {
2430 
2431 	cache_unlock_buckets_cel(cel);
2432 	cache_unlock_vnodes_cel(cel);
2433 }
2434 
2435 static void __noinline
cache_enter_dotdot_prep(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)2436 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2437     struct componentname *cnp)
2438 {
2439 	struct celockstate cel;
2440 	struct namecache *ncp;
2441 	uint32_t hash;
2442 	int len;
2443 
2444 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2445 		return;
2446 	len = cnp->cn_namelen;
2447 	cache_celockstate_init(&cel);
2448 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2449 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2450 	ncp = dvp->v_cache_dd;
2451 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2452 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2453 		cache_zap_locked(ncp);
2454 	} else {
2455 		ncp = NULL;
2456 	}
2457 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2458 	cache_enter_unlock(&cel);
2459 	if (ncp != NULL)
2460 		cache_free(ncp);
2461 }
2462 
2463 /*
2464  * Add an entry to the cache.
2465  */
2466 void
cache_enter_time(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp)2467 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2468     struct timespec *tsp, struct timespec *dtsp)
2469 {
2470 	struct celockstate cel;
2471 	struct namecache *ncp, *n2, *ndd;
2472 	struct namecache_ts *ncp_ts;
2473 	struct nchashhead *ncpp;
2474 	uint32_t hash;
2475 	int flag;
2476 	int len;
2477 
2478 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2479 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2480 	    NAME_MAX));
2481 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2482 	VNPASS(dvp->v_type != VNON, dvp);
2483 	if (vp != NULL) {
2484 		VNPASS(!VN_IS_DOOMED(vp), vp);
2485 		VNPASS(vp->v_type != VNON, vp);
2486 	}
2487 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2488 		KASSERT(dvp == vp,
2489 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2490 		    dvp, vp));
2491 	} else {
2492 		KASSERT(dvp != vp,
2493 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2494 		    cnp->cn_nameptr, dvp));
2495 	}
2496 
2497 #ifdef DEBUG_CACHE
2498 	if (__predict_false(!doingcache))
2499 		return;
2500 #endif
2501 
2502 	flag = 0;
2503 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2504 		if (cnp->cn_namelen == 1)
2505 			return;
2506 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2507 			cache_enter_dotdot_prep(dvp, vp, cnp);
2508 			flag = NCF_ISDOTDOT;
2509 		}
2510 	}
2511 
2512 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2513 	if (ncp == NULL)
2514 		return;
2515 
2516 	cache_celockstate_init(&cel);
2517 	ndd = NULL;
2518 	ncp_ts = NULL;
2519 
2520 	/*
2521 	 * Calculate the hash key and setup as much of the new
2522 	 * namecache entry as possible before acquiring the lock.
2523 	 */
2524 	ncp->nc_flag = flag | NCF_WIP;
2525 	ncp->nc_vp = vp;
2526 	if (vp == NULL)
2527 		cache_neg_init(ncp);
2528 	ncp->nc_dvp = dvp;
2529 	if (tsp != NULL) {
2530 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2531 		ncp_ts->nc_time = *tsp;
2532 		ncp_ts->nc_ticks = ticks;
2533 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2534 		if (dtsp != NULL) {
2535 			ncp_ts->nc_dotdottime = *dtsp;
2536 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2537 		}
2538 	}
2539 	len = ncp->nc_nlen = cnp->cn_namelen;
2540 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2541 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2542 	ncp->nc_name[len] = '\0';
2543 	cache_enter_lock(&cel, dvp, vp, hash);
2544 
2545 	/*
2546 	 * See if this vnode or negative entry is already in the cache
2547 	 * with this name.  This can happen with concurrent lookups of
2548 	 * the same path name.
2549 	 */
2550 	ncpp = NCHHASH(hash);
2551 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2552 		if (n2->nc_dvp == dvp &&
2553 		    n2->nc_nlen == cnp->cn_namelen &&
2554 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2555 			MPASS(cache_ncp_canuse(n2));
2556 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2557 				KASSERT(vp == NULL,
2558 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2559 				    __func__, NULL, vp, cnp->cn_nameptr));
2560 			else
2561 				KASSERT(n2->nc_vp == vp,
2562 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2563 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2564 			/*
2565 			 * Entries are supposed to be immutable unless in the
2566 			 * process of getting destroyed. Accommodating for
2567 			 * changing timestamps is possible but not worth it.
2568 			 * This should be harmless in terms of correctness, in
2569 			 * the worst case resulting in an earlier expiration.
2570 			 * Alternatively, the found entry can be replaced
2571 			 * altogether.
2572 			 */
2573 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2574 #if 0
2575 			if (tsp != NULL) {
2576 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2577 				    ("no NCF_TS"));
2578 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2579 				n2_ts->nc_time = ncp_ts->nc_time;
2580 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2581 				if (dtsp != NULL) {
2582 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2583 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2584 				}
2585 			}
2586 #endif
2587 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2588 			    vp);
2589 			goto out_unlock_free;
2590 		}
2591 	}
2592 
2593 	if (flag == NCF_ISDOTDOT) {
2594 		/*
2595 		 * See if we are trying to add .. entry, but some other lookup
2596 		 * has populated v_cache_dd pointer already.
2597 		 */
2598 		if (dvp->v_cache_dd != NULL)
2599 			goto out_unlock_free;
2600 		KASSERT(vp == NULL || vp->v_type == VDIR,
2601 		    ("wrong vnode type %p", vp));
2602 		atomic_thread_fence_rel();
2603 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2604 	}
2605 
2606 	if (vp != NULL) {
2607 		if (flag != NCF_ISDOTDOT) {
2608 			/*
2609 			 * For this case, the cache entry maps both the
2610 			 * directory name in it and the name ".." for the
2611 			 * directory's parent.
2612 			 */
2613 			if ((ndd = vp->v_cache_dd) != NULL) {
2614 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2615 					cache_zap_locked(ndd);
2616 				else
2617 					ndd = NULL;
2618 			}
2619 			atomic_thread_fence_rel();
2620 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2621 		} else if (vp->v_type != VDIR) {
2622 			if (vp->v_cache_dd != NULL) {
2623 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2624 			}
2625 		}
2626 	}
2627 
2628 	if (flag != NCF_ISDOTDOT) {
2629 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2630 			cache_hold_vnode(dvp);
2631 		}
2632 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2633 	}
2634 
2635 	/*
2636 	 * If the entry is "negative", we place it into the
2637 	 * "negative" cache queue, otherwise, we place it into the
2638 	 * destination vnode's cache entries queue.
2639 	 */
2640 	if (vp != NULL) {
2641 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2642 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2643 		    vp);
2644 	} else {
2645 		if (cnp->cn_flags & ISWHITEOUT)
2646 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2647 		cache_neg_insert(ncp);
2648 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2649 		    ncp->nc_name);
2650 	}
2651 
2652 	/*
2653 	 * Insert the new namecache entry into the appropriate chain
2654 	 * within the cache entries table.
2655 	 */
2656 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2657 
2658 	atomic_thread_fence_rel();
2659 	/*
2660 	 * Mark the entry as fully constructed.
2661 	 * It is immutable past this point until its removal.
2662 	 */
2663 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2664 
2665 	cache_enter_unlock(&cel);
2666 	if (ndd != NULL)
2667 		cache_free(ndd);
2668 	return;
2669 out_unlock_free:
2670 	cache_enter_unlock(&cel);
2671 	cache_free(ncp);
2672 	return;
2673 }
2674 
2675 /*
2676  * A variant of the above accepting flags.
2677  *
2678  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2679  *
2680  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2681  * happens to match and it is doing it in an inefficient manner. It was added
2682  * to accommodate NFS which runs into a case where the target for a given name
2683  * may change from under it. Note this does nothing to solve the following
2684  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2685  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2686  */
2687 void
cache_enter_time_flags(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp,int flags)2688 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2689     struct timespec *tsp, struct timespec *dtsp, int flags)
2690 {
2691 
2692 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2693 
2694 	if (flags & VFS_CACHE_DROPOLD)
2695 		cache_remove_cnp(dvp, cnp);
2696 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2697 }
2698 
2699 static u_long
cache_roundup_2(u_long val)2700 cache_roundup_2(u_long val)
2701 {
2702 	u_long res;
2703 
2704 	for (res = 1; res <= val; res <<= 1)
2705 		continue;
2706 
2707 	return (res);
2708 }
2709 
2710 static struct nchashhead *
nchinittbl(u_long elements,u_long * hashmask)2711 nchinittbl(u_long elements, u_long *hashmask)
2712 {
2713 	struct nchashhead *hashtbl;
2714 	u_long hashsize, i;
2715 
2716 	hashsize = cache_roundup_2(elements) / 2;
2717 
2718 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2719 	for (i = 0; i < hashsize; i++)
2720 		CK_SLIST_INIT(&hashtbl[i]);
2721 	*hashmask = hashsize - 1;
2722 	return (hashtbl);
2723 }
2724 
2725 static void
ncfreetbl(struct nchashhead * hashtbl)2726 ncfreetbl(struct nchashhead *hashtbl)
2727 {
2728 
2729 	free(hashtbl, M_VFSCACHE);
2730 }
2731 
2732 /*
2733  * Name cache initialization, from vfs_init() when we are booting
2734  */
2735 static void
nchinit(void * dummy __unused)2736 nchinit(void *dummy __unused)
2737 {
2738 	u_int i;
2739 
2740 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2741 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2742 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2743 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2744 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2745 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2746 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2747 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2748 
2749 	VFS_SMR_ZONE_SET(cache_zone_small);
2750 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2751 	VFS_SMR_ZONE_SET(cache_zone_large);
2752 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2753 
2754 	ncsize = desiredvnodes * ncsizefactor;
2755 	cache_recalc_neg_min();
2756 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2757 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2758 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2759 		ncbuckethash = 7;
2760 	if (ncbuckethash > nchash)
2761 		ncbuckethash = nchash;
2762 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2763 	    M_WAITOK | M_ZERO);
2764 	for (i = 0; i < numbucketlocks; i++)
2765 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2766 	ncvnodehash = ncbuckethash;
2767 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2768 	    M_WAITOK | M_ZERO);
2769 	for (i = 0; i < numvnodelocks; i++)
2770 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2771 
2772 	for (i = 0; i < numneglists; i++) {
2773 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2774 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2775 		TAILQ_INIT(&neglists[i].nl_list);
2776 		TAILQ_INIT(&neglists[i].nl_hotlist);
2777 	}
2778 }
2779 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2780 
2781 void
cache_vnode_init(struct vnode * vp)2782 cache_vnode_init(struct vnode *vp)
2783 {
2784 
2785 	LIST_INIT(&vp->v_cache_src);
2786 	TAILQ_INIT(&vp->v_cache_dst);
2787 	vp->v_cache_dd = NULL;
2788 	cache_prehash(vp);
2789 }
2790 
2791 /*
2792  * Induce transient cache misses for lockless operation in cache_lookup() by
2793  * using a temporary hash table.
2794  *
2795  * This will force a fs lookup.
2796  *
2797  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2798  * to observe all CPUs not performing the lookup.
2799  */
2800 static void
cache_changesize_set_temp(struct nchashhead * temptbl,u_long temphash)2801 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2802 {
2803 
2804 	MPASS(temphash < nchash);
2805 	/*
2806 	 * Change the size. The new size is smaller and can safely be used
2807 	 * against the existing table. All lookups which now hash wrong will
2808 	 * result in a cache miss, which all callers are supposed to know how
2809 	 * to handle.
2810 	 */
2811 	atomic_store_long(&nchash, temphash);
2812 	atomic_thread_fence_rel();
2813 	vfs_smr_synchronize();
2814 	/*
2815 	 * At this point everyone sees the updated hash value, but they still
2816 	 * see the old table.
2817 	 */
2818 	atomic_store_ptr(&nchashtbl, temptbl);
2819 	atomic_thread_fence_rel();
2820 	vfs_smr_synchronize();
2821 	/*
2822 	 * At this point everyone sees the updated table pointer and size pair.
2823 	 */
2824 }
2825 
2826 /*
2827  * Set the new hash table.
2828  *
2829  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2830  * lockless operation in cache_lookup().
2831  */
2832 static void
cache_changesize_set_new(struct nchashhead * new_tbl,u_long new_hash)2833 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2834 {
2835 
2836 	MPASS(nchash < new_hash);
2837 	/*
2838 	 * Change the pointer first. This wont result in out of bounds access
2839 	 * since the temporary table is guaranteed to be smaller.
2840 	 */
2841 	atomic_store_ptr(&nchashtbl, new_tbl);
2842 	atomic_thread_fence_rel();
2843 	vfs_smr_synchronize();
2844 	/*
2845 	 * At this point everyone sees the updated pointer value, but they
2846 	 * still see the old size.
2847 	 */
2848 	atomic_store_long(&nchash, new_hash);
2849 	atomic_thread_fence_rel();
2850 	vfs_smr_synchronize();
2851 	/*
2852 	 * At this point everyone sees the updated table pointer and size pair.
2853 	 */
2854 }
2855 
2856 void
cache_changesize(u_long newmaxvnodes)2857 cache_changesize(u_long newmaxvnodes)
2858 {
2859 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2860 	u_long new_nchash, old_nchash, temphash;
2861 	struct namecache *ncp;
2862 	uint32_t hash;
2863 	u_long newncsize;
2864 	u_long i;
2865 
2866 	newncsize = newmaxvnodes * ncsizefactor;
2867 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2868 	if (newmaxvnodes < numbucketlocks)
2869 		newmaxvnodes = numbucketlocks;
2870 
2871 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2872 	/* If same hash table size, nothing to do */
2873 	if (nchash == new_nchash) {
2874 		ncfreetbl(new_nchashtbl);
2875 		return;
2876 	}
2877 
2878 	temptbl = nchinittbl(1, &temphash);
2879 
2880 	/*
2881 	 * Move everything from the old hash table to the new table.
2882 	 * None of the namecache entries in the table can be removed
2883 	 * because to do so, they have to be removed from the hash table.
2884 	 */
2885 	cache_lock_all_vnodes();
2886 	cache_lock_all_buckets();
2887 	old_nchashtbl = nchashtbl;
2888 	old_nchash = nchash;
2889 	cache_changesize_set_temp(temptbl, temphash);
2890 	for (i = 0; i <= old_nchash; i++) {
2891 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2892 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2893 			    ncp->nc_dvp);
2894 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2895 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2896 		}
2897 	}
2898 	ncsize = newncsize;
2899 	cache_recalc_neg_min();
2900 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2901 	cache_unlock_all_buckets();
2902 	cache_unlock_all_vnodes();
2903 	ncfreetbl(old_nchashtbl);
2904 	ncfreetbl(temptbl);
2905 }
2906 
2907 /*
2908  * Remove all entries from and to a particular vnode.
2909  */
2910 static void
cache_purge_impl(struct vnode * vp)2911 cache_purge_impl(struct vnode *vp)
2912 {
2913 	struct cache_freebatch batch;
2914 	struct namecache *ncp;
2915 	struct mtx *vlp, *vlp2;
2916 
2917 	TAILQ_INIT(&batch);
2918 	vlp = VP2VNODELOCK(vp);
2919 	vlp2 = NULL;
2920 	mtx_lock(vlp);
2921 retry:
2922 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2923 		ncp = LIST_FIRST(&vp->v_cache_src);
2924 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2925 			goto retry;
2926 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2927 	}
2928 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2929 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2930 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2931 			goto retry;
2932 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2933 	}
2934 	ncp = vp->v_cache_dd;
2935 	if (ncp != NULL) {
2936 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2937 		   ("lost dotdot link"));
2938 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2939 			goto retry;
2940 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2941 	}
2942 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2943 	mtx_unlock(vlp);
2944 	if (vlp2 != NULL)
2945 		mtx_unlock(vlp2);
2946 	cache_free_batch(&batch);
2947 }
2948 
2949 /*
2950  * Opportunistic check to see if there is anything to do.
2951  */
2952 static bool
cache_has_entries(struct vnode * vp)2953 cache_has_entries(struct vnode *vp)
2954 {
2955 
2956 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2957 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2958 		return (false);
2959 	return (true);
2960 }
2961 
2962 void
cache_purge(struct vnode * vp)2963 cache_purge(struct vnode *vp)
2964 {
2965 
2966 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2967 	if (!cache_has_entries(vp))
2968 		return;
2969 	cache_purge_impl(vp);
2970 }
2971 
2972 /*
2973  * Only to be used by vgone.
2974  */
2975 void
cache_purge_vgone(struct vnode * vp)2976 cache_purge_vgone(struct vnode *vp)
2977 {
2978 	struct mtx *vlp;
2979 
2980 	VNPASS(VN_IS_DOOMED(vp), vp);
2981 	if (cache_has_entries(vp)) {
2982 		cache_purge_impl(vp);
2983 		return;
2984 	}
2985 
2986 	/*
2987 	 * Serialize against a potential thread doing cache_purge.
2988 	 */
2989 	vlp = VP2VNODELOCK(vp);
2990 	mtx_wait_unlocked(vlp);
2991 	if (cache_has_entries(vp)) {
2992 		cache_purge_impl(vp);
2993 		return;
2994 	}
2995 	return;
2996 }
2997 
2998 /*
2999  * Remove all negative entries for a particular directory vnode.
3000  */
3001 void
cache_purge_negative(struct vnode * vp)3002 cache_purge_negative(struct vnode *vp)
3003 {
3004 	struct cache_freebatch batch;
3005 	struct namecache *ncp, *nnp;
3006 	struct mtx *vlp;
3007 
3008 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3009 	if (LIST_EMPTY(&vp->v_cache_src))
3010 		return;
3011 	TAILQ_INIT(&batch);
3012 	vlp = VP2VNODELOCK(vp);
3013 	mtx_lock(vlp);
3014 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3015 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3016 			continue;
3017 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3018 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3019 	}
3020 	mtx_unlock(vlp);
3021 	cache_free_batch(&batch);
3022 }
3023 
3024 /*
3025  * Entry points for modifying VOP operations.
3026  */
3027 void
cache_vop_rename(struct vnode * fdvp,struct vnode * fvp,struct vnode * tdvp,struct vnode * tvp,struct componentname * fcnp,struct componentname * tcnp)3028 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3029     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3030 {
3031 
3032 	ASSERT_VOP_IN_SEQC(fdvp);
3033 	ASSERT_VOP_IN_SEQC(fvp);
3034 	ASSERT_VOP_IN_SEQC(tdvp);
3035 	if (tvp != NULL)
3036 		ASSERT_VOP_IN_SEQC(tvp);
3037 
3038 	cache_purge(fvp);
3039 	if (tvp != NULL) {
3040 		cache_purge(tvp);
3041 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3042 		    ("%s: lingering negative entry", __func__));
3043 	} else {
3044 		cache_remove_cnp(tdvp, tcnp);
3045 	}
3046 
3047 	/*
3048 	 * TODO
3049 	 *
3050 	 * Historically renaming was always purging all revelang entries,
3051 	 * but that's quite wasteful. In particular turns out that in many cases
3052 	 * the target file is immediately accessed after rename, inducing a cache
3053 	 * miss.
3054 	 *
3055 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3056 	 * instead of just removing it above and allocating a new one here.
3057 	 */
3058 	cache_enter(tdvp, fvp, tcnp);
3059 }
3060 
3061 void
cache_vop_rmdir(struct vnode * dvp,struct vnode * vp)3062 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3063 {
3064 
3065 	ASSERT_VOP_IN_SEQC(dvp);
3066 	ASSERT_VOP_IN_SEQC(vp);
3067 	cache_purge(vp);
3068 }
3069 
3070 #ifdef INVARIANTS
3071 /*
3072  * Validate that if an entry exists it matches.
3073  */
3074 void
cache_validate(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)3075 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3076 {
3077 	struct namecache *ncp;
3078 	struct mtx *blp;
3079 	uint32_t hash;
3080 
3081 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3082 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3083 		return;
3084 	blp = HASH2BUCKETLOCK(hash);
3085 	mtx_lock(blp);
3086 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3087 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3088 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3089 			if (ncp->nc_vp != vp)
3090 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3091 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3092 		}
3093 	}
3094 	mtx_unlock(blp);
3095 }
3096 
3097 void
cache_assert_no_entries(struct vnode * vp)3098 cache_assert_no_entries(struct vnode *vp)
3099 {
3100 
3101 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3102 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3103 	VNPASS(vp->v_cache_dd == NULL, vp);
3104 }
3105 #endif
3106 
3107 /*
3108  * Flush all entries referencing a particular filesystem.
3109  */
3110 void
cache_purgevfs(struct mount * mp)3111 cache_purgevfs(struct mount *mp)
3112 {
3113 	struct vnode *vp, *mvp;
3114 	size_t visited __sdt_used, purged __sdt_used;
3115 
3116 	visited = purged = 0;
3117 	/*
3118 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3119 	 * support filtering and avoid the interlock to begin with.
3120 	 */
3121 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3122 		visited++;
3123 		if (!cache_has_entries(vp)) {
3124 			VI_UNLOCK(vp);
3125 			continue;
3126 		}
3127 		vholdl(vp);
3128 		VI_UNLOCK(vp);
3129 		cache_purge(vp);
3130 		purged++;
3131 		vdrop(vp);
3132 	}
3133 
3134 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3135 }
3136 
3137 /*
3138  * Perform canonical checks and cache lookup and pass on to filesystem
3139  * through the vop_cachedlookup only if needed.
3140  */
3141 
3142 int
vfs_cache_lookup(struct vop_lookup_args * ap)3143 vfs_cache_lookup(struct vop_lookup_args *ap)
3144 {
3145 	struct vnode *dvp;
3146 	int error;
3147 	struct vnode **vpp = ap->a_vpp;
3148 	struct componentname *cnp = ap->a_cnp;
3149 	int flags = cnp->cn_flags;
3150 
3151 	*vpp = NULL;
3152 	dvp = ap->a_dvp;
3153 
3154 	if (dvp->v_type != VDIR)
3155 		return (ENOTDIR);
3156 
3157 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3158 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3159 		return (EROFS);
3160 
3161 	error = vn_dir_check_exec(dvp, cnp);
3162 	if (error != 0)
3163 		return (error);
3164 
3165 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3166 	if (error == 0)
3167 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3168 	if (error == -1)
3169 		return (0);
3170 	return (error);
3171 }
3172 
3173 /* Implementation of the getcwd syscall. */
3174 int
sys___getcwd(struct thread * td,struct __getcwd_args * uap)3175 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3176 {
3177 	char *buf, *retbuf;
3178 	size_t buflen;
3179 	int error;
3180 
3181 	buflen = uap->buflen;
3182 	if (__predict_false(buflen < 2))
3183 		return (EINVAL);
3184 	if (buflen > MAXPATHLEN)
3185 		buflen = MAXPATHLEN;
3186 
3187 	buf = uma_zalloc(namei_zone, M_WAITOK);
3188 	error = vn_getcwd(buf, &retbuf, &buflen);
3189 	if (error == 0)
3190 		error = copyout(retbuf, uap->buf, buflen);
3191 	uma_zfree(namei_zone, buf);
3192 	return (error);
3193 }
3194 
3195 int
vn_getcwd(char * buf,char ** retbuf,size_t * buflen)3196 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3197 {
3198 	struct pwd *pwd;
3199 	int error;
3200 
3201 	vfs_smr_enter();
3202 	pwd = pwd_get_smr();
3203 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3204 	    buflen, 0);
3205 	VFS_SMR_ASSERT_NOT_ENTERED();
3206 	if (error < 0) {
3207 		pwd = pwd_hold(curthread);
3208 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3209 		    retbuf, buflen);
3210 		pwd_drop(pwd);
3211 	}
3212 
3213 #ifdef KTRACE
3214 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3215 		ktrnamei(*retbuf);
3216 #endif
3217 	return (error);
3218 }
3219 
3220 /*
3221  * Canonicalize a path by walking it forward and back.
3222  *
3223  * BUGS:
3224  * - Nothing guarantees the integrity of the entire chain. Consider the case
3225  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3226  *   "foo" into "quux" during the backwards walk. The result will be
3227  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3228  *   walk in userspace. Moreover, the path we return is inaccessible if the
3229  *   calling thread lacks permission to traverse "quux".
3230  */
3231 static int
kern___realpathat(struct thread * td,int fd,const char * path,char * buf,size_t size,int flags,enum uio_seg pathseg)3232 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3233     size_t size, int flags, enum uio_seg pathseg)
3234 {
3235 	struct nameidata nd;
3236 	char *retbuf, *freebuf;
3237 	int error;
3238 
3239 	if (flags != 0)
3240 		return (EINVAL);
3241 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3242 	    pathseg, path, fd, &cap_fstat_rights);
3243 	if ((error = namei(&nd)) != 0)
3244 		return (error);
3245 
3246 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3247 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3248 		/*
3249 		 * This happens if vp is a file mount. The call to
3250 		 * vn_fullpath_hardlink can panic if path resolution can't be
3251 		 * handled without the directory.
3252 		 *
3253 		 * To resolve this, we find the vnode which was mounted on -
3254 		 * this should have a unique global path since we disallow
3255 		 * mounting on linked files.
3256 		 */
3257 		struct vnode *covered_vp;
3258 		error = vn_lock(nd.ni_vp, LK_SHARED);
3259 		if (error != 0)
3260 			goto out;
3261 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3262 		vref(covered_vp);
3263 		VOP_UNLOCK(nd.ni_vp);
3264 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3265 		vrele(covered_vp);
3266 	} else {
3267 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3268 		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3269 	}
3270 	if (error == 0) {
3271 		error = copyout(retbuf, buf, size);
3272 		free(freebuf, M_TEMP);
3273 	}
3274 out:
3275 	vrele(nd.ni_vp);
3276 	vrele(nd.ni_dvp);
3277 	NDFREE_PNBUF(&nd);
3278 	return (error);
3279 }
3280 
3281 int
sys___realpathat(struct thread * td,struct __realpathat_args * uap)3282 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3283 {
3284 
3285 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3286 	    uap->flags, UIO_USERSPACE));
3287 }
3288 
3289 /*
3290  * Retrieve the full filesystem path that correspond to a vnode from the name
3291  * cache (if available)
3292  */
3293 int
vn_fullpath(struct vnode * vp,char ** retbuf,char ** freebuf)3294 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3295 {
3296 	struct pwd *pwd;
3297 	char *buf;
3298 	size_t buflen;
3299 	int error;
3300 
3301 	if (__predict_false(vp == NULL))
3302 		return (EINVAL);
3303 
3304 	buflen = MAXPATHLEN;
3305 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3306 	vfs_smr_enter();
3307 	pwd = pwd_get_smr();
3308 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3309 	VFS_SMR_ASSERT_NOT_ENTERED();
3310 	if (error < 0) {
3311 		pwd = pwd_hold(curthread);
3312 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3313 		pwd_drop(pwd);
3314 	}
3315 	if (error == 0)
3316 		*freebuf = buf;
3317 	else
3318 		free(buf, M_TEMP);
3319 	return (error);
3320 }
3321 
3322 /*
3323  * This function is similar to vn_fullpath, but it attempts to lookup the
3324  * pathname relative to the global root mount point.  This is required for the
3325  * auditing sub-system, as audited pathnames must be absolute, relative to the
3326  * global root mount point.
3327  */
3328 int
vn_fullpath_global(struct vnode * vp,char ** retbuf,char ** freebuf)3329 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3330 {
3331 	char *buf;
3332 	size_t buflen;
3333 	int error;
3334 
3335 	if (__predict_false(vp == NULL))
3336 		return (EINVAL);
3337 	buflen = MAXPATHLEN;
3338 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3339 	vfs_smr_enter();
3340 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3341 	VFS_SMR_ASSERT_NOT_ENTERED();
3342 	if (error < 0) {
3343 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3344 	}
3345 	if (error == 0)
3346 		*freebuf = buf;
3347 	else
3348 		free(buf, M_TEMP);
3349 	return (error);
3350 }
3351 
3352 static struct namecache *
vn_dd_from_dst(struct vnode * vp)3353 vn_dd_from_dst(struct vnode *vp)
3354 {
3355 	struct namecache *ncp;
3356 
3357 	cache_assert_vnode_locked(vp);
3358 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3359 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3360 			return (ncp);
3361 	}
3362 	return (NULL);
3363 }
3364 
3365 int
vn_vptocnp(struct vnode ** vp,char * buf,size_t * buflen)3366 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3367 {
3368 	struct vnode *dvp;
3369 	struct namecache *ncp;
3370 	struct mtx *vlp;
3371 	int error;
3372 
3373 	vlp = VP2VNODELOCK(*vp);
3374 	mtx_lock(vlp);
3375 	ncp = (*vp)->v_cache_dd;
3376 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3377 		KASSERT(ncp == vn_dd_from_dst(*vp),
3378 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3379 		    ncp, vn_dd_from_dst(*vp)));
3380 	} else {
3381 		ncp = vn_dd_from_dst(*vp);
3382 	}
3383 	if (ncp != NULL) {
3384 		if (*buflen < ncp->nc_nlen) {
3385 			mtx_unlock(vlp);
3386 			vrele(*vp);
3387 			counter_u64_add(numfullpathfail4, 1);
3388 			error = ENOMEM;
3389 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3390 			    vp, NULL);
3391 			return (error);
3392 		}
3393 		*buflen -= ncp->nc_nlen;
3394 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3395 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3396 		    ncp->nc_name, vp);
3397 		dvp = *vp;
3398 		*vp = ncp->nc_dvp;
3399 		vref(*vp);
3400 		mtx_unlock(vlp);
3401 		vrele(dvp);
3402 		return (0);
3403 	}
3404 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3405 
3406 	mtx_unlock(vlp);
3407 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3408 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3409 	vput(*vp);
3410 	if (error) {
3411 		counter_u64_add(numfullpathfail2, 1);
3412 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3413 		return (error);
3414 	}
3415 
3416 	*vp = dvp;
3417 	if (VN_IS_DOOMED(dvp)) {
3418 		/* forced unmount */
3419 		vrele(dvp);
3420 		error = ENOENT;
3421 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3422 		return (error);
3423 	}
3424 	/*
3425 	 * *vp has its use count incremented still.
3426 	 */
3427 
3428 	return (0);
3429 }
3430 
3431 /*
3432  * Resolve a directory to a pathname.
3433  *
3434  * The name of the directory can always be found in the namecache or fetched
3435  * from the filesystem. There is also guaranteed to be only one parent, meaning
3436  * we can just follow vnodes up until we find the root.
3437  *
3438  * The vnode must be referenced.
3439  */
3440 static int
vn_fullpath_dir(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * len,size_t addend)3441 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3442     size_t *len, size_t addend)
3443 {
3444 #ifdef KDTRACE_HOOKS
3445 	struct vnode *startvp = vp;
3446 #endif
3447 	struct vnode *vp1;
3448 	size_t buflen;
3449 	int error;
3450 	bool slash_prefixed;
3451 
3452 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3453 	VNPASS(vp->v_usecount > 0, vp);
3454 
3455 	buflen = *len;
3456 
3457 	slash_prefixed = true;
3458 	if (addend == 0) {
3459 		MPASS(*len >= 2);
3460 		buflen--;
3461 		buf[buflen] = '\0';
3462 		slash_prefixed = false;
3463 	}
3464 
3465 	error = 0;
3466 
3467 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3468 	counter_u64_add(numfullpathcalls, 1);
3469 	while (vp != rdir && vp != rootvnode) {
3470 		/*
3471 		 * The vp vnode must be already fully constructed,
3472 		 * since it is either found in namecache or obtained
3473 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3474 		 * without obtaining the vnode lock.
3475 		 */
3476 		if ((vp->v_vflag & VV_ROOT) != 0) {
3477 			vn_lock(vp, LK_RETRY | LK_SHARED);
3478 
3479 			/*
3480 			 * With the vnode locked, check for races with
3481 			 * unmount, forced or not.  Note that we
3482 			 * already verified that vp is not equal to
3483 			 * the root vnode, which means that
3484 			 * mnt_vnodecovered can be NULL only for the
3485 			 * case of unmount.
3486 			 */
3487 			if (VN_IS_DOOMED(vp) ||
3488 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3489 			    vp1->v_mountedhere != vp->v_mount) {
3490 				vput(vp);
3491 				error = ENOENT;
3492 				SDT_PROBE3(vfs, namecache, fullpath, return,
3493 				    error, vp, NULL);
3494 				break;
3495 			}
3496 
3497 			vref(vp1);
3498 			vput(vp);
3499 			vp = vp1;
3500 			continue;
3501 		}
3502 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3503 		error = vn_vptocnp(&vp, buf, &buflen);
3504 		if (error)
3505 			break;
3506 		if (buflen == 0) {
3507 			vrele(vp);
3508 			error = ENOMEM;
3509 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3510 			    startvp, NULL);
3511 			break;
3512 		}
3513 		buf[--buflen] = '/';
3514 		slash_prefixed = true;
3515 	}
3516 	if (error)
3517 		return (error);
3518 	if (!slash_prefixed) {
3519 		if (buflen == 0) {
3520 			vrele(vp);
3521 			counter_u64_add(numfullpathfail4, 1);
3522 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3523 			    startvp, NULL);
3524 			return (ENOMEM);
3525 		}
3526 		buf[--buflen] = '/';
3527 	}
3528 	counter_u64_add(numfullpathfound, 1);
3529 	vrele(vp);
3530 
3531 	*retbuf = buf + buflen;
3532 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3533 	*len -= buflen;
3534 	*len += addend;
3535 	return (0);
3536 }
3537 
3538 /*
3539  * Resolve an arbitrary vnode to a pathname.
3540  *
3541  * Note 2 caveats:
3542  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3543  *   resolve to a different path than the one used to find it
3544  * - namecache is not mandatory, meaning names are not guaranteed to be added
3545  *   (in which case resolving fails)
3546  */
3547 static void __inline
cache_rev_failed_impl(int * reason,int line)3548 cache_rev_failed_impl(int *reason, int line)
3549 {
3550 
3551 	*reason = line;
3552 }
3553 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3554 
3555 static int
vn_fullpath_any_smr(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen,size_t addend)3556 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3557     char **retbuf, size_t *buflen, size_t addend)
3558 {
3559 #ifdef KDTRACE_HOOKS
3560 	struct vnode *startvp = vp;
3561 #endif
3562 	struct vnode *tvp;
3563 	struct mount *mp;
3564 	struct namecache *ncp;
3565 	size_t orig_buflen;
3566 	int reason;
3567 	int error;
3568 #ifdef KDTRACE_HOOKS
3569 	int i;
3570 #endif
3571 	seqc_t vp_seqc, tvp_seqc;
3572 	u_char nc_flag;
3573 
3574 	VFS_SMR_ASSERT_ENTERED();
3575 
3576 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3577 		vfs_smr_exit();
3578 		return (-1);
3579 	}
3580 
3581 	orig_buflen = *buflen;
3582 
3583 	if (addend == 0) {
3584 		MPASS(*buflen >= 2);
3585 		*buflen -= 1;
3586 		buf[*buflen] = '\0';
3587 	}
3588 
3589 	if (vp == rdir || vp == rootvnode) {
3590 		if (addend == 0) {
3591 			*buflen -= 1;
3592 			buf[*buflen] = '/';
3593 		}
3594 		goto out_ok;
3595 	}
3596 
3597 #ifdef KDTRACE_HOOKS
3598 	i = 0;
3599 #endif
3600 	error = -1;
3601 	ncp = NULL; /* for sdt probe down below */
3602 	vp_seqc = vn_seqc_read_any(vp);
3603 	if (seqc_in_modify(vp_seqc)) {
3604 		cache_rev_failed(&reason);
3605 		goto out_abort;
3606 	}
3607 
3608 	for (;;) {
3609 #ifdef KDTRACE_HOOKS
3610 		i++;
3611 #endif
3612 		if ((vp->v_vflag & VV_ROOT) != 0) {
3613 			mp = atomic_load_ptr(&vp->v_mount);
3614 			if (mp == NULL) {
3615 				cache_rev_failed(&reason);
3616 				goto out_abort;
3617 			}
3618 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3619 			tvp_seqc = vn_seqc_read_any(tvp);
3620 			if (seqc_in_modify(tvp_seqc)) {
3621 				cache_rev_failed(&reason);
3622 				goto out_abort;
3623 			}
3624 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3625 				cache_rev_failed(&reason);
3626 				goto out_abort;
3627 			}
3628 			vp = tvp;
3629 			vp_seqc = tvp_seqc;
3630 			continue;
3631 		}
3632 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3633 		if (ncp == NULL) {
3634 			cache_rev_failed(&reason);
3635 			goto out_abort;
3636 		}
3637 		nc_flag = atomic_load_char(&ncp->nc_flag);
3638 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3639 			cache_rev_failed(&reason);
3640 			goto out_abort;
3641 		}
3642 		if (ncp->nc_nlen >= *buflen) {
3643 			cache_rev_failed(&reason);
3644 			error = ENOMEM;
3645 			goto out_abort;
3646 		}
3647 		*buflen -= ncp->nc_nlen;
3648 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3649 		*buflen -= 1;
3650 		buf[*buflen] = '/';
3651 		tvp = ncp->nc_dvp;
3652 		tvp_seqc = vn_seqc_read_any(tvp);
3653 		if (seqc_in_modify(tvp_seqc)) {
3654 			cache_rev_failed(&reason);
3655 			goto out_abort;
3656 		}
3657 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3658 			cache_rev_failed(&reason);
3659 			goto out_abort;
3660 		}
3661 		/*
3662 		 * Acquire fence provided by vn_seqc_read_any above.
3663 		 */
3664 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3665 			cache_rev_failed(&reason);
3666 			goto out_abort;
3667 		}
3668 		if (!cache_ncp_canuse(ncp)) {
3669 			cache_rev_failed(&reason);
3670 			goto out_abort;
3671 		}
3672 		vp = tvp;
3673 		vp_seqc = tvp_seqc;
3674 		if (vp == rdir || vp == rootvnode)
3675 			break;
3676 	}
3677 out_ok:
3678 	vfs_smr_exit();
3679 	*retbuf = buf + *buflen;
3680 	*buflen = orig_buflen - *buflen + addend;
3681 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3682 	return (0);
3683 
3684 out_abort:
3685 	*buflen = orig_buflen;
3686 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3687 	vfs_smr_exit();
3688 	return (error);
3689 }
3690 
3691 static int
vn_fullpath_any(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen)3692 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3693     size_t *buflen)
3694 {
3695 	size_t orig_buflen, addend;
3696 	int error;
3697 
3698 	if (*buflen < 2)
3699 		return (EINVAL);
3700 
3701 	orig_buflen = *buflen;
3702 
3703 	vref(vp);
3704 	addend = 0;
3705 	if (vp->v_type != VDIR) {
3706 		*buflen -= 1;
3707 		buf[*buflen] = '\0';
3708 		error = vn_vptocnp(&vp, buf, buflen);
3709 		if (error)
3710 			return (error);
3711 		if (*buflen == 0) {
3712 			vrele(vp);
3713 			return (ENOMEM);
3714 		}
3715 		*buflen -= 1;
3716 		buf[*buflen] = '/';
3717 		addend = orig_buflen - *buflen;
3718 	}
3719 
3720 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3721 }
3722 
3723 /*
3724  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3725  *
3726  * Since the namecache does not track hardlinks, the caller is expected to
3727  * first look up the target vnode with WANTPARENT flag passed to namei to get
3728  * dvp and vp.
3729  *
3730  * Then we have 2 cases:
3731  * - if the found vnode is a directory, the path can be constructed just by
3732  *   following names up the chain
3733  * - otherwise we populate the buffer with the saved name and start resolving
3734  *   from the parent
3735  */
3736 int
vn_fullpath_hardlink(struct vnode * vp,struct vnode * dvp,const char * hrdl_name,size_t hrdl_name_length,char ** retbuf,char ** freebuf,size_t * buflen)3737 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3738     const char *hrdl_name, size_t hrdl_name_length,
3739     char **retbuf, char **freebuf, size_t *buflen)
3740 {
3741 	char *buf, *tmpbuf;
3742 	struct pwd *pwd;
3743 	size_t addend;
3744 	int error;
3745 	__enum_uint8(vtype) type;
3746 
3747 	if (*buflen < 2)
3748 		return (EINVAL);
3749 	if (*buflen > MAXPATHLEN)
3750 		*buflen = MAXPATHLEN;
3751 
3752 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3753 
3754 	addend = 0;
3755 
3756 	/*
3757 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3758 	 *
3759 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3760 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3761 	 * If the type is VDIR (like in this very case) we can skip looking
3762 	 * at ni_dvp in the first place. However, since vnodes get passed here
3763 	 * unlocked the target may transition to doomed state (type == VBAD)
3764 	 * before we get to evaluate the condition. If this happens, we will
3765 	 * populate part of the buffer and descend to vn_fullpath_dir with
3766 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3767 	 */
3768 	type = atomic_load_8(&vp->v_type);
3769 	if (type == VBAD) {
3770 		error = ENOENT;
3771 		goto out_bad;
3772 	}
3773 	if (type != VDIR) {
3774 		addend = hrdl_name_length + 2;
3775 		if (*buflen < addend) {
3776 			error = ENOMEM;
3777 			goto out_bad;
3778 		}
3779 		*buflen -= addend;
3780 		tmpbuf = buf + *buflen;
3781 		tmpbuf[0] = '/';
3782 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3783 		tmpbuf[addend - 1] = '\0';
3784 		vp = dvp;
3785 	}
3786 
3787 	vfs_smr_enter();
3788 	pwd = pwd_get_smr();
3789 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3790 	    addend);
3791 	VFS_SMR_ASSERT_NOT_ENTERED();
3792 	if (error < 0) {
3793 		pwd = pwd_hold(curthread);
3794 		vref(vp);
3795 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3796 		    addend);
3797 		pwd_drop(pwd);
3798 	}
3799 	if (error != 0)
3800 		goto out_bad;
3801 
3802 	*freebuf = buf;
3803 
3804 	return (0);
3805 out_bad:
3806 	free(buf, M_TEMP);
3807 	return (error);
3808 }
3809 
3810 struct vnode *
vn_dir_dd_ino(struct vnode * vp)3811 vn_dir_dd_ino(struct vnode *vp)
3812 {
3813 	struct namecache *ncp;
3814 	struct vnode *ddvp;
3815 	struct mtx *vlp;
3816 	enum vgetstate vs;
3817 
3818 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3819 	vlp = VP2VNODELOCK(vp);
3820 	mtx_lock(vlp);
3821 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3822 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3823 			continue;
3824 		ddvp = ncp->nc_dvp;
3825 		vs = vget_prep(ddvp);
3826 		mtx_unlock(vlp);
3827 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3828 			return (NULL);
3829 		return (ddvp);
3830 	}
3831 	mtx_unlock(vlp);
3832 	return (NULL);
3833 }
3834 
3835 int
vn_commname(struct vnode * vp,char * buf,u_int buflen)3836 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3837 {
3838 	struct namecache *ncp;
3839 	struct mtx *vlp;
3840 	int l;
3841 
3842 	vlp = VP2VNODELOCK(vp);
3843 	mtx_lock(vlp);
3844 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3845 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3846 			break;
3847 	if (ncp == NULL) {
3848 		mtx_unlock(vlp);
3849 		return (ENOENT);
3850 	}
3851 	l = min(ncp->nc_nlen, buflen - 1);
3852 	memcpy(buf, ncp->nc_name, l);
3853 	mtx_unlock(vlp);
3854 	buf[l] = '\0';
3855 	return (0);
3856 }
3857 
3858 /*
3859  * This function updates path string to vnode's full global path
3860  * and checks the size of the new path string against the pathlen argument.
3861  *
3862  * Requires a locked, referenced vnode.
3863  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3864  *
3865  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3866  * because it falls back to the ".." lookup if the namecache lookup fails.
3867  */
3868 int
vn_path_to_global_path(struct thread * td,struct vnode * vp,char * path,u_int pathlen)3869 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3870     u_int pathlen)
3871 {
3872 	struct nameidata nd;
3873 	struct vnode *vp1;
3874 	char *rpath, *fbuf;
3875 	int error;
3876 
3877 	ASSERT_VOP_ELOCKED(vp, __func__);
3878 
3879 	/* Construct global filesystem path from vp. */
3880 	VOP_UNLOCK(vp);
3881 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3882 
3883 	if (error != 0) {
3884 		vrele(vp);
3885 		return (error);
3886 	}
3887 
3888 	if (strlen(rpath) >= pathlen) {
3889 		vrele(vp);
3890 		error = ENAMETOOLONG;
3891 		goto out;
3892 	}
3893 
3894 	/*
3895 	 * Re-lookup the vnode by path to detect a possible rename.
3896 	 * As a side effect, the vnode is relocked.
3897 	 * If vnode was renamed, return ENOENT.
3898 	 */
3899 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3900 	error = namei(&nd);
3901 	if (error != 0) {
3902 		vrele(vp);
3903 		goto out;
3904 	}
3905 	NDFREE_PNBUF(&nd);
3906 	vp1 = nd.ni_vp;
3907 	vrele(vp);
3908 	if (vp1 == vp)
3909 		strcpy(path, rpath);
3910 	else {
3911 		vput(vp1);
3912 		error = ENOENT;
3913 	}
3914 
3915 out:
3916 	free(fbuf, M_TEMP);
3917 	return (error);
3918 }
3919 
3920 /*
3921  * This is similar to vn_path_to_global_path but allows for regular
3922  * files which may not be present in the cache.
3923  *
3924  * Requires a locked, referenced vnode.
3925  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3926  */
3927 int
vn_path_to_global_path_hardlink(struct thread * td,struct vnode * vp,struct vnode * dvp,char * path,u_int pathlen,const char * leaf_name,size_t leaf_length)3928 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3929     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3930     size_t leaf_length)
3931 {
3932 	struct nameidata nd;
3933 	struct vnode *vp1;
3934 	char *rpath, *fbuf;
3935 	size_t len;
3936 	int error;
3937 
3938 	ASSERT_VOP_ELOCKED(vp, __func__);
3939 
3940 	/*
3941 	 * Construct global filesystem path from dvp, vp and leaf
3942 	 * name.
3943 	 */
3944 	VOP_UNLOCK(vp);
3945 	len = pathlen;
3946 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3947 	    &rpath, &fbuf, &len);
3948 
3949 	if (error != 0) {
3950 		vrele(vp);
3951 		return (error);
3952 	}
3953 
3954 	if (strlen(rpath) >= pathlen) {
3955 		vrele(vp);
3956 		error = ENAMETOOLONG;
3957 		goto out;
3958 	}
3959 
3960 	/*
3961 	 * Re-lookup the vnode by path to detect a possible rename.
3962 	 * As a side effect, the vnode is relocked.
3963 	 * If vnode was renamed, return ENOENT.
3964 	 */
3965 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3966 	error = namei(&nd);
3967 	if (error != 0) {
3968 		vrele(vp);
3969 		goto out;
3970 	}
3971 	NDFREE_PNBUF(&nd);
3972 	vp1 = nd.ni_vp;
3973 	vrele(vp);
3974 	if (vp1 == vp)
3975 		strcpy(path, rpath);
3976 	else {
3977 		vput(vp1);
3978 		error = ENOENT;
3979 	}
3980 
3981 out:
3982 	free(fbuf, M_TEMP);
3983 	return (error);
3984 }
3985 
3986 #ifdef DDB
3987 static void
db_print_vpath(struct vnode * vp)3988 db_print_vpath(struct vnode *vp)
3989 {
3990 
3991 	while (vp != NULL) {
3992 		db_printf("%p: ", vp);
3993 		if (vp == rootvnode) {
3994 			db_printf("/");
3995 			vp = NULL;
3996 		} else {
3997 			if (vp->v_vflag & VV_ROOT) {
3998 				db_printf("<mount point>");
3999 				vp = vp->v_mount->mnt_vnodecovered;
4000 			} else {
4001 				struct namecache *ncp;
4002 				char *ncn;
4003 				int i;
4004 
4005 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4006 				if (ncp != NULL) {
4007 					ncn = ncp->nc_name;
4008 					for (i = 0; i < ncp->nc_nlen; i++)
4009 						db_printf("%c", *ncn++);
4010 					vp = ncp->nc_dvp;
4011 				} else {
4012 					vp = NULL;
4013 				}
4014 			}
4015 		}
4016 		db_printf("\n");
4017 	}
4018 
4019 	return;
4020 }
4021 
DB_SHOW_COMMAND(vpath,db_show_vpath)4022 DB_SHOW_COMMAND(vpath, db_show_vpath)
4023 {
4024 	struct vnode *vp;
4025 
4026 	if (!have_addr) {
4027 		db_printf("usage: show vpath <struct vnode *>\n");
4028 		return;
4029 	}
4030 
4031 	vp = (struct vnode *)addr;
4032 	db_print_vpath(vp);
4033 }
4034 
4035 #endif
4036 
4037 static int cache_fast_lookup = 1;
4038 
4039 #define CACHE_FPL_FAILED	-2020
4040 
4041 static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args * v)4042 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4043 {
4044 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4045 	panic("no proper vop_fplookup_vexec");
4046 }
4047 
4048 static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args * v)4049 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4050 {
4051 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4052 	panic("no proper vop_fplookup_symlink");
4053 }
4054 
4055 void
cache_vop_vector_register(struct vop_vector * v)4056 cache_vop_vector_register(struct vop_vector *v)
4057 {
4058 	size_t ops;
4059 
4060 	ops = 0;
4061 	if (v->vop_fplookup_vexec != NULL) {
4062 		ops++;
4063 	}
4064 	if (v->vop_fplookup_symlink != NULL) {
4065 		ops++;
4066 	}
4067 
4068 	if (ops == 2) {
4069 		return;
4070 	}
4071 
4072 	if (ops == 0) {
4073 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4074 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4075 		return;
4076 	}
4077 
4078 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4079 	    "need to be provided",  __func__, v);
4080 	if (v->vop_fplookup_vexec == NULL) {
4081 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4082 	}
4083 	if (v->vop_fplookup_symlink == NULL) {
4084 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4085 	}
4086 	panic("bad vop vector %p", v);
4087 }
4088 
4089 #ifdef INVARIANTS
4090 void
cache_validate_vop_vector(struct mount * mp,struct vop_vector * vops)4091 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4092 {
4093 	if (mp == NULL)
4094 		return;
4095 
4096 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4097 		return;
4098 
4099 	if (vops->vop_fplookup_vexec == NULL ||
4100 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4101 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4102 		    vops, mp->mnt_vfc->vfc_name);
4103 
4104 	if (vops->vop_fplookup_symlink == NULL ||
4105 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4106 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4107 		    vops, mp->mnt_vfc->vfc_name);
4108 }
4109 #endif
4110 
4111 void
cache_fast_lookup_enabled_recalc(void)4112 cache_fast_lookup_enabled_recalc(void)
4113 {
4114 	int lookup_flag;
4115 	int mac_on;
4116 
4117 #ifdef MAC
4118 	mac_on = mac_vnode_check_lookup_enabled();
4119 	mac_on |= mac_vnode_check_readlink_enabled();
4120 #else
4121 	mac_on = 0;
4122 #endif
4123 
4124 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4125 	if (lookup_flag && !mac_on) {
4126 		atomic_store_char(&cache_fast_lookup_enabled, true);
4127 	} else {
4128 		atomic_store_char(&cache_fast_lookup_enabled, false);
4129 	}
4130 }
4131 
4132 static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)4133 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4134 {
4135 	int error, old;
4136 
4137 	old = atomic_load_int(&cache_fast_lookup);
4138 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4139 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4140 		cache_fast_lookup_enabled_recalc();
4141 	return (error);
4142 }
4143 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4144     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4145 
4146 /*
4147  * Components of nameidata (or objects it can point to) which may
4148  * need restoring in case fast path lookup fails.
4149  */
4150 struct nameidata_outer {
4151 	size_t ni_pathlen;
4152 	int cn_flags;
4153 };
4154 
4155 struct nameidata_saved {
4156 #ifdef INVARIANTS
4157 	char *cn_nameptr;
4158 	size_t ni_pathlen;
4159 #endif
4160 };
4161 
4162 #ifdef INVARIANTS
4163 struct cache_fpl_debug {
4164 	size_t ni_pathlen;
4165 };
4166 #endif
4167 
4168 struct cache_fpl {
4169 	struct nameidata *ndp;
4170 	struct componentname *cnp;
4171 	char *nulchar;
4172 	struct vnode *dvp;
4173 	struct vnode *tvp;
4174 	seqc_t dvp_seqc;
4175 	seqc_t tvp_seqc;
4176 	uint32_t hash;
4177 	struct nameidata_saved snd;
4178 	struct nameidata_outer snd_outer;
4179 	int line;
4180 	enum cache_fpl_status status:8;
4181 	bool in_smr;
4182 	bool fsearch;
4183 	struct pwd **pwd;
4184 #ifdef INVARIANTS
4185 	struct cache_fpl_debug debug;
4186 #endif
4187 };
4188 
4189 static bool cache_fplookup_mp_supported(struct mount *mp);
4190 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4191 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4192 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4193 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4194 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4195 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4196 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4197 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4198 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4199 
4200 static void
cache_fpl_cleanup_cnp(struct componentname * cnp)4201 cache_fpl_cleanup_cnp(struct componentname *cnp)
4202 {
4203 
4204 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4205 	cnp->cn_pnbuf = NULL;
4206 	cnp->cn_nameptr = NULL;
4207 }
4208 
4209 static struct vnode *
cache_fpl_handle_root(struct cache_fpl * fpl)4210 cache_fpl_handle_root(struct cache_fpl *fpl)
4211 {
4212 	struct nameidata *ndp;
4213 	struct componentname *cnp;
4214 
4215 	ndp = fpl->ndp;
4216 	cnp = fpl->cnp;
4217 
4218 	MPASS(*(cnp->cn_nameptr) == '/');
4219 	cnp->cn_nameptr++;
4220 	cache_fpl_pathlen_dec(fpl);
4221 
4222 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4223 		do {
4224 			cnp->cn_nameptr++;
4225 			cache_fpl_pathlen_dec(fpl);
4226 		} while (*(cnp->cn_nameptr) == '/');
4227 	}
4228 
4229 	return (ndp->ni_rootdir);
4230 }
4231 
4232 static void
cache_fpl_checkpoint_outer(struct cache_fpl * fpl)4233 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4234 {
4235 
4236 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4237 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4238 }
4239 
4240 static void
cache_fpl_checkpoint(struct cache_fpl * fpl)4241 cache_fpl_checkpoint(struct cache_fpl *fpl)
4242 {
4243 
4244 #ifdef INVARIANTS
4245 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4246 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4247 #endif
4248 }
4249 
4250 static void
cache_fpl_restore_partial(struct cache_fpl * fpl)4251 cache_fpl_restore_partial(struct cache_fpl *fpl)
4252 {
4253 
4254 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4255 #ifdef INVARIANTS
4256 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4257 #endif
4258 }
4259 
4260 static void
cache_fpl_restore_abort(struct cache_fpl * fpl)4261 cache_fpl_restore_abort(struct cache_fpl *fpl)
4262 {
4263 
4264 	cache_fpl_restore_partial(fpl);
4265 	/*
4266 	 * It is 0 on entry by API contract.
4267 	 */
4268 	fpl->ndp->ni_resflags = 0;
4269 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4270 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4271 }
4272 
4273 #ifdef INVARIANTS
4274 #define cache_fpl_smr_assert_entered(fpl) ({			\
4275 	struct cache_fpl *_fpl = (fpl);				\
4276 	MPASS(_fpl->in_smr == true);				\
4277 	VFS_SMR_ASSERT_ENTERED();				\
4278 })
4279 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4280 	struct cache_fpl *_fpl = (fpl);				\
4281 	MPASS(_fpl->in_smr == false);				\
4282 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4283 })
4284 static void
cache_fpl_assert_status(struct cache_fpl * fpl)4285 cache_fpl_assert_status(struct cache_fpl *fpl)
4286 {
4287 
4288 	switch (fpl->status) {
4289 	case CACHE_FPL_STATUS_UNSET:
4290 		__assert_unreachable();
4291 		break;
4292 	case CACHE_FPL_STATUS_DESTROYED:
4293 	case CACHE_FPL_STATUS_ABORTED:
4294 	case CACHE_FPL_STATUS_PARTIAL:
4295 	case CACHE_FPL_STATUS_HANDLED:
4296 		break;
4297 	}
4298 }
4299 #else
4300 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4301 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4302 #define cache_fpl_assert_status(fpl) do { } while (0)
4303 #endif
4304 
4305 #define cache_fpl_smr_enter_initial(fpl) ({			\
4306 	struct cache_fpl *_fpl = (fpl);				\
4307 	vfs_smr_enter();					\
4308 	_fpl->in_smr = true;					\
4309 })
4310 
4311 #define cache_fpl_smr_enter(fpl) ({				\
4312 	struct cache_fpl *_fpl = (fpl);				\
4313 	MPASS(_fpl->in_smr == false);				\
4314 	vfs_smr_enter();					\
4315 	_fpl->in_smr = true;					\
4316 })
4317 
4318 #define cache_fpl_smr_exit(fpl) ({				\
4319 	struct cache_fpl *_fpl = (fpl);				\
4320 	MPASS(_fpl->in_smr == true);				\
4321 	vfs_smr_exit();						\
4322 	_fpl->in_smr = false;					\
4323 })
4324 
4325 static int
cache_fpl_aborted_early_impl(struct cache_fpl * fpl,int line)4326 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4327 {
4328 
4329 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4330 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4331 		    ("%s: converting to abort from %d at %d, set at %d\n",
4332 		    __func__, fpl->status, line, fpl->line));
4333 	}
4334 	cache_fpl_smr_assert_not_entered(fpl);
4335 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4336 	fpl->line = line;
4337 	return (CACHE_FPL_FAILED);
4338 }
4339 
4340 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4341 
4342 static int __noinline
cache_fpl_aborted_impl(struct cache_fpl * fpl,int line)4343 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4344 {
4345 	struct nameidata *ndp;
4346 	struct componentname *cnp;
4347 
4348 	ndp = fpl->ndp;
4349 	cnp = fpl->cnp;
4350 
4351 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4352 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4353 		    ("%s: converting to abort from %d at %d, set at %d\n",
4354 		    __func__, fpl->status, line, fpl->line));
4355 	}
4356 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4357 	fpl->line = line;
4358 	if (fpl->in_smr)
4359 		cache_fpl_smr_exit(fpl);
4360 	cache_fpl_restore_abort(fpl);
4361 	/*
4362 	 * Resolving symlinks overwrites data passed by the caller.
4363 	 * Let namei know.
4364 	 */
4365 	if (ndp->ni_loopcnt > 0) {
4366 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4367 		cache_fpl_cleanup_cnp(cnp);
4368 	}
4369 	return (CACHE_FPL_FAILED);
4370 }
4371 
4372 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4373 
4374 static int __noinline
cache_fpl_partial_impl(struct cache_fpl * fpl,int line)4375 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4376 {
4377 
4378 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4379 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4380 	    __func__, line, fpl->status, fpl->line));
4381 	cache_fpl_smr_assert_entered(fpl);
4382 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4383 	fpl->line = line;
4384 	return (cache_fplookup_partial_setup(fpl));
4385 }
4386 
4387 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4388 
4389 static int
cache_fpl_handled_impl(struct cache_fpl * fpl,int line)4390 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4391 {
4392 
4393 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4394 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4395 	    __func__, line, fpl->status, fpl->line));
4396 	cache_fpl_smr_assert_not_entered(fpl);
4397 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4398 	fpl->line = line;
4399 	return (0);
4400 }
4401 
4402 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4403 
4404 static int
cache_fpl_handled_error_impl(struct cache_fpl * fpl,int error,int line)4405 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4406 {
4407 
4408 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4409 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4410 	    __func__, line, fpl->status, fpl->line));
4411 	MPASS(error != 0);
4412 	MPASS(error != CACHE_FPL_FAILED);
4413 	cache_fpl_smr_assert_not_entered(fpl);
4414 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4415 	fpl->line = line;
4416 	fpl->dvp = NULL;
4417 	fpl->tvp = NULL;
4418 	return (error);
4419 }
4420 
4421 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4422 
4423 static bool
cache_fpl_terminated(struct cache_fpl * fpl)4424 cache_fpl_terminated(struct cache_fpl *fpl)
4425 {
4426 
4427 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4428 }
4429 
4430 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4431 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4432 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4433 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4434 	 OPENWRITE | WANTIOCTLCAPS)
4435 
4436 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4437 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4438 
4439 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4440     "supported and internal flags overlap");
4441 
4442 static bool
cache_fpl_islastcn(struct nameidata * ndp)4443 cache_fpl_islastcn(struct nameidata *ndp)
4444 {
4445 
4446 	return (*ndp->ni_next == 0);
4447 }
4448 
4449 static bool
cache_fpl_istrailingslash(struct cache_fpl * fpl)4450 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4451 {
4452 
4453 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4454 	return (*(fpl->nulchar - 1) == '/');
4455 }
4456 
4457 static bool
cache_fpl_isdotdot(struct componentname * cnp)4458 cache_fpl_isdotdot(struct componentname *cnp)
4459 {
4460 
4461 	if (cnp->cn_namelen == 2 &&
4462 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4463 		return (true);
4464 	return (false);
4465 }
4466 
4467 static bool
cache_can_fplookup(struct cache_fpl * fpl)4468 cache_can_fplookup(struct cache_fpl *fpl)
4469 {
4470 	struct nameidata *ndp;
4471 	struct componentname *cnp;
4472 	struct thread *td;
4473 
4474 	ndp = fpl->ndp;
4475 	cnp = fpl->cnp;
4476 	td = curthread;
4477 
4478 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4479 		cache_fpl_aborted_early(fpl);
4480 		return (false);
4481 	}
4482 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4483 		cache_fpl_aborted_early(fpl);
4484 		return (false);
4485 	}
4486 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4487 		cache_fpl_aborted_early(fpl);
4488 		return (false);
4489 	}
4490 	if (AUDITING_TD(td)) {
4491 		cache_fpl_aborted_early(fpl);
4492 		return (false);
4493 	}
4494 	if (ndp->ni_startdir != NULL) {
4495 		cache_fpl_aborted_early(fpl);
4496 		return (false);
4497 	}
4498 	return (true);
4499 }
4500 
4501 static int __noinline
cache_fplookup_dirfd(struct cache_fpl * fpl,struct vnode ** vpp)4502 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4503 {
4504 	struct nameidata *ndp;
4505 	struct componentname *cnp;
4506 	int error;
4507 	bool fsearch;
4508 
4509 	ndp = fpl->ndp;
4510 	cnp = fpl->cnp;
4511 
4512 	error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
4513 	if (__predict_false(error != 0)) {
4514 		return (cache_fpl_aborted(fpl));
4515 	}
4516 	fpl->fsearch = fsearch;
4517 	if ((*vpp)->v_type != VDIR) {
4518 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4519 			cache_fpl_smr_exit(fpl);
4520 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4521 		}
4522 	}
4523 	return (0);
4524 }
4525 
4526 static int __noinline
cache_fplookup_negative_promote(struct cache_fpl * fpl,struct namecache * oncp,uint32_t hash)4527 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4528     uint32_t hash)
4529 {
4530 	struct componentname *cnp;
4531 	struct vnode *dvp;
4532 
4533 	cnp = fpl->cnp;
4534 	dvp = fpl->dvp;
4535 
4536 	cache_fpl_smr_exit(fpl);
4537 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4538 		return (cache_fpl_handled_error(fpl, ENOENT));
4539 	else
4540 		return (cache_fpl_aborted(fpl));
4541 }
4542 
4543 /*
4544  * The target vnode is not supported, prepare for the slow path to take over.
4545  */
4546 static int __noinline
cache_fplookup_partial_setup(struct cache_fpl * fpl)4547 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4548 {
4549 	struct nameidata *ndp;
4550 	struct componentname *cnp;
4551 	enum vgetstate dvs;
4552 	struct vnode *dvp;
4553 	struct pwd *pwd;
4554 	seqc_t dvp_seqc;
4555 
4556 	ndp = fpl->ndp;
4557 	cnp = fpl->cnp;
4558 	pwd = *(fpl->pwd);
4559 	dvp = fpl->dvp;
4560 	dvp_seqc = fpl->dvp_seqc;
4561 
4562 	if (!pwd_hold_smr(pwd)) {
4563 		return (cache_fpl_aborted(fpl));
4564 	}
4565 
4566 	/*
4567 	 * Note that seqc is checked before the vnode is locked, so by
4568 	 * the time regular lookup gets to it it may have moved.
4569 	 *
4570 	 * Ultimately this does not affect correctness, any lookup errors
4571 	 * are userspace racing with itself. It is guaranteed that any
4572 	 * path which ultimately gets found could also have been found
4573 	 * by regular lookup going all the way in absence of concurrent
4574 	 * modifications.
4575 	 */
4576 	dvs = vget_prep_smr(dvp);
4577 	cache_fpl_smr_exit(fpl);
4578 	if (__predict_false(dvs == VGET_NONE)) {
4579 		pwd_drop(pwd);
4580 		return (cache_fpl_aborted(fpl));
4581 	}
4582 
4583 	vget_finish_ref(dvp, dvs);
4584 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4585 		vrele(dvp);
4586 		pwd_drop(pwd);
4587 		return (cache_fpl_aborted(fpl));
4588 	}
4589 
4590 	cache_fpl_restore_partial(fpl);
4591 #ifdef INVARIANTS
4592 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4593 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4594 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4595 	}
4596 #endif
4597 
4598 	ndp->ni_startdir = dvp;
4599 	cnp->cn_flags |= MAKEENTRY;
4600 	if (cache_fpl_islastcn(ndp))
4601 		cnp->cn_flags |= ISLASTCN;
4602 	if (cache_fpl_isdotdot(cnp))
4603 		cnp->cn_flags |= ISDOTDOT;
4604 
4605 	/*
4606 	 * Skip potential extra slashes parsing did not take care of.
4607 	 * cache_fplookup_skip_slashes explains the mechanism.
4608 	 */
4609 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4610 		do {
4611 			cnp->cn_nameptr++;
4612 			cache_fpl_pathlen_dec(fpl);
4613 		} while (*(cnp->cn_nameptr) == '/');
4614 	}
4615 
4616 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4617 #ifdef INVARIANTS
4618 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4619 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4620 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4621 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4622 	}
4623 #endif
4624 	return (0);
4625 }
4626 
4627 static int
cache_fplookup_final_child(struct cache_fpl * fpl,enum vgetstate tvs)4628 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4629 {
4630 	struct componentname *cnp;
4631 	struct vnode *tvp;
4632 	seqc_t tvp_seqc;
4633 	int error, lkflags;
4634 
4635 	cnp = fpl->cnp;
4636 	tvp = fpl->tvp;
4637 	tvp_seqc = fpl->tvp_seqc;
4638 
4639 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4640 		lkflags = LK_SHARED;
4641 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4642 			lkflags = LK_EXCLUSIVE;
4643 		error = vget_finish(tvp, lkflags, tvs);
4644 		if (__predict_false(error != 0)) {
4645 			return (cache_fpl_aborted(fpl));
4646 		}
4647 	} else {
4648 		vget_finish_ref(tvp, tvs);
4649 	}
4650 
4651 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4652 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4653 			vput(tvp);
4654 		else
4655 			vrele(tvp);
4656 		return (cache_fpl_aborted(fpl));
4657 	}
4658 
4659 	return (cache_fpl_handled(fpl));
4660 }
4661 
4662 /*
4663  * They want to possibly modify the state of the namecache.
4664  */
4665 static int __noinline
cache_fplookup_final_modifying(struct cache_fpl * fpl)4666 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4667 {
4668 	struct nameidata *ndp __diagused;
4669 	struct componentname *cnp;
4670 	enum vgetstate dvs;
4671 	struct vnode *dvp, *tvp;
4672 	struct mount *mp;
4673 	seqc_t dvp_seqc;
4674 	int error;
4675 	bool docache;
4676 
4677 	ndp = fpl->ndp;
4678 	cnp = fpl->cnp;
4679 	dvp = fpl->dvp;
4680 	dvp_seqc = fpl->dvp_seqc;
4681 
4682 	MPASS(*(cnp->cn_nameptr) != '/');
4683 	MPASS(cache_fpl_islastcn(ndp));
4684 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4685 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4686 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4687 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4688 	    cnp->cn_nameiop == RENAME);
4689 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4690 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4691 
4692 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4693 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4694 		docache = false;
4695 
4696 	/*
4697 	 * Regular lookup nulifies the slash, which we don't do here.
4698 	 * Don't take chances with filesystem routines seeing it for
4699 	 * the last entry.
4700 	 */
4701 	if (cache_fpl_istrailingslash(fpl)) {
4702 		return (cache_fpl_partial(fpl));
4703 	}
4704 
4705 	mp = atomic_load_ptr(&dvp->v_mount);
4706 	if (__predict_false(mp == NULL)) {
4707 		return (cache_fpl_aborted(fpl));
4708 	}
4709 
4710 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4711 		cache_fpl_smr_exit(fpl);
4712 		/*
4713 		 * Original code keeps not checking for CREATE which
4714 		 * might be a bug. For now let the old lookup decide.
4715 		 */
4716 		if (cnp->cn_nameiop == CREATE) {
4717 			return (cache_fpl_aborted(fpl));
4718 		}
4719 		return (cache_fpl_handled_error(fpl, EROFS));
4720 	}
4721 
4722 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4723 		cache_fpl_smr_exit(fpl);
4724 		return (cache_fpl_handled_error(fpl, EEXIST));
4725 	}
4726 
4727 	/*
4728 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4729 	 * reasoning.
4730 	 *
4731 	 * XXX At least UFS requires its lookup routine to be called for
4732 	 * the last path component, which leads to some level of complication
4733 	 * and inefficiency:
4734 	 * - the target routine always locks the target vnode, but our caller
4735 	 *   may not need it locked
4736 	 * - some of the VOP machinery asserts that the parent is locked, which
4737 	 *   once more may be not required
4738 	 *
4739 	 * TODO: add a flag for filesystems which don't need this.
4740 	 */
4741 	dvs = vget_prep_smr(dvp);
4742 	cache_fpl_smr_exit(fpl);
4743 	if (__predict_false(dvs == VGET_NONE)) {
4744 		return (cache_fpl_aborted(fpl));
4745 	}
4746 
4747 	vget_finish_ref(dvp, dvs);
4748 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4749 		vrele(dvp);
4750 		return (cache_fpl_aborted(fpl));
4751 	}
4752 
4753 	error = vn_lock(dvp, LK_EXCLUSIVE);
4754 	if (__predict_false(error != 0)) {
4755 		vrele(dvp);
4756 		return (cache_fpl_aborted(fpl));
4757 	}
4758 
4759 	tvp = NULL;
4760 	cnp->cn_flags |= ISLASTCN;
4761 	if (docache)
4762 		cnp->cn_flags |= MAKEENTRY;
4763 	if (cache_fpl_isdotdot(cnp))
4764 		cnp->cn_flags |= ISDOTDOT;
4765 	cnp->cn_lkflags = LK_EXCLUSIVE;
4766 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4767 	switch (error) {
4768 	case EJUSTRETURN:
4769 	case 0:
4770 		break;
4771 	case ENOTDIR:
4772 	case ENOENT:
4773 		vput(dvp);
4774 		return (cache_fpl_handled_error(fpl, error));
4775 	default:
4776 		vput(dvp);
4777 		return (cache_fpl_aborted(fpl));
4778 	}
4779 
4780 	fpl->tvp = tvp;
4781 
4782 	if (tvp == NULL) {
4783 		MPASS(error == EJUSTRETURN);
4784 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4785 			VOP_UNLOCK(dvp);
4786 		}
4787 		return (cache_fpl_handled(fpl));
4788 	}
4789 
4790 	/*
4791 	 * There are very hairy corner cases concerning various flag combinations
4792 	 * and locking state. In particular here we only hold one lock instead of
4793 	 * two.
4794 	 *
4795 	 * Skip the complexity as it is of no significance for normal workloads.
4796 	 */
4797 	if (__predict_false(tvp == dvp)) {
4798 		vput(dvp);
4799 		vrele(tvp);
4800 		return (cache_fpl_aborted(fpl));
4801 	}
4802 
4803 	/*
4804 	 * If they want the symlink itself we are fine, but if they want to
4805 	 * follow it regular lookup has to be engaged.
4806 	 */
4807 	if (tvp->v_type == VLNK) {
4808 		if ((cnp->cn_flags & FOLLOW) != 0) {
4809 			vput(dvp);
4810 			vput(tvp);
4811 			return (cache_fpl_aborted(fpl));
4812 		}
4813 	}
4814 
4815 	/*
4816 	 * Since we expect this to be the terminal vnode it should almost never
4817 	 * be a mount point.
4818 	 */
4819 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4820 		vput(dvp);
4821 		vput(tvp);
4822 		return (cache_fpl_aborted(fpl));
4823 	}
4824 
4825 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4826 		vput(dvp);
4827 		vput(tvp);
4828 		return (cache_fpl_handled_error(fpl, EEXIST));
4829 	}
4830 
4831 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4832 		VOP_UNLOCK(tvp);
4833 	}
4834 
4835 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4836 		VOP_UNLOCK(dvp);
4837 	}
4838 
4839 	return (cache_fpl_handled(fpl));
4840 }
4841 
4842 static int __noinline
cache_fplookup_modifying(struct cache_fpl * fpl)4843 cache_fplookup_modifying(struct cache_fpl *fpl)
4844 {
4845 	struct nameidata *ndp;
4846 
4847 	ndp = fpl->ndp;
4848 
4849 	if (!cache_fpl_islastcn(ndp)) {
4850 		return (cache_fpl_partial(fpl));
4851 	}
4852 	return (cache_fplookup_final_modifying(fpl));
4853 }
4854 
4855 static int __noinline
cache_fplookup_final_withparent(struct cache_fpl * fpl)4856 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4857 {
4858 	struct componentname *cnp;
4859 	enum vgetstate dvs, tvs;
4860 	struct vnode *dvp, *tvp;
4861 	seqc_t dvp_seqc;
4862 	int error;
4863 
4864 	cnp = fpl->cnp;
4865 	dvp = fpl->dvp;
4866 	dvp_seqc = fpl->dvp_seqc;
4867 	tvp = fpl->tvp;
4868 
4869 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4870 
4871 	/*
4872 	 * This is less efficient than it can be for simplicity.
4873 	 */
4874 	dvs = vget_prep_smr(dvp);
4875 	if (__predict_false(dvs == VGET_NONE)) {
4876 		return (cache_fpl_aborted(fpl));
4877 	}
4878 	tvs = vget_prep_smr(tvp);
4879 	if (__predict_false(tvs == VGET_NONE)) {
4880 		cache_fpl_smr_exit(fpl);
4881 		vget_abort(dvp, dvs);
4882 		return (cache_fpl_aborted(fpl));
4883 	}
4884 
4885 	cache_fpl_smr_exit(fpl);
4886 
4887 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4888 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4889 		if (__predict_false(error != 0)) {
4890 			vget_abort(tvp, tvs);
4891 			return (cache_fpl_aborted(fpl));
4892 		}
4893 	} else {
4894 		vget_finish_ref(dvp, dvs);
4895 	}
4896 
4897 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4898 		vget_abort(tvp, tvs);
4899 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4900 			vput(dvp);
4901 		else
4902 			vrele(dvp);
4903 		return (cache_fpl_aborted(fpl));
4904 	}
4905 
4906 	error = cache_fplookup_final_child(fpl, tvs);
4907 	if (__predict_false(error != 0)) {
4908 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4909 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4910 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4911 			vput(dvp);
4912 		else
4913 			vrele(dvp);
4914 		return (error);
4915 	}
4916 
4917 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4918 	return (0);
4919 }
4920 
4921 static int
cache_fplookup_final(struct cache_fpl * fpl)4922 cache_fplookup_final(struct cache_fpl *fpl)
4923 {
4924 	struct componentname *cnp;
4925 	enum vgetstate tvs;
4926 	struct vnode *dvp, *tvp;
4927 	seqc_t dvp_seqc;
4928 
4929 	cnp = fpl->cnp;
4930 	dvp = fpl->dvp;
4931 	dvp_seqc = fpl->dvp_seqc;
4932 	tvp = fpl->tvp;
4933 
4934 	MPASS(*(cnp->cn_nameptr) != '/');
4935 
4936 	if (cnp->cn_nameiop != LOOKUP) {
4937 		return (cache_fplookup_final_modifying(fpl));
4938 	}
4939 
4940 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4941 		return (cache_fplookup_final_withparent(fpl));
4942 
4943 	tvs = vget_prep_smr(tvp);
4944 	if (__predict_false(tvs == VGET_NONE)) {
4945 		return (cache_fpl_partial(fpl));
4946 	}
4947 
4948 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4949 		cache_fpl_smr_exit(fpl);
4950 		vget_abort(tvp, tvs);
4951 		return (cache_fpl_aborted(fpl));
4952 	}
4953 
4954 	cache_fpl_smr_exit(fpl);
4955 	return (cache_fplookup_final_child(fpl, tvs));
4956 }
4957 
4958 /*
4959  * Comment from locked lookup:
4960  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4961  * directory, e.g. like "/." or ".".
4962  */
4963 static int __noinline
cache_fplookup_degenerate(struct cache_fpl * fpl)4964 cache_fplookup_degenerate(struct cache_fpl *fpl)
4965 {
4966 	struct componentname *cnp;
4967 	struct vnode *dvp;
4968 	enum vgetstate dvs;
4969 	int error, lkflags;
4970 #ifdef INVARIANTS
4971 	char *cp;
4972 #endif
4973 
4974 	fpl->tvp = fpl->dvp;
4975 	fpl->tvp_seqc = fpl->dvp_seqc;
4976 
4977 	cnp = fpl->cnp;
4978 	dvp = fpl->dvp;
4979 
4980 #ifdef INVARIANTS
4981 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4982 		KASSERT(*cp == '/',
4983 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4984 		    cnp->cn_pnbuf));
4985 	}
4986 #endif
4987 
4988 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4989 		cache_fpl_smr_exit(fpl);
4990 		return (cache_fpl_handled_error(fpl, EISDIR));
4991 	}
4992 
4993 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4994 		return (cache_fplookup_final_withparent(fpl));
4995 	}
4996 
4997 	dvs = vget_prep_smr(dvp);
4998 	cache_fpl_smr_exit(fpl);
4999 	if (__predict_false(dvs == VGET_NONE)) {
5000 		return (cache_fpl_aborted(fpl));
5001 	}
5002 
5003 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5004 		lkflags = LK_SHARED;
5005 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5006 			lkflags = LK_EXCLUSIVE;
5007 		error = vget_finish(dvp, lkflags, dvs);
5008 		if (__predict_false(error != 0)) {
5009 			return (cache_fpl_aborted(fpl));
5010 		}
5011 	} else {
5012 		vget_finish_ref(dvp, dvs);
5013 	}
5014 	return (cache_fpl_handled(fpl));
5015 }
5016 
5017 static int __noinline
cache_fplookup_emptypath(struct cache_fpl * fpl)5018 cache_fplookup_emptypath(struct cache_fpl *fpl)
5019 {
5020 	struct nameidata *ndp;
5021 	struct componentname *cnp;
5022 	enum vgetstate tvs;
5023 	struct vnode *tvp;
5024 	int error, lkflags;
5025 
5026 	fpl->tvp = fpl->dvp;
5027 	fpl->tvp_seqc = fpl->dvp_seqc;
5028 
5029 	ndp = fpl->ndp;
5030 	cnp = fpl->cnp;
5031 	tvp = fpl->tvp;
5032 
5033 	MPASS(*cnp->cn_pnbuf == '\0');
5034 
5035 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5036 		cache_fpl_smr_exit(fpl);
5037 		return (cache_fpl_handled_error(fpl, ENOENT));
5038 	}
5039 
5040 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5041 
5042 	tvs = vget_prep_smr(tvp);
5043 	cache_fpl_smr_exit(fpl);
5044 	if (__predict_false(tvs == VGET_NONE)) {
5045 		return (cache_fpl_aborted(fpl));
5046 	}
5047 
5048 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5049 		lkflags = LK_SHARED;
5050 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5051 			lkflags = LK_EXCLUSIVE;
5052 		error = vget_finish(tvp, lkflags, tvs);
5053 		if (__predict_false(error != 0)) {
5054 			return (cache_fpl_aborted(fpl));
5055 		}
5056 	} else {
5057 		vget_finish_ref(tvp, tvs);
5058 	}
5059 
5060 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5061 	return (cache_fpl_handled(fpl));
5062 }
5063 
5064 static int __noinline
cache_fplookup_noentry(struct cache_fpl * fpl)5065 cache_fplookup_noentry(struct cache_fpl *fpl)
5066 {
5067 	struct nameidata *ndp;
5068 	struct componentname *cnp;
5069 	enum vgetstate dvs;
5070 	struct vnode *dvp, *tvp;
5071 	seqc_t dvp_seqc;
5072 	int error;
5073 
5074 	ndp = fpl->ndp;
5075 	cnp = fpl->cnp;
5076 	dvp = fpl->dvp;
5077 	dvp_seqc = fpl->dvp_seqc;
5078 
5079 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5080 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5081 	if (cnp->cn_nameiop == LOOKUP)
5082 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5083 	MPASS(!cache_fpl_isdotdot(cnp));
5084 
5085 	/*
5086 	 * Hack: delayed name len checking.
5087 	 */
5088 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5089 		cache_fpl_smr_exit(fpl);
5090 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5091 	}
5092 
5093 	if (cnp->cn_nameptr[0] == '/') {
5094 		return (cache_fplookup_skip_slashes(fpl));
5095 	}
5096 
5097 	if (cnp->cn_pnbuf[0] == '\0') {
5098 		return (cache_fplookup_emptypath(fpl));
5099 	}
5100 
5101 	if (cnp->cn_nameptr[0] == '\0') {
5102 		if (fpl->tvp == NULL) {
5103 			return (cache_fplookup_degenerate(fpl));
5104 		}
5105 		return (cache_fplookup_trailingslash(fpl));
5106 	}
5107 
5108 	if (cnp->cn_nameiop != LOOKUP) {
5109 		fpl->tvp = NULL;
5110 		return (cache_fplookup_modifying(fpl));
5111 	}
5112 
5113 	/*
5114 	 * Only try to fill in the component if it is the last one,
5115 	 * otherwise not only there may be several to handle but the
5116 	 * walk may be complicated.
5117 	 */
5118 	if (!cache_fpl_islastcn(ndp)) {
5119 		return (cache_fpl_partial(fpl));
5120 	}
5121 
5122 	/*
5123 	 * Regular lookup nulifies the slash, which we don't do here.
5124 	 * Don't take chances with filesystem routines seeing it for
5125 	 * the last entry.
5126 	 */
5127 	if (cache_fpl_istrailingslash(fpl)) {
5128 		return (cache_fpl_partial(fpl));
5129 	}
5130 
5131 	/*
5132 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5133 	 * reasoning.
5134 	 */
5135 	dvs = vget_prep_smr(dvp);
5136 	cache_fpl_smr_exit(fpl);
5137 	if (__predict_false(dvs == VGET_NONE)) {
5138 		return (cache_fpl_aborted(fpl));
5139 	}
5140 
5141 	vget_finish_ref(dvp, dvs);
5142 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5143 		vrele(dvp);
5144 		return (cache_fpl_aborted(fpl));
5145 	}
5146 
5147 	error = vn_lock(dvp, LK_SHARED);
5148 	if (__predict_false(error != 0)) {
5149 		vrele(dvp);
5150 		return (cache_fpl_aborted(fpl));
5151 	}
5152 
5153 	tvp = NULL;
5154 	/*
5155 	 * TODO: provide variants which don't require locking either vnode.
5156 	 */
5157 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5158 	cnp->cn_lkflags = LK_SHARED;
5159 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5160 		cnp->cn_lkflags = LK_EXCLUSIVE;
5161 	}
5162 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5163 	switch (error) {
5164 	case EJUSTRETURN:
5165 	case 0:
5166 		break;
5167 	case ENOTDIR:
5168 	case ENOENT:
5169 		vput(dvp);
5170 		return (cache_fpl_handled_error(fpl, error));
5171 	default:
5172 		vput(dvp);
5173 		return (cache_fpl_aborted(fpl));
5174 	}
5175 
5176 	fpl->tvp = tvp;
5177 
5178 	if (tvp == NULL) {
5179 		MPASS(error == EJUSTRETURN);
5180 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5181 			vput(dvp);
5182 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5183 			VOP_UNLOCK(dvp);
5184 		}
5185 		return (cache_fpl_handled(fpl));
5186 	}
5187 
5188 	if (tvp->v_type == VLNK) {
5189 		if ((cnp->cn_flags & FOLLOW) != 0) {
5190 			vput(dvp);
5191 			vput(tvp);
5192 			return (cache_fpl_aborted(fpl));
5193 		}
5194 	}
5195 
5196 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5197 		vput(dvp);
5198 		vput(tvp);
5199 		return (cache_fpl_aborted(fpl));
5200 	}
5201 
5202 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5203 		VOP_UNLOCK(tvp);
5204 	}
5205 
5206 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5207 		vput(dvp);
5208 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5209 		VOP_UNLOCK(dvp);
5210 	}
5211 	return (cache_fpl_handled(fpl));
5212 }
5213 
5214 static int __noinline
cache_fplookup_dot(struct cache_fpl * fpl)5215 cache_fplookup_dot(struct cache_fpl *fpl)
5216 {
5217 	int error;
5218 
5219 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5220 
5221 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5222 		cache_fpl_smr_exit(fpl);
5223 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5224 	}
5225 
5226 	/*
5227 	 * Just re-assign the value. seqc will be checked later for the first
5228 	 * non-dot path component in line and/or before deciding to return the
5229 	 * vnode.
5230 	 */
5231 	fpl->tvp = fpl->dvp;
5232 	fpl->tvp_seqc = fpl->dvp_seqc;
5233 
5234 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5235 
5236 	error = 0;
5237 	if (cache_fplookup_is_mp(fpl)) {
5238 		error = cache_fplookup_cross_mount(fpl);
5239 	}
5240 	return (error);
5241 }
5242 
5243 static int __noinline
cache_fplookup_dotdot(struct cache_fpl * fpl)5244 cache_fplookup_dotdot(struct cache_fpl *fpl)
5245 {
5246 	struct nameidata *ndp;
5247 	struct componentname *cnp;
5248 	struct namecache *ncp;
5249 	struct vnode *dvp;
5250 	struct prison *pr;
5251 	u_char nc_flag;
5252 
5253 	ndp = fpl->ndp;
5254 	cnp = fpl->cnp;
5255 	dvp = fpl->dvp;
5256 
5257 	MPASS(cache_fpl_isdotdot(cnp));
5258 
5259 	/*
5260 	 * XXX this is racy the same way regular lookup is
5261 	 */
5262 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5263 	    pr = pr->pr_parent)
5264 		if (dvp == pr->pr_root)
5265 			break;
5266 
5267 	if (dvp == ndp->ni_rootdir ||
5268 	    dvp == ndp->ni_topdir ||
5269 	    dvp == rootvnode ||
5270 	    pr != NULL) {
5271 		fpl->tvp = dvp;
5272 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5273 		if (seqc_in_modify(fpl->tvp_seqc)) {
5274 			return (cache_fpl_aborted(fpl));
5275 		}
5276 		return (0);
5277 	}
5278 
5279 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5280 		/*
5281 		 * TODO
5282 		 * The opposite of climb mount is needed here.
5283 		 */
5284 		return (cache_fpl_partial(fpl));
5285 	}
5286 
5287 	if (__predict_false(dvp->v_type != VDIR)) {
5288 		cache_fpl_smr_exit(fpl);
5289 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5290 	}
5291 
5292 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5293 	if (ncp == NULL) {
5294 		return (cache_fpl_aborted(fpl));
5295 	}
5296 
5297 	nc_flag = atomic_load_char(&ncp->nc_flag);
5298 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5299 		if ((nc_flag & NCF_NEGATIVE) != 0)
5300 			return (cache_fpl_aborted(fpl));
5301 		fpl->tvp = ncp->nc_vp;
5302 	} else {
5303 		fpl->tvp = ncp->nc_dvp;
5304 	}
5305 
5306 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5307 	if (seqc_in_modify(fpl->tvp_seqc)) {
5308 		return (cache_fpl_partial(fpl));
5309 	}
5310 
5311 	/*
5312 	 * Acquire fence provided by vn_seqc_read_any above.
5313 	 */
5314 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5315 		return (cache_fpl_aborted(fpl));
5316 	}
5317 
5318 	if (!cache_ncp_canuse(ncp)) {
5319 		return (cache_fpl_aborted(fpl));
5320 	}
5321 
5322 	return (0);
5323 }
5324 
5325 static int __noinline
cache_fplookup_neg(struct cache_fpl * fpl,struct namecache * ncp,uint32_t hash)5326 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5327 {
5328 	u_char nc_flag __diagused;
5329 	bool neg_promote;
5330 
5331 #ifdef INVARIANTS
5332 	nc_flag = atomic_load_char(&ncp->nc_flag);
5333 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5334 #endif
5335 	/*
5336 	 * If they want to create an entry we need to replace this one.
5337 	 */
5338 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5339 		fpl->tvp = NULL;
5340 		return (cache_fplookup_modifying(fpl));
5341 	}
5342 	neg_promote = cache_neg_hit_prep(ncp);
5343 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5344 		cache_neg_hit_abort(ncp);
5345 		return (cache_fpl_partial(fpl));
5346 	}
5347 	if (neg_promote) {
5348 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5349 	}
5350 	cache_neg_hit_finish(ncp);
5351 	cache_fpl_smr_exit(fpl);
5352 	return (cache_fpl_handled_error(fpl, ENOENT));
5353 }
5354 
5355 /*
5356  * Resolve a symlink. Called by filesystem-specific routines.
5357  *
5358  * Code flow is:
5359  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5360  */
5361 int
cache_symlink_resolve(struct cache_fpl * fpl,const char * string,size_t len)5362 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5363 {
5364 	struct nameidata *ndp;
5365 	struct componentname *cnp;
5366 	size_t adjust;
5367 
5368 	ndp = fpl->ndp;
5369 	cnp = fpl->cnp;
5370 
5371 	if (__predict_false(len == 0)) {
5372 		return (ENOENT);
5373 	}
5374 
5375 	if (__predict_false(len > MAXPATHLEN - 2)) {
5376 		if (cache_fpl_istrailingslash(fpl)) {
5377 			return (EAGAIN);
5378 		}
5379 	}
5380 
5381 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5382 #ifdef INVARIANTS
5383 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5384 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5385 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5386 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5387 	}
5388 #endif
5389 
5390 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5391 		return (ENAMETOOLONG);
5392 	}
5393 
5394 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5395 		return (ELOOP);
5396 	}
5397 
5398 	adjust = len;
5399 	if (ndp->ni_pathlen > 1) {
5400 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5401 	} else {
5402 		if (cache_fpl_istrailingslash(fpl)) {
5403 			adjust = len + 1;
5404 			cnp->cn_pnbuf[len] = '/';
5405 			cnp->cn_pnbuf[len + 1] = '\0';
5406 		} else {
5407 			cnp->cn_pnbuf[len] = '\0';
5408 		}
5409 	}
5410 	bcopy(string, cnp->cn_pnbuf, len);
5411 
5412 	ndp->ni_pathlen += adjust;
5413 	cache_fpl_pathlen_add(fpl, adjust);
5414 	cnp->cn_nameptr = cnp->cn_pnbuf;
5415 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5416 	fpl->tvp = NULL;
5417 	return (0);
5418 }
5419 
5420 static int __noinline
cache_fplookup_symlink(struct cache_fpl * fpl)5421 cache_fplookup_symlink(struct cache_fpl *fpl)
5422 {
5423 	struct mount *mp;
5424 	struct nameidata *ndp;
5425 	struct componentname *cnp;
5426 	struct vnode *dvp, *tvp;
5427 	struct pwd *pwd;
5428 	int error;
5429 
5430 	ndp = fpl->ndp;
5431 	cnp = fpl->cnp;
5432 	dvp = fpl->dvp;
5433 	tvp = fpl->tvp;
5434 	pwd = *(fpl->pwd);
5435 
5436 	if (cache_fpl_islastcn(ndp)) {
5437 		if ((cnp->cn_flags & FOLLOW) == 0) {
5438 			return (cache_fplookup_final(fpl));
5439 		}
5440 	}
5441 
5442 	mp = atomic_load_ptr(&dvp->v_mount);
5443 	if (__predict_false(mp == NULL)) {
5444 		return (cache_fpl_aborted(fpl));
5445 	}
5446 
5447 	/*
5448 	 * Note this check races against setting the flag just like regular
5449 	 * lookup.
5450 	 */
5451 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5452 		cache_fpl_smr_exit(fpl);
5453 		return (cache_fpl_handled_error(fpl, EACCES));
5454 	}
5455 
5456 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5457 	if (__predict_false(error != 0)) {
5458 		switch (error) {
5459 		case EAGAIN:
5460 			return (cache_fpl_partial(fpl));
5461 		case ENOENT:
5462 		case ENAMETOOLONG:
5463 		case ELOOP:
5464 			cache_fpl_smr_exit(fpl);
5465 			return (cache_fpl_handled_error(fpl, error));
5466 		default:
5467 			return (cache_fpl_aborted(fpl));
5468 		}
5469 	}
5470 
5471 	if (*(cnp->cn_nameptr) == '/') {
5472 		fpl->dvp = cache_fpl_handle_root(fpl);
5473 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5474 		if (seqc_in_modify(fpl->dvp_seqc)) {
5475 			return (cache_fpl_aborted(fpl));
5476 		}
5477 		/*
5478 		 * The main loop assumes that ->dvp points to a vnode belonging
5479 		 * to a filesystem which can do lockless lookup, but the absolute
5480 		 * symlink can be wandering off to one which does not.
5481 		 */
5482 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5483 		if (__predict_false(mp == NULL)) {
5484 			return (cache_fpl_aborted(fpl));
5485 		}
5486 		if (!cache_fplookup_mp_supported(mp)) {
5487 			cache_fpl_checkpoint(fpl);
5488 			return (cache_fpl_partial(fpl));
5489 		}
5490 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5491 			return (cache_fpl_aborted(fpl));
5492 		}
5493 	}
5494 	return (0);
5495 }
5496 
5497 static int
cache_fplookup_next(struct cache_fpl * fpl)5498 cache_fplookup_next(struct cache_fpl *fpl)
5499 {
5500 	struct componentname *cnp;
5501 	struct namecache *ncp;
5502 	struct vnode *dvp, *tvp;
5503 	u_char nc_flag;
5504 	uint32_t hash;
5505 	int error;
5506 
5507 	cnp = fpl->cnp;
5508 	dvp = fpl->dvp;
5509 	hash = fpl->hash;
5510 
5511 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5512 		if (cnp->cn_namelen == 1) {
5513 			return (cache_fplookup_dot(fpl));
5514 		}
5515 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5516 			return (cache_fplookup_dotdot(fpl));
5517 		}
5518 	}
5519 
5520 	MPASS(!cache_fpl_isdotdot(cnp));
5521 
5522 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5523 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5524 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5525 			break;
5526 	}
5527 
5528 	if (__predict_false(ncp == NULL)) {
5529 		return (cache_fplookup_noentry(fpl));
5530 	}
5531 
5532 	tvp = atomic_load_ptr(&ncp->nc_vp);
5533 	nc_flag = atomic_load_char(&ncp->nc_flag);
5534 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5535 		return (cache_fplookup_neg(fpl, ncp, hash));
5536 	}
5537 
5538 	if (!cache_ncp_canuse(ncp)) {
5539 		return (cache_fpl_partial(fpl));
5540 	}
5541 
5542 	fpl->tvp = tvp;
5543 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5544 	if (seqc_in_modify(fpl->tvp_seqc)) {
5545 		return (cache_fpl_partial(fpl));
5546 	}
5547 
5548 	counter_u64_add(numposhits, 1);
5549 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5550 
5551 	error = 0;
5552 	if (cache_fplookup_is_mp(fpl)) {
5553 		error = cache_fplookup_cross_mount(fpl);
5554 	}
5555 	return (error);
5556 }
5557 
5558 static bool
cache_fplookup_mp_supported(struct mount * mp)5559 cache_fplookup_mp_supported(struct mount *mp)
5560 {
5561 
5562 	MPASS(mp != NULL);
5563 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5564 		return (false);
5565 	return (true);
5566 }
5567 
5568 /*
5569  * Walk up the mount stack (if any).
5570  *
5571  * Correctness is provided in the following ways:
5572  * - all vnodes are protected from freeing with SMR
5573  * - struct mount objects are type stable making them always safe to access
5574  * - stability of the particular mount is provided by busying it
5575  * - relationship between the vnode which is mounted on and the mount is
5576  *   verified with the vnode sequence counter after busying
5577  * - association between root vnode of the mount and the mount is protected
5578  *   by busy
5579  *
5580  * From that point on we can read the sequence counter of the root vnode
5581  * and get the next mount on the stack (if any) using the same protection.
5582  *
5583  * By the end of successful walk we are guaranteed the reached state was
5584  * indeed present at least at some point which matches the regular lookup.
5585  */
5586 static int __noinline
cache_fplookup_climb_mount(struct cache_fpl * fpl)5587 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5588 {
5589 	struct mount *mp, *prev_mp;
5590 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5591 	struct vnode *vp;
5592 	seqc_t vp_seqc;
5593 
5594 	vp = fpl->tvp;
5595 	vp_seqc = fpl->tvp_seqc;
5596 
5597 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5598 	mp = atomic_load_ptr(&vp->v_mountedhere);
5599 	if (__predict_false(mp == NULL)) {
5600 		return (0);
5601 	}
5602 
5603 	prev_mp = NULL;
5604 	for (;;) {
5605 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5606 			if (prev_mp != NULL)
5607 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5608 			return (cache_fpl_partial(fpl));
5609 		}
5610 		if (prev_mp != NULL)
5611 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5612 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5613 			vfs_op_thread_exit_crit(mp, mpcpu);
5614 			return (cache_fpl_partial(fpl));
5615 		}
5616 		if (!cache_fplookup_mp_supported(mp)) {
5617 			vfs_op_thread_exit_crit(mp, mpcpu);
5618 			return (cache_fpl_partial(fpl));
5619 		}
5620 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5621 		if (vp == NULL) {
5622 			vfs_op_thread_exit_crit(mp, mpcpu);
5623 			return (cache_fpl_partial(fpl));
5624 		}
5625 		vp_seqc = vn_seqc_read_any(vp);
5626 		if (seqc_in_modify(vp_seqc)) {
5627 			vfs_op_thread_exit_crit(mp, mpcpu);
5628 			return (cache_fpl_partial(fpl));
5629 		}
5630 		prev_mp = mp;
5631 		prev_mpcpu = mpcpu;
5632 		mp = atomic_load_ptr(&vp->v_mountedhere);
5633 		if (mp == NULL)
5634 			break;
5635 	}
5636 
5637 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5638 	fpl->tvp = vp;
5639 	fpl->tvp_seqc = vp_seqc;
5640 	return (0);
5641 }
5642 
5643 static int __noinline
cache_fplookup_cross_mount(struct cache_fpl * fpl)5644 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5645 {
5646 	struct mount *mp;
5647 	struct mount_pcpu *mpcpu;
5648 	struct vnode *vp;
5649 	seqc_t vp_seqc;
5650 
5651 	vp = fpl->tvp;
5652 	vp_seqc = fpl->tvp_seqc;
5653 
5654 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5655 	mp = atomic_load_ptr(&vp->v_mountedhere);
5656 	if (__predict_false(mp == NULL)) {
5657 		return (0);
5658 	}
5659 
5660 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5661 		return (cache_fpl_partial(fpl));
5662 	}
5663 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5664 		vfs_op_thread_exit_crit(mp, mpcpu);
5665 		return (cache_fpl_partial(fpl));
5666 	}
5667 	if (!cache_fplookup_mp_supported(mp)) {
5668 		vfs_op_thread_exit_crit(mp, mpcpu);
5669 		return (cache_fpl_partial(fpl));
5670 	}
5671 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5672 	if (__predict_false(vp == NULL)) {
5673 		vfs_op_thread_exit_crit(mp, mpcpu);
5674 		return (cache_fpl_partial(fpl));
5675 	}
5676 	vp_seqc = vn_seqc_read_any(vp);
5677 	vfs_op_thread_exit_crit(mp, mpcpu);
5678 	if (seqc_in_modify(vp_seqc)) {
5679 		return (cache_fpl_partial(fpl));
5680 	}
5681 	mp = atomic_load_ptr(&vp->v_mountedhere);
5682 	if (__predict_false(mp != NULL)) {
5683 		/*
5684 		 * There are possibly more mount points on top.
5685 		 * Normally this does not happen so for simplicity just start
5686 		 * over.
5687 		 */
5688 		return (cache_fplookup_climb_mount(fpl));
5689 	}
5690 
5691 	fpl->tvp = vp;
5692 	fpl->tvp_seqc = vp_seqc;
5693 	return (0);
5694 }
5695 
5696 /*
5697  * Check if a vnode is mounted on.
5698  */
5699 static bool
cache_fplookup_is_mp(struct cache_fpl * fpl)5700 cache_fplookup_is_mp(struct cache_fpl *fpl)
5701 {
5702 	struct vnode *vp;
5703 
5704 	vp = fpl->tvp;
5705 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5706 }
5707 
5708 /*
5709  * Parse the path.
5710  *
5711  * The code was originally copy-pasted from regular lookup and despite
5712  * clean ups leaves performance on the table. Any modifications here
5713  * must take into account that in case off fallback the resulting
5714  * nameidata state has to be compatible with the original.
5715  */
5716 
5717 /*
5718  * Debug ni_pathlen tracking.
5719  */
5720 #ifdef INVARIANTS
5721 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5722 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5723 {
5724 
5725 	fpl->debug.ni_pathlen += n;
5726 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5727 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5728 }
5729 
5730 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5731 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5732 {
5733 
5734 	fpl->debug.ni_pathlen -= n;
5735 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5736 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5737 }
5738 
5739 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5740 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5741 {
5742 
5743 	cache_fpl_pathlen_add(fpl, 1);
5744 }
5745 
5746 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5747 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5748 {
5749 
5750 	cache_fpl_pathlen_sub(fpl, 1);
5751 }
5752 #else
5753 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5754 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5755 {
5756 }
5757 
5758 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5759 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5760 {
5761 }
5762 
5763 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5764 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5765 {
5766 }
5767 
5768 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5769 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5770 {
5771 }
5772 #endif
5773 
5774 static void
cache_fplookup_parse(struct cache_fpl * fpl)5775 cache_fplookup_parse(struct cache_fpl *fpl)
5776 {
5777 	struct nameidata *ndp;
5778 	struct componentname *cnp;
5779 	struct vnode *dvp;
5780 	char *cp;
5781 	uint32_t hash;
5782 
5783 	ndp = fpl->ndp;
5784 	cnp = fpl->cnp;
5785 	dvp = fpl->dvp;
5786 
5787 	/*
5788 	 * Find the end of this path component, it is either / or nul.
5789 	 *
5790 	 * Store / as a temporary sentinel so that we only have one character
5791 	 * to test for. Pathnames tend to be short so this should not be
5792 	 * resulting in cache misses.
5793 	 *
5794 	 * TODO: fix this to be word-sized.
5795 	 */
5796 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5797 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5798 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5799 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5800 	    fpl->nulchar, cnp->cn_pnbuf));
5801 	KASSERT(*fpl->nulchar == '\0',
5802 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5803 	    cnp->cn_pnbuf));
5804 	hash = cache_get_hash_iter_start(dvp);
5805 	*fpl->nulchar = '/';
5806 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5807 		KASSERT(*cp != '\0',
5808 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5809 		    cnp->cn_nameptr));
5810 		hash = cache_get_hash_iter(*cp, hash);
5811 		continue;
5812 	}
5813 	*fpl->nulchar = '\0';
5814 	fpl->hash = cache_get_hash_iter_finish(hash);
5815 
5816 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5817 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5818 
5819 #ifdef INVARIANTS
5820 	/*
5821 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5822 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5823 	 */
5824 	if (cnp->cn_namelen <= NAME_MAX) {
5825 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5826 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5827 			    cnp->cn_nameptr, cnp->cn_namelen);
5828 		}
5829 	}
5830 #endif
5831 
5832 	/*
5833 	 * Hack: we have to check if the found path component's length exceeds
5834 	 * NAME_MAX. However, the condition is very rarely true and check can
5835 	 * be elided in the common case -- if an entry was found in the cache,
5836 	 * then it could not have been too long to begin with.
5837 	 */
5838 	ndp->ni_next = cp;
5839 }
5840 
5841 static void
cache_fplookup_parse_advance(struct cache_fpl * fpl)5842 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5843 {
5844 	struct nameidata *ndp;
5845 	struct componentname *cnp;
5846 
5847 	ndp = fpl->ndp;
5848 	cnp = fpl->cnp;
5849 
5850 	cnp->cn_nameptr = ndp->ni_next;
5851 	KASSERT(*(cnp->cn_nameptr) == '/',
5852 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5853 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5854 	cnp->cn_nameptr++;
5855 	cache_fpl_pathlen_dec(fpl);
5856 }
5857 
5858 /*
5859  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5860  *
5861  * Lockless lookup tries to elide checking for spurious slashes and should they
5862  * be present is guaranteed to fail to find an entry. In this case the caller
5863  * must check if the name starts with a slash and call this routine.  It is
5864  * going to fast forward across the spurious slashes and set the state up for
5865  * retry.
5866  */
5867 static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl * fpl)5868 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5869 {
5870 	struct nameidata *ndp;
5871 	struct componentname *cnp;
5872 
5873 	ndp = fpl->ndp;
5874 	cnp = fpl->cnp;
5875 
5876 	MPASS(*(cnp->cn_nameptr) == '/');
5877 	do {
5878 		cnp->cn_nameptr++;
5879 		cache_fpl_pathlen_dec(fpl);
5880 	} while (*(cnp->cn_nameptr) == '/');
5881 
5882 	/*
5883 	 * Go back to one slash so that cache_fplookup_parse_advance has
5884 	 * something to skip.
5885 	 */
5886 	cnp->cn_nameptr--;
5887 	cache_fpl_pathlen_inc(fpl);
5888 
5889 	/*
5890 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5891 	 */
5892 	ndp->ni_next = cnp->cn_nameptr;
5893 
5894 	/*
5895 	 * See cache_fplookup_dot.
5896 	 */
5897 	fpl->tvp = fpl->dvp;
5898 	fpl->tvp_seqc = fpl->dvp_seqc;
5899 
5900 	return (0);
5901 }
5902 
5903 /*
5904  * Handle trailing slashes (e.g., "foo/").
5905  *
5906  * If a trailing slash is found the terminal vnode must be a directory.
5907  * Regular lookup shortens the path by nulifying the first trailing slash and
5908  * sets the TRAILINGSLASH flag to denote this took place. There are several
5909  * checks on it performed later.
5910  *
5911  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5912  * manner relying on an invariant that a non-directory vnode will get a miss.
5913  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5914  *
5915  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5916  * and denotes this is the last path component, which avoids looping back.
5917  *
5918  * Only plain lookups are supported for now to restrict corner cases to handle.
5919  */
5920 static int __noinline
cache_fplookup_trailingslash(struct cache_fpl * fpl)5921 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5922 {
5923 #ifdef INVARIANTS
5924 	size_t ni_pathlen;
5925 #endif
5926 	struct nameidata *ndp;
5927 	struct componentname *cnp;
5928 	struct namecache *ncp;
5929 	struct vnode *tvp;
5930 	char *cn_nameptr_orig, *cn_nameptr_slash;
5931 	seqc_t tvp_seqc;
5932 	u_char nc_flag;
5933 
5934 	ndp = fpl->ndp;
5935 	cnp = fpl->cnp;
5936 	tvp = fpl->tvp;
5937 	tvp_seqc = fpl->tvp_seqc;
5938 
5939 	MPASS(fpl->dvp == fpl->tvp);
5940 	KASSERT(cache_fpl_istrailingslash(fpl),
5941 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5942 	    cnp->cn_pnbuf));
5943 	KASSERT(cnp->cn_nameptr[0] == '\0',
5944 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5945 	    cnp->cn_pnbuf));
5946 	KASSERT(cnp->cn_namelen == 0,
5947 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5948 	    cnp->cn_pnbuf));
5949 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5950 
5951 	if (cnp->cn_nameiop != LOOKUP) {
5952 		return (cache_fpl_aborted(fpl));
5953 	}
5954 
5955 	if (__predict_false(tvp->v_type != VDIR)) {
5956 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5957 			return (cache_fpl_aborted(fpl));
5958 		}
5959 		cache_fpl_smr_exit(fpl);
5960 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5961 	}
5962 
5963 	/*
5964 	 * Denote the last component.
5965 	 */
5966 	ndp->ni_next = &cnp->cn_nameptr[0];
5967 	MPASS(cache_fpl_islastcn(ndp));
5968 
5969 	/*
5970 	 * Unwind trailing slashes.
5971 	 */
5972 	cn_nameptr_orig = cnp->cn_nameptr;
5973 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5974 		cnp->cn_nameptr--;
5975 		if (cnp->cn_nameptr[0] != '/') {
5976 			break;
5977 		}
5978 	}
5979 
5980 	/*
5981 	 * Unwind to the beginning of the path component.
5982 	 *
5983 	 * Note the path may or may not have started with a slash.
5984 	 */
5985 	cn_nameptr_slash = cnp->cn_nameptr;
5986 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5987 		cnp->cn_nameptr--;
5988 		if (cnp->cn_nameptr[0] == '/') {
5989 			break;
5990 		}
5991 	}
5992 	if (cnp->cn_nameptr[0] == '/') {
5993 		cnp->cn_nameptr++;
5994 	}
5995 
5996 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5997 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5998 	cache_fpl_checkpoint(fpl);
5999 
6000 #ifdef INVARIANTS
6001 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6002 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6003 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6004 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6005 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6006 	}
6007 #endif
6008 
6009 	/*
6010 	 * If this was a "./" lookup the parent directory is already correct.
6011 	 */
6012 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6013 		return (0);
6014 	}
6015 
6016 	/*
6017 	 * Otherwise we need to look it up.
6018 	 */
6019 	tvp = fpl->tvp;
6020 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6021 	if (__predict_false(ncp == NULL)) {
6022 		return (cache_fpl_aborted(fpl));
6023 	}
6024 	nc_flag = atomic_load_char(&ncp->nc_flag);
6025 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6026 		return (cache_fpl_aborted(fpl));
6027 	}
6028 	fpl->dvp = ncp->nc_dvp;
6029 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6030 	if (seqc_in_modify(fpl->dvp_seqc)) {
6031 		return (cache_fpl_aborted(fpl));
6032 	}
6033 	return (0);
6034 }
6035 
6036 /*
6037  * See the API contract for VOP_FPLOOKUP_VEXEC.
6038  */
6039 static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl * fpl,int error)6040 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6041 {
6042 	struct componentname *cnp;
6043 	struct vnode *dvp;
6044 	seqc_t dvp_seqc;
6045 
6046 	cnp = fpl->cnp;
6047 	dvp = fpl->dvp;
6048 	dvp_seqc = fpl->dvp_seqc;
6049 
6050 	/*
6051 	 * Hack: delayed empty path checking.
6052 	 */
6053 	if (cnp->cn_pnbuf[0] == '\0') {
6054 		return (cache_fplookup_emptypath(fpl));
6055 	}
6056 
6057 	/*
6058 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6059 	 * permission check on the last dir when it should not be doing it.  It
6060 	 * may fail, but said failure should be ignored. It is possible to fix
6061 	 * it up fully without resorting to regular lookup, but for now just
6062 	 * abort.
6063 	 */
6064 	if (cache_fpl_istrailingslash(fpl)) {
6065 		return (cache_fpl_aborted(fpl));
6066 	}
6067 
6068 	/*
6069 	 * Hack: delayed degenerate path checking.
6070 	 */
6071 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6072 		return (cache_fplookup_degenerate(fpl));
6073 	}
6074 
6075 	/*
6076 	 * Hack: delayed name len checking.
6077 	 */
6078 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6079 		cache_fpl_smr_exit(fpl);
6080 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6081 	}
6082 
6083 	/*
6084 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6085 	 * In such a case we need to return ENOTDIR, but we may happen to get
6086 	 * here with a different error.
6087 	 */
6088 	if (dvp->v_type != VDIR) {
6089 		error = ENOTDIR;
6090 	}
6091 
6092 	/*
6093 	 * Hack: handle O_SEARCH.
6094 	 *
6095 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6096 	 * <quote>
6097 	 * If the access mode of the open file description associated with the
6098 	 * file descriptor is not O_SEARCH, the function shall check whether
6099 	 * directory searches are permitted using the current permissions of
6100 	 * the directory underlying the file descriptor. If the access mode is
6101 	 * O_SEARCH, the function shall not perform the check.
6102 	 * </quote>
6103 	 *
6104 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6105 	 * component to decide whether to do the permission check. However,
6106 	 * since most lookups never have the flag (and when they do it is only
6107 	 * present for the first path component), lockless lookup only acts on
6108 	 * it if there is a permission problem. Here the flag is represented
6109 	 * with a boolean so that we don't have to clear it on the way out.
6110 	 *
6111 	 * For simplicity this always aborts.
6112 	 * TODO: check if this is the first lookup and ignore the permission
6113 	 * problem. Note the flag has to survive fallback (if it happens to be
6114 	 * performed).
6115 	 */
6116 	if (fpl->fsearch) {
6117 		return (cache_fpl_aborted(fpl));
6118 	}
6119 
6120 	switch (error) {
6121 	case EAGAIN:
6122 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6123 			error = cache_fpl_aborted(fpl);
6124 		} else {
6125 			cache_fpl_partial(fpl);
6126 		}
6127 		break;
6128 	default:
6129 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6130 			error = cache_fpl_aborted(fpl);
6131 		} else {
6132 			cache_fpl_smr_exit(fpl);
6133 			cache_fpl_handled_error(fpl, error);
6134 		}
6135 		break;
6136 	}
6137 	return (error);
6138 }
6139 
6140 static int
cache_fplookup_impl(struct vnode * dvp,struct cache_fpl * fpl)6141 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6142 {
6143 	struct nameidata *ndp;
6144 	struct componentname *cnp;
6145 	struct mount *mp;
6146 	int error;
6147 
6148 	ndp = fpl->ndp;
6149 	cnp = fpl->cnp;
6150 
6151 	cache_fpl_checkpoint(fpl);
6152 
6153 	/*
6154 	 * The vnode at hand is almost always stable, skip checking for it.
6155 	 * Worst case this postpones the check towards the end of the iteration
6156 	 * of the main loop.
6157 	 */
6158 	fpl->dvp = dvp;
6159 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6160 
6161 	mp = atomic_load_ptr(&dvp->v_mount);
6162 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6163 		return (cache_fpl_aborted(fpl));
6164 	}
6165 
6166 	MPASS(fpl->tvp == NULL);
6167 
6168 	for (;;) {
6169 		cache_fplookup_parse(fpl);
6170 
6171 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6172 		if (__predict_false(error != 0)) {
6173 			error = cache_fplookup_failed_vexec(fpl, error);
6174 			break;
6175 		}
6176 
6177 		error = cache_fplookup_next(fpl);
6178 		if (__predict_false(cache_fpl_terminated(fpl))) {
6179 			break;
6180 		}
6181 
6182 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6183 
6184 		if (fpl->tvp->v_type == VLNK) {
6185 			error = cache_fplookup_symlink(fpl);
6186 			if (cache_fpl_terminated(fpl)) {
6187 				break;
6188 			}
6189 		} else {
6190 			if (cache_fpl_islastcn(ndp)) {
6191 				error = cache_fplookup_final(fpl);
6192 				break;
6193 			}
6194 
6195 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6196 				error = cache_fpl_aborted(fpl);
6197 				break;
6198 			}
6199 
6200 			fpl->dvp = fpl->tvp;
6201 			fpl->dvp_seqc = fpl->tvp_seqc;
6202 			cache_fplookup_parse_advance(fpl);
6203 		}
6204 
6205 		cache_fpl_checkpoint(fpl);
6206 	}
6207 
6208 	return (error);
6209 }
6210 
6211 /*
6212  * Fast path lookup protected with SMR and sequence counters.
6213  *
6214  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6215  *
6216  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6217  * outlined below.
6218  *
6219  * Traditional vnode lookup conceptually looks like this:
6220  *
6221  * vn_lock(current);
6222  * for (;;) {
6223  *	next = find();
6224  *	vn_lock(next);
6225  *	vn_unlock(current);
6226  *	current = next;
6227  *	if (last)
6228  *	    break;
6229  * }
6230  * return (current);
6231  *
6232  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6233  * any modifications thanks to holding respective locks.
6234  *
6235  * The same guarantee can be provided with a combination of safe memory
6236  * reclamation and sequence counters instead. If all operations which affect
6237  * the relationship between the current vnode and the one we are looking for
6238  * also modify the counter, we can verify whether all the conditions held as
6239  * we made the jump. This includes things like permissions, mount points etc.
6240  * Counter modification is provided by enclosing relevant places in
6241  * vn_seqc_write_begin()/end() calls.
6242  *
6243  * Thus this translates to:
6244  *
6245  * vfs_smr_enter();
6246  * dvp_seqc = seqc_read_any(dvp);
6247  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6248  *     abort();
6249  * for (;;) {
6250  * 	tvp = find();
6251  * 	tvp_seqc = seqc_read_any(tvp);
6252  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6253  * 	    abort();
6254  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6255  * 	    abort();
6256  * 	dvp = tvp; // we know nothing of importance has changed
6257  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6258  * 	if (last)
6259  * 	    break;
6260  * }
6261  * vget(); // secure the vnode
6262  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6263  * 	    abort();
6264  * // at this point we know nothing has changed for any parent<->child pair
6265  * // as they were crossed during the lookup, meaning we matched the guarantee
6266  * // of the locked variant
6267  * return (tvp);
6268  *
6269  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6270  * - they are called while within vfs_smr protection which they must never exit
6271  * - EAGAIN can be returned to denote checking could not be performed, it is
6272  *   always valid to return it
6273  * - if the sequence counter has not changed the result must be valid
6274  * - if the sequence counter has changed both false positives and false negatives
6275  *   are permitted (since the result will be rejected later)
6276  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6277  *
6278  * Caveats to watch out for:
6279  * - vnodes are passed unlocked and unreferenced with nothing stopping
6280  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6281  *   to use atomic_load_ptr to fetch it.
6282  * - the aforementioned object can also get freed, meaning absent other means it
6283  *   should be protected with vfs_smr
6284  * - either safely checking permissions as they are modified or guaranteeing
6285  *   their stability is left to the routine
6286  */
6287 int
cache_fplookup(struct nameidata * ndp,enum cache_fpl_status * status,struct pwd ** pwdp)6288 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6289     struct pwd **pwdp)
6290 {
6291 	struct cache_fpl fpl;
6292 	struct pwd *pwd;
6293 	struct vnode *dvp;
6294 	struct componentname *cnp;
6295 	int error;
6296 
6297 	fpl.status = CACHE_FPL_STATUS_UNSET;
6298 	fpl.in_smr = false;
6299 	fpl.ndp = ndp;
6300 	fpl.cnp = cnp = &ndp->ni_cnd;
6301 	MPASS(ndp->ni_lcf == 0);
6302 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6303 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6304 	    cnp->cn_flags));
6305 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6306 	MPASS(ndp->ni_resflags == 0);
6307 
6308 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6309 		*status = fpl.status;
6310 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6311 		return (EOPNOTSUPP);
6312 	}
6313 
6314 	cache_fpl_checkpoint_outer(&fpl);
6315 
6316 	cache_fpl_smr_enter_initial(&fpl);
6317 #ifdef INVARIANTS
6318 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6319 #endif
6320 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6321 	fpl.fsearch = false;
6322 	fpl.tvp = NULL; /* for degenerate path handling */
6323 	fpl.pwd = pwdp;
6324 	pwd = pwd_get_smr();
6325 	*(fpl.pwd) = pwd;
6326 	namei_setup_rootdir(ndp, cnp, pwd);
6327 	ndp->ni_topdir = pwd->pwd_jdir;
6328 
6329 	if (cnp->cn_pnbuf[0] == '/') {
6330 		dvp = cache_fpl_handle_root(&fpl);
6331 		ndp->ni_resflags = NIRES_ABS;
6332 	} else {
6333 		if (ndp->ni_dirfd == AT_FDCWD) {
6334 			dvp = pwd->pwd_cdir;
6335 		} else {
6336 			error = cache_fplookup_dirfd(&fpl, &dvp);
6337 			if (__predict_false(error != 0)) {
6338 				goto out;
6339 			}
6340 		}
6341 	}
6342 
6343 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6344 	error = cache_fplookup_impl(dvp, &fpl);
6345 out:
6346 	cache_fpl_smr_assert_not_entered(&fpl);
6347 	cache_fpl_assert_status(&fpl);
6348 	*status = fpl.status;
6349 	if (SDT_PROBES_ENABLED()) {
6350 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6351 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6352 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6353 			    ndp);
6354 	}
6355 
6356 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6357 		MPASS(error != CACHE_FPL_FAILED);
6358 		if (error != 0) {
6359 			cache_fpl_cleanup_cnp(fpl.cnp);
6360 			MPASS(fpl.dvp == NULL);
6361 			MPASS(fpl.tvp == NULL);
6362 		}
6363 		ndp->ni_dvp = fpl.dvp;
6364 		ndp->ni_vp = fpl.tvp;
6365 	}
6366 	return (error);
6367 }
6368