xref: /freebsd/sys/vm/vnode_pager.c (revision b068bb09)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 #include "opt_vm.h"
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/sysctl.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/conf.h>
69 #include <sys/refcount.h>
70 #include <sys/rwlock.h>
71 #include <sys/sf_buf.h>
72 #include <sys/domainset.h>
73 #include <sys/user.h>
74 
75 #include <machine/atomic.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_map.h>
83 #include <vm/vnode_pager.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
88     daddr_t *rtaddress, int *run);
89 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
90 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
91 static void vnode_pager_dealloc(vm_object_t);
92 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
93 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
94     int *, vop_getpages_iodone_t, void *);
95 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
96 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
97 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
98     vm_ooffset_t, struct ucred *cred);
99 static int vnode_pager_generic_getpages_done(struct buf *);
100 static void vnode_pager_generic_getpages_done_async(struct buf *);
101 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
102     vm_offset_t);
103 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
104     vm_offset_t);
105 static void vnode_pager_getvp(vm_object_t, struct vnode **, bool *);
106 
107 const struct pagerops vnodepagerops = {
108 	.pgo_kvme_type = KVME_TYPE_VNODE,
109 	.pgo_alloc =	vnode_pager_alloc,
110 	.pgo_dealloc =	vnode_pager_dealloc,
111 	.pgo_getpages =	vnode_pager_getpages,
112 	.pgo_getpages_async = vnode_pager_getpages_async,
113 	.pgo_putpages =	vnode_pager_putpages,
114 	.pgo_haspage =	vnode_pager_haspage,
115 	.pgo_update_writecount = vnode_pager_update_writecount,
116 	.pgo_release_writecount = vnode_pager_release_writecount,
117 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
118 	.pgo_mightbedirty = vm_object_mightbedirty_,
119 	.pgo_getvp = vnode_pager_getvp,
120 };
121 
122 static struct domainset *vnode_domainset = NULL;
123 
124 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset,
125     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0,
126     sysctl_handle_domainset, "A", "Default vnode NUMA policy");
127 
128 static int nvnpbufs;
129 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
130     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
131 
132 static uma_zone_t vnode_pbuf_zone;
133 
134 static void
vnode_pager_init(void * dummy)135 vnode_pager_init(void *dummy)
136 {
137 
138 #ifdef __LP64__
139 	nvnpbufs = nswbuf * 2;
140 #else
141 	nvnpbufs = nswbuf / 2;
142 #endif
143 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
144 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
145 }
146 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
147 
148 /* Create the VM system backing object for this vnode */
149 int
vnode_create_vobject(struct vnode * vp,off_t isize,struct thread * td)150 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
151 {
152 	vm_object_t object;
153 	vm_ooffset_t size = isize;
154 	bool last;
155 
156 	if (!vn_isdisk(vp) && vn_canvmio(vp) == FALSE)
157 		return (0);
158 
159 	object = vp->v_object;
160 	if (object != NULL)
161 		return (0);
162 
163 	if (size == 0) {
164 		if (vn_isdisk(vp)) {
165 			size = IDX_TO_OFF(INT_MAX);
166 		} else {
167 			if (vn_getsize_locked(vp, &size, td->td_ucred) != 0)
168 				return (0);
169 		}
170 	}
171 
172 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
173 	/*
174 	 * Dereference the reference we just created.  This assumes
175 	 * that the object is associated with the vp.  We still have
176 	 * to serialize with vnode_pager_dealloc() for the last
177 	 * potential reference.
178 	 */
179 	VM_OBJECT_RLOCK(object);
180 	last = refcount_release(&object->ref_count);
181 	VM_OBJECT_RUNLOCK(object);
182 	if (last)
183 		vrele(vp);
184 
185 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
186 
187 	return (0);
188 }
189 
190 void
vnode_destroy_vobject(struct vnode * vp)191 vnode_destroy_vobject(struct vnode *vp)
192 {
193 	struct vm_object *obj;
194 
195 	obj = vp->v_object;
196 	if (obj == NULL || obj->handle != vp)
197 		return;
198 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
199 	VM_OBJECT_WLOCK(obj);
200 	MPASS(obj->type == OBJT_VNODE);
201 	umtx_shm_object_terminated(obj);
202 	if (obj->ref_count == 0) {
203 		KASSERT((obj->flags & OBJ_DEAD) == 0,
204 		   ("vnode_destroy_vobject: Terminating dead object"));
205 		vm_object_set_flag(obj, OBJ_DEAD);
206 
207 		/*
208 		 * Clean pages and flush buffers.
209 		 */
210 		vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
211 		VM_OBJECT_WUNLOCK(obj);
212 
213 		vinvalbuf(vp, V_SAVE, 0, 0);
214 
215 		BO_LOCK(&vp->v_bufobj);
216 		vp->v_bufobj.bo_flag |= BO_DEAD;
217 		BO_UNLOCK(&vp->v_bufobj);
218 
219 		VM_OBJECT_WLOCK(obj);
220 		vm_object_terminate(obj);
221 	} else {
222 		/*
223 		 * Woe to the process that tries to page now :-).
224 		 */
225 		vm_pager_deallocate(obj);
226 		VM_OBJECT_WUNLOCK(obj);
227 	}
228 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
229 }
230 
231 /*
232  * Allocate (or lookup) pager for a vnode.
233  * Handle is a vnode pointer.
234  */
235 vm_object_t
vnode_pager_alloc(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t offset,struct ucred * cred)236 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
237     vm_ooffset_t offset, struct ucred *cred)
238 {
239 	vm_object_t object;
240 	struct vnode *vp;
241 
242 	/*
243 	 * Pageout to vnode, no can do yet.
244 	 */
245 	if (handle == NULL)
246 		return (NULL);
247 
248 	vp = (struct vnode *)handle;
249 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
250 	VNPASS(vp->v_usecount > 0, vp);
251 retry:
252 	object = vp->v_object;
253 
254 	if (object == NULL) {
255 		/*
256 		 * Add an object of the appropriate size
257 		 */
258 		object = vm_object_allocate(OBJT_VNODE,
259 		    OFF_TO_IDX(round_page(size)));
260 
261 		object->un_pager.vnp.vnp_size = size;
262 		object->un_pager.vnp.writemappings = 0;
263 		object->domain.dr_policy = vnode_domainset;
264 		object->handle = handle;
265 		if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) {
266 			VM_OBJECT_WLOCK(object);
267 			vm_object_set_flag(object, OBJ_SIZEVNLOCK);
268 			VM_OBJECT_WUNLOCK(object);
269 		}
270 		VI_LOCK(vp);
271 		if (vp->v_object != NULL) {
272 			/*
273 			 * Object has been created while we were allocating.
274 			 */
275 			VI_UNLOCK(vp);
276 			VM_OBJECT_WLOCK(object);
277 			KASSERT(object->ref_count == 1,
278 			    ("leaked ref %p %d", object, object->ref_count));
279 			object->type = OBJT_DEAD;
280 			refcount_init(&object->ref_count, 0);
281 			VM_OBJECT_WUNLOCK(object);
282 			vm_object_destroy(object);
283 			goto retry;
284 		}
285 		vp->v_object = object;
286 		VI_UNLOCK(vp);
287 		vrefact(vp);
288 	} else {
289 		vm_object_reference(object);
290 #if VM_NRESERVLEVEL > 0
291 		if ((object->flags & OBJ_COLORED) == 0) {
292 			VM_OBJECT_WLOCK(object);
293 			vm_object_color(object, 0);
294 			VM_OBJECT_WUNLOCK(object);
295 		}
296 #endif
297 	}
298 	return (object);
299 }
300 
301 /*
302  *	The object must be locked.
303  */
304 static void
vnode_pager_dealloc(vm_object_t object)305 vnode_pager_dealloc(vm_object_t object)
306 {
307 	struct vnode *vp;
308 	int refs;
309 
310 	vp = object->handle;
311 	if (vp == NULL)
312 		panic("vnode_pager_dealloc: pager already dealloced");
313 
314 	VM_OBJECT_ASSERT_WLOCKED(object);
315 	vm_object_pip_wait(object, "vnpdea");
316 	refs = object->ref_count;
317 
318 	object->handle = NULL;
319 	object->type = OBJT_DEAD;
320 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
321 	if (object->un_pager.vnp.writemappings > 0) {
322 		object->un_pager.vnp.writemappings = 0;
323 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
324 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
325 		    __func__, vp, vp->v_writecount);
326 	}
327 	vp->v_object = NULL;
328 	VI_LOCK(vp);
329 
330 	/*
331 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
332 	 * following object->handle.  Clear all text references now.
333 	 * This also clears the transient references from
334 	 * kern_execve(), which is fine because dead_vnodeops uses nop
335 	 * for VOP_UNSET_TEXT().
336 	 */
337 	if (vp->v_writecount < 0)
338 		vp->v_writecount = 0;
339 	VI_UNLOCK(vp);
340 	VM_OBJECT_WUNLOCK(object);
341 	if (refs > 0)
342 		vunref(vp);
343 	VM_OBJECT_WLOCK(object);
344 }
345 
346 static boolean_t
vnode_pager_haspage(vm_object_t object,vm_pindex_t pindex,int * before,int * after)347 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
348     int *after)
349 {
350 	struct vnode *vp = object->handle;
351 	daddr_t bn;
352 	uintptr_t lockstate;
353 	int err;
354 	daddr_t reqblock;
355 	int poff;
356 	int bsize;
357 	int pagesperblock, blocksperpage;
358 
359 	VM_OBJECT_ASSERT_LOCKED(object);
360 	/*
361 	 * If no vp or vp is doomed or marked transparent to VM, we do not
362 	 * have the page.
363 	 */
364 	if (vp == NULL || VN_IS_DOOMED(vp))
365 		return FALSE;
366 	/*
367 	 * If the offset is beyond end of file we do
368 	 * not have the page.
369 	 */
370 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
371 		return FALSE;
372 
373 	bsize = vp->v_mount->mnt_stat.f_iosize;
374 	pagesperblock = bsize / PAGE_SIZE;
375 	blocksperpage = 0;
376 	if (pagesperblock > 0) {
377 		reqblock = pindex / pagesperblock;
378 	} else {
379 		blocksperpage = (PAGE_SIZE / bsize);
380 		reqblock = pindex * blocksperpage;
381 	}
382 	lockstate = VM_OBJECT_DROP(object);
383 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
384 	VM_OBJECT_PICKUP(object, lockstate);
385 	if (err)
386 		return TRUE;
387 	if (bn == -1)
388 		return FALSE;
389 	if (pagesperblock > 0) {
390 		poff = pindex - (reqblock * pagesperblock);
391 		if (before) {
392 			*before *= pagesperblock;
393 			*before += poff;
394 		}
395 		if (after) {
396 			/*
397 			 * The BMAP vop can report a partial block in the
398 			 * 'after', but must not report blocks after EOF.
399 			 * Assert the latter, and truncate 'after' in case
400 			 * of the former.
401 			 */
402 			KASSERT((reqblock + *after) * pagesperblock <
403 			    roundup2(object->size, pagesperblock),
404 			    ("%s: reqblock %jd after %d size %ju", __func__,
405 			    (intmax_t )reqblock, *after,
406 			    (uintmax_t )object->size));
407 			*after *= pagesperblock;
408 			*after += pagesperblock - (poff + 1);
409 			if (pindex + *after >= object->size)
410 				*after = object->size - 1 - pindex;
411 		}
412 	} else {
413 		if (before) {
414 			*before /= blocksperpage;
415 		}
416 
417 		if (after) {
418 			*after /= blocksperpage;
419 		}
420 	}
421 	return TRUE;
422 }
423 
424 /*
425  * Internal routine clearing partial-page content
426  */
427 static void
vnode_pager_subpage_purge(struct vm_page * m,int base,int end)428 vnode_pager_subpage_purge(struct vm_page *m, int base, int end)
429 {
430 	int size;
431 
432 	KASSERT(end > base && end <= PAGE_SIZE,
433 	    ("%s: start %d end %d", __func__, base, end));
434 	size = end - base;
435 
436 	/*
437 	 * Clear out partial-page garbage in case
438 	 * the page has been mapped.
439 	 */
440 	pmap_zero_page_area(m, base, size);
441 
442 	/*
443 	 * Update the valid bits to reflect the blocks
444 	 * that have been zeroed.  Some of these valid
445 	 * bits may have already been set.
446 	 */
447 	vm_page_set_valid_range(m, base, size);
448 
449 	/*
450 	 * Round up "base" to the next block boundary so
451 	 * that the dirty bit for a partially zeroed
452 	 * block is not cleared.
453 	 */
454 	base = roundup2(base, DEV_BSIZE);
455 	end = rounddown2(end, DEV_BSIZE);
456 
457 	if (end > base) {
458 		/*
459 		 * Clear out partial-page dirty bits.
460 		 *
461 		 * note that we do not clear out the
462 		 * valid bits.  This would prevent
463 		 * bogus_page replacement from working
464 		 * properly.
465 		 */
466 		vm_page_clear_dirty(m, base, end - base);
467 	}
468 
469 }
470 
471 /*
472  * Lets the VM system know about a change in size for a file.
473  * We adjust our own internal size and flush any cached pages in
474  * the associated object that are affected by the size change.
475  *
476  * Note: this routine may be invoked as a result of a pager put
477  * operation (possibly at object termination time), so we must be careful.
478  */
479 void
vnode_pager_setsize(struct vnode * vp,vm_ooffset_t nsize)480 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
481 {
482 	vm_object_t object;
483 	vm_page_t m;
484 	vm_pindex_t nobjsize;
485 
486 	if ((object = vp->v_object) == NULL)
487 		return;
488 #ifdef DEBUG_VFS_LOCKS
489 	{
490 		struct mount *mp;
491 
492 		mp = vp->v_mount;
493 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0)
494 			assert_vop_elocked(vp,
495 			    "vnode_pager_setsize and not locked vnode");
496 	}
497 #endif
498 	VM_OBJECT_WLOCK(object);
499 	if (object->type == OBJT_DEAD) {
500 		VM_OBJECT_WUNLOCK(object);
501 		return;
502 	}
503 	KASSERT(object->type == OBJT_VNODE,
504 	    ("not vnode-backed object %p", object));
505 	if (nsize == object->un_pager.vnp.vnp_size) {
506 		/*
507 		 * Hasn't changed size
508 		 */
509 		VM_OBJECT_WUNLOCK(object);
510 		return;
511 	}
512 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
513 	if (nsize < object->un_pager.vnp.vnp_size) {
514 		/*
515 		 * File has shrunk. Toss any cached pages beyond the new EOF.
516 		 */
517 		if (nobjsize < object->size)
518 			vm_object_page_remove(object, nobjsize, object->size,
519 			    0);
520 		/*
521 		 * this gets rid of garbage at the end of a page that is now
522 		 * only partially backed by the vnode.
523 		 *
524 		 * XXX for some reason (I don't know yet), if we take a
525 		 * completely invalid page and mark it partially valid
526 		 * it can screw up NFS reads, so we don't allow the case.
527 		 */
528 		if (!(nsize & PAGE_MASK))
529 			goto out;
530 		m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
531 		if (m == NULL)
532 			goto out;
533 		if (!vm_page_none_valid(m))
534 			vnode_pager_subpage_purge(m, (int)nsize & PAGE_MASK,
535 			    PAGE_SIZE);
536 		vm_page_xunbusy(m);
537 	}
538 out:
539 #if defined(__powerpc__) && !defined(__powerpc64__)
540 	object->un_pager.vnp.vnp_size = nsize;
541 #else
542 	atomic_store_64(&object->un_pager.vnp.vnp_size, nsize);
543 #endif
544 	object->size = nobjsize;
545 	VM_OBJECT_WUNLOCK(object);
546 }
547 
548 /*
549  * Lets the VM system know about the purged range for a file. We toss away any
550  * cached pages in the associated object that are affected by the purge
551  * operation. Partial-page area not aligned to page boundaries will be zeroed
552  * and the dirty blocks in DEV_BSIZE unit within a page will not be flushed.
553  */
554 void
vnode_pager_purge_range(struct vnode * vp,vm_ooffset_t start,vm_ooffset_t end)555 vnode_pager_purge_range(struct vnode *vp, vm_ooffset_t start, vm_ooffset_t end)
556 {
557 	struct vm_page *m;
558 	struct vm_object *object;
559 	vm_pindex_t pi, pistart, piend;
560 	bool same_page;
561 	int base, pend;
562 
563 	ASSERT_VOP_LOCKED(vp, "vnode_pager_purge_range");
564 
565 	object = vp->v_object;
566 	pi = start + PAGE_MASK < start ? OBJ_MAX_SIZE :
567 	    OFF_TO_IDX(start + PAGE_MASK);
568 	pistart = OFF_TO_IDX(start);
569 	piend = end == 0 ? OBJ_MAX_SIZE : OFF_TO_IDX(end);
570 	same_page = pistart == piend;
571 	if ((end != 0 && end <= start) || object == NULL)
572 		return;
573 
574 	VM_OBJECT_WLOCK(object);
575 
576 	if (pi < piend)
577 		vm_object_page_remove(object, pi, piend, 0);
578 
579 	if ((start & PAGE_MASK) != 0) {
580 		base = (int)start & PAGE_MASK;
581 		pend = same_page ? (int)end & PAGE_MASK : PAGE_SIZE;
582 		m = vm_page_grab(object, pistart, VM_ALLOC_NOCREAT);
583 		if (m != NULL) {
584 			if (!vm_page_none_valid(m))
585 				vnode_pager_subpage_purge(m, base, pend);
586 			vm_page_xunbusy(m);
587 		}
588 		if (same_page)
589 			goto out;
590 	}
591 	if ((end & PAGE_MASK) != 0) {
592 		base = same_page ? (int)start & PAGE_MASK : 0 ;
593 		pend = (int)end & PAGE_MASK;
594 		m = vm_page_grab(object, piend, VM_ALLOC_NOCREAT);
595 		if (m != NULL) {
596 			if (!vm_page_none_valid(m))
597 				vnode_pager_subpage_purge(m, base, pend);
598 			vm_page_xunbusy(m);
599 		}
600 	}
601 out:
602 	VM_OBJECT_WUNLOCK(object);
603 }
604 
605 /*
606  * calculate the linear (byte) disk address of specified virtual
607  * file address
608  */
609 static int
vnode_pager_addr(struct vnode * vp,vm_ooffset_t address,daddr_t * rtaddress,int * run)610 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
611     int *run)
612 {
613 	int bsize;
614 	int err;
615 	daddr_t vblock;
616 	daddr_t voffset;
617 
618 	if (VN_IS_DOOMED(vp))
619 		return -1;
620 
621 	bsize = vp->v_mount->mnt_stat.f_iosize;
622 	vblock = address / bsize;
623 	voffset = address % bsize;
624 
625 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
626 	if (err == 0) {
627 		if (*rtaddress != -1)
628 			*rtaddress += voffset / DEV_BSIZE;
629 		if (run) {
630 			*run += 1;
631 			*run *= bsize / PAGE_SIZE;
632 			*run -= voffset / PAGE_SIZE;
633 		}
634 	}
635 
636 	return (err);
637 }
638 
639 static void
vnode_pager_input_bdone(struct buf * bp)640 vnode_pager_input_bdone(struct buf *bp)
641 {
642 	runningbufwakeup(bp);
643 	bdone(bp);
644 }
645 
646 /*
647  * small block filesystem vnode pager input
648  */
649 static int
vnode_pager_input_smlfs(vm_object_t object,vm_page_t m)650 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
651 {
652 	struct vnode *vp;
653 	struct bufobj *bo;
654 	struct buf *bp;
655 	struct sf_buf *sf;
656 	daddr_t fileaddr;
657 	vm_offset_t bsize;
658 	vm_page_bits_t bits;
659 	int error, i;
660 
661 	error = 0;
662 	vp = object->handle;
663 	if (VN_IS_DOOMED(vp))
664 		return VM_PAGER_BAD;
665 
666 	bsize = vp->v_mount->mnt_stat.f_iosize;
667 
668 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
669 
670 	sf = sf_buf_alloc(m, 0);
671 
672 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
673 		vm_ooffset_t address;
674 
675 		bits = vm_page_bits(i * bsize, bsize);
676 		if (m->valid & bits)
677 			continue;
678 
679 		address = IDX_TO_OFF(m->pindex) + i * bsize;
680 		if (address >= object->un_pager.vnp.vnp_size) {
681 			fileaddr = -1;
682 		} else {
683 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
684 			if (error)
685 				break;
686 		}
687 		if (fileaddr != -1) {
688 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
689 
690 			/* build a minimal buffer header */
691 			bp->b_iocmd = BIO_READ;
692 			bp->b_iodone = vnode_pager_input_bdone;
693 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
694 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
695 			bp->b_rcred = crhold(curthread->td_ucred);
696 			bp->b_wcred = crhold(curthread->td_ucred);
697 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
698 			bp->b_blkno = fileaddr;
699 			pbgetbo(bo, bp);
700 			bp->b_vp = vp;
701 			bp->b_bcount = bsize;
702 			bp->b_bufsize = bsize;
703 			bp->b_runningbufspace = bp->b_bufsize;
704 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
705 
706 			/* do the input */
707 			bp->b_iooffset = dbtob(bp->b_blkno);
708 			bstrategy(bp);
709 
710 			bwait(bp, PVM, "vnsrd");
711 
712 			if ((bp->b_ioflags & BIO_ERROR) != 0) {
713 				KASSERT(bp->b_error != 0,
714 				    ("%s: buf error but b_error == 0\n", __func__));
715 				error = bp->b_error;
716 			}
717 
718 			/*
719 			 * free the buffer header back to the swap buffer pool
720 			 */
721 			bp->b_vp = NULL;
722 			pbrelbo(bp);
723 			uma_zfree(vnode_pbuf_zone, bp);
724 			if (error)
725 				break;
726 		} else
727 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
728 		KASSERT((m->dirty & bits) == 0,
729 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
730 		vm_page_bits_set(m, &m->valid, bits);
731 	}
732 	sf_buf_free(sf);
733 	if (error) {
734 		return VM_PAGER_ERROR;
735 	}
736 	return VM_PAGER_OK;
737 }
738 
739 /*
740  * old style vnode pager input routine
741  */
742 static int
vnode_pager_input_old(vm_object_t object,vm_page_t m)743 vnode_pager_input_old(vm_object_t object, vm_page_t m)
744 {
745 	struct uio auio;
746 	struct iovec aiov;
747 	int error;
748 	int size;
749 	struct sf_buf *sf;
750 	struct vnode *vp;
751 
752 	VM_OBJECT_ASSERT_WLOCKED(object);
753 	error = 0;
754 
755 	/*
756 	 * Return failure if beyond current EOF
757 	 */
758 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
759 		return VM_PAGER_BAD;
760 	} else {
761 		size = PAGE_SIZE;
762 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
763 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
764 		vp = object->handle;
765 		VM_OBJECT_WUNLOCK(object);
766 
767 		/*
768 		 * Allocate a kernel virtual address and initialize so that
769 		 * we can use VOP_READ/WRITE routines.
770 		 */
771 		sf = sf_buf_alloc(m, 0);
772 
773 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
774 		aiov.iov_len = size;
775 		auio.uio_iov = &aiov;
776 		auio.uio_iovcnt = 1;
777 		auio.uio_offset = IDX_TO_OFF(m->pindex);
778 		auio.uio_segflg = UIO_SYSSPACE;
779 		auio.uio_rw = UIO_READ;
780 		auio.uio_resid = size;
781 		auio.uio_td = curthread;
782 
783 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
784 		if (!error) {
785 			int count = size - auio.uio_resid;
786 
787 			if (count == 0)
788 				error = EINVAL;
789 			else if (count != PAGE_SIZE)
790 				bzero((caddr_t)sf_buf_kva(sf) + count,
791 				    PAGE_SIZE - count);
792 		}
793 		sf_buf_free(sf);
794 
795 		VM_OBJECT_WLOCK(object);
796 	}
797 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
798 	if (!error)
799 		vm_page_valid(m);
800 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
801 }
802 
803 /*
804  * generic vnode pager input routine
805  */
806 
807 /*
808  * Local media VFS's that do not implement their own VOP_GETPAGES
809  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
810  * to implement the previous behaviour.
811  *
812  * All other FS's should use the bypass to get to the local media
813  * backing vp's VOP_GETPAGES.
814  */
815 static int
vnode_pager_getpages(vm_object_t object,vm_page_t * m,int count,int * rbehind,int * rahead)816 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
817     int *rahead)
818 {
819 	struct vnode *vp;
820 	int rtval;
821 
822 	/* Handle is stable with paging in progress. */
823 	vp = object->handle;
824 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
825 	KASSERT(rtval != EOPNOTSUPP,
826 	    ("vnode_pager: FS getpages not implemented\n"));
827 	return rtval;
828 }
829 
830 static int
vnode_pager_getpages_async(vm_object_t object,vm_page_t * m,int count,int * rbehind,int * rahead,vop_getpages_iodone_t iodone,void * arg)831 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
832     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
833 {
834 	struct vnode *vp;
835 	int rtval;
836 
837 	vp = object->handle;
838 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
839 	KASSERT(rtval != EOPNOTSUPP,
840 	    ("vnode_pager: FS getpages_async not implemented\n"));
841 	return (rtval);
842 }
843 
844 /*
845  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
846  * local filesystems, where partially valid pages can only occur at
847  * the end of file.
848  */
849 int
vnode_pager_local_getpages(struct vop_getpages_args * ap)850 vnode_pager_local_getpages(struct vop_getpages_args *ap)
851 {
852 
853 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
854 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
855 }
856 
857 int
vnode_pager_local_getpages_async(struct vop_getpages_async_args * ap)858 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
859 {
860 	int error;
861 
862 	error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
863 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
864 	if (error != 0 && ap->a_iodone != NULL)
865 		ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
866 	return (error);
867 }
868 
869 /*
870  * This is now called from local media FS's to operate against their
871  * own vnodes if they fail to implement VOP_GETPAGES.
872  */
873 int
vnode_pager_generic_getpages(struct vnode * vp,vm_page_t * m,int count,int * a_rbehind,int * a_rahead,vop_getpages_iodone_t iodone,void * arg)874 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
875     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
876 {
877 	vm_object_t object;
878 	struct bufobj *bo;
879 	struct buf *bp;
880 	off_t foff;
881 #ifdef INVARIANTS
882 	off_t blkno0;
883 #endif
884 	int bsize, pagesperblock;
885 	int error, before, after, rbehind, rahead, poff, i;
886 	int bytecount, secmask;
887 
888 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
889 	    ("%s does not support devices", __func__));
890 
891 	if (VN_IS_DOOMED(vp))
892 		return (VM_PAGER_BAD);
893 
894 	object = vp->v_object;
895 	foff = IDX_TO_OFF(m[0]->pindex);
896 	bsize = vp->v_mount->mnt_stat.f_iosize;
897 	pagesperblock = bsize / PAGE_SIZE;
898 
899 	KASSERT(foff < object->un_pager.vnp.vnp_size,
900 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
901 	KASSERT(count <= atop(maxphys),
902 	    ("%s: requested %d pages", __func__, count));
903 
904 	/*
905 	 * The last page has valid blocks.  Invalid part can only
906 	 * exist at the end of file, and the page is made fully valid
907 	 * by zeroing in vm_pager_get_pages().
908 	 */
909 	if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
910 		if (iodone != NULL)
911 			iodone(arg, m, 1, 0);
912 		return (VM_PAGER_OK);
913 	}
914 
915 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
916 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
917 
918 	/*
919 	 * Get the underlying device blocks for the file with VOP_BMAP().
920 	 * If the file system doesn't support VOP_BMAP, use old way of
921 	 * getting pages via VOP_READ.
922 	 */
923 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
924 	if (error == EOPNOTSUPP) {
925 		uma_zfree(vnode_pbuf_zone, bp);
926 		VM_OBJECT_WLOCK(object);
927 		for (i = 0; i < count; i++) {
928 			VM_CNT_INC(v_vnodein);
929 			VM_CNT_INC(v_vnodepgsin);
930 			error = vnode_pager_input_old(object, m[i]);
931 			if (error)
932 				break;
933 		}
934 		VM_OBJECT_WUNLOCK(object);
935 		return (error);
936 	} else if (error != 0) {
937 		uma_zfree(vnode_pbuf_zone, bp);
938 		return (VM_PAGER_ERROR);
939 	}
940 
941 	/*
942 	 * If the file system supports BMAP, but blocksize is smaller
943 	 * than a page size, then use special small filesystem code.
944 	 */
945 	if (pagesperblock == 0) {
946 		uma_zfree(vnode_pbuf_zone, bp);
947 		for (i = 0; i < count; i++) {
948 			VM_CNT_INC(v_vnodein);
949 			VM_CNT_INC(v_vnodepgsin);
950 			error = vnode_pager_input_smlfs(object, m[i]);
951 			if (error)
952 				break;
953 		}
954 		return (error);
955 	}
956 
957 	/*
958 	 * A sparse file can be encountered only for a single page request,
959 	 * which may not be preceded by call to vm_pager_haspage().
960 	 */
961 	if (bp->b_blkno == -1) {
962 		KASSERT(count == 1,
963 		    ("%s: array[%d] request to a sparse file %p", __func__,
964 		    count, vp));
965 		uma_zfree(vnode_pbuf_zone, bp);
966 		pmap_zero_page(m[0]);
967 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
968 		    __func__, m[0]));
969 		vm_page_valid(m[0]);
970 		return (VM_PAGER_OK);
971 	}
972 
973 #ifdef INVARIANTS
974 	blkno0 = bp->b_blkno;
975 #endif
976 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
977 
978 	/* Recalculate blocks available after/before to pages. */
979 	poff = (foff % bsize) / PAGE_SIZE;
980 	before *= pagesperblock;
981 	before += poff;
982 	after *= pagesperblock;
983 	after += pagesperblock - (poff + 1);
984 	if (m[0]->pindex + after >= object->size)
985 		after = object->size - 1 - m[0]->pindex;
986 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
987 	    __func__, count, after + 1));
988 	after -= count - 1;
989 
990 	/* Trim requested rbehind/rahead to possible values. */
991 	rbehind = a_rbehind ? *a_rbehind : 0;
992 	rahead = a_rahead ? *a_rahead : 0;
993 	rbehind = min(rbehind, before);
994 	rbehind = min(rbehind, m[0]->pindex);
995 	rahead = min(rahead, after);
996 	rahead = min(rahead, object->size - m[count - 1]->pindex);
997 	/*
998 	 * Check that total amount of pages fit into buf.  Trim rbehind and
999 	 * rahead evenly if not.
1000 	 */
1001 	if (rbehind + rahead + count > atop(maxphys)) {
1002 		int trim, sum;
1003 
1004 		trim = rbehind + rahead + count - atop(maxphys) + 1;
1005 		sum = rbehind + rahead;
1006 		if (rbehind == before) {
1007 			/* Roundup rbehind trim to block size. */
1008 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
1009 			if (rbehind < 0)
1010 				rbehind = 0;
1011 		} else
1012 			rbehind -= trim * rbehind / sum;
1013 		rahead -= trim * rahead / sum;
1014 	}
1015 	KASSERT(rbehind + rahead + count <= atop(maxphys),
1016 	    ("%s: behind %d ahead %d count %d maxphys %lu", __func__,
1017 	    rbehind, rahead, count, maxphys));
1018 
1019 	/*
1020 	 * Fill in the bp->b_pages[] array with requested and optional
1021 	 * read behind or read ahead pages.  Read behind pages are looked
1022 	 * up in a backward direction, down to a first cached page.  Same
1023 	 * for read ahead pages, but there is no need to shift the array
1024 	 * in case of encountering a cached page.
1025 	 */
1026 	i = bp->b_npages = 0;
1027 	if (rbehind) {
1028 		vm_pindex_t startpindex, tpindex;
1029 		vm_page_t p;
1030 
1031 		VM_OBJECT_WLOCK(object);
1032 		startpindex = m[0]->pindex - rbehind;
1033 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
1034 		    p->pindex >= startpindex)
1035 			startpindex = p->pindex + 1;
1036 
1037 		/* tpindex is unsigned; beware of numeric underflow. */
1038 		for (tpindex = m[0]->pindex - 1;
1039 		    tpindex >= startpindex && tpindex < m[0]->pindex;
1040 		    tpindex--, i++) {
1041 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1042 			if (p == NULL) {
1043 				/* Shift the array. */
1044 				for (int j = 0; j < i; j++)
1045 					bp->b_pages[j] = bp->b_pages[j +
1046 					    tpindex + 1 - startpindex];
1047 				break;
1048 			}
1049 			bp->b_pages[tpindex - startpindex] = p;
1050 		}
1051 
1052 		bp->b_pgbefore = i;
1053 		bp->b_npages += i;
1054 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
1055 	} else
1056 		bp->b_pgbefore = 0;
1057 
1058 	/* Requested pages. */
1059 	for (int j = 0; j < count; j++, i++)
1060 		bp->b_pages[i] = m[j];
1061 	bp->b_npages += count;
1062 
1063 	if (rahead) {
1064 		vm_pindex_t endpindex, tpindex;
1065 		vm_page_t p;
1066 
1067 		if (!VM_OBJECT_WOWNED(object))
1068 			VM_OBJECT_WLOCK(object);
1069 		endpindex = m[count - 1]->pindex + rahead + 1;
1070 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
1071 		    p->pindex < endpindex)
1072 			endpindex = p->pindex;
1073 		if (endpindex > object->size)
1074 			endpindex = object->size;
1075 
1076 		for (tpindex = m[count - 1]->pindex + 1;
1077 		    tpindex < endpindex; i++, tpindex++) {
1078 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1079 			if (p == NULL)
1080 				break;
1081 			bp->b_pages[i] = p;
1082 		}
1083 
1084 		bp->b_pgafter = i - bp->b_npages;
1085 		bp->b_npages = i;
1086 	} else
1087 		bp->b_pgafter = 0;
1088 
1089 	if (VM_OBJECT_WOWNED(object))
1090 		VM_OBJECT_WUNLOCK(object);
1091 
1092 	/* Report back actual behind/ahead read. */
1093 	if (a_rbehind)
1094 		*a_rbehind = bp->b_pgbefore;
1095 	if (a_rahead)
1096 		*a_rahead = bp->b_pgafter;
1097 
1098 #ifdef INVARIANTS
1099 	KASSERT(bp->b_npages <= atop(maxphys),
1100 	    ("%s: buf %p overflowed", __func__, bp));
1101 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1102 		if (bp->b_pages[j] == bogus_page)
1103 			continue;
1104 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1105 		    j - prev, ("%s: pages array not consecutive, bp %p",
1106 		     __func__, bp));
1107 		prev = j;
1108 	}
1109 #endif
1110 
1111 	/*
1112 	 * Recalculate first offset and bytecount with regards to read behind.
1113 	 * Truncate bytecount to vnode real size and round up physical size
1114 	 * for real devices.
1115 	 */
1116 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1117 	bytecount = bp->b_npages << PAGE_SHIFT;
1118 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1119 		bytecount = object->un_pager.vnp.vnp_size - foff;
1120 	secmask = bo->bo_bsize - 1;
1121 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1122 	    ("%s: sector size %d too large", __func__, secmask + 1));
1123 	bytecount = (bytecount + secmask) & ~secmask;
1124 
1125 	/*
1126 	 * And map the pages to be read into the kva, if the filesystem
1127 	 * requires mapped buffers.
1128 	 */
1129 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1130 	    unmapped_buf_allowed) {
1131 		bp->b_data = unmapped_buf;
1132 		bp->b_offset = 0;
1133 	} else {
1134 		bp->b_data = bp->b_kvabase;
1135 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1136 	}
1137 
1138 	/* Build a minimal buffer header. */
1139 	bp->b_iocmd = BIO_READ;
1140 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1141 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1142 	bp->b_rcred = crhold(curthread->td_ucred);
1143 	bp->b_wcred = crhold(curthread->td_ucred);
1144 	pbgetbo(bo, bp);
1145 	bp->b_vp = vp;
1146 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1147 	bp->b_iooffset = dbtob(bp->b_blkno);
1148 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1149 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1150 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1151 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1152 	    "blkno0 %ju b_blkno %ju", bsize,
1153 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1154 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1155 
1156 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1157 	VM_CNT_INC(v_vnodein);
1158 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1159 
1160 	if (iodone != NULL) { /* async */
1161 		bp->b_pgiodone = iodone;
1162 		bp->b_caller1 = arg;
1163 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1164 		bp->b_flags |= B_ASYNC;
1165 		BUF_KERNPROC(bp);
1166 		bstrategy(bp);
1167 		return (VM_PAGER_OK);
1168 	} else {
1169 		bp->b_iodone = bdone;
1170 		bstrategy(bp);
1171 		bwait(bp, PVM, "vnread");
1172 		error = vnode_pager_generic_getpages_done(bp);
1173 		for (i = 0; i < bp->b_npages; i++)
1174 			bp->b_pages[i] = NULL;
1175 		bp->b_vp = NULL;
1176 		pbrelbo(bp);
1177 		uma_zfree(vnode_pbuf_zone, bp);
1178 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1179 	}
1180 }
1181 
1182 static void
vnode_pager_generic_getpages_done_async(struct buf * bp)1183 vnode_pager_generic_getpages_done_async(struct buf *bp)
1184 {
1185 	int error;
1186 
1187 	error = vnode_pager_generic_getpages_done(bp);
1188 	/* Run the iodone upon the requested range. */
1189 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1190 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1191 	for (int i = 0; i < bp->b_npages; i++)
1192 		bp->b_pages[i] = NULL;
1193 	bp->b_vp = NULL;
1194 	pbrelbo(bp);
1195 	uma_zfree(vnode_pbuf_zone, bp);
1196 }
1197 
1198 static int
vnode_pager_generic_getpages_done(struct buf * bp)1199 vnode_pager_generic_getpages_done(struct buf *bp)
1200 {
1201 	vm_object_t object;
1202 	off_t tfoff, nextoff;
1203 	int i, error;
1204 
1205 	KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0,
1206 	    ("%s: buf error but b_error == 0\n", __func__));
1207 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0;
1208 	object = bp->b_vp->v_object;
1209 
1210 	runningbufwakeup(bp);
1211 
1212 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1213 		if (!buf_mapped(bp)) {
1214 			bp->b_data = bp->b_kvabase;
1215 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1216 			    bp->b_npages);
1217 		}
1218 		bzero(bp->b_data + bp->b_bcount,
1219 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1220 	}
1221 	if (buf_mapped(bp)) {
1222 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1223 		bp->b_data = unmapped_buf;
1224 	}
1225 
1226 	/*
1227 	 * If the read failed, we must free any read ahead/behind pages here.
1228 	 * The requested pages are freed by the caller (for sync requests)
1229 	 * or by the bp->b_pgiodone callback (for async requests).
1230 	 */
1231 	if (error != 0) {
1232 		VM_OBJECT_WLOCK(object);
1233 		for (i = 0; i < bp->b_pgbefore; i++)
1234 			vm_page_free_invalid(bp->b_pages[i]);
1235 		for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++)
1236 			vm_page_free_invalid(bp->b_pages[i]);
1237 		VM_OBJECT_WUNLOCK(object);
1238 		return (error);
1239 	}
1240 
1241 	/* Read lock to protect size. */
1242 	VM_OBJECT_RLOCK(object);
1243 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1244 	    i < bp->b_npages; i++, tfoff = nextoff) {
1245 		vm_page_t mt;
1246 
1247 		nextoff = tfoff + PAGE_SIZE;
1248 		mt = bp->b_pages[i];
1249 		if (mt == bogus_page)
1250 			continue;
1251 
1252 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1253 			/*
1254 			 * Read filled up entire page.
1255 			 */
1256 			vm_page_valid(mt);
1257 			KASSERT(mt->dirty == 0,
1258 			    ("%s: page %p is dirty", __func__, mt));
1259 			KASSERT(!pmap_page_is_mapped(mt),
1260 			    ("%s: page %p is mapped", __func__, mt));
1261 		} else {
1262 			/*
1263 			 * Read did not fill up entire page.
1264 			 *
1265 			 * Currently we do not set the entire page valid,
1266 			 * we just try to clear the piece that we couldn't
1267 			 * read.
1268 			 */
1269 			vm_page_set_valid_range(mt, 0,
1270 			    object->un_pager.vnp.vnp_size - tfoff);
1271 			KASSERT((mt->dirty & vm_page_bits(0,
1272 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1273 			    ("%s: page %p is dirty", __func__, mt));
1274 		}
1275 
1276 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1277 			vm_page_readahead_finish(mt);
1278 	}
1279 	VM_OBJECT_RUNLOCK(object);
1280 
1281 	return (error);
1282 }
1283 
1284 /*
1285  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1286  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1287  * vnode_pager_generic_putpages() to implement the previous behaviour.
1288  *
1289  * All other FS's should use the bypass to get to the local media
1290  * backing vp's VOP_PUTPAGES.
1291  */
1292 static void
vnode_pager_putpages(vm_object_t object,vm_page_t * m,int count,int flags,int * rtvals)1293 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1294     int flags, int *rtvals)
1295 {
1296 	int rtval __diagused;
1297 	struct vnode *vp;
1298 	int bytes = count * PAGE_SIZE;
1299 
1300 	/*
1301 	 * Force synchronous operation if we are extremely low on memory
1302 	 * to prevent a low-memory deadlock.  VOP operations often need to
1303 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1304 	 * operation ).  The swapper handles the case by limiting the amount
1305 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1306 	 * for the vnode pager without a lot of work.
1307 	 *
1308 	 * Also, the backing vnode's iodone routine may not wake the pageout
1309 	 * daemon up.  This should be probably be addressed XXX.
1310 	 */
1311 
1312 	if (vm_page_count_min())
1313 		flags |= VM_PAGER_PUT_SYNC;
1314 
1315 	/*
1316 	 * Call device-specific putpages function
1317 	 */
1318 	vp = object->handle;
1319 	VM_OBJECT_WUNLOCK(object);
1320 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1321 	KASSERT(rtval != EOPNOTSUPP,
1322 	    ("vnode_pager: stale FS putpages\n"));
1323 	VM_OBJECT_WLOCK(object);
1324 }
1325 
1326 static int
vn_off2bidx(vm_ooffset_t offset)1327 vn_off2bidx(vm_ooffset_t offset)
1328 {
1329 
1330 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1331 }
1332 
1333 static bool
vn_dirty_blk(vm_page_t m,vm_ooffset_t offset)1334 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1335 {
1336 
1337 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1338 	    offset < IDX_TO_OFF(m->pindex + 1),
1339 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1340 	    (uintmax_t)offset));
1341 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1342 }
1343 
1344 /*
1345  * This is now called from local media FS's to operate against their
1346  * own vnodes if they fail to implement VOP_PUTPAGES.
1347  *
1348  * This is typically called indirectly via the pageout daemon and
1349  * clustering has already typically occurred, so in general we ask the
1350  * underlying filesystem to write the data out asynchronously rather
1351  * then delayed.
1352  */
1353 int
vnode_pager_generic_putpages(struct vnode * vp,vm_page_t * ma,int bytecount,int flags,int * rtvals)1354 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1355     int flags, int *rtvals)
1356 {
1357 	vm_object_t object;
1358 	vm_page_t m;
1359 	vm_ooffset_t max_offset, next_offset, poffset, prev_offset;
1360 	struct uio auio;
1361 	struct iovec aiov;
1362 	off_t prev_resid, wrsz;
1363 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1364 	bool in_hole;
1365 	static struct timeval lastfail;
1366 	static int curfail;
1367 
1368 	object = vp->v_object;
1369 	count = bytecount / PAGE_SIZE;
1370 
1371 	for (i = 0; i < count; i++)
1372 		rtvals[i] = VM_PAGER_ERROR;
1373 
1374 	if ((int64_t)ma[0]->pindex < 0) {
1375 		printf("vnode_pager_generic_putpages: "
1376 		    "attempt to write meta-data 0x%jx(%lx)\n",
1377 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1378 		rtvals[0] = VM_PAGER_BAD;
1379 		return (VM_PAGER_BAD);
1380 	}
1381 
1382 	maxsize = count * PAGE_SIZE;
1383 	ncount = count;
1384 
1385 	poffset = IDX_TO_OFF(ma[0]->pindex);
1386 
1387 	/*
1388 	 * If the page-aligned write is larger then the actual file we
1389 	 * have to invalidate pages occurring beyond the file EOF.  However,
1390 	 * there is an edge case where a file may not be page-aligned where
1391 	 * the last page is partially invalid.  In this case the filesystem
1392 	 * may not properly clear the dirty bits for the entire page (which
1393 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1394 	 * With the page busied we are free to fix up the dirty bits here.
1395 	 *
1396 	 * We do not under any circumstances truncate the valid bits, as
1397 	 * this will screw up bogus page replacement.
1398 	 */
1399 	VM_OBJECT_RLOCK(object);
1400 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1401 		if (object->un_pager.vnp.vnp_size > poffset) {
1402 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1403 			ncount = btoc(maxsize);
1404 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1405 				pgoff = roundup2(pgoff, DEV_BSIZE);
1406 
1407 				/*
1408 				 * If the page is busy and the following
1409 				 * conditions hold, then the page's dirty
1410 				 * field cannot be concurrently changed by a
1411 				 * pmap operation.
1412 				 */
1413 				m = ma[ncount - 1];
1414 				vm_page_assert_sbusied(m);
1415 				KASSERT(!pmap_page_is_write_mapped(m),
1416 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1417 				MPASS(m->dirty != 0);
1418 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1419 				    pgoff);
1420 			}
1421 		} else {
1422 			maxsize = 0;
1423 			ncount = 0;
1424 		}
1425 		for (i = ncount; i < count; i++)
1426 			rtvals[i] = VM_PAGER_BAD;
1427 	}
1428 	VM_OBJECT_RUNLOCK(object);
1429 
1430 	auio.uio_iov = &aiov;
1431 	auio.uio_segflg = UIO_NOCOPY;
1432 	auio.uio_rw = UIO_WRITE;
1433 	auio.uio_td = NULL;
1434 	max_offset = roundup2(poffset + maxsize, DEV_BSIZE);
1435 
1436 	for (prev_offset = poffset; prev_offset < max_offset;) {
1437 		/* Skip clean blocks. */
1438 		for (in_hole = true; in_hole && prev_offset < max_offset;) {
1439 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1440 			for (i = vn_off2bidx(prev_offset);
1441 			    i < sizeof(vm_page_bits_t) * NBBY &&
1442 			    prev_offset < max_offset; i++) {
1443 				if (vn_dirty_blk(m, prev_offset)) {
1444 					in_hole = false;
1445 					break;
1446 				}
1447 				prev_offset += DEV_BSIZE;
1448 			}
1449 		}
1450 		if (in_hole)
1451 			goto write_done;
1452 
1453 		/* Find longest run of dirty blocks. */
1454 		for (next_offset = prev_offset; next_offset < max_offset;) {
1455 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1456 			for (i = vn_off2bidx(next_offset);
1457 			    i < sizeof(vm_page_bits_t) * NBBY &&
1458 			    next_offset < max_offset; i++) {
1459 				if (!vn_dirty_blk(m, next_offset))
1460 					goto start_write;
1461 				next_offset += DEV_BSIZE;
1462 			}
1463 		}
1464 start_write:
1465 		if (next_offset > poffset + maxsize)
1466 			next_offset = poffset + maxsize;
1467 		if (prev_offset == next_offset)
1468 			goto write_done;
1469 
1470 		/*
1471 		 * Getting here requires finding a dirty block in the
1472 		 * 'skip clean blocks' loop.
1473 		 */
1474 
1475 		aiov.iov_base = NULL;
1476 		auio.uio_iovcnt = 1;
1477 		auio.uio_offset = prev_offset;
1478 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1479 		    prev_offset;
1480 		error = VOP_WRITE(vp, &auio,
1481 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1482 
1483 		wrsz = prev_resid - auio.uio_resid;
1484 		if (wrsz == 0) {
1485 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1486 				vn_printf(vp, "vnode_pager_putpages: "
1487 				    "zero-length write at %ju resid %zd\n",
1488 				    auio.uio_offset, auio.uio_resid);
1489 			}
1490 			break;
1491 		}
1492 
1493 		/* Adjust the starting offset for next iteration. */
1494 		prev_offset += wrsz;
1495 		MPASS(auio.uio_offset == prev_offset);
1496 
1497 		ppscheck = 0;
1498 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1499 		    &curfail, 1)) != 0)
1500 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1501 			    error);
1502 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1503 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1504 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1505 			    "at %ju\n", auio.uio_resid,
1506 			    (uintmax_t)ma[0]->pindex);
1507 		if (error != 0 || auio.uio_resid != 0)
1508 			break;
1509 	}
1510 write_done:
1511 	/* Mark completely processed pages. */
1512 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1513 		rtvals[i] = VM_PAGER_OK;
1514 	/* Mark partial EOF page. */
1515 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1516 		rtvals[i++] = VM_PAGER_OK;
1517 	/* Unwritten pages in range, free bonus if the page is clean. */
1518 	for (; i < ncount; i++)
1519 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1520 	VM_CNT_ADD(v_vnodepgsout, i);
1521 	VM_CNT_INC(v_vnodeout);
1522 	return (rtvals[0]);
1523 }
1524 
1525 int
vnode_pager_putpages_ioflags(int pager_flags)1526 vnode_pager_putpages_ioflags(int pager_flags)
1527 {
1528 	int ioflags;
1529 
1530 	/*
1531 	 * Pageouts are already clustered, use IO_ASYNC to force a
1532 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1533 	 * from saturating the buffer cache.  Dummy-up the sequential
1534 	 * heuristic to cause large ranges to cluster.  If neither
1535 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1536 	 * cluster.
1537 	 */
1538 	ioflags = IO_VMIO;
1539 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1540 		ioflags |= IO_SYNC;
1541 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1542 		ioflags |= IO_ASYNC;
1543 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1544 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1545 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1546 	return (ioflags);
1547 }
1548 
1549 /*
1550  * vnode_pager_undirty_pages().
1551  *
1552  * A helper to mark pages as clean after pageout that was possibly
1553  * done with a short write.  The lpos argument specifies the page run
1554  * length in bytes, and the written argument specifies how many bytes
1555  * were actually written.  eof is the offset past the last valid byte
1556  * in the vnode using the absolute file position of the first byte in
1557  * the run as the base from which it is computed.
1558  */
1559 void
vnode_pager_undirty_pages(vm_page_t * ma,int * rtvals,int written,off_t eof,int lpos)1560 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1561     int lpos)
1562 {
1563 	int i, pos, pos_devb;
1564 
1565 	if (written == 0 && eof >= lpos)
1566 		return;
1567 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1568 		if (pos < trunc_page(written)) {
1569 			rtvals[i] = VM_PAGER_OK;
1570 			vm_page_undirty(ma[i]);
1571 		} else {
1572 			/* Partially written page. */
1573 			rtvals[i] = VM_PAGER_AGAIN;
1574 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1575 		}
1576 	}
1577 	if (eof >= lpos) /* avoid truncation */
1578 		return;
1579 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1580 		if (pos != trunc_page(pos)) {
1581 			/*
1582 			 * The page contains the last valid byte in
1583 			 * the vnode, mark the rest of the page as
1584 			 * clean, potentially making the whole page
1585 			 * clean.
1586 			 */
1587 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1588 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1589 			    pos_devb);
1590 
1591 			/*
1592 			 * If the page was cleaned, report the pageout
1593 			 * on it as successful.  msync() no longer
1594 			 * needs to write out the page, endlessly
1595 			 * creating write requests and dirty buffers.
1596 			 */
1597 			if (ma[i]->dirty == 0)
1598 				rtvals[i] = VM_PAGER_OK;
1599 
1600 			pos = round_page(pos);
1601 		} else {
1602 			/* vm_pageout_flush() clears dirty */
1603 			rtvals[i] = VM_PAGER_BAD;
1604 			pos += PAGE_SIZE;
1605 		}
1606 	}
1607 }
1608 
1609 static void
vnode_pager_update_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)1610 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1611     vm_offset_t end)
1612 {
1613 	struct vnode *vp;
1614 	vm_ooffset_t old_wm;
1615 
1616 	VM_OBJECT_WLOCK(object);
1617 	if (object->type != OBJT_VNODE) {
1618 		VM_OBJECT_WUNLOCK(object);
1619 		return;
1620 	}
1621 	old_wm = object->un_pager.vnp.writemappings;
1622 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1623 	vp = object->handle;
1624 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1625 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1626 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1627 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1628 		    __func__, vp, vp->v_writecount);
1629 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1630 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1631 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1632 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1633 		    __func__, vp, vp->v_writecount);
1634 	}
1635 	VM_OBJECT_WUNLOCK(object);
1636 }
1637 
1638 static void
vnode_pager_release_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)1639 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1640     vm_offset_t end)
1641 {
1642 	struct vnode *vp;
1643 	struct mount *mp;
1644 	vm_offset_t inc;
1645 
1646 	VM_OBJECT_WLOCK(object);
1647 
1648 	/*
1649 	 * First, recheck the object type to account for the race when
1650 	 * the vnode is reclaimed.
1651 	 */
1652 	if (object->type != OBJT_VNODE) {
1653 		VM_OBJECT_WUNLOCK(object);
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * Optimize for the case when writemappings is not going to
1659 	 * zero.
1660 	 */
1661 	inc = end - start;
1662 	if (object->un_pager.vnp.writemappings != inc) {
1663 		object->un_pager.vnp.writemappings -= inc;
1664 		VM_OBJECT_WUNLOCK(object);
1665 		return;
1666 	}
1667 
1668 	vp = object->handle;
1669 	vhold(vp);
1670 	VM_OBJECT_WUNLOCK(object);
1671 	mp = NULL;
1672 	vn_start_write(vp, &mp, V_WAIT);
1673 	vn_lock(vp, LK_SHARED | LK_RETRY);
1674 
1675 	/*
1676 	 * Decrement the object's writemappings, by swapping the start
1677 	 * and end arguments for vnode_pager_update_writecount().  If
1678 	 * there was not a race with vnode reclaimation, then the
1679 	 * vnode's v_writecount is decremented.
1680 	 */
1681 	vnode_pager_update_writecount(object, end, start);
1682 	VOP_UNLOCK(vp);
1683 	vdrop(vp);
1684 	if (mp != NULL)
1685 		vn_finished_write(mp);
1686 }
1687 
1688 static void
vnode_pager_getvp(vm_object_t object,struct vnode ** vpp,bool * vp_heldp)1689 vnode_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
1690 {
1691 	*vpp = object->handle;
1692 }
1693 
1694 static void
vnode_pager_clean1(struct vnode * vp,int sync_flags)1695 vnode_pager_clean1(struct vnode *vp, int sync_flags)
1696 {
1697 	struct vm_object *obj;
1698 
1699 	ASSERT_VOP_LOCKED(vp, "needs lock for writes");
1700 	obj = vp->v_object;
1701 	if (obj == NULL)
1702 		return;
1703 
1704 	VM_OBJECT_WLOCK(obj);
1705 	vm_object_page_clean(obj, 0, 0, sync_flags);
1706 	VM_OBJECT_WUNLOCK(obj);
1707 }
1708 
1709 void
vnode_pager_clean_sync(struct vnode * vp)1710 vnode_pager_clean_sync(struct vnode *vp)
1711 {
1712 	vnode_pager_clean1(vp, OBJPC_SYNC);
1713 }
1714 
1715 void
vnode_pager_clean_async(struct vnode * vp)1716 vnode_pager_clean_async(struct vnode *vp)
1717 {
1718 	vnode_pager_clean1(vp, 0);
1719 }
1720