xref: /netbsd/sys/dev/pci/if_dge.c (revision b9691d4d)
1 /*	$NetBSD: if_dge.c,v 1.63 2021/12/31 14:25:23 riastradh Exp $ */
2 
3 /*
4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5  * All rights reserved.
6  *
7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	SUNET, Swedish University Computer Network.
21  * 4. The name of SUNET may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74  *
75  * TODO (in no specific order):
76  *	HW VLAN support.
77  *	TSE offloading (needs kernel changes...)
78  *	RAIDC (receive interrupt delay adaptation)
79  *	Use memory > 4GB.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.63 2021/12/31 14:25:23 riastradh Exp $");
84 
85 
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99 
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105 
106 #include <netinet/in.h>			/* XXX for struct ip */
107 #include <netinet/in_systm.h>		/* XXX for struct ip */
108 #include <netinet/ip.h>			/* XXX for struct ip */
109 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
110 
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122 
123 #include <dev/pci/if_dgereg.h>
124 
125 /*
126  * The receive engine may sometimes become off-by-one when writing back
127  * chained descriptors.	 Avoid this by allocating a large chunk of
128  * memory and use if instead (to avoid chained descriptors).
129  * This only happens with chained descriptors under heavy load.
130  */
131 #define DGE_OFFBYONE_RXBUG
132 
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135 
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK		0x01
138 #define DGE_DEBUG_TX		0x02
139 #define DGE_DEBUG_RX		0x04
140 #define DGE_DEBUG_CKSUM		0x08
141 int	dge_debug = 0;
142 
143 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y)	/* nothing */
146 #endif /* DGE_DEBUG */
147 
148 /*
149  * Transmit descriptor list size. We allow up to 100 DMA segments per
150  * packet (Intel reports of jumbo frame packets with as
151  * many as 80 DMA segments when using 16k buffers).
152  */
153 #define DGE_NTXSEGS		100
154 #define DGE_IFQUEUELEN		20000
155 #define DGE_TXQUEUELEN		2048
156 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC		1024
159 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
162 
163 /*
164  * Receive descriptor list size.
165  * Packet is of size MCLBYTES, and for jumbo packets buffers may
166  * be chained.	Due to the nature of the card (high-speed), keep this
167  * ring large. With 2k buffers the ring can store 400 jumbo packets,
168  * which at full speed will be received in just under 3ms.
169  */
170 #define DGE_NRXDESC		2048
171 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174  * # of descriptors between head and written descriptors.
175  * This is to work-around two erratas.
176  */
177 #define DGE_RXSPACE		10
178 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180  * Receive descriptor fetch thresholds. These are values recommended
181  * by Intel, do not touch them unless you know what you are doing.
182  */
183 #define RXDCTL_PTHRESH_VAL	128
184 #define RXDCTL_HTHRESH_VAL	16
185 #define RXDCTL_WTHRESH_VAL	16
186 
187 
188 /*
189  * Tweakable parameters; default values.
190  */
191 #define FCRTH	0x30000 /* Send XOFF water mark */
192 #define FCRTL	0x28000 /* Send XON water mark */
193 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
194 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
195 
196 /*
197  * Control structures are DMA'd to the i82597 chip.  We allocate them in
198  * a single clump that maps to a single DMA segment to make serveral things
199  * easier.
200  */
201 struct dge_control_data {
202 	/*
203 	 * The transmit descriptors.
204 	 */
205 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206 
207 	/*
208 	 * The receive descriptors.
209 	 */
210 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212 
213 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
216 
217 /*
218  * The DGE interface have a higher max MTU size than normal jumbo frames.
219  */
220 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
221 
222 /*
223  * Software state for transmit jobs.
224  */
225 struct dge_txsoft {
226 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
227 	bus_dmamap_t txs_dmamap;	/* our DMA map */
228 	int txs_firstdesc;		/* first descriptor in packet */
229 	int txs_lastdesc;		/* last descriptor in packet */
230 	int txs_ndesc;			/* # of descriptors used */
231 };
232 
233 /*
234  * Software state for receive buffers.	Each descriptor gets a
235  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
236  * more than one buffer, we chain them together.
237  */
238 struct dge_rxsoft {
239 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
240 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
241 };
242 
243 /*
244  * Software state per device.
245  */
246 struct dge_softc {
247 	device_t sc_dev;		/* generic device information */
248 	bus_space_tag_t sc_st;		/* bus space tag */
249 	bus_space_handle_t sc_sh;	/* bus space handle */
250 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
251 	struct ethercom sc_ethercom;	/* ethernet common data */
252 
253 	int sc_flags;			/* flags; see below */
254 	int sc_bus_speed;		/* PCI/PCIX bus speed */
255 	int sc_pcix_offset;		/* PCIX capability register offset */
256 
257 	const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 	pci_chipset_tag_t sc_pc;
259 	pcitag_t sc_pt;
260 	int sc_mmrbc;			/* Max PCIX memory read byte count */
261 
262 	void *sc_ih;			/* interrupt cookie */
263 
264 	struct ifmedia sc_media;
265 
266 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
267 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
268 
269 	int		sc_align_tweak;
270 
271 	/*
272 	 * Software state for the transmit and receive descriptors.
273 	 */
274 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276 
277 	/*
278 	 * Control data structures.
279 	 */
280 	struct dge_control_data *sc_control_data;
281 #define sc_txdescs	sc_control_data->wcd_txdescs
282 #define sc_rxdescs	sc_control_data->wcd_rxdescs
283 
284 #ifdef DGE_EVENT_COUNTERS
285 	/* Event counters. */
286 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
287 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
288 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
290 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
291 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
292 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
293 
294 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
295 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
296 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
297 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
298 
299 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
300 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
301 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
302 
303 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306 
307 	int	sc_txfree;		/* number of free Tx descriptors */
308 	int	sc_txnext;		/* next ready Tx descriptor */
309 
310 	int	sc_txsfree;		/* number of free Tx jobs */
311 	int	sc_txsnext;		/* next free Tx job */
312 	int	sc_txsdirty;		/* dirty Tx jobs */
313 
314 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
315 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
316 
317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
318 	int	sc_rxdiscard;
319 	int	sc_rxlen;
320 	struct mbuf *sc_rxhead;
321 	struct mbuf *sc_rxtail;
322 	struct mbuf **sc_rxtailp;
323 
324 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
325 	uint32_t sc_icr;		/* prototype interrupt bits */
326 	uint32_t sc_tctl;		/* prototype TCTL register */
327 	uint32_t sc_rctl;		/* prototype RCTL register */
328 
329 	int sc_mchash_type;		/* multicast filter offset */
330 
331 	uint16_t sc_eeprom[EEPROM_SIZE];
332 
333 	krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 	void *sc_bugbuf;
336 	SLIST_HEAD(, rxbugentry) sc_buglist;
337 	bus_dmamap_t sc_bugmap;
338 	struct rxbugentry *sc_entry;
339 #endif
340 };
341 
342 #define DGE_RXCHAIN_RESET(sc)						\
343 do {									\
344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
345 	*(sc)->sc_rxtailp = NULL;					\
346 	(sc)->sc_rxlen = 0;						\
347 } while (/*CONSTCOND*/0)
348 
349 #define DGE_RXCHAIN_LINK(sc, m)						\
350 do {									\
351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
352 	(sc)->sc_rxtailp = &(m)->m_next;				\
353 } while (/*CONSTCOND*/0)
354 
355 /* sc_flags */
356 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
357 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
358 
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev)	/* nothing */
363 #endif
364 
365 #define CSR_READ(sc, reg)						\
366 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val)						\
368 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369 
370 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
372 
373 #define DGE_CDTXSYNC(sc, x, n, ops)					\
374 do {									\
375 	int __x, __n;							\
376 									\
377 	__x = (x);							\
378 	__n = (n);							\
379 									\
380 	/* If it will wrap around, sync to the end of the ring. */	\
381 	if ((__x + __n) > DGE_NTXDESC) {				\
382 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
383 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
384 		    (DGE_NTXDESC - __x), (ops));			\
385 		__n -= (DGE_NTXDESC - __x);				\
386 		__x = 0;						\
387 	}								\
388 									\
389 	/* Now sync whatever is left. */				\
390 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
391 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
392 } while (/*CONSTCOND*/0)
393 
394 #define DGE_CDRXSYNC(sc, x, ops)						\
395 do {									\
396 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
397 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
398 } while (/*CONSTCOND*/0)
399 
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x)						\
402 do {									\
403 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
404 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
405 	struct mbuf *__m = __rxs->rxs_mbuf;				\
406 	const bus_addr_t __rxaddr = sc->sc_bugmap->dm_segs[0].ds_addr +	\
407 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf);		\
408 									\
409 	__rxd->dr_baddrl = htole32(__rxaddr);				\
410 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
411 	__rxd->dr_len = 0;						\
412 	__rxd->dr_cksum = 0;						\
413 	__rxd->dr_status = 0;						\
414 	__rxd->dr_errors = 0;						\
415 	__rxd->dr_special = 0;						\
416 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
417 									\
418 	CSR_WRITE((sc), DGE_RDT, (x));					\
419 } while (/*CONSTCOND*/0)
420 #else
421 #define DGE_INIT_RXDESC(sc, x)						\
422 do {									\
423 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
424 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
425 	struct mbuf *__m = __rxs->rxs_mbuf;				\
426 									\
427 	/*								\
428 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
429 	 * so that the payload after the Ethernet header is aligned	\
430 	 * to a 4-byte boundary.					\
431 	 *								\
432 	 * XXX BRAINDAMAGE ALERT!					\
433 	 * The stupid chip uses the same size for every buffer, which	\
434 	 * is set in the Receive Control register.  We are using the 2K \
435 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
436 	 * reason, we can't "scoot" packets longer than the standard	\
437 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
438 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
439 	 * the upper layer copy the headers.				\
440 	 */								\
441 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
442 									\
443 	const bus_addr_t __rxaddr =					\
444 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr +			\
445 	    (sc)->sc_align_tweak;					\
446 									\
447 	__rxd->dr_baddrl = htole32(__rxaddr);				\
448 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
449 	__rxd->dr_len = 0;						\
450 	__rxd->dr_cksum = 0;						\
451 	__rxd->dr_status = 0;						\
452 	__rxd->dr_errors = 0;						\
453 	__rxd->dr_special = 0;						\
454 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
455 									\
456 	CSR_WRITE((sc), DGE_RDT, (x));					\
457 } while (/*CONSTCOND*/0)
458 #endif
459 
460 #ifdef DGE_OFFBYONE_RXBUG
461 /*
462  * Allocation constants.  Much memory may be used for this.
463  */
464 #ifndef DGE_BUFFER_SIZE
465 #define DGE_BUFFER_SIZE DGE_MAX_MTU
466 #endif
467 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
468 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
469 
470 struct rxbugentry {
471 	SLIST_ENTRY(rxbugentry) rb_entry;
472 	int rb_slot;
473 };
474 
475 static int
dge_alloc_rcvmem(struct dge_softc * sc)476 dge_alloc_rcvmem(struct dge_softc *sc)
477 {
478 	char *kva;
479 	bus_dma_segment_t seg;
480 	int i, rseg, state, error;
481 	struct rxbugentry *entry;
482 
483 	state = error = 0;
484 
485 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
486 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
487 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
488 		return ENOBUFS;
489 	}
490 
491 	state = 1;
492 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
493 	    BUS_DMA_NOWAIT)) {
494 		aprint_error_dev(sc->sc_dev,
495 		    "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
496 		error = ENOBUFS;
497 		goto out;
498 	}
499 
500 	state = 2;
501 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
502 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
503 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
504 		error = ENOBUFS;
505 		goto out;
506 	}
507 
508 	state = 3;
509 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
510 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
511 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
512 		error = ENOBUFS;
513 		goto out;
514 	}
515 
516 	state = 4;
517 	sc->sc_bugbuf = (void *)kva;
518 	SLIST_INIT(&sc->sc_buglist);
519 
520 	/*
521 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
522 	 * in an array.
523 	 */
524 	entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK);
525 	sc->sc_entry = entry;
526 	for (i = 0; i < DGE_NBUFFERS; i++) {
527 		entry[i].rb_slot = i;
528 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
529 	}
530 out:
531 	if (error != 0) {
532 		switch (state) {
533 		case 4:
534 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
535 			/* FALLTHROUGH */
536 		case 3:
537 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
538 			/* FALLTHROUGH */
539 		case 2:
540 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
541 			/* FALLTHROUGH */
542 		case 1:
543 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544 			break;
545 		default:
546 			break;
547 		}
548 	}
549 
550 	return error;
551 }
552 
553 /*
554  * Allocate a jumbo buffer.
555  */
556 static void *
dge_getbuf(struct dge_softc * sc)557 dge_getbuf(struct dge_softc *sc)
558 {
559 	struct rxbugentry *entry;
560 
561 	entry = SLIST_FIRST(&sc->sc_buglist);
562 
563 	if (entry == NULL) {
564 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
565 		return NULL;
566 	}
567 
568 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
569 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
570 }
571 
572 /*
573  * Release a jumbo buffer.
574  */
575 static void
dge_freebuf(struct mbuf * m,void * buf,size_t size,void * arg)576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
577 {
578 	struct rxbugentry *entry;
579 	struct dge_softc *sc;
580 	int i, s;
581 
582 	/* Extract the softc struct pointer. */
583 	sc = (struct dge_softc *)arg;
584 
585 	if (sc == NULL)
586 		panic("dge_freebuf: can't find softc pointer!");
587 
588 	/* calculate the slot this buffer belongs to */
589 
590 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
591 
592 	if ((i < 0) || (i >= DGE_NBUFFERS))
593 		panic("dge_freebuf: asked to free buffer %d!", i);
594 
595 	s = splvm();
596 	entry = sc->sc_entry + i;
597 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
598 
599 	if (__predict_true(m != NULL))
600 		pool_cache_put(mb_cache, m);
601 	splx(s);
602 }
603 #endif
604 
605 static void	dge_start(struct ifnet *);
606 static void	dge_watchdog(struct ifnet *);
607 static int	dge_ioctl(struct ifnet *, u_long, void *);
608 static int	dge_init(struct ifnet *);
609 static void	dge_stop(struct ifnet *, int);
610 
611 static bool	dge_shutdown(device_t, int);
612 
613 static void	dge_reset(struct dge_softc *);
614 static void	dge_rxdrain(struct dge_softc *);
615 static int	dge_add_rxbuf(struct dge_softc *, int);
616 
617 static void	dge_set_filter(struct dge_softc *);
618 
619 static int	dge_intr(void *);
620 static void	dge_txintr(struct dge_softc *);
621 static void	dge_rxintr(struct dge_softc *);
622 static void	dge_linkintr(struct dge_softc *, uint32_t);
623 
624 static int	dge_match(device_t, cfdata_t, void *);
625 static void	dge_attach(device_t, device_t, void *);
626 
627 static int	dge_read_eeprom(struct dge_softc *sc);
628 static int	dge_eeprom_clockin(struct dge_softc *sc);
629 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
630 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
631 static int	dge_xgmii_mediachange(struct ifnet *);
632 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
633 static void	dge_xgmii_reset(struct dge_softc *);
634 static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
635 
636 
637 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
638     dge_match, dge_attach, NULL, NULL);
639 
640 #ifdef DGE_EVENT_COUNTERS
641 #if DGE_NTXSEGS > 100
642 #error Update dge_txseg_evcnt_names
643 #endif
644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
645 #endif /* DGE_EVENT_COUNTERS */
646 
647 /*
648  * Devices supported by this driver.
649  */
650 struct dge_product {
651 	const char *name;
652 	int flags;
653 #define DGEP_F_10G_LR	  0x01
654 #define DGEP_F_10G_SR	  0x02
655 };
656 
657 static const struct dge_product i82597EX_lr = {
658 	.name = "Intel i82597EX 10GbE-LR Ethernet",
659 	.flags = DGEP_F_10G_LR
660 };
661 
662 static const struct dge_product i82597EX_sr = {
663 	.name = "Intel i82597EX 10GbE-SR Ethernet",
664 	.flags = DGEP_F_10G_SR
665 };
666 
667 static const struct device_compatible_entry compat_data[] = {
668 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
669 		PCI_PRODUCT_INTEL_82597EX),
670 	  .data = &i82597EX_lr },
671 
672 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
673 		PCI_PRODUCT_INTEL_82597EX_SR),
674 	  .data = &i82597EX_sr },
675 
676 	PCI_COMPAT_EOL
677 };
678 
679 static int
dge_match(device_t parent,cfdata_t cf,void * aux)680 dge_match(device_t parent, cfdata_t cf, void *aux)
681 {
682 	struct pci_attach_args *pa = aux;
683 
684 	return pci_compatible_match(pa, compat_data);
685 }
686 
687 static void
dge_attach(device_t parent,device_t self,void * aux)688 dge_attach(device_t parent, device_t self, void *aux)
689 {
690 	struct dge_softc *sc = device_private(self);
691 	struct pci_attach_args *pa = aux;
692 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
693 	pci_chipset_tag_t pc = pa->pa_pc;
694 	pci_intr_handle_t ih;
695 	const char *intrstr = NULL;
696 	bus_dma_segment_t seg;
697 	int i, rseg, error;
698 	uint8_t enaddr[ETHER_ADDR_LEN];
699 	pcireg_t preg, memtype;
700 	uint32_t reg;
701 	char intrbuf[PCI_INTRSTR_LEN];
702 	const struct device_compatible_entry *dce;
703 	const struct dge_product *dgep;
704 
705 	dce = pci_compatible_lookup(pa, compat_data);
706 	KASSERT(dce != NULL);
707 	sc->sc_dgep = dgep = dce->data;
708 
709 	sc->sc_dev = self;
710 	sc->sc_pc = pa->pa_pc;
711 	sc->sc_pt = pa->pa_tag;
712 
713 	if (pci_dma64_available(pa))
714 		sc->sc_dmat = pa->pa_dmat64;
715 	else
716 		sc->sc_dmat = pa->pa_dmat;
717 
718 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
719 		dgep->name, 1);
720 
721 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
722 	if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
723 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
724 		aprint_error_dev(sc->sc_dev,
725 		    "unable to map device registers\n");
726 		return;
727 	}
728 
729 	/* Enable bus mastering */
730 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
731 	preg |= PCI_COMMAND_MASTER_ENABLE;
732 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
733 
734 	/*
735 	 * Map and establish our interrupt.
736 	 */
737 	if (pci_intr_map(pa, &ih)) {
738 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
739 		return;
740 	}
741 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
742 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
743 	    device_xname(self));
744 	if (sc->sc_ih == NULL) {
745 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
746 		if (intrstr != NULL)
747 			aprint_error(" at %s", intrstr);
748 		aprint_error("\n");
749 		return;
750 	}
751 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
752 
753 	/*
754 	 * Determine a few things about the bus we're connected to.
755 	 */
756 	reg = CSR_READ(sc, DGE_STATUS);
757 	if (reg & STATUS_BUS64)
758 		sc->sc_flags |= DGE_F_BUS64;
759 
760 	sc->sc_flags |= DGE_F_PCIX;
761 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
762 			       PCI_CAP_PCIX,
763 			       &sc->sc_pcix_offset, NULL) == 0)
764 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
765 		    "capability\n");
766 
767 	if (sc->sc_flags & DGE_F_PCIX) {
768 		switch (reg & STATUS_PCIX_MSK) {
769 		case STATUS_PCIX_66:
770 			sc->sc_bus_speed = 66;
771 			break;
772 		case STATUS_PCIX_100:
773 			sc->sc_bus_speed = 100;
774 			break;
775 		case STATUS_PCIX_133:
776 			sc->sc_bus_speed = 133;
777 			break;
778 		default:
779 			aprint_error_dev(sc->sc_dev,
780 			    "unknown PCIXSPD %d; assuming 66MHz\n",
781 			    reg & STATUS_PCIX_MSK);
782 			sc->sc_bus_speed = 66;
783 		}
784 	} else
785 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
786 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
787 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
788 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
789 
790 	/*
791 	 * Allocate the control data structures, and create and load the
792 	 * DMA map for it.
793 	 */
794 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
795 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
796 	    0)) != 0) {
797 		aprint_error_dev(sc->sc_dev,
798 		    "unable to allocate control data, error = %d\n",
799 		    error);
800 		goto fail_0;
801 	}
802 
803 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
804 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
805 	    0)) != 0) {
806 		aprint_error_dev(sc->sc_dev,
807 		    "unable to map control data, error = %d\n", error);
808 		goto fail_1;
809 	}
810 
811 	if ((error = bus_dmamap_create(sc->sc_dmat,
812 	    sizeof(struct dge_control_data), 1,
813 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
814 		aprint_error_dev(sc->sc_dev, "unable to create control data "
815 		    "DMA map, error = %d\n", error);
816 		goto fail_2;
817 	}
818 
819 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
820 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
821 	    0)) != 0) {
822 		aprint_error_dev(sc->sc_dev,
823 		    "unable to load control data DMA map, error = %d\n",
824 		    error);
825 		goto fail_3;
826 	}
827 
828 #ifdef DGE_OFFBYONE_RXBUG
829 	if (dge_alloc_rcvmem(sc) != 0)
830 		return; /* Already complained */
831 #endif
832 	/*
833 	 * Create the transmit buffer DMA maps.
834 	 */
835 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
836 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
837 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
838 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
839 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
840 			    "error = %d\n", i, error);
841 			goto fail_4;
842 		}
843 	}
844 
845 	/*
846 	 * Create the receive buffer DMA maps.
847 	 */
848 	for (i = 0; i < DGE_NRXDESC; i++) {
849 #ifdef DGE_OFFBYONE_RXBUG
850 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
851 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
852 #else
853 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
854 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
855 #endif
856 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
857 			    "map %d, error = %d\n", i, error);
858 			goto fail_5;
859 		}
860 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
861 	}
862 
863 	/*
864 	 * Set bits in ctrl0 register.
865 	 * Should get the software defined pins out of EEPROM?
866 	 */
867 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
868 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
869 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
870 
871 	/*
872 	 * Reset the chip to a known state.
873 	 */
874 	dge_reset(sc);
875 
876 	/*
877 	 * Reset the PHY.
878 	 */
879 	dge_xgmii_reset(sc);
880 
881 	/*
882 	 * Read in EEPROM data.
883 	 */
884 	if (dge_read_eeprom(sc)) {
885 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
886 		return;
887 	}
888 
889 	/*
890 	 * Get the ethernet address.
891 	 */
892 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
893 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
894 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
895 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
896 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
897 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
898 
899 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
900 	    ether_sprintf(enaddr));
901 
902 	/*
903 	 * Setup media stuff.
904 	 */
905 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
906 	ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
907 	    dge_xgmii_mediastatus);
908 	if (dgep->flags & DGEP_F_10G_SR) {
909 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
910 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
911 	} else { /* XXX default is LR */
912 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
913 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
914 	}
915 
916 	ifp = &sc->sc_ethercom.ec_if;
917 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
918 	ifp->if_softc = sc;
919 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
920 	ifp->if_ioctl = dge_ioctl;
921 	ifp->if_start = dge_start;
922 	ifp->if_watchdog = dge_watchdog;
923 	ifp->if_init = dge_init;
924 	ifp->if_stop = dge_stop;
925 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
926 	IFQ_SET_READY(&ifp->if_snd);
927 
928 	sc->sc_ethercom.ec_capabilities |=
929 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
930 
931 	/*
932 	 * We can perform TCPv4 and UDPv4 checksums in-bound.
933 	 */
934 	ifp->if_capabilities |=
935 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
936 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
937 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
938 
939 	/*
940 	 * Attach the interface.
941 	 */
942 	if_attach(ifp);
943 	if_deferred_start_init(ifp, NULL);
944 	ether_ifattach(ifp, enaddr);
945 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
946 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
947 
948 #ifdef DGE_EVENT_COUNTERS
949 	/* Fix segment event naming */
950 	if (dge_txseg_evcnt_names == NULL) {
951 		dge_txseg_evcnt_names =
952 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
953 		for (i = 0; i < DGE_NTXSEGS; i++)
954 			snprintf((*dge_txseg_evcnt_names)[i],
955 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
956 	}
957 
958 	/* Attach event counters. */
959 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
960 	    NULL, device_xname(sc->sc_dev), "txsstall");
961 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
962 	    NULL, device_xname(sc->sc_dev), "txdstall");
963 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
964 	    NULL, device_xname(sc->sc_dev), "txforceintr");
965 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
966 	    NULL, device_xname(sc->sc_dev), "txdw");
967 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
968 	    NULL, device_xname(sc->sc_dev), "txqe");
969 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
970 	    NULL, device_xname(sc->sc_dev), "rxintr");
971 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
972 	    NULL, device_xname(sc->sc_dev), "linkintr");
973 
974 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
975 	    NULL, device_xname(sc->sc_dev), "rxipsum");
976 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
977 	    NULL, device_xname(sc->sc_dev), "rxtusum");
978 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
979 	    NULL, device_xname(sc->sc_dev), "txipsum");
980 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
981 	    NULL, device_xname(sc->sc_dev), "txtusum");
982 
983 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
984 	    NULL, device_xname(sc->sc_dev), "txctx init");
985 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
986 	    NULL, device_xname(sc->sc_dev), "txctx hit");
987 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
988 	    NULL, device_xname(sc->sc_dev), "txctx miss");
989 
990 	for (i = 0; i < DGE_NTXSEGS; i++)
991 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
992 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
993 
994 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
995 	    NULL, device_xname(sc->sc_dev), "txdrop");
996 
997 #endif /* DGE_EVENT_COUNTERS */
998 
999 	/*
1000 	 * Make sure the interface is shutdown during reboot.
1001 	 */
1002 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1003 		pmf_class_network_register(self, ifp);
1004 	else
1005 		aprint_error_dev(self, "couldn't establish power handler\n");
1006 
1007 	return;
1008 
1009 	/*
1010 	 * Free any resources we've allocated during the failed attach
1011 	 * attempt.  Do this in reverse order and fall through.
1012 	 */
1013  fail_5:
1014 	for (i = 0; i < DGE_NRXDESC; i++) {
1015 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1016 			bus_dmamap_destroy(sc->sc_dmat,
1017 			    sc->sc_rxsoft[i].rxs_dmamap);
1018 	}
1019  fail_4:
1020 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
1021 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1022 			bus_dmamap_destroy(sc->sc_dmat,
1023 			    sc->sc_txsoft[i].txs_dmamap);
1024 	}
1025 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1026  fail_3:
1027 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1028  fail_2:
1029 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1030 	    sizeof(struct dge_control_data));
1031  fail_1:
1032 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1033  fail_0:
1034 	return;
1035 }
1036 
1037 /*
1038  * dge_shutdown:
1039  *
1040  *	Make sure the interface is stopped at reboot time.
1041  */
1042 static bool
1043 dge_shutdown(device_t self, int howto)
1044 {
1045 	struct dge_softc *sc;
1046 
1047 	sc = device_private(self);
1048 	dge_stop(&sc->sc_ethercom.ec_if, 1);
1049 
1050 	return true;
1051 }
1052 
1053 /*
1054  * dge_tx_cksum:
1055  *
1056  *	Set up TCP/IP checksumming parameters for the
1057  *	specified packet.
1058  */
1059 static int
1060 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1061 {
1062 	struct mbuf *m0 = txs->txs_mbuf;
1063 	struct dge_ctdes *t;
1064 	uint32_t ipcs, tucs;
1065 	struct ether_header *eh;
1066 	int offset, iphl;
1067 	uint8_t fields = 0;
1068 
1069 	/*
1070 	 * XXX It would be nice if the mbuf pkthdr had offset
1071 	 * fields for the protocol headers.
1072 	 */
1073 
1074 	eh = mtod(m0, struct ether_header *);
1075 	switch (htons(eh->ether_type)) {
1076 	case ETHERTYPE_IP:
1077 		offset = ETHER_HDR_LEN;
1078 		break;
1079 
1080 	case ETHERTYPE_VLAN:
1081 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1082 		break;
1083 
1084 	default:
1085 		/*
1086 		 * Don't support this protocol or encapsulation.
1087 		 */
1088 		*fieldsp = 0;
1089 		return 0;
1090 	}
1091 
1092 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1093 
1094 	/*
1095 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1096 	 * offload feature, if we load the context descriptor, we
1097 	 * MUST provide valid values for IPCSS and TUCSS fields.
1098 	 */
1099 
1100 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1101 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1102 		fields |= TDESC_POPTS_IXSM;
1103 		ipcs = DGE_TCPIP_IPCSS(offset) |
1104 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1105 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1106 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1107 		/* Use the cached value. */
1108 		ipcs = sc->sc_txctx_ipcs;
1109 	} else {
1110 		/* Just initialize it to the likely value anyway. */
1111 		ipcs = DGE_TCPIP_IPCSS(offset) |
1112 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1113 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1114 	}
1115 	DPRINTF(DGE_DEBUG_CKSUM,
1116 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
1117 	    device_xname(sc->sc_dev), offset, ipcs));
1118 
1119 	offset += iphl;
1120 
1121 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1122 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1123 		fields |= TDESC_POPTS_TXSM;
1124 		tucs = DGE_TCPIP_TUCSS(offset) |
1125 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1126 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
1127 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1128 		/* Use the cached value. */
1129 		tucs = sc->sc_txctx_tucs;
1130 	} else {
1131 		/* Just initialize it to a valid TCP context. */
1132 		tucs = DGE_TCPIP_TUCSS(offset) |
1133 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1134 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
1135 	}
1136 
1137 	DPRINTF(DGE_DEBUG_CKSUM,
1138 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
1139 	    device_xname(sc->sc_dev), offset, tucs));
1140 
1141 	if (sc->sc_txctx_ipcs == ipcs &&
1142 	    sc->sc_txctx_tucs == tucs) {
1143 		/* Cached context is fine. */
1144 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1145 	} else {
1146 		/* Fill in the context descriptor. */
1147 #ifdef DGE_EVENT_COUNTERS
1148 		if (sc->sc_txctx_ipcs == 0xffffffff &&
1149 		    sc->sc_txctx_tucs == 0xffffffff)
1150 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1151 		else
1152 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1153 #endif
1154 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1155 		t->dc_tcpip_ipcs = htole32(ipcs);
1156 		t->dc_tcpip_tucs = htole32(tucs);
1157 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1158 		t->dc_tcpip_seg = 0;
1159 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1160 
1161 		sc->sc_txctx_ipcs = ipcs;
1162 		sc->sc_txctx_tucs = tucs;
1163 
1164 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1165 		txs->txs_ndesc++;
1166 	}
1167 
1168 	*fieldsp = fields;
1169 
1170 	return 0;
1171 }
1172 
1173 /*
1174  * dge_start:		[ifnet interface function]
1175  *
1176  *	Start packet transmission on the interface.
1177  */
1178 static void
1179 dge_start(struct ifnet *ifp)
1180 {
1181 	struct dge_softc *sc = ifp->if_softc;
1182 	struct mbuf *m0;
1183 	struct dge_txsoft *txs;
1184 	bus_dmamap_t dmamap;
1185 	int error, nexttx, lasttx = -1, ofree, seg;
1186 	uint32_t cksumcmd;
1187 	uint8_t cksumfields;
1188 
1189 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1190 		return;
1191 
1192 	/*
1193 	 * Remember the previous number of free descriptors.
1194 	 */
1195 	ofree = sc->sc_txfree;
1196 
1197 	/*
1198 	 * Loop through the send queue, setting up transmit descriptors
1199 	 * until we drain the queue, or use up all available transmit
1200 	 * descriptors.
1201 	 */
1202 	for (;;) {
1203 		/* Grab a packet off the queue. */
1204 		IFQ_POLL(&ifp->if_snd, m0);
1205 		if (m0 == NULL)
1206 			break;
1207 
1208 		DPRINTF(DGE_DEBUG_TX,
1209 		    ("%s: TX: have packet to transmit: %p\n",
1210 		    device_xname(sc->sc_dev), m0));
1211 
1212 		/* Get a work queue entry. */
1213 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1214 			dge_txintr(sc);
1215 			if (sc->sc_txsfree == 0) {
1216 				DPRINTF(DGE_DEBUG_TX,
1217 				    ("%s: TX: no free job descriptors\n",
1218 					device_xname(sc->sc_dev)));
1219 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1220 				break;
1221 			}
1222 		}
1223 
1224 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1225 		dmamap = txs->txs_dmamap;
1226 
1227 		/*
1228 		 * Load the DMA map.  If this fails, the packet either
1229 		 * didn't fit in the allotted number of segments, or we
1230 		 * were short on resources.  For the too-many-segments
1231 		 * case, we simply report an error and drop the packet,
1232 		 * since we can't sanely copy a jumbo packet to a single
1233 		 * buffer.
1234 		 */
1235 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1236 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1237 		if (error) {
1238 			if (error == EFBIG) {
1239 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1240 				printf("%s: Tx packet consumes too many "
1241 				    "DMA segments, dropping...\n",
1242 				    device_xname(sc->sc_dev));
1243 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1244 				m_freem(m0);
1245 				continue;
1246 			}
1247 			/*
1248 			 * Short on resources, just stop for now.
1249 			 */
1250 			DPRINTF(DGE_DEBUG_TX,
1251 			    ("%s: TX: dmamap load failed: %d\n",
1252 			    device_xname(sc->sc_dev), error));
1253 			break;
1254 		}
1255 
1256 		/*
1257 		 * Ensure we have enough descriptors free to describe
1258 		 * the packet.  Note, we always reserve one descriptor
1259 		 * at the end of the ring due to the semantics of the
1260 		 * TDT register, plus one more in the event we need
1261 		 * to re-load checksum offload context.
1262 		 */
1263 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1264 			/*
1265 			 * Not enough free descriptors to transmit this
1266 			 * packet.  We haven't committed anything yet,
1267 			 * so just unload the DMA map, put the packet
1268 			 * pack on the queue, and punt.  Notify the upper
1269 			 * layer that there are no more slots left.
1270 			 */
1271 			DPRINTF(DGE_DEBUG_TX,
1272 			    ("%s: TX: need %d descriptors, have %d\n",
1273 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
1274 			    sc->sc_txfree - 1));
1275 			ifp->if_flags |= IFF_OACTIVE;
1276 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1277 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1278 			break;
1279 		}
1280 
1281 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1282 
1283 		/*
1284 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1285 		 */
1286 
1287 		/* Sync the DMA map. */
1288 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1289 		    BUS_DMASYNC_PREWRITE);
1290 
1291 		DPRINTF(DGE_DEBUG_TX,
1292 		    ("%s: TX: packet has %d DMA segments\n",
1293 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
1294 
1295 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1296 
1297 		/*
1298 		 * Store a pointer to the packet so that we can free it
1299 		 * later.
1300 		 *
1301 		 * Initially, we consider the number of descriptors the
1302 		 * packet uses the number of DMA segments.  This may be
1303 		 * incremented by 1 if we do checksum offload (a descriptor
1304 		 * is used to set the checksum context).
1305 		 */
1306 		txs->txs_mbuf = m0;
1307 		txs->txs_firstdesc = sc->sc_txnext;
1308 		txs->txs_ndesc = dmamap->dm_nsegs;
1309 
1310 		/*
1311 		 * Set up checksum offload parameters for
1312 		 * this packet.
1313 		 */
1314 		if (m0->m_pkthdr.csum_flags &
1315 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1316 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1317 				/* Error message already displayed. */
1318 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1319 				continue;
1320 			}
1321 		} else {
1322 			cksumfields = 0;
1323 		}
1324 
1325 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1326 
1327 		/*
1328 		 * Initialize the transmit descriptor.
1329 		 */
1330 		for (nexttx = sc->sc_txnext, seg = 0;
1331 		     seg < dmamap->dm_nsegs;
1332 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
1333 			sc->sc_txdescs[nexttx].dt_baddrh =
1334 			    htole32(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32);
1335 			sc->sc_txdescs[nexttx].dt_baddrl =
1336 			    htole32(dmamap->dm_segs[seg].ds_addr);
1337 			sc->sc_txdescs[nexttx].dt_ctl =
1338 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1339 			sc->sc_txdescs[nexttx].dt_status = 0;
1340 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1341 			sc->sc_txdescs[nexttx].dt_vlan = 0;
1342 			lasttx = nexttx;
1343 
1344 			DPRINTF(DGE_DEBUG_TX,
1345 			    ("%s: TX: desc %d: high 0x%08lx, low 0x%08lx, len 0x%04lx\n",
1346 			    device_xname(sc->sc_dev), nexttx,
1347 			    (unsigned long)(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32),
1348 			    (unsigned long)((uint32_t)dmamap->dm_segs[seg].ds_addr),
1349 			    (unsigned long)dmamap->dm_segs[seg].ds_len));
1350 		}
1351 
1352 		KASSERT(lasttx != -1);
1353 
1354 		/*
1355 		 * Set up the command byte on the last descriptor of
1356 		 * the packet.  If we're in the interrupt delay window,
1357 		 * delay the interrupt.
1358 		 */
1359 		sc->sc_txdescs[lasttx].dt_ctl |=
1360 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1361 
1362 		txs->txs_lastdesc = lasttx;
1363 
1364 		DPRINTF(DGE_DEBUG_TX,
1365 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1366 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1367 
1368 		/* Sync the descriptors we're using. */
1369 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1370 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371 
1372 		/* Give the packet to the chip. */
1373 		CSR_WRITE(sc, DGE_TDT, nexttx);
1374 
1375 		DPRINTF(DGE_DEBUG_TX,
1376 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1377 
1378 		DPRINTF(DGE_DEBUG_TX,
1379 		    ("%s: TX: finished transmitting packet, job %d\n",
1380 		    device_xname(sc->sc_dev), sc->sc_txsnext));
1381 
1382 		/* Advance the tx pointer. */
1383 		sc->sc_txfree -= txs->txs_ndesc;
1384 		sc->sc_txnext = nexttx;
1385 
1386 		sc->sc_txsfree--;
1387 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1388 
1389 		/* Pass the packet to any BPF listeners. */
1390 		bpf_mtap(ifp, m0, BPF_D_OUT);
1391 	}
1392 
1393 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1394 		/* No more slots; notify upper layer. */
1395 		ifp->if_flags |= IFF_OACTIVE;
1396 	}
1397 
1398 	if (sc->sc_txfree != ofree) {
1399 		/* Set a watchdog timer in case the chip flakes out. */
1400 		ifp->if_timer = 5;
1401 	}
1402 }
1403 
1404 /*
1405  * dge_watchdog:		[ifnet interface function]
1406  *
1407  *	Watchdog timer handler.
1408  */
1409 static void
1410 dge_watchdog(struct ifnet *ifp)
1411 {
1412 	struct dge_softc *sc = ifp->if_softc;
1413 
1414 	/*
1415 	 * Since we're using delayed interrupts, sweep up
1416 	 * before we report an error.
1417 	 */
1418 	dge_txintr(sc);
1419 
1420 	if (sc->sc_txfree != DGE_NTXDESC) {
1421 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1422 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1423 		    sc->sc_txnext);
1424 		if_statinc(ifp, if_oerrors);
1425 
1426 		/* Reset the interface. */
1427 		(void) dge_init(ifp);
1428 	}
1429 
1430 	/* Try to get more packets going. */
1431 	dge_start(ifp);
1432 }
1433 
1434 /*
1435  * dge_ioctl:		[ifnet interface function]
1436  *
1437  *	Handle control requests from the operator.
1438  */
1439 static int
1440 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1441 {
1442 	struct dge_softc *sc = ifp->if_softc;
1443 	struct ifreq *ifr = (struct ifreq *) data;
1444 	pcireg_t preg;
1445 	int s, error, mmrbc;
1446 
1447 	s = splnet();
1448 
1449 	switch (cmd) {
1450 	case SIOCSIFMTU:
1451 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1452 			error = EINVAL;
1453 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1454 			break;
1455 		else if (ifp->if_flags & IFF_UP)
1456 			error = if_init(ifp);
1457 		else
1458 			error = 0;
1459 		break;
1460 
1461 	case SIOCSIFFLAGS:
1462 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1463 			break;
1464 		/* extract link flags */
1465 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
1466 		    (ifp->if_flags & IFF_LINK1) == 0)
1467 			mmrbc = PCIX_MMRBC_512;
1468 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1469 		    (ifp->if_flags & IFF_LINK1) != 0)
1470 			mmrbc = PCIX_MMRBC_1024;
1471 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1472 		    (ifp->if_flags & IFF_LINK1) == 0)
1473 			mmrbc = PCIX_MMRBC_2048;
1474 		else
1475 			mmrbc = PCIX_MMRBC_4096;
1476 		if (mmrbc != sc->sc_mmrbc) {
1477 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1478 			preg &= ~PCIX_MMRBC_MSK;
1479 			preg |= mmrbc;
1480 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1481 			sc->sc_mmrbc = mmrbc;
1482 		}
1483 		/* FALLTHROUGH */
1484 	default:
1485 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1486 			break;
1487 
1488 		error = 0;
1489 
1490 		if (cmd == SIOCSIFCAP)
1491 			error = if_init(ifp);
1492 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1493 			;
1494 		else if (ifp->if_flags & IFF_RUNNING) {
1495 			/*
1496 			 * Multicast list has changed; set the hardware filter
1497 			 * accordingly.
1498 			 */
1499 			dge_set_filter(sc);
1500 		}
1501 		break;
1502 	}
1503 
1504 	/* Try to get more packets going. */
1505 	dge_start(ifp);
1506 
1507 	splx(s);
1508 	return error;
1509 }
1510 
1511 /*
1512  * dge_intr:
1513  *
1514  *	Interrupt service routine.
1515  */
1516 static int
1517 dge_intr(void *arg)
1518 {
1519 	struct dge_softc *sc = arg;
1520 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1521 	uint32_t icr;
1522 	int wantinit, handled = 0;
1523 
1524 	for (wantinit = 0; wantinit == 0;) {
1525 		icr = CSR_READ(sc, DGE_ICR);
1526 		if ((icr & sc->sc_icr) == 0)
1527 			break;
1528 
1529 		rnd_add_uint32(&sc->rnd_source, icr);
1530 
1531 		handled = 1;
1532 
1533 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1534 		if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1535 			DPRINTF(DGE_DEBUG_RX,
1536 			    ("%s: RX: got Rx intr 0x%08x\n",
1537 			    device_xname(sc->sc_dev),
1538 			    icr & (ICR_RXDMT0 | ICR_RXT0)));
1539 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1540 		}
1541 #endif
1542 		dge_rxintr(sc);
1543 
1544 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1545 		if (icr & ICR_TXDW) {
1546 			DPRINTF(DGE_DEBUG_TX,
1547 			    ("%s: TX: got TXDW interrupt\n",
1548 			    device_xname(sc->sc_dev)));
1549 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1550 		}
1551 		if (icr & ICR_TXQE)
1552 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1553 #endif
1554 		dge_txintr(sc);
1555 
1556 		if (icr & (ICR_LSC | ICR_RXSEQ)) {
1557 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1558 			dge_linkintr(sc, icr);
1559 		}
1560 
1561 		if (icr & ICR_RXO) {
1562 			printf("%s: Receive overrun\n",
1563 			    device_xname(sc->sc_dev));
1564 			wantinit = 1;
1565 		}
1566 	}
1567 
1568 	if (handled) {
1569 		if (wantinit)
1570 			dge_init(ifp);
1571 
1572 		/* Try to get more packets going. */
1573 		if_schedule_deferred_start(ifp);
1574 	}
1575 
1576 	return handled;
1577 }
1578 
1579 /*
1580  * dge_txintr:
1581  *
1582  *	Helper; handle transmit interrupts.
1583  */
1584 static void
1585 dge_txintr(struct dge_softc *sc)
1586 {
1587 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1588 	struct dge_txsoft *txs;
1589 	uint8_t status;
1590 	int i;
1591 
1592 	ifp->if_flags &= ~IFF_OACTIVE;
1593 
1594 	/*
1595 	 * Go through the Tx list and free mbufs for those
1596 	 * frames which have been transmitted.
1597 	 */
1598 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1599 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1600 		txs = &sc->sc_txsoft[i];
1601 
1602 		DPRINTF(DGE_DEBUG_TX,
1603 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1604 
1605 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1606 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1607 
1608 		status =
1609 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1610 		if ((status & TDESC_STA_DD) == 0) {
1611 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1612 			    BUS_DMASYNC_PREREAD);
1613 			break;
1614 		}
1615 
1616 		DPRINTF(DGE_DEBUG_TX,
1617 		    ("%s: TX: job %d done: descs %d..%d\n",
1618 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1619 		    txs->txs_lastdesc));
1620 
1621 		if_statinc(ifp, if_opackets);
1622 		sc->sc_txfree += txs->txs_ndesc;
1623 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1624 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1625 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1626 		m_freem(txs->txs_mbuf);
1627 		txs->txs_mbuf = NULL;
1628 	}
1629 
1630 	/* Update the dirty transmit buffer pointer. */
1631 	sc->sc_txsdirty = i;
1632 	DPRINTF(DGE_DEBUG_TX,
1633 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1634 
1635 	/*
1636 	 * If there are no more pending transmissions, cancel the watchdog
1637 	 * timer.
1638 	 */
1639 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
1640 		ifp->if_timer = 0;
1641 }
1642 
1643 /*
1644  * dge_rxintr:
1645  *
1646  *	Helper; handle receive interrupts.
1647  */
1648 static void
1649 dge_rxintr(struct dge_softc *sc)
1650 {
1651 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1652 	struct dge_rxsoft *rxs;
1653 	struct mbuf *m;
1654 	int i, len;
1655 	uint8_t status, errors;
1656 
1657 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1658 		rxs = &sc->sc_rxsoft[i];
1659 
1660 		DPRINTF(DGE_DEBUG_RX,
1661 		    ("%s: RX: checking descriptor %d\n",
1662 		    device_xname(sc->sc_dev), i));
1663 
1664 		DGE_CDRXSYNC(sc, i,
1665 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1666 
1667 		status = sc->sc_rxdescs[i].dr_status;
1668 		errors = sc->sc_rxdescs[i].dr_errors;
1669 		len = le16toh(sc->sc_rxdescs[i].dr_len);
1670 
1671 		if ((status & RDESC_STS_DD) == 0) {
1672 			/* We have processed all of the receive descriptors. */
1673 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1674 			break;
1675 		}
1676 
1677 		if (__predict_false(sc->sc_rxdiscard)) {
1678 			DPRINTF(DGE_DEBUG_RX,
1679 			    ("%s: RX: discarding contents of descriptor %d\n",
1680 			    device_xname(sc->sc_dev), i));
1681 			DGE_INIT_RXDESC(sc, i);
1682 			if (status & RDESC_STS_EOP) {
1683 				/* Reset our state. */
1684 				DPRINTF(DGE_DEBUG_RX,
1685 				    ("%s: RX: resetting rxdiscard -> 0\n",
1686 				    device_xname(sc->sc_dev)));
1687 				sc->sc_rxdiscard = 0;
1688 			}
1689 			continue;
1690 		}
1691 
1692 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1693 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1694 
1695 		m = rxs->rxs_mbuf;
1696 
1697 		/*
1698 		 * Add a new receive buffer to the ring.
1699 		 */
1700 		if (dge_add_rxbuf(sc, i) != 0) {
1701 			/*
1702 			 * Failed, throw away what we've done so
1703 			 * far, and discard the rest of the packet.
1704 			 */
1705 			if_statinc(ifp, if_ierrors);
1706 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1707 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1708 			DGE_INIT_RXDESC(sc, i);
1709 			if ((status & RDESC_STS_EOP) == 0)
1710 				sc->sc_rxdiscard = 1;
1711 			if (sc->sc_rxhead != NULL)
1712 				m_freem(sc->sc_rxhead);
1713 			DGE_RXCHAIN_RESET(sc);
1714 			DPRINTF(DGE_DEBUG_RX,
1715 			    ("%s: RX: Rx buffer allocation failed, "
1716 			    "dropping packet%s\n", device_xname(sc->sc_dev),
1717 			    sc->sc_rxdiscard ? " (discard)" : ""));
1718 			continue;
1719 		}
1720 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1721 
1722 		DGE_RXCHAIN_LINK(sc, m);
1723 
1724 		m->m_len = len;
1725 
1726 		DPRINTF(DGE_DEBUG_RX,
1727 		    ("%s: RX: buffer at %p len %d\n",
1728 		    device_xname(sc->sc_dev), m->m_data, len));
1729 
1730 		/*
1731 		 * If this is not the end of the packet, keep
1732 		 * looking.
1733 		 */
1734 		if ((status & RDESC_STS_EOP) == 0) {
1735 			sc->sc_rxlen += len;
1736 			DPRINTF(DGE_DEBUG_RX,
1737 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
1738 			    device_xname(sc->sc_dev), sc->sc_rxlen));
1739 			continue;
1740 		}
1741 
1742 		/*
1743 		 * Okay, we have the entire packet now...
1744 		 */
1745 		*sc->sc_rxtailp = NULL;
1746 		m = sc->sc_rxhead;
1747 		len += sc->sc_rxlen;
1748 
1749 		DGE_RXCHAIN_RESET(sc);
1750 
1751 		DPRINTF(DGE_DEBUG_RX,
1752 		    ("%s: RX: have entire packet, len -> %d\n",
1753 		    device_xname(sc->sc_dev), len));
1754 
1755 		/*
1756 		 * If an error occurred, update stats and drop the packet.
1757 		 */
1758 		if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1759 		    RDESC_ERR_RXE)) {
1760 			if_statinc(ifp, if_ierrors);
1761 			if (errors & RDESC_ERR_SE)
1762 				printf("%s: symbol error\n",
1763 				    device_xname(sc->sc_dev));
1764 			else if (errors & RDESC_ERR_P)
1765 				printf("%s: parity error\n",
1766 				    device_xname(sc->sc_dev));
1767 			else if (errors & RDESC_ERR_CE)
1768 				printf("%s: CRC error\n",
1769 				    device_xname(sc->sc_dev));
1770 			m_freem(m);
1771 			continue;
1772 		}
1773 
1774 		/*
1775 		 * No errors.  Receive the packet.
1776 		 */
1777 		m_set_rcvif(m, ifp);
1778 		m->m_pkthdr.len = len;
1779 
1780 		/*
1781 		 * Set up checksum info for this packet.
1782 		 */
1783 		if (status & RDESC_STS_IPCS) {
1784 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1785 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1786 			if (errors & RDESC_ERR_IPE)
1787 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1788 		}
1789 		if (status & RDESC_STS_TCPCS) {
1790 			/*
1791 			 * Note: we don't know if this was TCP or UDP,
1792 			 * so we just set both bits, and expect the
1793 			 * upper layers to deal.
1794 			 */
1795 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1796 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1797 			if (errors & RDESC_ERR_TCPE)
1798 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1799 		}
1800 
1801 		/* Pass it on. */
1802 		if_percpuq_enqueue(ifp->if_percpuq, m);
1803 	}
1804 
1805 	/* Update the receive pointer. */
1806 	sc->sc_rxptr = i;
1807 
1808 	DPRINTF(DGE_DEBUG_RX,
1809 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1810 }
1811 
1812 /*
1813  * dge_linkintr:
1814  *
1815  *	Helper; handle link interrupts.
1816  */
1817 static void
1818 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1819 {
1820 	uint32_t status;
1821 
1822 	if (icr & ICR_LSC) {
1823 		status = CSR_READ(sc, DGE_STATUS);
1824 		if (status & STATUS_LINKUP) {
1825 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1826 			    device_xname(sc->sc_dev)));
1827 		} else {
1828 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1829 			    device_xname(sc->sc_dev)));
1830 		}
1831 	} else if (icr & ICR_RXSEQ) {
1832 		DPRINTF(DGE_DEBUG_LINK,
1833 		    ("%s: LINK: Receive sequence error\n",
1834 		    device_xname(sc->sc_dev)));
1835 	}
1836 	/* XXX - fix errata */
1837 }
1838 
1839 /*
1840  * dge_reset:
1841  *
1842  *	Reset the i82597 chip.
1843  */
1844 static void
1845 dge_reset(struct dge_softc *sc)
1846 {
1847 	int i;
1848 
1849 	/*
1850 	 * Do a chip reset.
1851 	 */
1852 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1853 
1854 	delay(10000);
1855 
1856 	for (i = 0; i < 1000; i++) {
1857 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1858 			break;
1859 		delay(20);
1860 	}
1861 
1862 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1863 		printf("%s: WARNING: reset failed to complete\n",
1864 		    device_xname(sc->sc_dev));
1865 	/*
1866 	 * Reset the EEPROM logic.
1867 	 * This will cause the chip to reread its default values,
1868 	 * which doesn't happen otherwise (errata).
1869 	 */
1870 	CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1871 	delay(10000);
1872 }
1873 
1874 /*
1875  * dge_init:		[ifnet interface function]
1876  *
1877  *	Initialize the interface.  Must be called at splnet().
1878  */
1879 static int
1880 dge_init(struct ifnet *ifp)
1881 {
1882 	struct dge_softc *sc = ifp->if_softc;
1883 	struct dge_rxsoft *rxs;
1884 	int i, error = 0;
1885 	uint32_t reg;
1886 
1887 	/*
1888 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGNMENT is set.
1889 	 * There is a small but measurable benefit to avoiding the adjusment
1890 	 * of the descriptor so that the headers are aligned, for normal mtu,
1891 	 * on such platforms.  One possibility is that the DMA itself is
1892 	 * slightly more efficient if the front of the entire packet (instead
1893 	 * of the front of the headers) is aligned.
1894 	 *
1895 	 * Note we must always set align_tweak to 0 if we are using
1896 	 * jumbo frames.
1897 	 */
1898 #ifdef __NO_STRICT_ALIGNMENT
1899 	sc->sc_align_tweak = 0;
1900 #else
1901 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1902 		sc->sc_align_tweak = 0;
1903 	else
1904 		sc->sc_align_tweak = 2;
1905 #endif /* __NO_STRICT_ALIGNMENT */
1906 
1907 	/* Cancel any pending I/O. */
1908 	dge_stop(ifp, 0);
1909 
1910 	/* Reset the chip to a known state. */
1911 	dge_reset(sc);
1912 
1913 	/* Initialize the transmit descriptor ring. */
1914 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1915 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1916 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1917 	sc->sc_txfree = DGE_NTXDESC;
1918 	sc->sc_txnext = 0;
1919 
1920 	sc->sc_txctx_ipcs = 0xffffffff;
1921 	sc->sc_txctx_tucs = 0xffffffff;
1922 
1923 	CSR_WRITE(sc, DGE_TDBAH, ((uint64_t)DGE_CDTXADDR(sc, 0)) >> 32);
1924 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1925 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1926 	CSR_WRITE(sc, DGE_TDH, 0);
1927 	CSR_WRITE(sc, DGE_TDT, 0);
1928 	CSR_WRITE(sc, DGE_TIDV, TIDV);
1929 
1930 #if 0
1931 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1932 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1933 #endif
1934 	CSR_WRITE(sc, DGE_RXDCTL,
1935 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1936 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1937 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1938 
1939 	/* Initialize the transmit job descriptors. */
1940 	for (i = 0; i < DGE_TXQUEUELEN; i++)
1941 		sc->sc_txsoft[i].txs_mbuf = NULL;
1942 	sc->sc_txsfree = DGE_TXQUEUELEN;
1943 	sc->sc_txsnext = 0;
1944 	sc->sc_txsdirty = 0;
1945 
1946 	/*
1947 	 * Initialize the receive descriptor and receive job
1948 	 * descriptor rings.
1949 	 */
1950 	CSR_WRITE(sc, DGE_RDBAH, ((uint64_t)DGE_CDRXADDR(sc, 0)) >> 32);
1951 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1952 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1953 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1954 	CSR_WRITE(sc, DGE_RDT, 0);
1955 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1956 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1957 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1958 
1959 	for (i = 0; i < DGE_NRXDESC; i++) {
1960 		rxs = &sc->sc_rxsoft[i];
1961 		if (rxs->rxs_mbuf == NULL) {
1962 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
1963 				printf("%s: unable to allocate or map rx "
1964 				    "buffer %d, error = %d\n",
1965 				    device_xname(sc->sc_dev), i, error);
1966 				/*
1967 				 * XXX Should attempt to run with fewer receive
1968 				 * XXX buffers instead of just failing.
1969 				 */
1970 				dge_rxdrain(sc);
1971 				goto out;
1972 			}
1973 		}
1974 		DGE_INIT_RXDESC(sc, i);
1975 	}
1976 	sc->sc_rxptr = DGE_RXSPACE;
1977 	sc->sc_rxdiscard = 0;
1978 	DGE_RXCHAIN_RESET(sc);
1979 
1980 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1981 		sc->sc_ctrl0 |= CTRL0_JFE;
1982 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1983 	}
1984 
1985 	/* Write the control registers. */
1986 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1987 
1988 	/*
1989 	 * Set up checksum offload parameters.
1990 	 */
1991 	reg = CSR_READ(sc, DGE_RXCSUM);
1992 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1993 		reg |= RXCSUM_IPOFL;
1994 	else
1995 		reg &= ~RXCSUM_IPOFL;
1996 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1997 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1998 	else {
1999 		reg &= ~RXCSUM_TUOFL;
2000 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2001 			reg &= ~RXCSUM_IPOFL;
2002 	}
2003 	CSR_WRITE(sc, DGE_RXCSUM, reg);
2004 
2005 	/*
2006 	 * Set up the interrupt registers.
2007 	 */
2008 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2009 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2010 	    ICR_RXO | ICR_RXT0;
2011 
2012 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2013 
2014 	/*
2015 	 * Set up the transmit control register.
2016 	 */
2017 	sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2018 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2019 
2020 	/*
2021 	 * Set up the receive control register; we actually program
2022 	 * the register when we set the receive filter.  Use multicast
2023 	 * address offset type 0.
2024 	 */
2025 	sc->sc_mchash_type = 0;
2026 
2027 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2028 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2029 
2030 #ifdef DGE_OFFBYONE_RXBUG
2031 	sc->sc_rctl |= RCTL_BSIZE_16k;
2032 #else
2033 	switch (MCLBYTES) {
2034 	case 2048:
2035 		sc->sc_rctl |= RCTL_BSIZE_2k;
2036 		break;
2037 	case 4096:
2038 		sc->sc_rctl |= RCTL_BSIZE_4k;
2039 		break;
2040 	case 8192:
2041 		sc->sc_rctl |= RCTL_BSIZE_8k;
2042 		break;
2043 	case 16384:
2044 		sc->sc_rctl |= RCTL_BSIZE_16k;
2045 		break;
2046 	default:
2047 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2048 	}
2049 #endif
2050 
2051 	/* Set the receive filter. */
2052 	/* Also sets RCTL */
2053 	dge_set_filter(sc);
2054 
2055 	/* ...all done! */
2056 	ifp->if_flags |= IFF_RUNNING;
2057 	ifp->if_flags &= ~IFF_OACTIVE;
2058 
2059  out:
2060 	if (error)
2061 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2062 	return error;
2063 }
2064 
2065 /*
2066  * dge_rxdrain:
2067  *
2068  *	Drain the receive queue.
2069  */
2070 static void
2071 dge_rxdrain(struct dge_softc *sc)
2072 {
2073 	struct dge_rxsoft *rxs;
2074 	int i;
2075 
2076 	for (i = 0; i < DGE_NRXDESC; i++) {
2077 		rxs = &sc->sc_rxsoft[i];
2078 		if (rxs->rxs_mbuf != NULL) {
2079 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2080 			m_freem(rxs->rxs_mbuf);
2081 			rxs->rxs_mbuf = NULL;
2082 		}
2083 	}
2084 }
2085 
2086 /*
2087  * dge_stop:		[ifnet interface function]
2088  *
2089  *	Stop transmission on the interface.
2090  */
2091 static void
2092 dge_stop(struct ifnet *ifp, int disable)
2093 {
2094 	struct dge_softc *sc = ifp->if_softc;
2095 	struct dge_txsoft *txs;
2096 	int i;
2097 
2098 	/* Stop the transmit and receive processes. */
2099 	CSR_WRITE(sc, DGE_TCTL, 0);
2100 	CSR_WRITE(sc, DGE_RCTL, 0);
2101 
2102 	/* Release any queued transmit buffers. */
2103 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
2104 		txs = &sc->sc_txsoft[i];
2105 		if (txs->txs_mbuf != NULL) {
2106 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2107 			m_freem(txs->txs_mbuf);
2108 			txs->txs_mbuf = NULL;
2109 		}
2110 	}
2111 
2112 	/* Mark the interface as down and cancel the watchdog timer. */
2113 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2114 	ifp->if_timer = 0;
2115 
2116 	if (disable)
2117 		dge_rxdrain(sc);
2118 }
2119 
2120 /*
2121  * dge_add_rxbuf:
2122  *
2123  *	Add a receive buffer to the indiciated descriptor.
2124  */
2125 static int
2126 dge_add_rxbuf(struct dge_softc *sc, int idx)
2127 {
2128 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2129 	struct mbuf *m;
2130 	int error;
2131 #ifdef DGE_OFFBYONE_RXBUG
2132 	void *buf;
2133 #endif
2134 
2135 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2136 	if (m == NULL)
2137 		return ENOBUFS;
2138 
2139 #ifdef DGE_OFFBYONE_RXBUG
2140 	if ((buf = dge_getbuf(sc)) == NULL)
2141 		return ENOBUFS;
2142 
2143 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2144 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2145 	m->m_flags |= M_EXT_RW;
2146 
2147 	if (rxs->rxs_mbuf != NULL)
2148 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2149 	rxs->rxs_mbuf = m;
2150 
2151 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2152 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2153 #else
2154 	MCLGET(m, M_DONTWAIT);
2155 	if ((m->m_flags & M_EXT) == 0) {
2156 		m_freem(m);
2157 		return ENOBUFS;
2158 	}
2159 
2160 	if (rxs->rxs_mbuf != NULL)
2161 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2162 
2163 	rxs->rxs_mbuf = m;
2164 
2165 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2166 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2167 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2168 #endif
2169 	if (error) {
2170 		printf("%s: unable to load rx DMA map %d, error = %d\n",
2171 		    device_xname(sc->sc_dev), idx, error);
2172 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
2173 	}
2174 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2175 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2176 
2177 	return 0;
2178 }
2179 
2180 /*
2181  * dge_set_ral:
2182  *
2183  *	Set an entry in the receive address list.
2184  */
2185 static void
2186 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2187 {
2188 	uint32_t ral_lo, ral_hi;
2189 
2190 	if (enaddr != NULL) {
2191 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2192 		    (enaddr[3] << 24);
2193 		ral_hi = enaddr[4] | (enaddr[5] << 8);
2194 		ral_hi |= RAH_AV;
2195 	} else {
2196 		ral_lo = 0;
2197 		ral_hi = 0;
2198 	}
2199 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2200 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2201 }
2202 
2203 /*
2204  * dge_mchash:
2205  *
2206  *	Compute the hash of the multicast address for the 4096-bit
2207  *	multicast filter.
2208  */
2209 static uint32_t
2210 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2211 {
2212 	static const int lo_shift[4] = { 4, 3, 2, 0 };
2213 	static const int hi_shift[4] = { 4, 5, 6, 8 };
2214 	uint32_t hash;
2215 
2216 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2217 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2218 
2219 	return (hash & 0xfff);
2220 }
2221 
2222 /*
2223  * dge_set_filter:
2224  *
2225  *	Set up the receive filter.
2226  */
2227 static void
2228 dge_set_filter(struct dge_softc *sc)
2229 {
2230 	struct ethercom *ec = &sc->sc_ethercom;
2231 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2232 	struct ether_multi *enm;
2233 	struct ether_multistep step;
2234 	uint32_t hash, reg, bit;
2235 	int i;
2236 
2237 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2238 
2239 	if (ifp->if_flags & IFF_BROADCAST)
2240 		sc->sc_rctl |= RCTL_BAM;
2241 	if (ifp->if_flags & IFF_PROMISC) {
2242 		sc->sc_rctl |= RCTL_UPE;
2243 		goto allmulti;
2244 	}
2245 
2246 	/*
2247 	 * Set the station address in the first RAL slot, and
2248 	 * clear the remaining slots.
2249 	 */
2250 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2251 	for (i = 1; i < RA_TABSIZE; i++)
2252 		dge_set_ral(sc, NULL, i);
2253 
2254 	/* Clear out the multicast table. */
2255 	for (i = 0; i < MC_TABSIZE; i++)
2256 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2257 
2258 	ETHER_LOCK(ec);
2259 	ETHER_FIRST_MULTI(step, ec, enm);
2260 	while (enm != NULL) {
2261 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2262 			/*
2263 			 * We must listen to a range of multicast addresses.
2264 			 * For now, just accept all multicasts, rather than
2265 			 * trying to set only those filter bits needed to match
2266 			 * the range.  (At this time, the only use of address
2267 			 * ranges is for IP multicast routing, for which the
2268 			 * range is big enough to require all bits set.)
2269 			 */
2270 			ETHER_UNLOCK(ec);
2271 			goto allmulti;
2272 		}
2273 
2274 		hash = dge_mchash(sc, enm->enm_addrlo);
2275 
2276 		reg = (hash >> 5) & 0x7f;
2277 		bit = hash & 0x1f;
2278 
2279 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2280 		hash |= 1U << bit;
2281 
2282 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2283 
2284 		ETHER_NEXT_MULTI(step, enm);
2285 	}
2286 	ETHER_UNLOCK(ec);
2287 
2288 	ifp->if_flags &= ~IFF_ALLMULTI;
2289 	goto setit;
2290 
2291  allmulti:
2292 	ifp->if_flags |= IFF_ALLMULTI;
2293 	sc->sc_rctl |= RCTL_MPE;
2294 
2295  setit:
2296 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2297 }
2298 
2299 /*
2300  * Read in the EEPROM info and verify checksum.
2301  */
2302 int
2303 dge_read_eeprom(struct dge_softc *sc)
2304 {
2305 	uint16_t cksum;
2306 	int i;
2307 
2308 	cksum = 0;
2309 	for (i = 0; i < EEPROM_SIZE; i++) {
2310 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2311 		cksum += sc->sc_eeprom[i];
2312 	}
2313 	return cksum != EEPROM_CKSUM;
2314 }
2315 
2316 
2317 /*
2318  * Read a 16-bit word from address addr in the serial EEPROM.
2319  */
2320 uint16_t
2321 dge_eeprom_word(struct dge_softc *sc, int addr)
2322 {
2323 	uint32_t reg;
2324 	uint16_t rval = 0;
2325 	int i;
2326 
2327 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2328 
2329 	/* Lower clock pulse (and data in to chip) */
2330 	CSR_WRITE(sc, DGE_EECD, reg);
2331 	/* Select chip */
2332 	CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2333 
2334 	/* Send read command */
2335 	dge_eeprom_clockout(sc, 1);
2336 	dge_eeprom_clockout(sc, 1);
2337 	dge_eeprom_clockout(sc, 0);
2338 
2339 	/* Send address */
2340 	for (i = 5; i >= 0; i--)
2341 		dge_eeprom_clockout(sc, (addr >> i) & 1);
2342 
2343 	/* Read data */
2344 	for (i = 0; i < 16; i++) {
2345 		rval <<= 1;
2346 		rval |= dge_eeprom_clockin(sc);
2347 	}
2348 
2349 	/* Deselect chip */
2350 	CSR_WRITE(sc, DGE_EECD, reg);
2351 
2352 	return rval;
2353 }
2354 
2355 /*
2356  * Clock out a single bit to the EEPROM.
2357  */
2358 void
2359 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2360 {
2361 	int reg;
2362 
2363 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2364 	if (bit)
2365 		reg |= EECD_DI;
2366 
2367 	CSR_WRITE(sc, DGE_EECD, reg);
2368 	delay(2);
2369 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2370 	delay(2);
2371 	CSR_WRITE(sc, DGE_EECD, reg);
2372 	delay(2);
2373 }
2374 
2375 /*
2376  * Clock in a single bit from EEPROM.
2377  */
2378 int
2379 dge_eeprom_clockin(struct dge_softc *sc)
2380 {
2381 	int reg, rv;
2382 
2383 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2384 
2385 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2386 	delay(2);
2387 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2388 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2389 	delay(2);
2390 
2391 	return rv;
2392 }
2393 
2394 static void
2395 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2396 {
2397 	struct dge_softc *sc = ifp->if_softc;
2398 
2399 	ifmr->ifm_status = IFM_AVALID;
2400 	if (sc->sc_dgep->flags & DGEP_F_10G_SR ) {
2401 		ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2402 	} else {
2403 		ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2404 	}
2405 
2406 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2407 		ifmr->ifm_status |= IFM_ACTIVE;
2408 }
2409 
2410 static inline int
2411 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2412 {
2413 	int i, mdic;
2414 
2415 	CSR_WRITE(sc, DGE_MDIO,
2416 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2417 	for (i = 0; i < 10; i++) {
2418 		delay(10);
2419 		if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2420 			break;
2421 	}
2422 	return mdic;
2423 }
2424 
2425 static void
2426 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2427 {
2428 	int mdic;
2429 
2430 	CSR_WRITE(sc, DGE_MDIRW, val);
2431 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2432 		printf("%s: address cycle timeout; phy %d reg %d\n",
2433 		    device_xname(sc->sc_dev), phy, reg);
2434 		return;
2435 	}
2436 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2437 		printf("%s: write cycle timeout; phy %d reg %d\n",
2438 		    device_xname(sc->sc_dev), phy, reg);
2439 		return;
2440 	}
2441 }
2442 
2443 static void
2444 dge_xgmii_reset(struct dge_softc *sc)
2445 {
2446 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2447 }
2448 
2449 static int
2450 dge_xgmii_mediachange(struct ifnet *ifp)
2451 {
2452 	return 0;
2453 }
2454