1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 // for (i = 0; i < n; i++) {
14 // guard(i < len);
15 // ...
16 // }
17 //
18 // to
19 //
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
22 // ...
23 // }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 // if (n - 1 < len)
30 // for (i = 0; i < n; i++) {
31 // ...
32 // }
33 // else
34 // deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 // for (int i = b; i != e; i++)
50 // guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 // if (B(0)) {
56 // do {
57 // I = PHI(0, I.INC)
58 // I.INC = I + Step
59 // guard(G(I));
60 // } while (B(I));
61 // }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 // if (B(0)) {
68 // do {
69 // I = PHI(0, I.INC)
70 // I.INC = I + Step
71 // guard(G(0) && M);
72 // } while (B(I));
73 // }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 // By the definition of guards we can rewrite the guard condition to:
80 // G(I) && G(0) && M
81 //
82 // Let's prove that for each iteration of the loop:
83 // G(0) && M => G(I)
84 // And the condition above can be simplified to G(Start) && M.
85 //
86 // Induction base.
87 // G(0) && M => G(0)
88 //
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
90 // iteration:
91 //
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
94 //
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
107 //
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
111 //
112 // The only way the antecedent can be true and the consequent can be false is
113 // if
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 // then:
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
139 // == true
140 //
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
160 //
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 // The only way the antecedent can be true and the consequent can be false is if
165 // X == 1.
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 #include <optional>
205
206 #define DEBUG_TYPE "loop-predication"
207
208 STATISTIC(TotalConsidered, "Number of guards considered");
209 STATISTIC(TotalWidened, "Number of checks widened");
210
211 using namespace llvm;
212
213 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214 cl::Hidden, cl::init(true));
215
216 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217 cl::Hidden, cl::init(true));
218
219 static cl::opt<bool>
220 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221 cl::Hidden, cl::init(false));
222
223 // This is the scale factor for the latch probability. We use this during
224 // profitability analysis to find other exiting blocks that have a much higher
225 // probability of exiting the loop instead of loop exiting via latch.
226 // This value should be greater than 1 for a sane profitability check.
227 static cl::opt<float> LatchExitProbabilityScale(
228 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
229 cl::desc("scale factor for the latch probability. Value should be greater "
230 "than 1. Lower values are ignored"));
231
232 static cl::opt<bool> PredicateWidenableBranchGuards(
233 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
234 cl::desc("Whether or not we should predicate guards "
235 "expressed as widenable branches to deoptimize blocks"),
236 cl::init(true));
237
238 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
239 "loop-predication-insert-assumes-of-predicated-guards-conditions",
240 cl::Hidden,
241 cl::desc("Whether or not we should insert assumes of conditions of "
242 "predicated guards"),
243 cl::init(true));
244
245 namespace {
246 /// Represents an induction variable check:
247 /// icmp Pred, <induction variable>, <loop invariant limit>
248 struct LoopICmp {
249 ICmpInst::Predicate Pred;
250 const SCEVAddRecExpr *IV;
251 const SCEV *Limit;
LoopICmp__anoncf58b02c0111::LoopICmp252 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
253 const SCEV *Limit)
254 : Pred(Pred), IV(IV), Limit(Limit) {}
255 LoopICmp() = default;
dump__anoncf58b02c0111::LoopICmp256 void dump() {
257 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
258 << ", Limit = " << *Limit << "\n";
259 }
260 };
261
262 class LoopPredication {
263 AliasAnalysis *AA;
264 DominatorTree *DT;
265 ScalarEvolution *SE;
266 LoopInfo *LI;
267 MemorySSAUpdater *MSSAU;
268
269 Loop *L;
270 const DataLayout *DL;
271 BasicBlock *Preheader;
272 LoopICmp LatchCheck;
273
274 bool isSupportedStep(const SCEV* Step);
275 std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
276 std::optional<LoopICmp> parseLoopLatchICmp();
277
278 /// Return an insertion point suitable for inserting a safe to speculate
279 /// instruction whose only user will be 'User' which has operands 'Ops'. A
280 /// trivial result would be the at the User itself, but we try to return a
281 /// loop invariant location if possible.
282 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
283 /// Same as above, *except* that this uses the SCEV definition of invariant
284 /// which is that an expression *can be made* invariant via SCEVExpander.
285 /// Thus, this version is only suitable for finding an insert point to be be
286 /// passed to SCEVExpander!
287 Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
288 ArrayRef<const SCEV *> Ops);
289
290 /// Return true if the value is known to produce a single fixed value across
291 /// all iterations on which it executes. Note that this does not imply
292 /// speculation safety. That must be established separately.
293 bool isLoopInvariantValue(const SCEV* S);
294
295 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
296 ICmpInst::Predicate Pred, const SCEV *LHS,
297 const SCEV *RHS);
298
299 std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
300 SCEVExpander &Expander,
301 Instruction *Guard);
302 std::optional<Value *>
303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
304 SCEVExpander &Expander,
305 Instruction *Guard);
306 std::optional<Value *>
307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
308 SCEVExpander &Expander,
309 Instruction *Guard);
310 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
311 SCEVExpander &Expander, Instruction *Guard);
312 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
313 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
314 // If the loop always exits through another block in the loop, we should not
315 // predicate based on the latch check. For example, the latch check can be a
316 // very coarse grained check and there can be more fine grained exit checks
317 // within the loop.
318 bool isLoopProfitableToPredicate();
319
320 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
321
322 public:
LoopPredication(AliasAnalysis * AA,DominatorTree * DT,ScalarEvolution * SE,LoopInfo * LI,MemorySSAUpdater * MSSAU)323 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
324 LoopInfo *LI, MemorySSAUpdater *MSSAU)
325 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
326 bool runOnLoop(Loop *L);
327 };
328
329 class LoopPredicationLegacyPass : public LoopPass {
330 public:
331 static char ID;
LoopPredicationLegacyPass()332 LoopPredicationLegacyPass() : LoopPass(ID) {
333 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
334 }
335
getAnalysisUsage(AnalysisUsage & AU) const336 void getAnalysisUsage(AnalysisUsage &AU) const override {
337 AU.addRequired<BranchProbabilityInfoWrapperPass>();
338 getLoopAnalysisUsage(AU);
339 AU.addPreserved<MemorySSAWrapperPass>();
340 }
341
runOnLoop(Loop * L,LPPassManager & LPM)342 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
343 if (skipLoop(L))
344 return false;
345 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
346 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
347 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
348 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
349 std::unique_ptr<MemorySSAUpdater> MSSAU;
350 if (MSSAWP)
351 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
352 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
353 LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
354 return LP.runOnLoop(L);
355 }
356 };
357
358 char LoopPredicationLegacyPass::ID = 0;
359 } // end namespace
360
361 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
362 "Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)363 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(LoopPass)
365 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
366 "Loop predication", false, false)
367
368 Pass *llvm::createLoopPredicationPass() {
369 return new LoopPredicationLegacyPass();
370 }
371
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)372 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
373 LoopStandardAnalysisResults &AR,
374 LPMUpdater &U) {
375 std::unique_ptr<MemorySSAUpdater> MSSAU;
376 if (AR.MSSA)
377 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
378 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
379 MSSAU ? MSSAU.get() : nullptr);
380 if (!LP.runOnLoop(&L))
381 return PreservedAnalyses::all();
382
383 auto PA = getLoopPassPreservedAnalyses();
384 if (AR.MSSA)
385 PA.preserve<MemorySSAAnalysis>();
386 return PA;
387 }
388
parseLoopICmp(ICmpInst * ICI)389 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) {
390 auto Pred = ICI->getPredicate();
391 auto *LHS = ICI->getOperand(0);
392 auto *RHS = ICI->getOperand(1);
393
394 const SCEV *LHSS = SE->getSCEV(LHS);
395 if (isa<SCEVCouldNotCompute>(LHSS))
396 return std::nullopt;
397 const SCEV *RHSS = SE->getSCEV(RHS);
398 if (isa<SCEVCouldNotCompute>(RHSS))
399 return std::nullopt;
400
401 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
402 if (SE->isLoopInvariant(LHSS, L)) {
403 std::swap(LHS, RHS);
404 std::swap(LHSS, RHSS);
405 Pred = ICmpInst::getSwappedPredicate(Pred);
406 }
407
408 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
409 if (!AR || AR->getLoop() != L)
410 return std::nullopt;
411
412 return LoopICmp(Pred, AR, RHSS);
413 }
414
expandCheck(SCEVExpander & Expander,Instruction * Guard,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)415 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
416 Instruction *Guard,
417 ICmpInst::Predicate Pred, const SCEV *LHS,
418 const SCEV *RHS) {
419 Type *Ty = LHS->getType();
420 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
421
422 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
423 IRBuilder<> Builder(Guard);
424 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
425 return Builder.getTrue();
426 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
427 LHS, RHS))
428 return Builder.getFalse();
429 }
430
431 Value *LHSV =
432 Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
433 Value *RHSV =
434 Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
435 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
436 return Builder.CreateICmp(Pred, LHSV, RHSV);
437 }
438
439 // Returns true if its safe to truncate the IV to RangeCheckType.
440 // When the IV type is wider than the range operand type, we can still do loop
441 // predication, by generating SCEVs for the range and latch that are of the
442 // same type. We achieve this by generating a SCEV truncate expression for the
443 // latch IV. This is done iff truncation of the IV is a safe operation,
444 // without loss of information.
445 // Another way to achieve this is by generating a wider type SCEV for the
446 // range check operand, however, this needs a more involved check that
447 // operands do not overflow. This can lead to loss of information when the
448 // range operand is of the form: add i32 %offset, %iv. We need to prove that
449 // sext(x + y) is same as sext(x) + sext(y).
450 // This function returns true if we can safely represent the IV type in
451 // the RangeCheckType without loss of information.
isSafeToTruncateWideIVType(const DataLayout & DL,ScalarEvolution & SE,const LoopICmp LatchCheck,Type * RangeCheckType)452 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
453 ScalarEvolution &SE,
454 const LoopICmp LatchCheck,
455 Type *RangeCheckType) {
456 if (!EnableIVTruncation)
457 return false;
458 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
459 DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
460 "Expected latch check IV type to be larger than range check operand "
461 "type!");
462 // The start and end values of the IV should be known. This is to guarantee
463 // that truncating the wide type will not lose information.
464 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
465 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
466 if (!Limit || !Start)
467 return false;
468 // This check makes sure that the IV does not change sign during loop
469 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
470 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
471 // IV wraps around, and the truncation of the IV would lose the range of
472 // iterations between 2^32 and 2^64.
473 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
474 return false;
475 // The active bits should be less than the bits in the RangeCheckType. This
476 // guarantees that truncating the latch check to RangeCheckType is a safe
477 // operation.
478 auto RangeCheckTypeBitSize =
479 DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
480 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
481 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
482 }
483
484
485 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
486 // the requested type if safe to do so. May involve the use of a new IV.
generateLoopLatchCheck(const DataLayout & DL,ScalarEvolution & SE,const LoopICmp LatchCheck,Type * RangeCheckType)487 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
488 ScalarEvolution &SE,
489 const LoopICmp LatchCheck,
490 Type *RangeCheckType) {
491
492 auto *LatchType = LatchCheck.IV->getType();
493 if (RangeCheckType == LatchType)
494 return LatchCheck;
495 // For now, bail out if latch type is narrower than range type.
496 if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
497 DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
498 return std::nullopt;
499 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
500 return std::nullopt;
501 // We can now safely identify the truncated version of the IV and limit for
502 // RangeCheckType.
503 LoopICmp NewLatchCheck;
504 NewLatchCheck.Pred = LatchCheck.Pred;
505 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
506 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
507 if (!NewLatchCheck.IV)
508 return std::nullopt;
509 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
510 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
511 << "can be represented as range check type:"
512 << *RangeCheckType << "\n");
513 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
514 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
515 return NewLatchCheck;
516 }
517
isSupportedStep(const SCEV * Step)518 bool LoopPredication::isSupportedStep(const SCEV* Step) {
519 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
520 }
521
findInsertPt(Instruction * Use,ArrayRef<Value * > Ops)522 Instruction *LoopPredication::findInsertPt(Instruction *Use,
523 ArrayRef<Value*> Ops) {
524 for (Value *Op : Ops)
525 if (!L->isLoopInvariant(Op))
526 return Use;
527 return Preheader->getTerminator();
528 }
529
findInsertPt(const SCEVExpander & Expander,Instruction * Use,ArrayRef<const SCEV * > Ops)530 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
531 Instruction *Use,
532 ArrayRef<const SCEV *> Ops) {
533 // Subtlety: SCEV considers things to be invariant if the value produced is
534 // the same across iterations. This is not the same as being able to
535 // evaluate outside the loop, which is what we actually need here.
536 for (const SCEV *Op : Ops)
537 if (!SE->isLoopInvariant(Op, L) ||
538 !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
539 return Use;
540 return Preheader->getTerminator();
541 }
542
isLoopInvariantValue(const SCEV * S)543 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
544 // Handling expressions which produce invariant results, but *haven't* yet
545 // been removed from the loop serves two important purposes.
546 // 1) Most importantly, it resolves a pass ordering cycle which would
547 // otherwise need us to iteration licm, loop-predication, and either
548 // loop-unswitch or loop-peeling to make progress on examples with lots of
549 // predicable range checks in a row. (Since, in the general case, we can't
550 // hoist the length checks until the dominating checks have been discharged
551 // as we can't prove doing so is safe.)
552 // 2) As a nice side effect, this exposes the value of peeling or unswitching
553 // much more obviously in the IR. Otherwise, the cost modeling for other
554 // transforms would end up needing to duplicate all of this logic to model a
555 // check which becomes predictable based on a modeled peel or unswitch.
556 //
557 // The cost of doing so in the worst case is an extra fill from the stack in
558 // the loop to materialize the loop invariant test value instead of checking
559 // against the original IV which is presumable in a register inside the loop.
560 // Such cases are presumably rare, and hint at missing oppurtunities for
561 // other passes.
562
563 if (SE->isLoopInvariant(S, L))
564 // Note: This the SCEV variant, so the original Value* may be within the
565 // loop even though SCEV has proven it is loop invariant.
566 return true;
567
568 // Handle a particular important case which SCEV doesn't yet know about which
569 // shows up in range checks on arrays with immutable lengths.
570 // TODO: This should be sunk inside SCEV.
571 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
572 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
573 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
574 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
575 LI->hasMetadata(LLVMContext::MD_invariant_load))
576 return true;
577 return false;
578 }
579
widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,LoopICmp RangeCheck,SCEVExpander & Expander,Instruction * Guard)580 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
581 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
582 Instruction *Guard) {
583 auto *Ty = RangeCheck.IV->getType();
584 // Generate the widened condition for the forward loop:
585 // guardStart u< guardLimit &&
586 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
587 // where <pred> depends on the latch condition predicate. See the file
588 // header comment for the reasoning.
589 // guardLimit - guardStart + latchStart - 1
590 const SCEV *GuardStart = RangeCheck.IV->getStart();
591 const SCEV *GuardLimit = RangeCheck.Limit;
592 const SCEV *LatchStart = LatchCheck.IV->getStart();
593 const SCEV *LatchLimit = LatchCheck.Limit;
594 // Subtlety: We need all the values to be *invariant* across all iterations,
595 // but we only need to check expansion safety for those which *aren't*
596 // already guaranteed to dominate the guard.
597 if (!isLoopInvariantValue(GuardStart) ||
598 !isLoopInvariantValue(GuardLimit) ||
599 !isLoopInvariantValue(LatchStart) ||
600 !isLoopInvariantValue(LatchLimit)) {
601 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
602 return std::nullopt;
603 }
604 if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
605 !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
606 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
607 return std::nullopt;
608 }
609
610 // guardLimit - guardStart + latchStart - 1
611 const SCEV *RHS =
612 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
613 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
614 auto LimitCheckPred =
615 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
616
617 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
618 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
619 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
620
621 auto *LimitCheck =
622 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
623 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
624 GuardStart, GuardLimit);
625 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
626 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
627 }
628
widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,LoopICmp RangeCheck,SCEVExpander & Expander,Instruction * Guard)629 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
630 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
631 Instruction *Guard) {
632 auto *Ty = RangeCheck.IV->getType();
633 const SCEV *GuardStart = RangeCheck.IV->getStart();
634 const SCEV *GuardLimit = RangeCheck.Limit;
635 const SCEV *LatchStart = LatchCheck.IV->getStart();
636 const SCEV *LatchLimit = LatchCheck.Limit;
637 // Subtlety: We need all the values to be *invariant* across all iterations,
638 // but we only need to check expansion safety for those which *aren't*
639 // already guaranteed to dominate the guard.
640 if (!isLoopInvariantValue(GuardStart) ||
641 !isLoopInvariantValue(GuardLimit) ||
642 !isLoopInvariantValue(LatchStart) ||
643 !isLoopInvariantValue(LatchLimit)) {
644 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
645 return std::nullopt;
646 }
647 if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
648 !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
649 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
650 return std::nullopt;
651 }
652 // The decrement of the latch check IV should be the same as the
653 // rangeCheckIV.
654 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
655 if (RangeCheck.IV != PostDecLatchCheckIV) {
656 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
657 << *PostDecLatchCheckIV
658 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
659 return std::nullopt;
660 }
661
662 // Generate the widened condition for CountDownLoop:
663 // guardStart u< guardLimit &&
664 // latchLimit <pred> 1.
665 // See the header comment for reasoning of the checks.
666 auto LimitCheckPred =
667 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
668 auto *FirstIterationCheck = expandCheck(Expander, Guard,
669 ICmpInst::ICMP_ULT,
670 GuardStart, GuardLimit);
671 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
672 SE->getOne(Ty));
673 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
674 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
675 }
676
normalizePredicate(ScalarEvolution * SE,Loop * L,LoopICmp & RC)677 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
678 LoopICmp& RC) {
679 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
680 // ULT/UGE form for ease of handling by our caller.
681 if (ICmpInst::isEquality(RC.Pred) &&
682 RC.IV->getStepRecurrence(*SE)->isOne() &&
683 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
684 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
685 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
686 }
687
688 /// If ICI can be widened to a loop invariant condition emits the loop
689 /// invariant condition in the loop preheader and return it, otherwise
690 /// returns std::nullopt.
691 std::optional<Value *>
widenICmpRangeCheck(ICmpInst * ICI,SCEVExpander & Expander,Instruction * Guard)692 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
693 Instruction *Guard) {
694 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
695 LLVM_DEBUG(ICI->dump());
696
697 // parseLoopStructure guarantees that the latch condition is:
698 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
699 // We are looking for the range checks of the form:
700 // i u< guardLimit
701 auto RangeCheck = parseLoopICmp(ICI);
702 if (!RangeCheck) {
703 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
704 return std::nullopt;
705 }
706 LLVM_DEBUG(dbgs() << "Guard check:\n");
707 LLVM_DEBUG(RangeCheck->dump());
708 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
709 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
710 << RangeCheck->Pred << ")!\n");
711 return std::nullopt;
712 }
713 auto *RangeCheckIV = RangeCheck->IV;
714 if (!RangeCheckIV->isAffine()) {
715 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
716 return std::nullopt;
717 }
718 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
719 // We cannot just compare with latch IV step because the latch and range IVs
720 // may have different types.
721 if (!isSupportedStep(Step)) {
722 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
723 return std::nullopt;
724 }
725 auto *Ty = RangeCheckIV->getType();
726 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
727 if (!CurrLatchCheckOpt) {
728 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
729 "corresponding to range type: "
730 << *Ty << "\n");
731 return std::nullopt;
732 }
733
734 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
735 // At this point, the range and latch step should have the same type, but need
736 // not have the same value (we support both 1 and -1 steps).
737 assert(Step->getType() ==
738 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
739 "Range and latch steps should be of same type!");
740 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
741 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
742 return std::nullopt;
743 }
744
745 if (Step->isOne())
746 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
747 Expander, Guard);
748 else {
749 assert(Step->isAllOnesValue() && "Step should be -1!");
750 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
751 Expander, Guard);
752 }
753 }
754
collectChecks(SmallVectorImpl<Value * > & Checks,Value * Condition,SCEVExpander & Expander,Instruction * Guard)755 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
756 Value *Condition,
757 SCEVExpander &Expander,
758 Instruction *Guard) {
759 unsigned NumWidened = 0;
760 // The guard condition is expected to be in form of:
761 // cond1 && cond2 && cond3 ...
762 // Iterate over subconditions looking for icmp conditions which can be
763 // widened across loop iterations. Widening these conditions remember the
764 // resulting list of subconditions in Checks vector.
765 SmallVector<Value *, 4> Worklist(1, Condition);
766 SmallPtrSet<Value *, 4> Visited;
767 Visited.insert(Condition);
768 Value *WideableCond = nullptr;
769 do {
770 Value *Condition = Worklist.pop_back_val();
771 Value *LHS, *RHS;
772 using namespace llvm::PatternMatch;
773 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
774 if (Visited.insert(LHS).second)
775 Worklist.push_back(LHS);
776 if (Visited.insert(RHS).second)
777 Worklist.push_back(RHS);
778 continue;
779 }
780
781 if (match(Condition,
782 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
783 // Pick any, we don't care which
784 WideableCond = Condition;
785 continue;
786 }
787
788 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
789 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
790 Guard)) {
791 Checks.push_back(*NewRangeCheck);
792 NumWidened++;
793 continue;
794 }
795 }
796
797 // Save the condition as is if we can't widen it
798 Checks.push_back(Condition);
799 } while (!Worklist.empty());
800 // At the moment, our matching logic for wideable conditions implicitly
801 // assumes we preserve the form: (br (and Cond, WC())). FIXME
802 // Note that if there were multiple calls to wideable condition in the
803 // traversal, we only need to keep one, and which one is arbitrary.
804 if (WideableCond)
805 Checks.push_back(WideableCond);
806 return NumWidened;
807 }
808
widenGuardConditions(IntrinsicInst * Guard,SCEVExpander & Expander)809 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
810 SCEVExpander &Expander) {
811 LLVM_DEBUG(dbgs() << "Processing guard:\n");
812 LLVM_DEBUG(Guard->dump());
813
814 TotalConsidered++;
815 SmallVector<Value *, 4> Checks;
816 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
817 Guard);
818 if (NumWidened == 0)
819 return false;
820
821 TotalWidened += NumWidened;
822
823 // Emit the new guard condition
824 IRBuilder<> Builder(findInsertPt(Guard, Checks));
825 Value *AllChecks = Builder.CreateAnd(Checks);
826 auto *OldCond = Guard->getOperand(0);
827 Guard->setOperand(0, AllChecks);
828 if (InsertAssumesOfPredicatedGuardsConditions) {
829 Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
830 Builder.CreateAssumption(OldCond);
831 }
832 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
833
834 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
835 return true;
836 }
837
widenWidenableBranchGuardConditions(BranchInst * BI,SCEVExpander & Expander)838 bool LoopPredication::widenWidenableBranchGuardConditions(
839 BranchInst *BI, SCEVExpander &Expander) {
840 assert(isGuardAsWidenableBranch(BI) && "Must be!");
841 LLVM_DEBUG(dbgs() << "Processing guard:\n");
842 LLVM_DEBUG(BI->dump());
843
844 Value *Cond, *WC;
845 BasicBlock *IfTrueBB, *IfFalseBB;
846 bool Parsed = parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB);
847 assert(Parsed && "Must be able to parse widenable branch");
848 (void)Parsed;
849
850 TotalConsidered++;
851 SmallVector<Value *, 4> Checks;
852 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
853 Expander, BI);
854 if (NumWidened == 0)
855 return false;
856
857 TotalWidened += NumWidened;
858
859 // Emit the new guard condition
860 IRBuilder<> Builder(findInsertPt(BI, Checks));
861 Value *AllChecks = Builder.CreateAnd(Checks);
862 auto *OldCond = BI->getCondition();
863 BI->setCondition(AllChecks);
864 if (InsertAssumesOfPredicatedGuardsConditions) {
865 Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
866 Builder.CreateAssumption(Cond);
867 }
868 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
869 assert(isGuardAsWidenableBranch(BI) &&
870 "Stopped being a guard after transform?");
871
872 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
873 return true;
874 }
875
parseLoopLatchICmp()876 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
877 using namespace PatternMatch;
878
879 BasicBlock *LoopLatch = L->getLoopLatch();
880 if (!LoopLatch) {
881 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
882 return std::nullopt;
883 }
884
885 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
886 if (!BI || !BI->isConditional()) {
887 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
888 return std::nullopt;
889 }
890 BasicBlock *TrueDest = BI->getSuccessor(0);
891 assert(
892 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
893 "One of the latch's destinations must be the header");
894
895 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
896 if (!ICI) {
897 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
898 return std::nullopt;
899 }
900 auto Result = parseLoopICmp(ICI);
901 if (!Result) {
902 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
903 return std::nullopt;
904 }
905
906 if (TrueDest != L->getHeader())
907 Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
908
909 // Check affine first, so if it's not we don't try to compute the step
910 // recurrence.
911 if (!Result->IV->isAffine()) {
912 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
913 return std::nullopt;
914 }
915
916 auto *Step = Result->IV->getStepRecurrence(*SE);
917 if (!isSupportedStep(Step)) {
918 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
919 return std::nullopt;
920 }
921
922 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
923 if (Step->isOne()) {
924 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
925 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
926 } else {
927 assert(Step->isAllOnesValue() && "Step should be -1!");
928 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
929 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
930 }
931 };
932
933 normalizePredicate(SE, L, *Result);
934 if (IsUnsupportedPredicate(Step, Result->Pred)) {
935 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
936 << ")!\n");
937 return std::nullopt;
938 }
939
940 return Result;
941 }
942
isLoopProfitableToPredicate()943 bool LoopPredication::isLoopProfitableToPredicate() {
944 if (SkipProfitabilityChecks)
945 return true;
946
947 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
948 L->getExitEdges(ExitEdges);
949 // If there is only one exiting edge in the loop, it is always profitable to
950 // predicate the loop.
951 if (ExitEdges.size() == 1)
952 return true;
953
954 // Calculate the exiting probabilities of all exiting edges from the loop,
955 // starting with the LatchExitProbability.
956 // Heuristic for profitability: If any of the exiting blocks' probability of
957 // exiting the loop is larger than exiting through the latch block, it's not
958 // profitable to predicate the loop.
959 auto *LatchBlock = L->getLoopLatch();
960 assert(LatchBlock && "Should have a single latch at this point!");
961 auto *LatchTerm = LatchBlock->getTerminator();
962 assert(LatchTerm->getNumSuccessors() == 2 &&
963 "expected to be an exiting block with 2 succs!");
964 unsigned LatchBrExitIdx =
965 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
966 // We compute branch probabilities without BPI. We do not rely on BPI since
967 // Loop predication is usually run in an LPM and BPI is only preserved
968 // lossily within loop pass managers, while BPI has an inherent notion of
969 // being complete for an entire function.
970
971 // If the latch exits into a deoptimize or an unreachable block, do not
972 // predicate on that latch check.
973 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
974 if (isa<UnreachableInst>(LatchTerm) ||
975 LatchExitBlock->getTerminatingDeoptimizeCall())
976 return false;
977
978 // Latch terminator has no valid profile data, so nothing to check
979 // profitability on.
980 if (!hasValidBranchWeightMD(*LatchTerm))
981 return true;
982
983 auto ComputeBranchProbability =
984 [&](const BasicBlock *ExitingBlock,
985 const BasicBlock *ExitBlock) -> BranchProbability {
986 auto *Term = ExitingBlock->getTerminator();
987 unsigned NumSucc = Term->getNumSuccessors();
988 if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) {
989 SmallVector<uint32_t> Weights;
990 extractBranchWeights(ProfileData, Weights);
991 uint64_t Numerator = 0, Denominator = 0;
992 for (auto [i, Weight] : llvm::enumerate(Weights)) {
993 if (Term->getSuccessor(i) == ExitBlock)
994 Numerator += Weight;
995 Denominator += Weight;
996 }
997 return BranchProbability::getBranchProbability(Numerator, Denominator);
998 } else {
999 assert(LatchBlock != ExitingBlock &&
1000 "Latch term should always have profile data!");
1001 // No profile data, so we choose the weight as 1/num_of_succ(Src)
1002 return BranchProbability::getBranchProbability(1, NumSucc);
1003 }
1004 };
1005
1006 BranchProbability LatchExitProbability =
1007 ComputeBranchProbability(LatchBlock, LatchExitBlock);
1008
1009 // Protect against degenerate inputs provided by the user. Providing a value
1010 // less than one, can invert the definition of profitable loop predication.
1011 float ScaleFactor = LatchExitProbabilityScale;
1012 if (ScaleFactor < 1) {
1013 LLVM_DEBUG(
1014 dbgs()
1015 << "Ignored user setting for loop-predication-latch-probability-scale: "
1016 << LatchExitProbabilityScale << "\n");
1017 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1018 ScaleFactor = 1.0;
1019 }
1020 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1021
1022 for (const auto &ExitEdge : ExitEdges) {
1023 BranchProbability ExitingBlockProbability =
1024 ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1025 // Some exiting edge has higher probability than the latch exiting edge.
1026 // No longer profitable to predicate.
1027 if (ExitingBlockProbability > LatchProbabilityThreshold)
1028 return false;
1029 }
1030
1031 // We have concluded that the most probable way to exit from the
1032 // loop is through the latch (or there's no profile information and all
1033 // exits are equally likely).
1034 return true;
1035 }
1036
1037 /// If we can (cheaply) find a widenable branch which controls entry into the
1038 /// loop, return it.
FindWidenableTerminatorAboveLoop(Loop * L,LoopInfo & LI)1039 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1040 // Walk back through any unconditional executed blocks and see if we can find
1041 // a widenable condition which seems to control execution of this loop. Note
1042 // that we predict that maythrow calls are likely untaken and thus that it's
1043 // profitable to widen a branch before a maythrow call with a condition
1044 // afterwards even though that may cause the slow path to run in a case where
1045 // it wouldn't have otherwise.
1046 BasicBlock *BB = L->getLoopPreheader();
1047 if (!BB)
1048 return nullptr;
1049 do {
1050 if (BasicBlock *Pred = BB->getSinglePredecessor())
1051 if (BB == Pred->getSingleSuccessor()) {
1052 BB = Pred;
1053 continue;
1054 }
1055 break;
1056 } while (true);
1057
1058 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1059 auto *Term = Pred->getTerminator();
1060
1061 Value *Cond, *WC;
1062 BasicBlock *IfTrueBB, *IfFalseBB;
1063 if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1064 IfTrueBB == BB)
1065 return cast<BranchInst>(Term);
1066 }
1067 return nullptr;
1068 }
1069
1070 /// Return the minimum of all analyzeable exit counts. This is an upper bound
1071 /// on the actual exit count. If there are not at least two analyzeable exits,
1072 /// returns SCEVCouldNotCompute.
getMinAnalyzeableBackedgeTakenCount(ScalarEvolution & SE,DominatorTree & DT,Loop * L)1073 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1074 DominatorTree &DT,
1075 Loop *L) {
1076 SmallVector<BasicBlock *, 16> ExitingBlocks;
1077 L->getExitingBlocks(ExitingBlocks);
1078
1079 SmallVector<const SCEV *, 4> ExitCounts;
1080 for (BasicBlock *ExitingBB : ExitingBlocks) {
1081 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1082 if (isa<SCEVCouldNotCompute>(ExitCount))
1083 continue;
1084 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1085 "We should only have known counts for exiting blocks that "
1086 "dominate latch!");
1087 ExitCounts.push_back(ExitCount);
1088 }
1089 if (ExitCounts.size() < 2)
1090 return SE.getCouldNotCompute();
1091 return SE.getUMinFromMismatchedTypes(ExitCounts);
1092 }
1093
1094 /// This implements an analogous, but entirely distinct transform from the main
1095 /// loop predication transform. This one is phrased in terms of using a
1096 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1097 /// following loop. This is close in spirit to the IndVarSimplify transform
1098 /// of the same name, but is materially different widening loosens legality
1099 /// sharply.
predicateLoopExits(Loop * L,SCEVExpander & Rewriter)1100 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1101 // The transformation performed here aims to widen a widenable condition
1102 // above the loop such that all analyzeable exit leading to deopt are dead.
1103 // It assumes that the latch is the dominant exit for profitability and that
1104 // exits branching to deoptimizing blocks are rarely taken. It relies on the
1105 // semantics of widenable expressions for legality. (i.e. being able to fall
1106 // down the widenable path spuriously allows us to ignore exit order,
1107 // unanalyzeable exits, side effects, exceptional exits, and other challenges
1108 // which restrict the applicability of the non-WC based version of this
1109 // transform in IndVarSimplify.)
1110 //
1111 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1112 // imply flags on the expression being hoisted and inserting new uses (flags
1113 // are only correct for current uses). The result is that we may be
1114 // inserting a branch on the value which can be either poison or undef. In
1115 // this case, the branch can legally go either way; we just need to avoid
1116 // introducing UB. This is achieved through the use of the freeze
1117 // instruction.
1118
1119 SmallVector<BasicBlock *, 16> ExitingBlocks;
1120 L->getExitingBlocks(ExitingBlocks);
1121
1122 if (ExitingBlocks.empty())
1123 return false; // Nothing to do.
1124
1125 auto *Latch = L->getLoopLatch();
1126 if (!Latch)
1127 return false;
1128
1129 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1130 if (!WidenableBR)
1131 return false;
1132
1133 const SCEV *LatchEC = SE->getExitCount(L, Latch);
1134 if (isa<SCEVCouldNotCompute>(LatchEC))
1135 return false; // profitability - want hot exit in analyzeable set
1136
1137 // At this point, we have found an analyzeable latch, and a widenable
1138 // condition above the loop. If we have a widenable exit within the loop
1139 // (for which we can't compute exit counts), drop the ability to further
1140 // widen so that we gain ability to analyze it's exit count and perform this
1141 // transform. TODO: It'd be nice to know for sure the exit became
1142 // analyzeable after dropping widenability.
1143 bool ChangedLoop = false;
1144
1145 for (auto *ExitingBB : ExitingBlocks) {
1146 if (LI->getLoopFor(ExitingBB) != L)
1147 continue;
1148
1149 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1150 if (!BI)
1151 continue;
1152
1153 Use *Cond, *WC;
1154 BasicBlock *IfTrueBB, *IfFalseBB;
1155 if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1156 L->contains(IfTrueBB)) {
1157 WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1158 ChangedLoop = true;
1159 }
1160 }
1161 if (ChangedLoop)
1162 SE->forgetLoop(L);
1163
1164 // The use of umin(all analyzeable exits) instead of latch is subtle, but
1165 // important for profitability. We may have a loop which hasn't been fully
1166 // canonicalized just yet. If the exit we chose to widen is provably never
1167 // taken, we want the widened form to *also* be provably never taken. We
1168 // can't guarantee this as a current unanalyzeable exit may later become
1169 // analyzeable, but we can at least avoid the obvious cases.
1170 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1171 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1172 !SE->isLoopInvariant(MinEC, L) ||
1173 !Rewriter.isSafeToExpandAt(MinEC, WidenableBR))
1174 return ChangedLoop;
1175
1176 // Subtlety: We need to avoid inserting additional uses of the WC. We know
1177 // that it can only have one transitive use at the moment, and thus moving
1178 // that use to just before the branch and inserting code before it and then
1179 // modifying the operand is legal.
1180 auto *IP = cast<Instruction>(WidenableBR->getCondition());
1181 // Here we unconditionally modify the IR, so after this point we should return
1182 // only `true`!
1183 IP->moveBefore(WidenableBR);
1184 if (MSSAU)
1185 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1186 MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1187 MemorySSA::BeforeTerminator);
1188 Rewriter.setInsertPoint(IP);
1189 IRBuilder<> B(IP);
1190
1191 bool InvalidateLoop = false;
1192 Value *MinECV = nullptr; // lazily generated if needed
1193 for (BasicBlock *ExitingBB : ExitingBlocks) {
1194 // If our exiting block exits multiple loops, we can only rewrite the
1195 // innermost one. Otherwise, we're changing how many times the innermost
1196 // loop runs before it exits.
1197 if (LI->getLoopFor(ExitingBB) != L)
1198 continue;
1199
1200 // Can't rewrite non-branch yet.
1201 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1202 if (!BI)
1203 continue;
1204
1205 // If already constant, nothing to do.
1206 if (isa<Constant>(BI->getCondition()))
1207 continue;
1208
1209 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1210 if (isa<SCEVCouldNotCompute>(ExitCount) ||
1211 ExitCount->getType()->isPointerTy() ||
1212 !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1213 continue;
1214
1215 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1216 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1217 if (!ExitBB->getPostdominatingDeoptimizeCall())
1218 continue;
1219
1220 /// Here we can be fairly sure that executing this exit will most likely
1221 /// lead to executing llvm.experimental.deoptimize.
1222 /// This is a profitability heuristic, not a legality constraint.
1223
1224 // If we found a widenable exit condition, do two things:
1225 // 1) fold the widened exit test into the widenable condition
1226 // 2) fold the branch to untaken - avoids infinite looping
1227
1228 Value *ECV = Rewriter.expandCodeFor(ExitCount);
1229 if (!MinECV)
1230 MinECV = Rewriter.expandCodeFor(MinEC);
1231 Value *RHS = MinECV;
1232 if (ECV->getType() != RHS->getType()) {
1233 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1234 ECV = B.CreateZExt(ECV, WiderTy);
1235 RHS = B.CreateZExt(RHS, WiderTy);
1236 }
1237 assert(!Latch || DT->dominates(ExitingBB, Latch));
1238 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1239 // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1240 // branch without introducing UB. See NOTE ON POISON/UNDEF above for
1241 // context.
1242 NewCond = B.CreateFreeze(NewCond);
1243
1244 widenWidenableBranch(WidenableBR, NewCond);
1245
1246 Value *OldCond = BI->getCondition();
1247 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1248 InvalidateLoop = true;
1249 }
1250
1251 if (InvalidateLoop)
1252 // We just mutated a bunch of loop exits changing there exit counts
1253 // widely. We need to force recomputation of the exit counts given these
1254 // changes. Note that all of the inserted exits are never taken, and
1255 // should be removed next time the CFG is modified.
1256 SE->forgetLoop(L);
1257
1258 // Always return `true` since we have moved the WidenableBR's condition.
1259 return true;
1260 }
1261
runOnLoop(Loop * Loop)1262 bool LoopPredication::runOnLoop(Loop *Loop) {
1263 L = Loop;
1264
1265 LLVM_DEBUG(dbgs() << "Analyzing ");
1266 LLVM_DEBUG(L->dump());
1267
1268 Module *M = L->getHeader()->getModule();
1269
1270 // There is nothing to do if the module doesn't use guards
1271 auto *GuardDecl =
1272 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1273 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1274 auto *WCDecl = M->getFunction(
1275 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1276 bool HasWidenableConditions =
1277 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1278 if (!HasIntrinsicGuards && !HasWidenableConditions)
1279 return false;
1280
1281 DL = &M->getDataLayout();
1282
1283 Preheader = L->getLoopPreheader();
1284 if (!Preheader)
1285 return false;
1286
1287 auto LatchCheckOpt = parseLoopLatchICmp();
1288 if (!LatchCheckOpt)
1289 return false;
1290 LatchCheck = *LatchCheckOpt;
1291
1292 LLVM_DEBUG(dbgs() << "Latch check:\n");
1293 LLVM_DEBUG(LatchCheck.dump());
1294
1295 if (!isLoopProfitableToPredicate()) {
1296 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1297 return false;
1298 }
1299 // Collect all the guards into a vector and process later, so as not
1300 // to invalidate the instruction iterator.
1301 SmallVector<IntrinsicInst *, 4> Guards;
1302 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1303 for (const auto BB : L->blocks()) {
1304 for (auto &I : *BB)
1305 if (isGuard(&I))
1306 Guards.push_back(cast<IntrinsicInst>(&I));
1307 if (PredicateWidenableBranchGuards &&
1308 isGuardAsWidenableBranch(BB->getTerminator()))
1309 GuardsAsWidenableBranches.push_back(
1310 cast<BranchInst>(BB->getTerminator()));
1311 }
1312
1313 SCEVExpander Expander(*SE, *DL, "loop-predication");
1314 bool Changed = false;
1315 for (auto *Guard : Guards)
1316 Changed |= widenGuardConditions(Guard, Expander);
1317 for (auto *Guard : GuardsAsWidenableBranches)
1318 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1319 Changed |= predicateLoopExits(L, Expander);
1320
1321 if (MSSAU && VerifyMemorySSA)
1322 MSSAU->getMemorySSA()->verifyMemorySSA();
1323 return Changed;
1324 }
1325