xref: /openbsd/sys/dev/pci/if_wpi.c (revision 0f9891f1)
1 /*	$OpenBSD: if_wpi.c,v 1.158 2024/05/24 06:02:57 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006-2008
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/rwlock.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/device.h>
33 #include <sys/task.h>
34 #include <sys/endian.h>
35 
36 #include <machine/bus.h>
37 #include <machine/intr.h>
38 
39 #include <dev/pci/pcireg.h>
40 #include <dev/pci/pcivar.h>
41 #include <dev/pci/pcidevs.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/if_ether.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_amrr.h>
55 #include <net80211/ieee80211_radiotap.h>
56 
57 #include <dev/pci/if_wpireg.h>
58 #include <dev/pci/if_wpivar.h>
59 
60 static const struct pci_matchid wpi_devices[] = {
61 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
62 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
63 };
64 
65 int		wpi_match(struct device *, void *, void *);
66 void		wpi_attach(struct device *, struct device *, void *);
67 #if NBPFILTER > 0
68 void		wpi_radiotap_attach(struct wpi_softc *);
69 #endif
70 int		wpi_detach(struct device *, int);
71 int		wpi_activate(struct device *, int);
72 void		wpi_wakeup(struct wpi_softc *);
73 void		wpi_init_task(void *);
74 int		wpi_nic_lock(struct wpi_softc *);
75 int		wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
76 int		wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
77 		    void **, bus_size_t, bus_size_t);
78 void		wpi_dma_contig_free(struct wpi_dma_info *);
79 int		wpi_alloc_shared(struct wpi_softc *);
80 void		wpi_free_shared(struct wpi_softc *);
81 int		wpi_alloc_fwmem(struct wpi_softc *);
82 void		wpi_free_fwmem(struct wpi_softc *);
83 int		wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
84 void		wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
85 void		wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
86 int		wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
87 		    int);
88 void		wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
89 void		wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
90 int		wpi_read_eeprom(struct wpi_softc *);
91 void		wpi_read_eeprom_channels(struct wpi_softc *, int);
92 void		wpi_read_eeprom_group(struct wpi_softc *, int);
93 struct		ieee80211_node *wpi_node_alloc(struct ieee80211com *);
94 void		wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
95 		    int);
96 int		wpi_media_change(struct ifnet *);
97 int		wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
98 void		wpi_iter_func(void *, struct ieee80211_node *);
99 void		wpi_calib_timeout(void *);
100 int		wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
101 		    struct ieee80211_key *);
102 void		wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
103 		    struct wpi_rx_data *, struct mbuf_list *);
104 void		wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
105 void		wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
106 void		wpi_notif_intr(struct wpi_softc *);
107 void		wpi_fatal_intr(struct wpi_softc *);
108 int		wpi_intr(void *);
109 int		wpi_tx(struct wpi_softc *, struct mbuf *,
110 		    struct ieee80211_node *);
111 void		wpi_start(struct ifnet *);
112 void		wpi_watchdog(struct ifnet *);
113 int		wpi_ioctl(struct ifnet *, u_long, caddr_t);
114 int		wpi_cmd(struct wpi_softc *, int, const void *, int, int);
115 int		wpi_mrr_setup(struct wpi_softc *);
116 void		wpi_updateedca(struct ieee80211com *);
117 void		wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
118 int		wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
119 void		wpi_power_calibration(struct wpi_softc *);
120 int		wpi_set_txpower(struct wpi_softc *, int);
121 int		wpi_get_power_index(struct wpi_softc *,
122 		    struct wpi_power_group *, struct ieee80211_channel *, int);
123 int		wpi_set_pslevel(struct wpi_softc *, int, int, int);
124 int		wpi_config(struct wpi_softc *);
125 int		wpi_scan(struct wpi_softc *, uint16_t);
126 int		wpi_auth(struct wpi_softc *);
127 int		wpi_run(struct wpi_softc *);
128 int		wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
129 		    struct ieee80211_key *);
130 void		wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
131 		    struct ieee80211_key *);
132 int		wpi_post_alive(struct wpi_softc *);
133 int		wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
134 int		wpi_load_firmware(struct wpi_softc *);
135 int		wpi_read_firmware(struct wpi_softc *);
136 int		wpi_clock_wait(struct wpi_softc *);
137 int		wpi_apm_init(struct wpi_softc *);
138 void		wpi_apm_stop_master(struct wpi_softc *);
139 void		wpi_apm_stop(struct wpi_softc *);
140 void		wpi_nic_config(struct wpi_softc *);
141 int		wpi_hw_init(struct wpi_softc *);
142 void		wpi_hw_stop(struct wpi_softc *);
143 int		wpi_init(struct ifnet *);
144 void		wpi_stop(struct ifnet *, int);
145 
146 #ifdef WPI_DEBUG
147 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
148 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
149 int wpi_debug = 0;
150 #else
151 #define DPRINTF(x)
152 #define DPRINTFN(n, x)
153 #endif
154 
155 struct cfdriver wpi_cd = {
156 	NULL, "wpi", DV_IFNET
157 };
158 
159 const struct cfattach wpi_ca = {
160 	sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach,
161 	wpi_activate
162 };
163 
164 int
wpi_match(struct device * parent,void * match,void * aux)165 wpi_match(struct device *parent, void *match, void *aux)
166 {
167 	return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
168 	    nitems(wpi_devices));
169 }
170 
171 void
wpi_attach(struct device * parent,struct device * self,void * aux)172 wpi_attach(struct device *parent, struct device *self, void *aux)
173 {
174 	struct wpi_softc *sc = (struct wpi_softc *)self;
175 	struct ieee80211com *ic = &sc->sc_ic;
176 	struct ifnet *ifp = &ic->ic_if;
177 	struct pci_attach_args *pa = aux;
178 	const char *intrstr;
179 	pci_intr_handle_t ih;
180 	pcireg_t memtype, reg;
181 	int i, error;
182 
183 	sc->sc_pct = pa->pa_pc;
184 	sc->sc_pcitag = pa->pa_tag;
185 	sc->sc_dmat = pa->pa_dmat;
186 
187 	/*
188 	 * Get the offset of the PCI Express Capability Structure in PCI
189 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
190 	 */
191 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
192 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
193 	if (error == 0) {
194 		printf(": PCIe capability structure not found!\n");
195 		return;
196 	}
197 
198 	/* Clear device-specific "PCI retry timeout" register (41h). */
199 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
200 	reg &= ~0xff00;
201 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
202 
203 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
204 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
205 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
206 	if (error != 0) {
207 		printf(": can't map mem space\n");
208 		return;
209 	}
210 
211 	/* Install interrupt handler. */
212 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
213 		printf(": can't map interrupt\n");
214 		return;
215 	}
216 	intrstr = pci_intr_string(sc->sc_pct, ih);
217 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
218 	    sc->sc_dev.dv_xname);
219 	if (sc->sc_ih == NULL) {
220 		printf(": can't establish interrupt");
221 		if (intrstr != NULL)
222 			printf(" at %s", intrstr);
223 		printf("\n");
224 		return;
225 	}
226 	printf(": %s", intrstr);
227 
228 	/* Power ON adapter. */
229 	if ((error = wpi_apm_init(sc)) != 0) {
230 		printf(": could not power ON adapter\n");
231 		return;
232 	}
233 
234 	/* Read MAC address, channels, etc from EEPROM. */
235 	if ((error = wpi_read_eeprom(sc)) != 0) {
236 		printf(": could not read EEPROM\n");
237 		return;
238 	}
239 
240 	/* Allocate DMA memory for firmware transfers. */
241 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
242 		printf(": could not allocate memory for firmware\n");
243 		return;
244 	}
245 
246 	/* Allocate shared area. */
247 	if ((error = wpi_alloc_shared(sc)) != 0) {
248 		printf(": could not allocate shared area\n");
249 		goto fail1;
250 	}
251 
252 	/* Allocate TX rings. */
253 	for (i = 0; i < WPI_NTXQUEUES; i++) {
254 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
255 			printf(": could not allocate TX ring %d\n", i);
256 			goto fail2;
257 		}
258 	}
259 
260 	/* Allocate RX ring. */
261 	if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
262 		printf(": could not allocate Rx ring\n");
263 		goto fail2;
264 	}
265 
266 	/* Power OFF adapter. */
267 	wpi_apm_stop(sc);
268 	/* Clear pending interrupts. */
269 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
270 
271 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
272 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
273 	ic->ic_state = IEEE80211_S_INIT;
274 
275 	/* Set device capabilities. */
276 	ic->ic_caps =
277 	    IEEE80211_C_WEP |		/* WEP */
278 	    IEEE80211_C_RSN |		/* WPA/RSN */
279 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
280 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
281 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
282 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
283 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
284 	    IEEE80211_C_PMGT;		/* power saving supported */
285 
286 	/* Set supported rates. */
287 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
288 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
289 	if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
290 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
291 		    ieee80211_std_rateset_11a;
292 	}
293 
294 	/* IBSS channel undefined for now. */
295 	ic->ic_ibss_chan = &ic->ic_channels[0];
296 
297 	ifp->if_softc = sc;
298 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
299 	ifp->if_ioctl = wpi_ioctl;
300 	ifp->if_start = wpi_start;
301 	ifp->if_watchdog = wpi_watchdog;
302 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
303 
304 	if_attach(ifp);
305 	ieee80211_ifattach(ifp);
306 	ic->ic_node_alloc = wpi_node_alloc;
307 	ic->ic_newassoc = wpi_newassoc;
308 	ic->ic_updateedca = wpi_updateedca;
309 	ic->ic_set_key = wpi_set_key;
310 	ic->ic_delete_key = wpi_delete_key;
311 
312 	/* Override 802.11 state transition machine. */
313 	sc->sc_newstate = ic->ic_newstate;
314 	ic->ic_newstate = wpi_newstate;
315 	ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
316 
317 	sc->amrr.amrr_min_success_threshold =  1;
318 	sc->amrr.amrr_max_success_threshold = 15;
319 
320 #if NBPFILTER > 0
321 	wpi_radiotap_attach(sc);
322 #endif
323 	timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
324 	rw_init(&sc->sc_rwlock, "wpilock");
325 	task_set(&sc->init_task, wpi_init_task, sc);
326 	return;
327 
328 	/* Free allocated memory if something failed during attachment. */
329 fail2:	while (--i >= 0)
330 		wpi_free_tx_ring(sc, &sc->txq[i]);
331 	wpi_free_shared(sc);
332 fail1:	wpi_free_fwmem(sc);
333 }
334 
335 #if NBPFILTER > 0
336 /*
337  * Attach the interface to 802.11 radiotap.
338  */
339 void
wpi_radiotap_attach(struct wpi_softc * sc)340 wpi_radiotap_attach(struct wpi_softc *sc)
341 {
342 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
343 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
344 
345 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
346 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
347 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
348 
349 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
350 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
351 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
352 }
353 #endif
354 
355 int
wpi_detach(struct device * self,int flags)356 wpi_detach(struct device *self, int flags)
357 {
358 	struct wpi_softc *sc = (struct wpi_softc *)self;
359 	struct ifnet *ifp = &sc->sc_ic.ic_if;
360 	int qid;
361 
362 	timeout_del(&sc->calib_to);
363 	task_del(systq, &sc->init_task);
364 
365 	/* Uninstall interrupt handler. */
366 	if (sc->sc_ih != NULL)
367 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
368 
369 	/* Free DMA resources. */
370 	wpi_free_rx_ring(sc, &sc->rxq);
371 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
372 		wpi_free_tx_ring(sc, &sc->txq[qid]);
373 	wpi_free_shared(sc);
374 	wpi_free_fwmem(sc);
375 
376 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
377 
378 	ieee80211_ifdetach(ifp);
379 	if_detach(ifp);
380 
381 	return 0;
382 }
383 
384 int
wpi_activate(struct device * self,int act)385 wpi_activate(struct device *self, int act)
386 {
387 	struct wpi_softc *sc = (struct wpi_softc *)self;
388 	struct ifnet *ifp = &sc->sc_ic.ic_if;
389 
390 	switch (act) {
391 	case DVACT_SUSPEND:
392 		if (ifp->if_flags & IFF_RUNNING)
393 			wpi_stop(ifp, 0);
394 		break;
395 	case DVACT_WAKEUP:
396 		wpi_wakeup(sc);
397 		break;
398 	}
399 
400 	return 0;
401 }
402 
403 void
wpi_wakeup(struct wpi_softc * sc)404 wpi_wakeup(struct wpi_softc *sc)
405 {
406 	pcireg_t reg;
407 
408 	/* Clear device-specific "PCI retry timeout" register (41h). */
409 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
410 	reg &= ~0xff00;
411 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
412 
413 	wpi_init_task(sc);
414 }
415 
416 void
wpi_init_task(void * arg1)417 wpi_init_task(void *arg1)
418 {
419 	struct wpi_softc *sc = arg1;
420 	struct ifnet *ifp = &sc->sc_ic.ic_if;
421 	int s;
422 
423 	rw_enter_write(&sc->sc_rwlock);
424 	s = splnet();
425 
426 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
427 		wpi_init(ifp);
428 
429 	splx(s);
430 	rw_exit_write(&sc->sc_rwlock);
431 }
432 
433 int
wpi_nic_lock(struct wpi_softc * sc)434 wpi_nic_lock(struct wpi_softc *sc)
435 {
436 	int ntries;
437 
438 	/* Request exclusive access to NIC. */
439 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
440 
441 	/* Spin until we actually get the lock. */
442 	for (ntries = 0; ntries < 1000; ntries++) {
443 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
444 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
445 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
446 			return 0;
447 		DELAY(10);
448 	}
449 	return ETIMEDOUT;
450 }
451 
452 static __inline void
wpi_nic_unlock(struct wpi_softc * sc)453 wpi_nic_unlock(struct wpi_softc *sc)
454 {
455 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
456 }
457 
458 static __inline uint32_t
wpi_prph_read(struct wpi_softc * sc,uint32_t addr)459 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
460 {
461 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
462 	WPI_BARRIER_READ_WRITE(sc);
463 	return WPI_READ(sc, WPI_PRPH_RDATA);
464 }
465 
466 static __inline void
wpi_prph_write(struct wpi_softc * sc,uint32_t addr,uint32_t data)467 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
468 {
469 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
470 	WPI_BARRIER_WRITE(sc);
471 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
472 }
473 
474 static __inline void
wpi_prph_setbits(struct wpi_softc * sc,uint32_t addr,uint32_t mask)475 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
476 {
477 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
478 }
479 
480 static __inline void
wpi_prph_clrbits(struct wpi_softc * sc,uint32_t addr,uint32_t mask)481 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
482 {
483 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
484 }
485 
486 static __inline void
wpi_prph_write_region_4(struct wpi_softc * sc,uint32_t addr,const uint32_t * data,int count)487 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
488     const uint32_t *data, int count)
489 {
490 	for (; count > 0; count--, data++, addr += 4)
491 		wpi_prph_write(sc, addr, *data);
492 }
493 
494 #ifdef WPI_DEBUG
495 
496 static __inline uint32_t
wpi_mem_read(struct wpi_softc * sc,uint32_t addr)497 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
498 {
499 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
500 	WPI_BARRIER_READ_WRITE(sc);
501 	return WPI_READ(sc, WPI_MEM_RDATA);
502 }
503 
504 static __inline void
wpi_mem_write(struct wpi_softc * sc,uint32_t addr,uint32_t data)505 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
506 {
507 	WPI_WRITE(sc, WPI_MEM_WADDR, addr);
508 	WPI_BARRIER_WRITE(sc);
509 	WPI_WRITE(sc, WPI_MEM_WDATA, data);
510 }
511 
512 static __inline void
wpi_mem_read_region_4(struct wpi_softc * sc,uint32_t addr,uint32_t * data,int count)513 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
514     int count)
515 {
516 	for (; count > 0; count--, addr += 4)
517 		*data++ = wpi_mem_read(sc, addr);
518 }
519 
520 #endif
521 
522 int
wpi_read_prom_data(struct wpi_softc * sc,uint32_t addr,void * data,int count)523 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
524 {
525 	uint8_t *out = data;
526 	uint32_t val;
527 	int error, ntries;
528 
529 	if ((error = wpi_nic_lock(sc)) != 0)
530 		return error;
531 
532 	for (; count > 0; count -= 2, addr++) {
533 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
534 		WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
535 
536 		for (ntries = 0; ntries < 10; ntries++) {
537 			val = WPI_READ(sc, WPI_EEPROM);
538 			if (val & WPI_EEPROM_READ_VALID)
539 				break;
540 			DELAY(5);
541 		}
542 		if (ntries == 10) {
543 			printf("%s: could not read EEPROM\n",
544 			    sc->sc_dev.dv_xname);
545 			return ETIMEDOUT;
546 		}
547 		*out++ = val >> 16;
548 		if (count > 1)
549 			*out++ = val >> 24;
550 	}
551 
552 	wpi_nic_unlock(sc);
553 	return 0;
554 }
555 
556 int
wpi_dma_contig_alloc(bus_dma_tag_t tag,struct wpi_dma_info * dma,void ** kvap,bus_size_t size,bus_size_t alignment)557 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
558     bus_size_t size, bus_size_t alignment)
559 {
560 	int nsegs, error;
561 
562 	dma->tag = tag;
563 	dma->size = size;
564 
565 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
566 	    &dma->map);
567 	if (error != 0)
568 		goto fail;
569 
570 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
571 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
572 	if (error != 0)
573 		goto fail;
574 
575 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
576 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
577 	if (error != 0)
578 		goto fail;
579 
580 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
581 	    BUS_DMA_NOWAIT);
582 	if (error != 0)
583 		goto fail;
584 
585 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
586 
587 	dma->paddr = dma->map->dm_segs[0].ds_addr;
588 	if (kvap != NULL)
589 		*kvap = dma->vaddr;
590 
591 	return 0;
592 
593 fail:	wpi_dma_contig_free(dma);
594 	return error;
595 }
596 
597 void
wpi_dma_contig_free(struct wpi_dma_info * dma)598 wpi_dma_contig_free(struct wpi_dma_info *dma)
599 {
600 	if (dma->map != NULL) {
601 		if (dma->vaddr != NULL) {
602 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
603 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
604 			bus_dmamap_unload(dma->tag, dma->map);
605 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
606 			bus_dmamem_free(dma->tag, &dma->seg, 1);
607 			dma->vaddr = NULL;
608 		}
609 		bus_dmamap_destroy(dma->tag, dma->map);
610 		dma->map = NULL;
611 	}
612 }
613 
614 int
wpi_alloc_shared(struct wpi_softc * sc)615 wpi_alloc_shared(struct wpi_softc *sc)
616 {
617 	/* Shared buffer must be aligned on a 4KB boundary. */
618 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
619 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
620 }
621 
622 void
wpi_free_shared(struct wpi_softc * sc)623 wpi_free_shared(struct wpi_softc *sc)
624 {
625 	wpi_dma_contig_free(&sc->shared_dma);
626 }
627 
628 int
wpi_alloc_fwmem(struct wpi_softc * sc)629 wpi_alloc_fwmem(struct wpi_softc *sc)
630 {
631 	/* Allocate enough contiguous space to store text and data. */
632 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
633 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
634 }
635 
636 void
wpi_free_fwmem(struct wpi_softc * sc)637 wpi_free_fwmem(struct wpi_softc *sc)
638 {
639 	wpi_dma_contig_free(&sc->fw_dma);
640 }
641 
642 int
wpi_alloc_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)643 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
644 {
645 	bus_size_t size;
646 	int i, error;
647 
648 	ring->cur = 0;
649 
650 	/* Allocate RX descriptors (16KB aligned.) */
651 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
652 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
653 	    (void **)&ring->desc, size, 16 * 1024);
654 	if (error != 0) {
655 		printf("%s: could not allocate RX ring DMA memory\n",
656 		    sc->sc_dev.dv_xname);
657 		goto fail;
658 	}
659 
660 	/*
661 	 * Allocate and map RX buffers.
662 	 */
663 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
664 		struct wpi_rx_data *data = &ring->data[i];
665 
666 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
667 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
668 		if (error != 0) {
669 			printf("%s: could not create RX buf DMA map\n",
670 			    sc->sc_dev.dv_xname);
671 			goto fail;
672 		}
673 
674 		data->m = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
675 		if (data->m == NULL) {
676 			printf("%s: could not allocate RX mbuf\n",
677 			    sc->sc_dev.dv_xname);
678 			error = ENOBUFS;
679 			goto fail;
680 		}
681 
682 		error = bus_dmamap_load(sc->sc_dmat, data->map,
683 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
684 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
685 		if (error != 0) {
686 			printf("%s: can't map mbuf (error %d)\n",
687 			    sc->sc_dev.dv_xname, error);
688 			goto fail;
689 		}
690 
691 		/* Set physical address of RX buffer. */
692 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
693 	}
694 
695 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
696 	    BUS_DMASYNC_PREWRITE);
697 
698 	return 0;
699 
700 fail:	wpi_free_rx_ring(sc, ring);
701 	return error;
702 }
703 
704 void
wpi_reset_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)705 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
706 {
707 	int ntries;
708 
709 	if (wpi_nic_lock(sc) == 0) {
710 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
711 		for (ntries = 0; ntries < 100; ntries++) {
712 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
713 			    WPI_FH_RX_STATUS_IDLE)
714 				break;
715 			DELAY(10);
716 		}
717 		wpi_nic_unlock(sc);
718 	}
719 	ring->cur = 0;
720 }
721 
722 void
wpi_free_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)723 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
724 {
725 	int i;
726 
727 	wpi_dma_contig_free(&ring->desc_dma);
728 
729 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
730 		struct wpi_rx_data *data = &ring->data[i];
731 
732 		if (data->m != NULL) {
733 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
734 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
735 			bus_dmamap_unload(sc->sc_dmat, data->map);
736 			m_freem(data->m);
737 		}
738 		if (data->map != NULL)
739 			bus_dmamap_destroy(sc->sc_dmat, data->map);
740 	}
741 }
742 
743 int
wpi_alloc_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring,int qid)744 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
745 {
746 	bus_addr_t paddr;
747 	bus_size_t size;
748 	int i, error;
749 
750 	ring->qid = qid;
751 	ring->queued = 0;
752 	ring->cur = 0;
753 
754 	/* Allocate TX descriptors (16KB aligned.) */
755 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
756 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
757 	    (void **)&ring->desc, size, 16 * 1024);
758 	if (error != 0) {
759 		printf("%s: could not allocate TX ring DMA memory\n",
760 		    sc->sc_dev.dv_xname);
761 		goto fail;
762 	}
763 
764 	/* Update shared area with ring physical address. */
765 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
766 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
767 	    sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
768 
769 	/*
770 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
771 	 * to allocate commands space for other rings.
772 	 * XXX Do we really need to allocate descriptors for other rings?
773 	 */
774 	if (qid > 4)
775 		return 0;
776 
777 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
778 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
779 	    (void **)&ring->cmd, size, 4);
780 	if (error != 0) {
781 		printf("%s: could not allocate TX cmd DMA memory\n",
782 		    sc->sc_dev.dv_xname);
783 		goto fail;
784 	}
785 
786 	paddr = ring->cmd_dma.paddr;
787 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
788 		struct wpi_tx_data *data = &ring->data[i];
789 
790 		data->cmd_paddr = paddr;
791 		paddr += sizeof (struct wpi_tx_cmd);
792 
793 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
794 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
795 		    &data->map);
796 		if (error != 0) {
797 			printf("%s: could not create TX buf DMA map\n",
798 			    sc->sc_dev.dv_xname);
799 			goto fail;
800 		}
801 	}
802 	return 0;
803 
804 fail:	wpi_free_tx_ring(sc, ring);
805 	return error;
806 }
807 
808 void
wpi_reset_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)809 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
810 {
811 	int i;
812 
813 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
814 		struct wpi_tx_data *data = &ring->data[i];
815 
816 		if (data->m != NULL) {
817 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
818 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
819 			bus_dmamap_unload(sc->sc_dmat, data->map);
820 			m_freem(data->m);
821 			data->m = NULL;
822 		}
823 	}
824 	/* Clear TX descriptors. */
825 	memset(ring->desc, 0, ring->desc_dma.size);
826 	sc->qfullmsk &= ~(1 << ring->qid);
827 	ring->queued = 0;
828 	ring->cur = 0;
829 }
830 
831 void
wpi_free_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)832 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
833 {
834 	int i;
835 
836 	wpi_dma_contig_free(&ring->desc_dma);
837 	wpi_dma_contig_free(&ring->cmd_dma);
838 
839 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
840 		struct wpi_tx_data *data = &ring->data[i];
841 
842 		if (data->m != NULL) {
843 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
844 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
845 			bus_dmamap_unload(sc->sc_dmat, data->map);
846 			m_freem(data->m);
847 		}
848 		if (data->map != NULL)
849 			bus_dmamap_destroy(sc->sc_dmat, data->map);
850 	}
851 }
852 
853 int
wpi_read_eeprom(struct wpi_softc * sc)854 wpi_read_eeprom(struct wpi_softc *sc)
855 {
856 	struct ieee80211com *ic = &sc->sc_ic;
857 	char domain[4];
858 	int i;
859 
860 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
861 		printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
862 		return EIO;
863 	}
864 	/* Clear HW ownership of EEPROM. */
865 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
866 
867 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
868 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
869 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
870 
871 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
872 	    sc->type));
873 
874 	/* Read and print regulatory domain (4 ASCII characters.) */
875 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
876 	printf(", %.4s", domain);
877 
878 	/* Read and print MAC address. */
879 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
880 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
881 
882 	/* Read the list of authorized channels. */
883 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
884 		wpi_read_eeprom_channels(sc, i);
885 
886 	/* Read the list of TX power groups. */
887 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
888 		wpi_read_eeprom_group(sc, i);
889 
890 	return 0;
891 }
892 
893 void
wpi_read_eeprom_channels(struct wpi_softc * sc,int n)894 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
895 {
896 	struct ieee80211com *ic = &sc->sc_ic;
897 	const struct wpi_chan_band *band = &wpi_bands[n];
898 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
899 	int chan, i;
900 
901 	wpi_read_prom_data(sc, band->addr, channels,
902 	    band->nchan * sizeof (struct wpi_eeprom_chan));
903 
904 	for (i = 0; i < band->nchan; i++) {
905 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
906 			continue;
907 
908 		chan = band->chan[i];
909 
910 		if (n == 0) {	/* 2GHz band */
911 			ic->ic_channels[chan].ic_freq =
912 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
913 			ic->ic_channels[chan].ic_flags =
914 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
915 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
916 
917 		} else {	/* 5GHz band */
918 			/*
919 			 * Some adapters support channels 7, 8, 11 and 12
920 			 * both in the 2GHz and 4.9GHz bands.
921 			 * Because of limitations in our net80211 layer,
922 			 * we don't support them in the 4.9GHz band.
923 			 */
924 			if (chan <= 14)
925 				continue;
926 
927 			ic->ic_channels[chan].ic_freq =
928 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
929 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
930 			/* We have at least one valid 5GHz channel. */
931 			sc->sc_flags |= WPI_FLAG_HAS_5GHZ;
932 		}
933 
934 		/* Is active scan allowed on this channel? */
935 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
936 			ic->ic_channels[chan].ic_flags |=
937 			    IEEE80211_CHAN_PASSIVE;
938 		}
939 
940 		/* Save maximum allowed TX power for this channel. */
941 		sc->maxpwr[chan] = channels[i].maxpwr;
942 
943 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
944 		    chan, channels[i].flags, sc->maxpwr[chan]));
945 	}
946 }
947 
948 void
wpi_read_eeprom_group(struct wpi_softc * sc,int n)949 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
950 {
951 	struct wpi_power_group *group = &sc->groups[n];
952 	struct wpi_eeprom_group rgroup;
953 	int i;
954 
955 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
956 	    sizeof rgroup);
957 
958 	/* Save TX power group information. */
959 	group->chan   = rgroup.chan;
960 	group->maxpwr = rgroup.maxpwr;
961 	/* Retrieve temperature at which the samples were taken. */
962 	group->temp   = (int16_t)letoh16(rgroup.temp);
963 
964 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
965 	    group->chan, group->maxpwr, group->temp));
966 
967 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
968 		group->samples[i].index = rgroup.samples[i].index;
969 		group->samples[i].power = rgroup.samples[i].power;
970 
971 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
972 		    group->samples[i].index, group->samples[i].power));
973 	}
974 }
975 
976 struct ieee80211_node *
wpi_node_alloc(struct ieee80211com * ic)977 wpi_node_alloc(struct ieee80211com *ic)
978 {
979 	return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
980 }
981 
982 void
wpi_newassoc(struct ieee80211com * ic,struct ieee80211_node * ni,int isnew)983 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
984 {
985 	struct wpi_softc *sc = ic->ic_if.if_softc;
986 	struct wpi_node *wn = (void *)ni;
987 	uint8_t rate;
988 	int ridx, i;
989 
990 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
991 	/* Start at lowest available bit-rate, AMRR will raise. */
992 	ni->ni_txrate = 0;
993 
994 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
995 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
996 		/* Map 802.11 rate to HW rate index. */
997 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
998 			if (wpi_rates[ridx].rate == rate)
999 				break;
1000 		wn->ridx[i] = ridx;
1001 	}
1002 }
1003 
1004 int
wpi_media_change(struct ifnet * ifp)1005 wpi_media_change(struct ifnet *ifp)
1006 {
1007 	struct wpi_softc *sc = ifp->if_softc;
1008 	struct ieee80211com *ic = &sc->sc_ic;
1009 	uint8_t rate, ridx;
1010 	int error;
1011 
1012 	error = ieee80211_media_change(ifp);
1013 	if (error != ENETRESET)
1014 		return error;
1015 
1016 	if (ic->ic_fixed_rate != -1) {
1017 		rate = ic->ic_sup_rates[ic->ic_curmode].
1018 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1019 		/* Map 802.11 rate to HW rate index. */
1020 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1021 			if (wpi_rates[ridx].rate == rate)
1022 				break;
1023 		sc->fixed_ridx = ridx;
1024 	}
1025 
1026 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1027 	    (IFF_UP | IFF_RUNNING)) {
1028 		wpi_stop(ifp, 0);
1029 		error = wpi_init(ifp);
1030 	}
1031 	return error;
1032 }
1033 
1034 int
wpi_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1035 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1036 {
1037 	struct ifnet *ifp = &ic->ic_if;
1038 	struct wpi_softc *sc = ifp->if_softc;
1039 	int error;
1040 
1041 	timeout_del(&sc->calib_to);
1042 
1043 	switch (nstate) {
1044 	case IEEE80211_S_SCAN:
1045 		/* Make the link LED blink while we're scanning. */
1046 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1047 
1048 		if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1049 			printf("%s: could not initiate scan\n",
1050 			    sc->sc_dev.dv_xname);
1051 			return error;
1052 		}
1053 		if (ifp->if_flags & IFF_DEBUG)
1054 			printf("%s: %s -> %s\n", ifp->if_xname,
1055 			    ieee80211_state_name[ic->ic_state],
1056 			    ieee80211_state_name[nstate]);
1057 		ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1058 		ieee80211_node_cleanup(ic, ic->ic_bss);
1059 		ic->ic_state = nstate;
1060 		return 0;
1061 
1062 	case IEEE80211_S_ASSOC:
1063 		if (ic->ic_state != IEEE80211_S_RUN)
1064 			break;
1065 		/* FALLTHROUGH */
1066 	case IEEE80211_S_AUTH:
1067 		/* Reset state to handle reassociations correctly. */
1068 		sc->rxon.associd = 0;
1069 		sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1070 
1071 		if ((error = wpi_auth(sc)) != 0) {
1072 			printf("%s: could not move to auth state\n",
1073 			    sc->sc_dev.dv_xname);
1074 			return error;
1075 		}
1076 		break;
1077 
1078 	case IEEE80211_S_RUN:
1079 		if ((error = wpi_run(sc)) != 0) {
1080 			printf("%s: could not move to run state\n",
1081 			    sc->sc_dev.dv_xname);
1082 			return error;
1083 		}
1084 		break;
1085 
1086 	case IEEE80211_S_INIT:
1087 		break;
1088 	}
1089 
1090 	return sc->sc_newstate(ic, nstate, arg);
1091 }
1092 
1093 void
wpi_iter_func(void * arg,struct ieee80211_node * ni)1094 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1095 {
1096 	struct wpi_softc *sc = arg;
1097 	struct wpi_node *wn = (struct wpi_node *)ni;
1098 
1099 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1100 }
1101 
1102 void
wpi_calib_timeout(void * arg)1103 wpi_calib_timeout(void *arg)
1104 {
1105 	struct wpi_softc *sc = arg;
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	int s;
1108 
1109 	s = splnet();
1110 	/* Automatic rate control triggered every 500ms. */
1111 	if (ic->ic_fixed_rate == -1) {
1112 		if (ic->ic_opmode == IEEE80211_M_STA)
1113 			wpi_iter_func(sc, ic->ic_bss);
1114 		else
1115 			ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
1116 	}
1117 
1118 	/* Force automatic TX power calibration every 60 secs. */
1119 	if (++sc->calib_cnt >= 120) {
1120 		wpi_power_calibration(sc);
1121 		sc->calib_cnt = 0;
1122 	}
1123 	splx(s);
1124 
1125 	/* Automatic rate control triggered every 500ms. */
1126 	timeout_add_msec(&sc->calib_to, 500);
1127 }
1128 
1129 int
wpi_ccmp_decap(struct wpi_softc * sc,struct mbuf * m,struct ieee80211_key * k)1130 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1131 {
1132 	struct ieee80211com *ic = &sc->sc_ic;
1133 	struct ieee80211_frame *wh;
1134 	uint64_t pn, *prsc;
1135 	uint8_t *ivp;
1136 	uint8_t tid;
1137 	int hdrlen;
1138 
1139 	wh = mtod(m, struct ieee80211_frame *);
1140 	hdrlen = ieee80211_get_hdrlen(wh);
1141 	ivp = (uint8_t *)wh + hdrlen;
1142 
1143 	/* Check that ExtIV bit is set. */
1144 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1145 		DPRINTF(("CCMP decap ExtIV not set\n"));
1146 		return 1;
1147 	}
1148 	tid = ieee80211_has_qos(wh) ?
1149 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1150 	prsc = &k->k_rsc[tid];
1151 
1152 	/* Extract the 48-bit PN from the CCMP header. */
1153 	pn = (uint64_t)ivp[0]       |
1154 	     (uint64_t)ivp[1] <<  8 |
1155 	     (uint64_t)ivp[4] << 16 |
1156 	     (uint64_t)ivp[5] << 24 |
1157 	     (uint64_t)ivp[6] << 32 |
1158 	     (uint64_t)ivp[7] << 40;
1159 	if (pn <= *prsc) {
1160 		DPRINTF(("CCMP replayed\n"));
1161 		ic->ic_stats.is_ccmp_replays++;
1162 		return 1;
1163 	}
1164 	/* Last seen packet number is updated in ieee80211_inputm(). */
1165 
1166 	/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
1167 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1168 	return 0;
1169 }
1170 
1171 void
wpi_rx_done(struct wpi_softc * sc,struct wpi_rx_desc * desc,struct wpi_rx_data * data,struct mbuf_list * ml)1172 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1173     struct wpi_rx_data *data, struct mbuf_list *ml)
1174 {
1175 	struct ieee80211com *ic = &sc->sc_ic;
1176 	struct ifnet *ifp = &ic->ic_if;
1177 	struct wpi_rx_ring *ring = &sc->rxq;
1178 	struct wpi_rx_stat *stat;
1179 	struct wpi_rx_head *head;
1180 	struct wpi_rx_tail *tail;
1181 	struct ieee80211_frame *wh;
1182 	struct ieee80211_rxinfo rxi;
1183 	struct ieee80211_node *ni;
1184 	struct mbuf *m, *m1;
1185 	uint32_t flags;
1186 	int error;
1187 
1188 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
1189 	    BUS_DMASYNC_POSTREAD);
1190 	stat = (struct wpi_rx_stat *)(desc + 1);
1191 
1192 	if (stat->len > WPI_STAT_MAXLEN) {
1193 		printf("%s: invalid RX statistic header\n",
1194 		    sc->sc_dev.dv_xname);
1195 		ifp->if_ierrors++;
1196 		return;
1197 	}
1198 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1199 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
1200 	flags = letoh32(tail->flags);
1201 
1202 	/* Discard frames with a bad FCS early. */
1203 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1204 		DPRINTFN(2, ("rx tail flags error %x\n", flags));
1205 		ifp->if_ierrors++;
1206 		return;
1207 	}
1208 	/* Discard frames that are too short. */
1209 	if (letoh16(head->len) < sizeof (*wh)) {
1210 		DPRINTF(("frame too short: %d\n", letoh16(head->len)));
1211 		ic->ic_stats.is_rx_tooshort++;
1212 		ifp->if_ierrors++;
1213 		return;
1214 	}
1215 
1216 	m1 = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
1217 	if (m1 == NULL) {
1218 		ic->ic_stats.is_rx_nombuf++;
1219 		ifp->if_ierrors++;
1220 		return;
1221 	}
1222 	bus_dmamap_unload(sc->sc_dmat, data->map);
1223 
1224 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1225 	    WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1226 	if (error != 0) {
1227 		m_freem(m1);
1228 
1229 		/* Try to reload the old mbuf. */
1230 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1231 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1232 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1233 		if (error != 0) {
1234 			panic("%s: could not load old RX mbuf",
1235 			    sc->sc_dev.dv_xname);
1236 		}
1237 		/* Physical address may have changed. */
1238 		ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1239 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1240 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1241 		    BUS_DMASYNC_PREWRITE);
1242 		ifp->if_ierrors++;
1243 		return;
1244 	}
1245 
1246 	m = data->m;
1247 	data->m = m1;
1248 	/* Update RX descriptor. */
1249 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1250 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1251 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1252 	    BUS_DMASYNC_PREWRITE);
1253 
1254 	/* Finalize mbuf. */
1255 	m->m_data = (caddr_t)(head + 1);
1256 	m->m_pkthdr.len = m->m_len = letoh16(head->len);
1257 
1258 	/* Grab a reference to the source node. */
1259 	wh = mtod(m, struct ieee80211_frame *);
1260 	ni = ieee80211_find_rxnode(ic, wh);
1261 
1262 	memset(&rxi, 0, sizeof(rxi));
1263 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1264 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1265 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1266 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1267 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1268 			ic->ic_stats.is_ccmp_dec_errs++;
1269 			ifp->if_ierrors++;
1270 			m_freem(m);
1271 			ieee80211_release_node(ic, ni);
1272 			return;
1273 		}
1274 		/* Check whether decryption was successful or not. */
1275 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1276 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1277 			ic->ic_stats.is_ccmp_dec_errs++;
1278 			ifp->if_ierrors++;
1279 			m_freem(m);
1280 			ieee80211_release_node(ic, ni);
1281 			return;
1282 		}
1283 		if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1284 			ifp->if_ierrors++;
1285 			m_freem(m);
1286 			ieee80211_release_node(ic, ni);
1287 			return;
1288 		}
1289 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1290 	}
1291 
1292 #if NBPFILTER > 0
1293 	if (sc->sc_drvbpf != NULL) {
1294 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1295 
1296 		tap->wr_flags = 0;
1297 		if (letoh16(head->flags) & 0x4)
1298 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1299 		tap->wr_chan_freq =
1300 		    htole16(ic->ic_channels[head->chan].ic_freq);
1301 		tap->wr_chan_flags =
1302 		    htole16(ic->ic_channels[head->chan].ic_flags);
1303 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1304 		tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
1305 		tap->wr_tsft = tail->tstamp;
1306 		tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
1307 		switch (head->rate) {
1308 		/* CCK rates. */
1309 		case  10: tap->wr_rate =   2; break;
1310 		case  20: tap->wr_rate =   4; break;
1311 		case  55: tap->wr_rate =  11; break;
1312 		case 110: tap->wr_rate =  22; break;
1313 		/* OFDM rates. */
1314 		case 0xd: tap->wr_rate =  12; break;
1315 		case 0xf: tap->wr_rate =  18; break;
1316 		case 0x5: tap->wr_rate =  24; break;
1317 		case 0x7: tap->wr_rate =  36; break;
1318 		case 0x9: tap->wr_rate =  48; break;
1319 		case 0xb: tap->wr_rate =  72; break;
1320 		case 0x1: tap->wr_rate =  96; break;
1321 		case 0x3: tap->wr_rate = 108; break;
1322 		/* Unknown rate: should not happen. */
1323 		default:  tap->wr_rate =   0;
1324 		}
1325 
1326 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
1327 		    m, BPF_DIRECTION_IN);
1328 	}
1329 #endif
1330 
1331 	/* Send the frame to the 802.11 layer. */
1332 	rxi.rxi_rssi = stat->rssi;
1333 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
1334 
1335 	/* Node is no longer needed. */
1336 	ieee80211_release_node(ic, ni);
1337 }
1338 
1339 void
wpi_tx_done(struct wpi_softc * sc,struct wpi_rx_desc * desc)1340 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1341 {
1342 	struct ieee80211com *ic = &sc->sc_ic;
1343 	struct ifnet *ifp = &ic->ic_if;
1344 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1345 	struct wpi_tx_data *data = &ring->data[desc->idx];
1346 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1347 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1348 
1349 	/* Update rate control statistics. */
1350 	wn->amn.amn_txcnt++;
1351 	if (stat->retrycnt > 0)
1352 		wn->amn.amn_retrycnt++;
1353 
1354 	if ((letoh32(stat->status) & 0xff) != 1)
1355 		ifp->if_oerrors++;
1356 
1357 	/* Unmap and free mbuf. */
1358 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1359 	    BUS_DMASYNC_POSTWRITE);
1360 	bus_dmamap_unload(sc->sc_dmat, data->map);
1361 	m_freem(data->m);
1362 	data->m = NULL;
1363 	ieee80211_release_node(ic, data->ni);
1364 	data->ni = NULL;
1365 
1366 	sc->sc_tx_timer = 0;
1367 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1368 		sc->qfullmsk &= ~(1 << ring->qid);
1369 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
1370 			ifq_clr_oactive(&ifp->if_snd);
1371 			(*ifp->if_start)(ifp);
1372 		}
1373 	}
1374 }
1375 
1376 void
wpi_cmd_done(struct wpi_softc * sc,struct wpi_rx_desc * desc)1377 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1378 {
1379 	struct wpi_tx_ring *ring = &sc->txq[4];
1380 	struct wpi_tx_data *data;
1381 
1382 	if ((desc->qid & 7) != 4)
1383 		return;	/* Not a command ack. */
1384 
1385 	data = &ring->data[desc->idx];
1386 
1387 	/* If the command was mapped in an mbuf, free it. */
1388 	if (data->m != NULL) {
1389 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1390 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1391 		bus_dmamap_unload(sc->sc_dmat, data->map);
1392 		m_freem(data->m);
1393 		data->m = NULL;
1394 	}
1395 	wakeup(&ring->cmd[desc->idx]);
1396 }
1397 
1398 void
wpi_notif_intr(struct wpi_softc * sc)1399 wpi_notif_intr(struct wpi_softc *sc)
1400 {
1401 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1402 	struct ieee80211com *ic = &sc->sc_ic;
1403 	struct ifnet *ifp = &ic->ic_if;
1404 	uint32_t hw;
1405 
1406 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1407 	    sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
1408 
1409 	hw = letoh32(sc->shared->next);
1410 	while (sc->rxq.cur != hw) {
1411 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1412 		struct wpi_rx_desc *desc;
1413 
1414 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
1415 		    BUS_DMASYNC_POSTREAD);
1416 		desc = mtod(data->m, struct wpi_rx_desc *);
1417 
1418 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1419 		    "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1420 		    letoh32(desc->len)));
1421 
1422 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1423 			wpi_cmd_done(sc, desc);
1424 
1425 		switch (desc->type) {
1426 		case WPI_RX_DONE:
1427 			/* An 802.11 frame has been received. */
1428 			wpi_rx_done(sc, desc, data, &ml);
1429 			break;
1430 
1431 		case WPI_TX_DONE:
1432 			/* An 802.11 frame has been transmitted. */
1433 			wpi_tx_done(sc, desc);
1434 			break;
1435 
1436 		case WPI_UC_READY:
1437 		{
1438 			struct wpi_ucode_info *uc =
1439 			    (struct wpi_ucode_info *)(desc + 1);
1440 
1441 			/* The microcontroller is ready. */
1442 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1443 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
1444 			DPRINTF(("microcode alive notification version %x "
1445 			    "alive %x\n", letoh32(uc->version),
1446 			    letoh32(uc->valid)));
1447 
1448 			if (letoh32(uc->valid) != 1) {
1449 				printf("%s: microcontroller initialization "
1450 				    "failed\n", sc->sc_dev.dv_xname);
1451 			}
1452 			if (uc->subtype != WPI_UCODE_INIT) {
1453 				/* Save the address of the error log. */
1454 				sc->errptr = letoh32(uc->errptr);
1455 			}
1456 			break;
1457 		}
1458 		case WPI_STATE_CHANGED:
1459 		{
1460 			uint32_t *status = (uint32_t *)(desc + 1);
1461 
1462 			/* Enabled/disabled notification. */
1463 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1464 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
1465 			DPRINTF(("state changed to %x\n", letoh32(*status)));
1466 
1467 			if (letoh32(*status) & 1) {
1468 				/* The radio button has to be pushed. */
1469 				printf("%s: Radio transmitter is off\n",
1470 				    sc->sc_dev.dv_xname);
1471 				/* Turn the interface down. */
1472 				wpi_stop(ifp, 1);
1473 				return;	/* No further processing. */
1474 			}
1475 			break;
1476 		}
1477 		case WPI_START_SCAN:
1478 		{
1479 			struct wpi_start_scan *scan =
1480 			    (struct wpi_start_scan *)(desc + 1);
1481 
1482 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1483 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1484 			DPRINTFN(2, ("scanning channel %d status %x\n",
1485 			    scan->chan, letoh32(scan->status)));
1486 
1487 			/* Fix current channel. */
1488 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1489 			break;
1490 		}
1491 		case WPI_STOP_SCAN:
1492 		{
1493 			struct wpi_stop_scan *scan =
1494 			    (struct wpi_stop_scan *)(desc + 1);
1495 
1496 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1497 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1498 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1499 			    scan->nchan, scan->status, scan->chan));
1500 
1501 			if (scan->status == 1 && scan->chan <= 14 &&
1502 			    (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
1503 				/*
1504 				 * We just finished scanning 2GHz channels,
1505 				 * start scanning 5GHz ones.
1506 				 */
1507 				if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
1508 					break;
1509 			}
1510 			ieee80211_end_scan(ifp);
1511 			break;
1512 		}
1513 		}
1514 
1515 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1516 	}
1517 	if_input(&ic->ic_if, &ml);
1518 
1519 	/* Tell the firmware what we have processed. */
1520 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1521 	WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
1522 }
1523 
1524 #ifdef WPI_DEBUG
1525 /*
1526  * Dump the error log of the firmware when a firmware panic occurs.  Although
1527  * we can't debug the firmware because it is neither open source nor free, it
1528  * can help us to identify certain classes of problems.
1529  */
1530 void
wpi_fatal_intr(struct wpi_softc * sc)1531 wpi_fatal_intr(struct wpi_softc *sc)
1532 {
1533 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1534 	struct wpi_fwdump dump;
1535 	uint32_t i, offset, count;
1536 
1537 	/* Check that the error log address is valid. */
1538 	if (sc->errptr < WPI_FW_DATA_BASE ||
1539 	    sc->errptr + sizeof (dump) >
1540 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
1541 		printf("%s: bad firmware error log address 0x%08x\n",
1542 		    sc->sc_dev.dv_xname, sc->errptr);
1543 		return;
1544 	}
1545 
1546 	if (wpi_nic_lock(sc) != 0) {
1547 		printf("%s: could not read firmware error log\n",
1548 		    sc->sc_dev.dv_xname);
1549 		return;
1550 	}
1551 	/* Read number of entries in the log. */
1552 	count = wpi_mem_read(sc, sc->errptr);
1553 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
1554 		printf("%s: invalid count field (count=%u)\n",
1555 		    sc->sc_dev.dv_xname, count);
1556 		wpi_nic_unlock(sc);
1557 		return;
1558 	}
1559 	/* Skip "count" field. */
1560 	offset = sc->errptr + sizeof (uint32_t);
1561 	printf("firmware error log (count=%u):\n", count);
1562 	for (i = 0; i < count; i++) {
1563 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
1564 		    sizeof (dump) / sizeof (uint32_t));
1565 
1566 		printf("  error type = \"%s\" (0x%08X)\n",
1567 		    (dump.desc < N(wpi_fw_errmsg)) ?
1568 			wpi_fw_errmsg[dump.desc] : "UNKNOWN",
1569 		    dump.desc);
1570 		printf("  error data      = 0x%08X\n",
1571 		    dump.data);
1572 		printf("  branch link     = 0x%08X%08X\n",
1573 		    dump.blink[0], dump.blink[1]);
1574 		printf("  interrupt link  = 0x%08X%08X\n",
1575 		    dump.ilink[0], dump.ilink[1]);
1576 		printf("  time            = %u\n", dump.time);
1577 
1578 		offset += sizeof (dump);
1579 	}
1580 	wpi_nic_unlock(sc);
1581 	/* Dump driver status (TX and RX rings) while we're here. */
1582 	printf("driver status:\n");
1583 	for (i = 0; i < 6; i++) {
1584 		struct wpi_tx_ring *ring = &sc->txq[i];
1585 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
1586 		    i, ring->qid, ring->cur, ring->queued);
1587 	}
1588 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
1589 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
1590 #undef N
1591 }
1592 #endif
1593 
1594 int
wpi_intr(void * arg)1595 wpi_intr(void *arg)
1596 {
1597 	struct wpi_softc *sc = arg;
1598 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1599 	uint32_t r1, r2;
1600 
1601 	/* Disable interrupts. */
1602 	WPI_WRITE(sc, WPI_MASK, 0);
1603 
1604 	r1 = WPI_READ(sc, WPI_INT);
1605 	r2 = WPI_READ(sc, WPI_FH_INT);
1606 
1607 	if (r1 == 0 && r2 == 0) {
1608 		if (ifp->if_flags & IFF_UP)
1609 			WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1610 		return 0;	/* Interrupt not for us. */
1611 	}
1612 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
1613 		return 0;	/* Hardware gone! */
1614 
1615 	/* Acknowledge interrupts. */
1616 	WPI_WRITE(sc, WPI_INT, r1);
1617 	WPI_WRITE(sc, WPI_FH_INT, r2);
1618 
1619 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
1620 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1621 		/* Dump firmware error log and stop. */
1622 #ifdef WPI_DEBUG
1623 		wpi_fatal_intr(sc);
1624 #endif
1625 		wpi_stop(ifp, 1);
1626 		task_add(systq, &sc->init_task);
1627 		return 1;
1628 	}
1629 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
1630 	    (r2 & WPI_FH_INT_RX))
1631 		wpi_notif_intr(sc);
1632 
1633 	if (r1 & WPI_INT_ALIVE)
1634 		wakeup(sc);	/* Firmware is alive. */
1635 
1636 	/* Re-enable interrupts. */
1637 	if (ifp->if_flags & IFF_UP)
1638 		WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1639 
1640 	return 1;
1641 }
1642 
1643 int
wpi_tx(struct wpi_softc * sc,struct mbuf * m,struct ieee80211_node * ni)1644 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1645 {
1646 	struct ieee80211com *ic = &sc->sc_ic;
1647 	struct wpi_node *wn = (void *)ni;
1648 	struct wpi_tx_ring *ring;
1649 	struct wpi_tx_desc *desc;
1650 	struct wpi_tx_data *data;
1651 	struct wpi_tx_cmd *cmd;
1652 	struct wpi_cmd_data *tx;
1653 	const struct wpi_rate *rinfo;
1654 	struct ieee80211_frame *wh;
1655 	struct ieee80211_key *k = NULL;
1656 	enum ieee80211_edca_ac ac;
1657 	uint32_t flags;
1658 	uint16_t qos;
1659 	u_int hdrlen;
1660 	uint8_t *ivp, tid, ridx, type;
1661 	int i, totlen, hasqos, error;
1662 
1663 	wh = mtod(m, struct ieee80211_frame *);
1664 	hdrlen = ieee80211_get_hdrlen(wh);
1665 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1666 
1667 	/* Select EDCA Access Category and TX ring for this frame. */
1668 	if ((hasqos = ieee80211_has_qos(wh))) {
1669 		qos = ieee80211_get_qos(wh);
1670 		tid = qos & IEEE80211_QOS_TID;
1671 		ac = ieee80211_up_to_ac(ic, tid);
1672 	} else {
1673 		tid = 0;
1674 		ac = EDCA_AC_BE;
1675 	}
1676 
1677 	ring = &sc->txq[ac];
1678 	desc = &ring->desc[ring->cur];
1679 	data = &ring->data[ring->cur];
1680 
1681 	/* Choose a TX rate index. */
1682 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1683 	    type != IEEE80211_FC0_TYPE_DATA) {
1684 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1685 		    WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
1686 	} else if (ic->ic_fixed_rate != -1) {
1687 		ridx = sc->fixed_ridx;
1688 	} else
1689 		ridx = wn->ridx[ni->ni_txrate];
1690 	rinfo = &wpi_rates[ridx];
1691 
1692 #if NBPFILTER > 0
1693 	if (sc->sc_drvbpf != NULL) {
1694 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1695 
1696 		tap->wt_flags = 0;
1697 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1698 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1699 		tap->wt_rate = rinfo->rate;
1700 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
1701 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
1702 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1703 
1704 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
1705 		    m, BPF_DIRECTION_OUT);
1706 	}
1707 #endif
1708 
1709 	totlen = m->m_pkthdr.len;
1710 
1711 	/* Encrypt the frame if need be. */
1712 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1713 		/* Retrieve key for TX. */
1714 		k = ieee80211_get_txkey(ic, wh, ni);
1715 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
1716 			/* Do software encryption. */
1717 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1718 				return ENOBUFS;
1719 			/* 802.11 header may have moved. */
1720 			wh = mtod(m, struct ieee80211_frame *);
1721 			totlen = m->m_pkthdr.len;
1722 
1723 		} else	/* HW appends CCMP MIC. */
1724 			totlen += IEEE80211_CCMP_HDRLEN;
1725 	}
1726 
1727 	/* Prepare TX firmware command. */
1728 	cmd = &ring->cmd[ring->cur];
1729 	cmd->code = WPI_CMD_TX_DATA;
1730 	cmd->flags = 0;
1731 	cmd->qid = ring->qid;
1732 	cmd->idx = ring->cur;
1733 
1734 	tx = (struct wpi_cmd_data *)cmd->data;
1735 	/* NB: No need to clear tx, all fields are reinitialized here. */
1736 
1737 	flags = 0;
1738 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1739 		/* Unicast frame, check if an ACK is expected. */
1740 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
1741 		    IEEE80211_QOS_ACK_POLICY_NOACK)
1742 			flags |= WPI_TX_NEED_ACK;
1743 	}
1744 
1745 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1746 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1747 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1748 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1749 			flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1750 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1751 		    ridx <= WPI_RIDX_OFDM54) {
1752 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1753 				flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
1754 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1755 				flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1756 		}
1757 	}
1758 
1759 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1760 	    type != IEEE80211_FC0_TYPE_DATA)
1761 		tx->id = WPI_ID_BROADCAST;
1762 	else
1763 		tx->id = wn->id;
1764 
1765 	if (type == IEEE80211_FC0_TYPE_MGT) {
1766 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1767 
1768 #ifndef IEEE80211_STA_ONLY
1769 		/* Tell HW to set timestamp in probe responses. */
1770 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1771 			flags |= WPI_TX_INSERT_TSTAMP;
1772 #endif
1773 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1774 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1775 			tx->timeout = htole16(3);
1776 		else
1777 			tx->timeout = htole16(2);
1778 	} else
1779 		tx->timeout = htole16(0);
1780 
1781 	tx->len = htole16(totlen);
1782 	tx->tid = tid;
1783 	tx->rts_ntries = 7;
1784 	tx->data_ntries = 15;
1785 	tx->ofdm_mask = 0xff;
1786 	tx->cck_mask = 0x0f;
1787 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1788 	tx->plcp = rinfo->plcp;
1789 
1790 	/* Copy 802.11 header in TX command. */
1791 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1792 
1793 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
1794 		/* Trim 802.11 header and prepend CCMP IV. */
1795 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
1796 		ivp = mtod(m, uint8_t *);
1797 		k->k_tsc++;
1798 		ivp[0] = k->k_tsc;
1799 		ivp[1] = k->k_tsc >> 8;
1800 		ivp[2] = 0;
1801 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1802 		ivp[4] = k->k_tsc >> 16;
1803 		ivp[5] = k->k_tsc >> 24;
1804 		ivp[6] = k->k_tsc >> 32;
1805 		ivp[7] = k->k_tsc >> 40;
1806 
1807 		tx->security = WPI_CIPHER_CCMP;
1808 		memcpy(tx->key, k->k_key, k->k_len);
1809 	} else {
1810 		/* Trim 802.11 header. */
1811 		m_adj(m, hdrlen);
1812 		tx->security = 0;
1813 	}
1814 	tx->flags = htole32(flags);
1815 
1816 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1817 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1818 	if (error != 0 && error != EFBIG) {
1819 		printf("%s: can't map mbuf (error %d)\n",
1820 		    sc->sc_dev.dv_xname, error);
1821 		m_freem(m);
1822 		return error;
1823 	}
1824 	if (error != 0) {
1825 		/* Too many DMA segments, linearize mbuf. */
1826 		if (m_defrag(m, M_DONTWAIT)) {
1827 			m_freem(m);
1828 			return ENOBUFS;
1829 		}
1830 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1831 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1832 		if (error != 0) {
1833 			printf("%s: can't map mbuf (error %d)\n",
1834 			    sc->sc_dev.dv_xname, error);
1835 			m_freem(m);
1836 			return error;
1837 		}
1838 	}
1839 
1840 	data->m = m;
1841 	data->ni = ni;
1842 
1843 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1844 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
1845 
1846 	/* Fill TX descriptor. */
1847 	desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
1848 	    (1 + data->map->dm_nsegs) << 24);
1849 	/* First DMA segment is used by the TX command. */
1850 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1851 	    ring->cur * sizeof (struct wpi_tx_cmd));
1852 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1853 	    ((hdrlen + 3) & ~3));
1854 	/* Other DMA segments are for data payload. */
1855 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1856 		desc->segs[i].addr =
1857 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1858 		desc->segs[i].len  =
1859 		    htole32(data->map->dm_segs[i - 1].ds_len);
1860 	}
1861 
1862 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1863 	    BUS_DMASYNC_PREWRITE);
1864 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
1865 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
1866 	    BUS_DMASYNC_PREWRITE);
1867 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1868 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
1869 	    BUS_DMASYNC_PREWRITE);
1870 
1871 	/* Kick TX ring. */
1872 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1873 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1874 
1875 	/* Mark TX ring as full if we reach a certain threshold. */
1876 	if (++ring->queued > WPI_TX_RING_HIMARK)
1877 		sc->qfullmsk |= 1 << ring->qid;
1878 
1879 	return 0;
1880 }
1881 
1882 void
wpi_start(struct ifnet * ifp)1883 wpi_start(struct ifnet *ifp)
1884 {
1885 	struct wpi_softc *sc = ifp->if_softc;
1886 	struct ieee80211com *ic = &sc->sc_ic;
1887 	struct ieee80211_node *ni;
1888 	struct mbuf *m;
1889 
1890 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1891 		return;
1892 
1893 	for (;;) {
1894 		if (sc->qfullmsk != 0) {
1895 			ifq_set_oactive(&ifp->if_snd);
1896 			break;
1897 		}
1898 		/* Send pending management frames first. */
1899 		m = mq_dequeue(&ic->ic_mgtq);
1900 		if (m != NULL) {
1901 			ni = m->m_pkthdr.ph_cookie;
1902 			goto sendit;
1903 		}
1904 		if (ic->ic_state != IEEE80211_S_RUN)
1905 			break;
1906 
1907 		/* Encapsulate and send data frames. */
1908 		m = ifq_dequeue(&ifp->if_snd);
1909 		if (m == NULL)
1910 			break;
1911 #if NBPFILTER > 0
1912 		if (ifp->if_bpf != NULL)
1913 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1914 #endif
1915 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1916 			continue;
1917 sendit:
1918 #if NBPFILTER > 0
1919 		if (ic->ic_rawbpf != NULL)
1920 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1921 #endif
1922 		if (wpi_tx(sc, m, ni) != 0) {
1923 			ieee80211_release_node(ic, ni);
1924 			ifp->if_oerrors++;
1925 			continue;
1926 		}
1927 
1928 		sc->sc_tx_timer = 5;
1929 		ifp->if_timer = 1;
1930 	}
1931 }
1932 
1933 void
wpi_watchdog(struct ifnet * ifp)1934 wpi_watchdog(struct ifnet *ifp)
1935 {
1936 	struct wpi_softc *sc = ifp->if_softc;
1937 
1938 	ifp->if_timer = 0;
1939 
1940 	if (sc->sc_tx_timer > 0) {
1941 		if (--sc->sc_tx_timer == 0) {
1942 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1943 			wpi_stop(ifp, 1);
1944 			ifp->if_oerrors++;
1945 			return;
1946 		}
1947 		ifp->if_timer = 1;
1948 	}
1949 
1950 	ieee80211_watchdog(ifp);
1951 }
1952 
1953 int
wpi_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1954 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1955 {
1956 	struct wpi_softc *sc = ifp->if_softc;
1957 	struct ieee80211com *ic = &sc->sc_ic;
1958 	int s, error = 0;
1959 
1960 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
1961 	if (error)
1962 		return error;
1963 	s = splnet();
1964 
1965 	switch (cmd) {
1966 	case SIOCSIFADDR:
1967 		ifp->if_flags |= IFF_UP;
1968 		/* FALLTHROUGH */
1969 	case SIOCSIFFLAGS:
1970 		if (ifp->if_flags & IFF_UP) {
1971 			if (!(ifp->if_flags & IFF_RUNNING))
1972 				error = wpi_init(ifp);
1973 		} else {
1974 			if (ifp->if_flags & IFF_RUNNING)
1975 				wpi_stop(ifp, 1);
1976 		}
1977 		break;
1978 
1979 	case SIOCS80211POWER:
1980 		error = ieee80211_ioctl(ifp, cmd, data);
1981 		if (error != ENETRESET)
1982 			break;
1983 		if (ic->ic_state == IEEE80211_S_RUN) {
1984 			if (ic->ic_flags & IEEE80211_F_PMGTON)
1985 				error = wpi_set_pslevel(sc, 0, 3, 0);
1986 			else	/* back to CAM */
1987 				error = wpi_set_pslevel(sc, 0, 0, 0);
1988 		} else {
1989 			/* Defer until transition to IEEE80211_S_RUN. */
1990 			error = 0;
1991 		}
1992 		break;
1993 
1994 	default:
1995 		error = ieee80211_ioctl(ifp, cmd, data);
1996 	}
1997 
1998 	if (error == ENETRESET) {
1999 		error = 0;
2000 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2001 		    (IFF_UP | IFF_RUNNING)) {
2002 			wpi_stop(ifp, 0);
2003 			error = wpi_init(ifp);
2004 		}
2005 	}
2006 
2007 	splx(s);
2008 	rw_exit_write(&sc->sc_rwlock);
2009 	return error;
2010 }
2011 
2012 /*
2013  * Send a command to the firmware.
2014  */
2015 int
wpi_cmd(struct wpi_softc * sc,int code,const void * buf,int size,int async)2016 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2017 {
2018 	struct wpi_tx_ring *ring = &sc->txq[4];
2019 	struct wpi_tx_desc *desc;
2020 	struct wpi_tx_data *data;
2021 	struct wpi_tx_cmd *cmd;
2022 	struct mbuf *m;
2023 	bus_addr_t paddr;
2024 	int totlen, error;
2025 
2026 	desc = &ring->desc[ring->cur];
2027 	data = &ring->data[ring->cur];
2028 	totlen = 4 + size;
2029 
2030 	if (size > sizeof cmd->data) {
2031 		/* Command is too large to fit in a descriptor. */
2032 		if (totlen > MCLBYTES)
2033 			return EINVAL;
2034 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2035 		if (m == NULL)
2036 			return ENOMEM;
2037 		if (totlen > MHLEN) {
2038 			MCLGET(m, M_DONTWAIT);
2039 			if (!(m->m_flags & M_EXT)) {
2040 				m_freem(m);
2041 				return ENOMEM;
2042 			}
2043 		}
2044 		cmd = mtod(m, struct wpi_tx_cmd *);
2045 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2046 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2047 		if (error != 0) {
2048 			m_freem(m);
2049 			return error;
2050 		}
2051 		data->m = m;
2052 		paddr = data->map->dm_segs[0].ds_addr;
2053 	} else {
2054 		cmd = &ring->cmd[ring->cur];
2055 		paddr = data->cmd_paddr;
2056 	}
2057 
2058 	cmd->code = code;
2059 	cmd->flags = 0;
2060 	cmd->qid = ring->qid;
2061 	cmd->idx = ring->cur;
2062 	memcpy(cmd->data, buf, size);
2063 
2064 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2065 	desc->segs[0].addr = htole32(paddr);
2066 	desc->segs[0].len  = htole32(totlen);
2067 
2068 	if (size > sizeof cmd->data) {
2069 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2070 		    BUS_DMASYNC_PREWRITE);
2071 	} else {
2072 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2073 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2074 		    BUS_DMASYNC_PREWRITE);
2075 	}
2076 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2077 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2078 	    BUS_DMASYNC_PREWRITE);
2079 
2080 	/* Kick command ring. */
2081 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2082 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2083 
2084 	return async ? 0 : tsleep_nsec(cmd, PCATCH, "wpicmd", SEC_TO_NSEC(1));
2085 }
2086 
2087 /*
2088  * Configure HW multi-rate retries.
2089  */
2090 int
wpi_mrr_setup(struct wpi_softc * sc)2091 wpi_mrr_setup(struct wpi_softc *sc)
2092 {
2093 	struct ieee80211com *ic = &sc->sc_ic;
2094 	struct wpi_mrr_setup mrr;
2095 	int i, error;
2096 
2097 	/* CCK rates (not used with 802.11a). */
2098 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2099 		mrr.rates[i].flags = 0;
2100 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2101 		/* Fallback to the immediate lower CCK rate (if any.) */
2102 		mrr.rates[i].next =
2103 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2104 		/* Try one time at this rate before falling back to "next". */
2105 		mrr.rates[i].ntries = 1;
2106 	}
2107 	/* OFDM rates (not used with 802.11b). */
2108 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2109 		mrr.rates[i].flags = 0;
2110 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2111 		/* Fallback to the immediate lower rate (if any.) */
2112 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2113 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2114 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2115 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2116 		    i - 1;
2117 		/* Try one time at this rate before falling back to "next". */
2118 		mrr.rates[i].ntries = 1;
2119 	}
2120 	/* Setup MRR for control frames. */
2121 	mrr.which = htole32(WPI_MRR_CTL);
2122 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2123 	if (error != 0) {
2124 		printf("%s: could not setup MRR for control frames\n",
2125 		    sc->sc_dev.dv_xname);
2126 		return error;
2127 	}
2128 	/* Setup MRR for data frames. */
2129 	mrr.which = htole32(WPI_MRR_DATA);
2130 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2131 	if (error != 0) {
2132 		printf("%s: could not setup MRR for data frames\n",
2133 		    sc->sc_dev.dv_xname);
2134 		return error;
2135 	}
2136 	return 0;
2137 }
2138 
2139 void
wpi_updateedca(struct ieee80211com * ic)2140 wpi_updateedca(struct ieee80211com *ic)
2141 {
2142 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2143 	struct wpi_softc *sc = ic->ic_softc;
2144 	struct wpi_edca_params cmd;
2145 	int aci;
2146 
2147 	memset(&cmd, 0, sizeof cmd);
2148 	cmd.flags = htole32(WPI_EDCA_UPDATE);
2149 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2150 		const struct ieee80211_edca_ac_params *ac =
2151 		    &ic->ic_edca_ac[aci];
2152 		cmd.ac[aci].aifsn = ac->ac_aifsn;
2153 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
2154 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
2155 		cmd.ac[aci].txoplimit =
2156 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
2157 	}
2158 	(void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
2159 #undef WPI_EXP2
2160 }
2161 
2162 void
wpi_set_led(struct wpi_softc * sc,uint8_t which,uint8_t off,uint8_t on)2163 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2164 {
2165 	struct wpi_cmd_led led;
2166 
2167 	led.which = which;
2168 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2169 	led.off = off;
2170 	led.on = on;
2171 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2172 }
2173 
2174 int
wpi_set_timing(struct wpi_softc * sc,struct ieee80211_node * ni)2175 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
2176 {
2177 	struct wpi_cmd_timing cmd;
2178 	uint64_t val, mod;
2179 
2180 	memset(&cmd, 0, sizeof cmd);
2181 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
2182 	cmd.bintval = htole16(ni->ni_intval);
2183 	cmd.lintval = htole16(10);
2184 
2185 	/* Compute remaining time until next beacon. */
2186 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2187 	mod = letoh64(cmd.tstamp) % val;
2188 	cmd.binitval = htole32((uint32_t)(val - mod));
2189 
2190 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
2191 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
2192 
2193 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
2194 }
2195 
2196 /*
2197  * This function is called periodically (every minute) to adjust TX power
2198  * based on temperature variation.
2199  */
2200 void
wpi_power_calibration(struct wpi_softc * sc)2201 wpi_power_calibration(struct wpi_softc *sc)
2202 {
2203 	int temp;
2204 
2205 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
2206 	/* Sanity-check temperature. */
2207 	if (temp < -260 || temp > 25) {
2208 		/* This can't be correct, ignore. */
2209 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
2210 		return;
2211 	}
2212 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2213 	/* Adjust TX power if need be (delta > 6). */
2214 	if (abs(temp - sc->temp) > 6) {
2215 		/* Record temperature of last calibration. */
2216 		sc->temp = temp;
2217 		(void)wpi_set_txpower(sc, 1);
2218 	}
2219 }
2220 
2221 /*
2222  * Set TX power for current channel (each rate has its own power settings).
2223  */
2224 int
wpi_set_txpower(struct wpi_softc * sc,int async)2225 wpi_set_txpower(struct wpi_softc *sc, int async)
2226 {
2227 	struct ieee80211com *ic = &sc->sc_ic;
2228 	struct ieee80211_channel *ch;
2229 	struct wpi_power_group *group;
2230 	struct wpi_cmd_txpower cmd;
2231 	u_int chan;
2232 	int idx, i;
2233 
2234 	/* Retrieve current channel from last RXON. */
2235 	chan = sc->rxon.chan;
2236 	DPRINTF(("setting TX power for channel %d\n", chan));
2237 	ch = &ic->ic_channels[chan];
2238 
2239 	/* Find the TX power group to which this channel belongs. */
2240 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2241 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2242 			if (chan <= group->chan)
2243 				break;
2244 	} else
2245 		group = &sc->groups[0];
2246 
2247 	memset(&cmd, 0, sizeof cmd);
2248 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2249 	cmd.chan = htole16(chan);
2250 
2251 	/* Set TX power for all OFDM and CCK rates. */
2252 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
2253 		/* Retrieve TX power for this channel/rate. */
2254 		idx = wpi_get_power_index(sc, group, ch, i);
2255 
2256 		cmd.rates[i].plcp = wpi_rates[i].plcp;
2257 
2258 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2259 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2260 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2261 		} else {
2262 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2263 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2264 		}
2265 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2266 		    wpi_rates[i].rate, idx));
2267 	}
2268 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
2269 }
2270 
2271 /*
2272  * Determine TX power index for a given channel/rate combination.
2273  * This takes into account the regulatory information from EEPROM and the
2274  * current temperature.
2275  */
2276 int
wpi_get_power_index(struct wpi_softc * sc,struct wpi_power_group * group,struct ieee80211_channel * c,int ridx)2277 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2278     struct ieee80211_channel *c, int ridx)
2279 {
2280 /* Fixed-point arithmetic division using a n-bit fractional part. */
2281 #define fdivround(a, b, n)	\
2282 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2283 
2284 /* Linear interpolation. */
2285 #define interpolate(x, x1, y1, x2, y2, n)	\
2286 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2287 
2288 	struct ieee80211com *ic = &sc->sc_ic;
2289 	struct wpi_power_sample *sample;
2290 	int pwr, idx;
2291 	u_int chan;
2292 
2293 	/* Get channel number. */
2294 	chan = ieee80211_chan2ieee(ic, c);
2295 
2296 	/* Default TX power is group maximum TX power minus 3dB. */
2297 	pwr = group->maxpwr / 2;
2298 
2299 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
2300 	switch (ridx) {
2301 	case WPI_RIDX_OFDM36:
2302 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2303 		break;
2304 	case WPI_RIDX_OFDM48:
2305 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2306 		break;
2307 	case WPI_RIDX_OFDM54:
2308 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2309 		break;
2310 	}
2311 
2312 	/* Never exceed the channel maximum allowed TX power. */
2313 	pwr = MIN(pwr, sc->maxpwr[chan]);
2314 
2315 	/* Retrieve TX power index into gain tables from samples. */
2316 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2317 		if (pwr > sample[1].power)
2318 			break;
2319 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
2320 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2321 	    sample[1].power, sample[1].index, 19);
2322 
2323 	/*-
2324 	 * Adjust power index based on current temperature:
2325 	 * - if cooler than factory-calibrated: decrease output power
2326 	 * - if warmer than factory-calibrated: increase output power
2327 	 */
2328 	idx -= (sc->temp - group->temp) * 11 / 100;
2329 
2330 	/* Decrease TX power for CCK rates (-5dB). */
2331 	if (ridx >= WPI_RIDX_CCK1)
2332 		idx += 10;
2333 
2334 	/* Make sure idx stays in a valid range. */
2335 	if (idx < 0)
2336 		idx = 0;
2337 	else if (idx > WPI_MAX_PWR_INDEX)
2338 		idx = WPI_MAX_PWR_INDEX;
2339 	return idx;
2340 
2341 #undef interpolate
2342 #undef fdivround
2343 }
2344 
2345 /*
2346  * Set STA mode power saving level (between 0 and 5).
2347  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
2348  */
2349 int
wpi_set_pslevel(struct wpi_softc * sc,int dtim,int level,int async)2350 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
2351 {
2352 	struct wpi_pmgt_cmd cmd;
2353 	const struct wpi_pmgt *pmgt;
2354 	uint32_t max, skip_dtim;
2355 	pcireg_t reg;
2356 	int i;
2357 
2358 	/* Select which PS parameters to use. */
2359 	if (dtim <= 10)
2360 		pmgt = &wpi_pmgt[0][level];
2361 	else
2362 		pmgt = &wpi_pmgt[1][level];
2363 
2364 	memset(&cmd, 0, sizeof cmd);
2365 	if (level != 0)	/* not CAM */
2366 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
2367 	/* Retrieve PCIe Active State Power Management (ASPM). */
2368 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
2369 	    sc->sc_cap_off + PCI_PCIE_LCSR);
2370 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
2371 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
2372 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
2373 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
2374 
2375 	if (dtim == 0) {
2376 		dtim = 1;
2377 		skip_dtim = 0;
2378 	} else
2379 		skip_dtim = pmgt->skip_dtim;
2380 	if (skip_dtim != 0) {
2381 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
2382 		max = pmgt->intval[4];
2383 		if (max == (uint32_t)-1)
2384 			max = dtim * (skip_dtim + 1);
2385 		else if (max > dtim)
2386 			max = (max / dtim) * dtim;
2387 	} else
2388 		max = dtim;
2389 	for (i = 0; i < 5; i++)
2390 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
2391 
2392 	DPRINTF(("setting power saving level to %d\n", level));
2393 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
2394 }
2395 
2396 int
wpi_config(struct wpi_softc * sc)2397 wpi_config(struct wpi_softc *sc)
2398 {
2399 	struct ieee80211com *ic = &sc->sc_ic;
2400 	struct ifnet *ifp = &ic->ic_if;
2401 	struct wpi_bluetooth bluetooth;
2402 	struct wpi_node_info node;
2403 	int error;
2404 
2405 	/* Set power saving level to CAM during initialization. */
2406 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
2407 		printf("%s: could not set power saving level\n",
2408 		    sc->sc_dev.dv_xname);
2409 		return error;
2410 	}
2411 
2412 	/* Configure bluetooth coexistence. */
2413 	memset(&bluetooth, 0, sizeof bluetooth);
2414 	bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
2415 	bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
2416 	bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
2417 	error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
2418 	if (error != 0) {
2419 		printf("%s: could not configure bluetooth coexistence\n",
2420 		    sc->sc_dev.dv_xname);
2421 		return error;
2422 	}
2423 
2424 	/* Configure adapter. */
2425 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
2426 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2427 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
2428 	/* Set default channel. */
2429 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2430 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2431 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
2432 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2433 	switch (ic->ic_opmode) {
2434 	case IEEE80211_M_STA:
2435 		sc->rxon.mode = WPI_MODE_STA;
2436 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
2437 		break;
2438 	case IEEE80211_M_MONITOR:
2439 		sc->rxon.mode = WPI_MODE_MONITOR;
2440 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
2441 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2442 		break;
2443 	default:
2444 		/* Should not get there. */
2445 		break;
2446 	}
2447 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
2448 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
2449 	DPRINTF(("setting configuration\n"));
2450 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2451 	    0);
2452 	if (error != 0) {
2453 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2454 		return error;
2455 	}
2456 
2457 	/* Configuration has changed, set TX power accordingly. */
2458 	if ((error = wpi_set_txpower(sc, 0)) != 0) {
2459 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2460 		return error;
2461 	}
2462 
2463 	/* Add broadcast node. */
2464 	memset(&node, 0, sizeof node);
2465 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2466 	node.id = WPI_ID_BROADCAST;
2467 	node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2468 	node.action = htole32(WPI_ACTION_SET_RATE);
2469 	node.antenna = WPI_ANTENNA_BOTH;
2470 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2471 	if (error != 0) {
2472 		printf("%s: could not add broadcast node\n",
2473 		    sc->sc_dev.dv_xname);
2474 		return error;
2475 	}
2476 
2477 	if ((error = wpi_mrr_setup(sc)) != 0) {
2478 		printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2479 		return error;
2480 	}
2481 	return 0;
2482 }
2483 
2484 int
wpi_scan(struct wpi_softc * sc,uint16_t flags)2485 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2486 {
2487 	struct ieee80211com *ic = &sc->sc_ic;
2488 	struct wpi_scan_hdr *hdr;
2489 	struct wpi_cmd_data *tx;
2490 	struct wpi_scan_essid *essid;
2491 	struct wpi_scan_chan *chan;
2492 	struct ieee80211_frame *wh;
2493 	struct ieee80211_rateset *rs;
2494 	struct ieee80211_channel *c;
2495 	uint8_t *buf, *frm;
2496 	int buflen, error;
2497 
2498 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
2499 	if (buf == NULL) {
2500 		printf("%s: could not allocate buffer for scan command\n",
2501 		    sc->sc_dev.dv_xname);
2502 		return ENOMEM;
2503 	}
2504 	hdr = (struct wpi_scan_hdr *)buf;
2505 	/*
2506 	 * Move to the next channel if no frames are received within 10ms
2507 	 * after sending the probe request.
2508 	 */
2509 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
2510 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
2511 
2512 	tx = (struct wpi_cmd_data *)(hdr + 1);
2513 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
2514 	tx->id = WPI_ID_BROADCAST;
2515 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2516 
2517 	if (flags & IEEE80211_CHAN_5GHZ) {
2518 		hdr->crc_threshold = htole16(1);
2519 		/* Send probe requests at 6Mbps. */
2520 		tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
2521 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2522 	} else {
2523 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
2524 		/* Send probe requests at 1Mbps. */
2525 		tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2526 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2527 	}
2528 
2529 	essid = (struct wpi_scan_essid *)(tx + 1);
2530 	if (ic->ic_des_esslen != 0) {
2531 		essid[0].id  = IEEE80211_ELEMID_SSID;
2532 		essid[0].len = ic->ic_des_esslen;
2533 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2534 	}
2535 	/*
2536 	 * Build a probe request frame.  Most of the following code is a
2537 	 * copy & paste of what is done in net80211.
2538 	 */
2539 	wh = (struct ieee80211_frame *)(essid + 4);
2540 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2541 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2542 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2543 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2544 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2545 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2546 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
2547 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
2548 
2549 	frm = (uint8_t *)(wh + 1);
2550 	frm = ieee80211_add_ssid(frm, NULL, 0);
2551 	frm = ieee80211_add_rates(frm, rs);
2552 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
2553 		frm = ieee80211_add_xrates(frm, rs);
2554 
2555 	/* Set length of probe request. */
2556 	tx->len = htole16(frm - (uint8_t *)wh);
2557 
2558 	chan = (struct wpi_scan_chan *)frm;
2559 	for (c  = &ic->ic_channels[1];
2560 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2561 		if ((c->ic_flags & flags) != flags)
2562 			continue;
2563 
2564 		chan->chan = ieee80211_chan2ieee(ic, c);
2565 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
2566 		chan->flags = 0;
2567 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
2568 			chan->flags |= WPI_CHAN_ACTIVE;
2569 		if (ic->ic_des_esslen != 0)
2570 			chan->flags |= WPI_CHAN_NPBREQS(1);
2571 		chan->dsp_gain = 0x6e;
2572 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2573 			chan->rf_gain = 0x3b;
2574 			chan->active  = htole16(24);
2575 			chan->passive = htole16(110);
2576 		} else {
2577 			chan->rf_gain = 0x28;
2578 			chan->active  = htole16(36);
2579 			chan->passive = htole16(120);
2580 		}
2581 		hdr->nchan++;
2582 		chan++;
2583 	}
2584 
2585 	buflen = (uint8_t *)chan - buf;
2586 	hdr->len = htole16(buflen);
2587 
2588 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
2589 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
2590 	free(buf, M_DEVBUF, WPI_SCAN_MAXSZ);
2591 	return error;
2592 }
2593 
2594 int
wpi_auth(struct wpi_softc * sc)2595 wpi_auth(struct wpi_softc *sc)
2596 {
2597 	struct ieee80211com *ic = &sc->sc_ic;
2598 	struct ieee80211_node *ni = ic->ic_bss;
2599 	struct wpi_node_info node;
2600 	int error;
2601 
2602 	/* Update adapter configuration. */
2603 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
2604 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2605 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2606 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2607 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2608 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2609 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2610 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2611 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2612 	switch (ic->ic_curmode) {
2613 	case IEEE80211_MODE_11A:
2614 		sc->rxon.cck_mask  = 0;
2615 		sc->rxon.ofdm_mask = 0x15;
2616 		break;
2617 	case IEEE80211_MODE_11B:
2618 		sc->rxon.cck_mask  = 0x03;
2619 		sc->rxon.ofdm_mask = 0;
2620 		break;
2621 	default:	/* Assume 802.11b/g. */
2622 		sc->rxon.cck_mask  = 0x0f;
2623 		sc->rxon.ofdm_mask = 0x15;
2624 	}
2625 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
2626 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
2627 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2628 	    1);
2629 	if (error != 0) {
2630 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2631 		return error;
2632 	}
2633 
2634 	/* Configuration has changed, set TX power accordingly. */
2635 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2636 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2637 		return error;
2638 	}
2639 	/*
2640 	 * Reconfiguring RXON clears the firmware nodes table so we must
2641 	 * add the broadcast node again.
2642 	 */
2643 	memset(&node, 0, sizeof node);
2644 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2645 	node.id = WPI_ID_BROADCAST;
2646 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2647 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2648 	node.action = htole32(WPI_ACTION_SET_RATE);
2649 	node.antenna = WPI_ANTENNA_BOTH;
2650 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2651 	if (error != 0) {
2652 		printf("%s: could not add broadcast node\n",
2653 		    sc->sc_dev.dv_xname);
2654 		return error;
2655 	}
2656 	return 0;
2657 }
2658 
2659 int
wpi_run(struct wpi_softc * sc)2660 wpi_run(struct wpi_softc *sc)
2661 {
2662 	struct ieee80211com *ic = &sc->sc_ic;
2663 	struct ieee80211_node *ni = ic->ic_bss;
2664 	struct wpi_node_info node;
2665 	int error;
2666 
2667 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2668 		/* Link LED blinks while monitoring. */
2669 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2670 		return 0;
2671 	}
2672 	if ((error = wpi_set_timing(sc, ni)) != 0) {
2673 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
2674 		return error;
2675 	}
2676 
2677 	/* Update adapter configuration. */
2678 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
2679 	/* Short preamble and slot time are negotiated when associating. */
2680 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
2681 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2682 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2683 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2684 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2685 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
2686 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
2687 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2688 	    1);
2689 	if (error != 0) {
2690 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2691 		return error;
2692 	}
2693 
2694 	/* Configuration has changed, set TX power accordingly. */
2695 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2696 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2697 		return error;
2698 	}
2699 
2700 	/* Fake a join to init the TX rate. */
2701 	((struct wpi_node *)ni)->id = WPI_ID_BSS;
2702 	wpi_newassoc(ic, ni, 1);
2703 
2704 	/* Add BSS node. */
2705 	memset(&node, 0, sizeof node);
2706 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2707 	node.id = WPI_ID_BSS;
2708 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2709 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2710 	node.action = htole32(WPI_ACTION_SET_RATE);
2711 	node.antenna = WPI_ANTENNA_BOTH;
2712 	DPRINTF(("adding BSS node\n"));
2713 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2714 	if (error != 0) {
2715 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2716 		return error;
2717 	}
2718 
2719 	/* Start periodic calibration timer. */
2720 	sc->calib_cnt = 0;
2721 	timeout_add_msec(&sc->calib_to, 500);
2722 
2723 	/* Link LED always on while associated. */
2724 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2725 
2726 	/* Enable power-saving mode if requested by user. */
2727 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
2728 		(void)wpi_set_pslevel(sc, 0, 3, 1);
2729 
2730 	return 0;
2731 }
2732 
2733 /*
2734  * We support CCMP hardware encryption/decryption of unicast frames only.
2735  * HW support for TKIP really sucks.  We should let TKIP die anyway.
2736  */
2737 int
wpi_set_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)2738 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2739     struct ieee80211_key *k)
2740 {
2741 	struct wpi_softc *sc = ic->ic_softc;
2742 	struct wpi_node *wn = (void *)ni;
2743 	struct wpi_node_info node;
2744 	uint16_t kflags;
2745 
2746 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2747 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
2748 		return ieee80211_set_key(ic, ni, k);
2749 
2750 	kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
2751 	memset(&node, 0, sizeof node);
2752 	node.id = wn->id;
2753 	node.control = WPI_NODE_UPDATE;
2754 	node.flags = WPI_FLAG_SET_KEY;
2755 	node.kflags = htole16(kflags);
2756 	memcpy(node.key, k->k_key, k->k_len);
2757 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
2758 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2759 }
2760 
2761 void
wpi_delete_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)2762 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2763     struct ieee80211_key *k)
2764 {
2765 	struct wpi_softc *sc = ic->ic_softc;
2766 	struct wpi_node *wn = (void *)ni;
2767 	struct wpi_node_info node;
2768 
2769 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2770 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
2771 		/* See comment about other ciphers above. */
2772 		ieee80211_delete_key(ic, ni, k);
2773 		return;
2774 	}
2775 	if (ic->ic_state != IEEE80211_S_RUN)
2776 		return;	/* Nothing to do. */
2777 	memset(&node, 0, sizeof node);
2778 	node.id = wn->id;
2779 	node.control = WPI_NODE_UPDATE;
2780 	node.flags = WPI_FLAG_SET_KEY;
2781 	node.kflags = 0;
2782 	DPRINTF(("delete keys for node %d\n", node.id));
2783 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2784 }
2785 
2786 int
wpi_post_alive(struct wpi_softc * sc)2787 wpi_post_alive(struct wpi_softc *sc)
2788 {
2789 	int ntries, error;
2790 
2791 	/* Check (again) that the radio is not disabled. */
2792 	if ((error = wpi_nic_lock(sc)) != 0)
2793 		return error;
2794 	/* NB: Runtime firmware must be up and running. */
2795 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
2796 		printf("%s: radio is disabled by hardware switch\n",
2797 		    sc->sc_dev.dv_xname);
2798 		wpi_nic_unlock(sc);
2799 		return EPERM;	/* :-) */
2800 	}
2801 	wpi_nic_unlock(sc);
2802 
2803 	/* Wait for thermal sensor to calibrate. */
2804 	for (ntries = 0; ntries < 1000; ntries++) {
2805 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
2806 			break;
2807 		DELAY(10);
2808 	}
2809 	if (ntries == 1000) {
2810 		printf("%s: timeout waiting for thermal sensor calibration\n",
2811 		    sc->sc_dev.dv_xname);
2812 		return ETIMEDOUT;
2813 	}
2814 	DPRINTF(("temperature %d\n", sc->temp));
2815 	return 0;
2816 }
2817 
2818 /*
2819  * The firmware boot code is small and is intended to be copied directly into
2820  * the NIC internal memory (no DMA transfer.)
2821  */
2822 int
wpi_load_bootcode(struct wpi_softc * sc,const uint8_t * ucode,int size)2823 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
2824 {
2825 	int error, ntries;
2826 
2827 	size /= sizeof (uint32_t);
2828 
2829 	if ((error = wpi_nic_lock(sc)) != 0)
2830 		return error;
2831 
2832 	/* Copy microcode image into NIC memory. */
2833 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
2834 	    (const uint32_t *)ucode, size);
2835 
2836 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
2837 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
2838 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
2839 
2840 	/* Start boot load now. */
2841 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
2842 
2843 	/* Wait for transfer to complete. */
2844 	for (ntries = 0; ntries < 1000; ntries++) {
2845 		if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
2846 		    WPI_BSM_WR_CTRL_START))
2847 			break;
2848 		DELAY(10);
2849 	}
2850 	if (ntries == 1000) {
2851 		printf("%s: could not load boot firmware\n",
2852 		    sc->sc_dev.dv_xname);
2853 		wpi_nic_unlock(sc);
2854 		return ETIMEDOUT;
2855 	}
2856 
2857 	/* Enable boot after power up. */
2858 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
2859 
2860 	wpi_nic_unlock(sc);
2861 	return 0;
2862 }
2863 
2864 int
wpi_load_firmware(struct wpi_softc * sc)2865 wpi_load_firmware(struct wpi_softc *sc)
2866 {
2867 	struct wpi_fw_info *fw = &sc->fw;
2868 	struct wpi_dma_info *dma = &sc->fw_dma;
2869 	int error;
2870 
2871 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
2872 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
2873 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
2874 	    BUS_DMASYNC_PREWRITE);
2875 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2876 	    fw->init.text, fw->init.textsz);
2877 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2878 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
2879 
2880 	/* Tell adapter where to find initialization sections. */
2881 	if ((error = wpi_nic_lock(sc)) != 0)
2882 		return error;
2883 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2884 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
2885 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2886 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2887 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
2888 	wpi_nic_unlock(sc);
2889 
2890 	/* Load firmware boot code. */
2891 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
2892 	if (error != 0) {
2893 		printf("%s: could not load boot firmware\n",
2894 		    sc->sc_dev.dv_xname);
2895 		return error;
2896 	}
2897 	/* Now press "execute". */
2898 	WPI_WRITE(sc, WPI_RESET, 0);
2899 
2900 	/* Wait at most one second for first alive notification. */
2901 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
2902 		printf("%s: timeout waiting for adapter to initialize\n",
2903 		    sc->sc_dev.dv_xname);
2904 		return error;
2905 	}
2906 
2907 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
2908 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
2909 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
2910 	    BUS_DMASYNC_PREWRITE);
2911 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2912 	    fw->main.text, fw->main.textsz);
2913 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2914 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
2915 
2916 	/* Tell adapter where to find runtime sections. */
2917 	if ((error = wpi_nic_lock(sc)) != 0)
2918 		return error;
2919 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2920 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
2921 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2922 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2923 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
2924 	    WPI_FW_UPDATED | fw->main.textsz);
2925 	wpi_nic_unlock(sc);
2926 
2927 	return 0;
2928 }
2929 
2930 int
wpi_read_firmware(struct wpi_softc * sc)2931 wpi_read_firmware(struct wpi_softc *sc)
2932 {
2933 	struct wpi_fw_info *fw = &sc->fw;
2934 	const struct wpi_firmware_hdr *hdr;
2935 	int error;
2936 
2937 	/* Read firmware image from filesystem. */
2938 	if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) {
2939 		printf("%s: error, %d, could not read firmware %s\n",
2940 		    sc->sc_dev.dv_xname, error, "wpi-3945abg");
2941 		return error;
2942 	}
2943 	if (fw->datalen < sizeof (*hdr)) {
2944 		printf("%s: truncated firmware header: %zu bytes\n",
2945 		    sc->sc_dev.dv_xname, fw->datalen);
2946 		free(fw->data, M_DEVBUF, fw->datalen);
2947 		return EINVAL;
2948 	}
2949 	/* Extract firmware header information. */
2950 	hdr = (struct wpi_firmware_hdr *)fw->data;
2951 	fw->main.textsz = letoh32(hdr->main_textsz);
2952 	fw->main.datasz = letoh32(hdr->main_datasz);
2953 	fw->init.textsz = letoh32(hdr->init_textsz);
2954 	fw->init.datasz = letoh32(hdr->init_datasz);
2955 	fw->boot.textsz = letoh32(hdr->boot_textsz);
2956 	fw->boot.datasz = 0;
2957 
2958 	/* Sanity-check firmware header. */
2959 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
2960 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
2961 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
2962 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
2963 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
2964 	    (fw->boot.textsz & 3) != 0) {
2965 		printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
2966 		free(fw->data, M_DEVBUF, fw->datalen);
2967 		return EINVAL;
2968 	}
2969 
2970 	/* Check that all firmware sections fit. */
2971 	if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
2972 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
2973 		printf("%s: firmware file too short: %zu bytes\n",
2974 		    sc->sc_dev.dv_xname, fw->datalen);
2975 		free(fw->data, M_DEVBUF, fw->datalen);
2976 		return EINVAL;
2977 	}
2978 
2979 	/* Get pointers to firmware sections. */
2980 	fw->main.text = (const uint8_t *)(hdr + 1);
2981 	fw->main.data = fw->main.text + fw->main.textsz;
2982 	fw->init.text = fw->main.data + fw->main.datasz;
2983 	fw->init.data = fw->init.text + fw->init.textsz;
2984 	fw->boot.text = fw->init.data + fw->init.datasz;
2985 
2986 	return 0;
2987 }
2988 
2989 int
wpi_clock_wait(struct wpi_softc * sc)2990 wpi_clock_wait(struct wpi_softc *sc)
2991 {
2992 	int ntries;
2993 
2994 	/* Set "initialization complete" bit. */
2995 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
2996 
2997 	/* Wait for clock stabilization. */
2998 	for (ntries = 0; ntries < 25000; ntries++) {
2999 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
3000 			return 0;
3001 		DELAY(100);
3002 	}
3003 	printf("%s: timeout waiting for clock stabilization\n",
3004 	    sc->sc_dev.dv_xname);
3005 	return ETIMEDOUT;
3006 }
3007 
3008 int
wpi_apm_init(struct wpi_softc * sc)3009 wpi_apm_init(struct wpi_softc *sc)
3010 {
3011 	int error;
3012 
3013 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
3014 	/* Disable L0s. */
3015 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
3016 
3017 	if ((error = wpi_clock_wait(sc)) != 0)
3018 		return error;
3019 
3020 	if ((error = wpi_nic_lock(sc)) != 0)
3021 		return error;
3022 	/* Enable DMA. */
3023 	wpi_prph_write(sc, WPI_APMG_CLK_ENA,
3024 	    WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
3025 	DELAY(20);
3026 	/* Disable L1. */
3027 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
3028 	wpi_nic_unlock(sc);
3029 
3030 	return 0;
3031 }
3032 
3033 void
wpi_apm_stop_master(struct wpi_softc * sc)3034 wpi_apm_stop_master(struct wpi_softc *sc)
3035 {
3036 	int ntries;
3037 
3038 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
3039 
3040 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
3041 	    WPI_GP_CNTRL_MAC_PS)
3042 		return;	/* Already asleep. */
3043 
3044 	for (ntries = 0; ntries < 100; ntries++) {
3045 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
3046 			return;
3047 		DELAY(10);
3048 	}
3049 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
3050 }
3051 
3052 void
wpi_apm_stop(struct wpi_softc * sc)3053 wpi_apm_stop(struct wpi_softc *sc)
3054 {
3055 	wpi_apm_stop_master(sc);
3056 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
3057 }
3058 
3059 void
wpi_nic_config(struct wpi_softc * sc)3060 wpi_nic_config(struct wpi_softc *sc)
3061 {
3062 	pcireg_t reg;
3063 	uint8_t rev;
3064 
3065 	/* Voodoo from the reference driver. */
3066 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3067 	rev = PCI_REVISION(reg);
3068 	if ((rev & 0xc0) == 0x40)
3069 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
3070 	else if (!(rev & 0x80))
3071 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
3072 
3073 	if (sc->cap == 0x80)
3074 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
3075 
3076 	if ((letoh16(sc->rev) & 0xf0) == 0xd0)
3077 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3078 	else
3079 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3080 
3081 	if (sc->type > 1)
3082 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
3083 }
3084 
3085 int
wpi_hw_init(struct wpi_softc * sc)3086 wpi_hw_init(struct wpi_softc *sc)
3087 {
3088 	int chnl, ntries, error;
3089 
3090 	/* Clear pending interrupts. */
3091 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3092 
3093 	if ((error = wpi_apm_init(sc)) != 0) {
3094 		printf("%s: could not power ON adapter\n",
3095 		    sc->sc_dev.dv_xname);
3096 		return error;
3097 	}
3098 
3099 	/* Select VMAIN power source. */
3100 	if ((error = wpi_nic_lock(sc)) != 0)
3101 		return error;
3102 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
3103 	wpi_nic_unlock(sc);
3104 	/* Spin until VMAIN gets selected. */
3105 	for (ntries = 0; ntries < 5000; ntries++) {
3106 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
3107 			break;
3108 		DELAY(10);
3109 	}
3110 	if (ntries == 5000) {
3111 		printf("%s: timeout selecting power source\n",
3112 		    sc->sc_dev.dv_xname);
3113 		return ETIMEDOUT;
3114 	}
3115 
3116 	/* Perform adapter initialization. */
3117 	(void)wpi_nic_config(sc);
3118 
3119 	/* Initialize RX ring. */
3120 	if ((error = wpi_nic_lock(sc)) != 0)
3121 		return error;
3122 	/* Set physical address of RX ring. */
3123 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
3124 	/* Set physical address of RX read pointer. */
3125 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
3126 	    offsetof(struct wpi_shared, next));
3127 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
3128 	/* Enable RX. */
3129 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
3130 	    WPI_FH_RX_CONFIG_DMA_ENA |
3131 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
3132 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
3133 	    WPI_FH_RX_CONFIG_MAXFRAG |
3134 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
3135 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
3136 	    WPI_FH_RX_CONFIG_IRQ_RBTH(1));
3137 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
3138 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
3139 	wpi_nic_unlock(sc);
3140 
3141 	/* Initialize TX rings. */
3142 	if ((error = wpi_nic_lock(sc)) != 0)
3143 		return error;
3144 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
3145 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
3146 	/* Enable all 6 TX rings. */
3147 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
3148 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
3149 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
3150 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
3151 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
3152 	/* Set physical address of TX rings. */
3153 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
3154 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
3155 
3156 	/* Enable all DMA channels. */
3157 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3158 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
3159 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
3160 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
3161 	}
3162 	wpi_nic_unlock(sc);
3163 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
3164 
3165 	/* Clear "radio off" and "commands blocked" bits. */
3166 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3167 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
3168 
3169 	/* Clear pending interrupts. */
3170 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3171 	/* Enable interrupts. */
3172 	WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
3173 
3174 	/* _Really_ make sure "radio off" bit is cleared! */
3175 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3176 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3177 
3178 	if ((error = wpi_load_firmware(sc)) != 0) {
3179 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3180 		return error;
3181 	}
3182 	/* Wait at most one second for firmware alive notification. */
3183 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
3184 		printf("%s: timeout waiting for adapter to initialize\n",
3185 		    sc->sc_dev.dv_xname);
3186 		return error;
3187 	}
3188 	/* Do post-firmware initialization. */
3189 	return wpi_post_alive(sc);
3190 }
3191 
3192 void
wpi_hw_stop(struct wpi_softc * sc)3193 wpi_hw_stop(struct wpi_softc *sc)
3194 {
3195 	int chnl, qid, ntries;
3196 	uint32_t tmp;
3197 
3198 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
3199 
3200 	/* Disable interrupts. */
3201 	WPI_WRITE(sc, WPI_MASK, 0);
3202 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3203 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
3204 
3205 	/* Make sure we no longer hold the NIC lock. */
3206 	wpi_nic_unlock(sc);
3207 
3208 	if (wpi_nic_lock(sc) == 0) {
3209 		/* Stop TX scheduler. */
3210 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
3211 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
3212 
3213 		/* Stop all DMA channels. */
3214 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3215 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
3216 			for (ntries = 0; ntries < 100; ntries++) {
3217 				tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
3218 				if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
3219 				    WPI_FH_TX_STATUS_IDLE(chnl))
3220 					break;
3221 				DELAY(10);
3222 			}
3223 		}
3224 		wpi_nic_unlock(sc);
3225 	}
3226 
3227 	/* Stop RX ring. */
3228 	wpi_reset_rx_ring(sc, &sc->rxq);
3229 
3230 	/* Reset all TX rings. */
3231 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
3232 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
3233 
3234 	if (wpi_nic_lock(sc) == 0) {
3235 		wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
3236 		wpi_nic_unlock(sc);
3237 	}
3238 	DELAY(5);
3239 	/* Power OFF adapter. */
3240 	wpi_apm_stop(sc);
3241 }
3242 
3243 int
wpi_init(struct ifnet * ifp)3244 wpi_init(struct ifnet *ifp)
3245 {
3246 	struct wpi_softc *sc = ifp->if_softc;
3247 	struct ieee80211com *ic = &sc->sc_ic;
3248 	int error;
3249 
3250 #ifdef notyet
3251 	/* Check that the radio is not disabled by hardware switch. */
3252 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
3253 		printf("%s: radio is disabled by hardware switch\n",
3254 		    sc->sc_dev.dv_xname);
3255 		error = EPERM;	/* :-) */
3256 		goto fail;
3257 	}
3258 #endif
3259 	/* Read firmware images from the filesystem. */
3260 	if ((error = wpi_read_firmware(sc)) != 0) {
3261 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
3262 		goto fail;
3263 	}
3264 
3265 	/* Initialize hardware and upload firmware. */
3266 	error = wpi_hw_init(sc);
3267 	free(sc->fw.data, M_DEVBUF, sc->fw.datalen);
3268 	if (error != 0) {
3269 		printf("%s: could not initialize hardware\n",
3270 		    sc->sc_dev.dv_xname);
3271 		goto fail;
3272 	}
3273 
3274 	/* Configure adapter now that it is ready. */
3275 	if ((error = wpi_config(sc)) != 0) {
3276 		printf("%s: could not configure device\n",
3277 		    sc->sc_dev.dv_xname);
3278 		goto fail;
3279 	}
3280 
3281 	ifq_clr_oactive(&ifp->if_snd);
3282 	ifp->if_flags |= IFF_RUNNING;
3283 
3284 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
3285 		ieee80211_begin_scan(ifp);
3286 	else
3287 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3288 
3289 	return 0;
3290 
3291 fail:	wpi_stop(ifp, 1);
3292 	return error;
3293 }
3294 
3295 void
wpi_stop(struct ifnet * ifp,int disable)3296 wpi_stop(struct ifnet *ifp, int disable)
3297 {
3298 	struct wpi_softc *sc = ifp->if_softc;
3299 	struct ieee80211com *ic = &sc->sc_ic;
3300 
3301 	ifp->if_timer = sc->sc_tx_timer = 0;
3302 	ifp->if_flags &= ~IFF_RUNNING;
3303 	ifq_clr_oactive(&ifp->if_snd);
3304 
3305 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3306 
3307 	/* Power OFF hardware. */
3308 	wpi_hw_stop(sc);
3309 }
3310