xref: /qemu/hw/i386/x86-common.c (revision 58820834)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019, 2024 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/cutils.h"
26 #include "qemu/units.h"
27 #include "qemu/datadir.h"
28 #include "qapi/error.h"
29 #include "sysemu/numa.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/xen.h"
32 #include "trace.h"
33 
34 #include "hw/i386/x86.h"
35 #include "target/i386/cpu.h"
36 #include "hw/rtc/mc146818rtc.h"
37 #include "target/i386/sev.h"
38 
39 #include "hw/acpi/cpu_hotplug.h"
40 #include "hw/irq.h"
41 #include "hw/loader.h"
42 #include "multiboot.h"
43 #include "elf.h"
44 #include "standard-headers/asm-x86/bootparam.h"
45 #include CONFIG_DEVICES
46 #include "kvm/kvm_i386.h"
47 
48 #ifdef CONFIG_XEN_EMU
49 #include "hw/xen/xen.h"
50 #include "hw/i386/kvm/xen_evtchn.h"
51 #endif
52 
53 /* Physical Address of PVH entry point read from kernel ELF NOTE */
54 static size_t pvh_start_addr;
55 
x86_cpu_new(X86MachineState * x86ms,int64_t apic_id,Error ** errp)56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
57 {
58     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
59 
60     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
61         goto out;
62     }
63     qdev_realize(DEVICE(cpu), NULL, errp);
64 
65 out:
66     object_unref(cpu);
67 }
68 
x86_cpus_init(X86MachineState * x86ms,int default_cpu_version)69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
70 {
71     int i;
72     const CPUArchIdList *possible_cpus;
73     MachineState *ms = MACHINE(x86ms);
74     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
75 
76     x86_cpu_set_default_version(default_cpu_version);
77 
78     /*
79      * Calculates the limit to CPU APIC ID values
80      *
81      * Limit for the APIC ID value, so that all
82      * CPU APIC IDs are < x86ms->apic_id_limit.
83      *
84      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
85      */
86     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
87                                                       ms->smp.max_cpus - 1) + 1;
88 
89     /*
90      * Can we support APIC ID 255 or higher?  With KVM, that requires
91      * both in-kernel lapic and X2APIC userspace API.
92      *
93      * kvm_enabled() must go first to ensure that kvm_* references are
94      * not emitted for the linker to consume (kvm_enabled() is
95      * a literal `0` in configurations where kvm_* aren't defined)
96      */
97     if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
98         kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
99         error_report("current -smp configuration requires kernel "
100                      "irqchip and X2APIC API support.");
101         exit(EXIT_FAILURE);
102     }
103 
104     if (kvm_enabled()) {
105         kvm_set_max_apic_id(x86ms->apic_id_limit);
106     }
107 
108     if (!kvm_irqchip_in_kernel()) {
109         apic_set_max_apic_id(x86ms->apic_id_limit);
110     }
111 
112     possible_cpus = mc->possible_cpu_arch_ids(ms);
113     for (i = 0; i < ms->smp.cpus; i++) {
114         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
115     }
116 }
117 
x86_rtc_set_cpus_count(ISADevice * s,uint16_t cpus_count)118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
119 {
120     MC146818RtcState *rtc = MC146818_RTC(s);
121 
122     if (cpus_count > 0xff) {
123         /*
124          * If the number of CPUs can't be represented in 8 bits, the
125          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
126          * to make old BIOSes fail more predictably.
127          */
128         mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
129     } else {
130         mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
131     }
132 }
133 
x86_apic_cmp(const void * a,const void * b)134 static int x86_apic_cmp(const void *a, const void *b)
135 {
136    CPUArchId *apic_a = (CPUArchId *)a;
137    CPUArchId *apic_b = (CPUArchId *)b;
138 
139    return apic_a->arch_id - apic_b->arch_id;
140 }
141 
142 /*
143  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
144  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
145  * entry corresponding to CPU's apic_id returns NULL.
146  */
x86_find_cpu_slot(MachineState * ms,uint32_t id,int * idx)147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
148 {
149     CPUArchId apic_id, *found_cpu;
150 
151     apic_id.arch_id = id;
152     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
153         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
154         x86_apic_cmp);
155     if (found_cpu && idx) {
156         *idx = found_cpu - ms->possible_cpus->cpus;
157     }
158     return found_cpu;
159 }
160 
x86_cpu_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)161 void x86_cpu_plug(HotplugHandler *hotplug_dev,
162                   DeviceState *dev, Error **errp)
163 {
164     CPUArchId *found_cpu;
165     Error *local_err = NULL;
166     X86CPU *cpu = X86_CPU(dev);
167     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
168 
169     if (x86ms->acpi_dev) {
170         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
171         if (local_err) {
172             goto out;
173         }
174     }
175 
176     /* increment the number of CPUs */
177     x86ms->boot_cpus++;
178     if (x86ms->rtc) {
179         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
180     }
181     if (x86ms->fw_cfg) {
182         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
183     }
184 
185     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
186     found_cpu->cpu = CPU(dev);
187 out:
188     error_propagate(errp, local_err);
189 }
190 
x86_cpu_unplug_request_cb(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
192                                DeviceState *dev, Error **errp)
193 {
194     int idx = -1;
195     X86CPU *cpu = X86_CPU(dev);
196     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
197 
198     if (!x86ms->acpi_dev) {
199         error_setg(errp, "CPU hot unplug not supported without ACPI");
200         return;
201     }
202 
203     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
204     assert(idx != -1);
205     if (idx == 0) {
206         error_setg(errp, "Boot CPU is unpluggable");
207         return;
208     }
209 
210     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
211                                    errp);
212 }
213 
x86_cpu_unplug_cb(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
215                        DeviceState *dev, Error **errp)
216 {
217     CPUArchId *found_cpu;
218     Error *local_err = NULL;
219     X86CPU *cpu = X86_CPU(dev);
220     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
221 
222     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
223     if (local_err) {
224         goto out;
225     }
226 
227     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
228     found_cpu->cpu = NULL;
229     qdev_unrealize(dev);
230 
231     /* decrement the number of CPUs */
232     x86ms->boot_cpus--;
233     /* Update the number of CPUs in CMOS */
234     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
235     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
236  out:
237     error_propagate(errp, local_err);
238 }
239 
x86_cpu_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
241                       DeviceState *dev, Error **errp)
242 {
243     int idx;
244     CPUState *cs;
245     CPUArchId *cpu_slot;
246     X86CPUTopoIDs topo_ids;
247     X86CPU *cpu = X86_CPU(dev);
248     CPUX86State *env = &cpu->env;
249     MachineState *ms = MACHINE(hotplug_dev);
250     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
251     unsigned int smp_cores = ms->smp.cores;
252     unsigned int smp_threads = ms->smp.threads;
253     X86CPUTopoInfo topo_info;
254 
255     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
256         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
257                    ms->cpu_type);
258         return;
259     }
260 
261     if (x86ms->acpi_dev) {
262         Error *local_err = NULL;
263 
264         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
265                                  &local_err);
266         if (local_err) {
267             error_propagate(errp, local_err);
268             return;
269         }
270     }
271 
272     init_topo_info(&topo_info, x86ms);
273 
274     if (ms->smp.modules > 1) {
275         env->nr_modules = ms->smp.modules;
276         set_bit(CPU_TOPO_LEVEL_MODULE, env->avail_cpu_topo);
277     }
278 
279     if (ms->smp.dies > 1) {
280         env->nr_dies = ms->smp.dies;
281         set_bit(CPU_TOPO_LEVEL_DIE, env->avail_cpu_topo);
282     }
283 
284     /*
285      * If APIC ID is not set,
286      * set it based on socket/die/module/core/thread properties.
287      */
288     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
289         /*
290          * die-id was optional in QEMU 4.0 and older, so keep it optional
291          * if there's only one die per socket.
292          */
293         if (cpu->die_id < 0 && ms->smp.dies == 1) {
294             cpu->die_id = 0;
295         }
296 
297         /*
298          * module-id was optional in QEMU 9.0 and older, so keep it optional
299          * if there's only one module per die.
300          */
301         if (cpu->module_id < 0 && ms->smp.modules == 1) {
302             cpu->module_id = 0;
303         }
304 
305         if (cpu->socket_id < 0) {
306             error_setg(errp, "CPU socket-id is not set");
307             return;
308         } else if (cpu->socket_id > ms->smp.sockets - 1) {
309             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
310                        cpu->socket_id, ms->smp.sockets - 1);
311             return;
312         }
313         if (cpu->die_id < 0) {
314             error_setg(errp, "CPU die-id is not set");
315             return;
316         } else if (cpu->die_id > ms->smp.dies - 1) {
317             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
318                        cpu->die_id, ms->smp.dies - 1);
319             return;
320         }
321         if (cpu->module_id < 0) {
322             error_setg(errp, "CPU module-id is not set");
323             return;
324         } else if (cpu->module_id > ms->smp.modules - 1) {
325             error_setg(errp, "Invalid CPU module-id: %u must be in range 0:%u",
326                        cpu->module_id, ms->smp.modules - 1);
327             return;
328         }
329         if (cpu->core_id < 0) {
330             error_setg(errp, "CPU core-id is not set");
331             return;
332         } else if (cpu->core_id > (smp_cores - 1)) {
333             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
334                        cpu->core_id, smp_cores - 1);
335             return;
336         }
337         if (cpu->thread_id < 0) {
338             error_setg(errp, "CPU thread-id is not set");
339             return;
340         } else if (cpu->thread_id > (smp_threads - 1)) {
341             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
342                        cpu->thread_id, smp_threads - 1);
343             return;
344         }
345 
346         topo_ids.pkg_id = cpu->socket_id;
347         topo_ids.die_id = cpu->die_id;
348         topo_ids.module_id = cpu->module_id;
349         topo_ids.core_id = cpu->core_id;
350         topo_ids.smt_id = cpu->thread_id;
351         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
352     }
353 
354     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
355     if (!cpu_slot) {
356         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
357 
358         error_setg(errp,
359             "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]"
360             " with APIC ID %" PRIu32 ", valid index range 0:%d",
361             topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id,
362             topo_ids.core_id, topo_ids.smt_id, cpu->apic_id,
363             ms->possible_cpus->len - 1);
364         return;
365     }
366 
367     if (cpu_slot->cpu) {
368         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
369                    idx, cpu->apic_id);
370         return;
371     }
372 
373     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
374      * so that machine_query_hotpluggable_cpus would show correct values
375      */
376     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
377      * once -smp refactoring is complete and there will be CPU private
378      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
379     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
380     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
381         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
382             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
383             topo_ids.pkg_id);
384         return;
385     }
386     cpu->socket_id = topo_ids.pkg_id;
387 
388     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
389         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
390             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
391         return;
392     }
393     cpu->die_id = topo_ids.die_id;
394 
395     if (cpu->module_id != -1 && cpu->module_id != topo_ids.module_id) {
396         error_setg(errp, "property module-id: %u doesn't match set apic-id:"
397             " 0x%x (module-id: %u)", cpu->module_id, cpu->apic_id,
398             topo_ids.module_id);
399         return;
400     }
401     cpu->module_id = topo_ids.module_id;
402 
403     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
404         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
405             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
406             topo_ids.core_id);
407         return;
408     }
409     cpu->core_id = topo_ids.core_id;
410 
411     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
412         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
413             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
414             topo_ids.smt_id);
415         return;
416     }
417     cpu->thread_id = topo_ids.smt_id;
418 
419     /*
420     * kvm_enabled() must go first to ensure that kvm_* references are
421     * not emitted for the linker to consume (kvm_enabled() is
422     * a literal `0` in configurations where kvm_* aren't defined)
423     */
424     if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
425         !kvm_hv_vpindex_settable()) {
426         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
427         return;
428     }
429 
430     cs = CPU(cpu);
431     cs->cpu_index = idx;
432 
433     numa_cpu_pre_plug(cpu_slot, dev, errp);
434 }
435 
get_file_size(FILE * f)436 static long get_file_size(FILE *f)
437 {
438     long where, size;
439 
440     /* XXX: on Unix systems, using fstat() probably makes more sense */
441 
442     where = ftell(f);
443     fseek(f, 0, SEEK_END);
444     size = ftell(f);
445     fseek(f, where, SEEK_SET);
446 
447     return size;
448 }
449 
gsi_handler(void * opaque,int n,int level)450 void gsi_handler(void *opaque, int n, int level)
451 {
452     GSIState *s = opaque;
453 
454     trace_x86_gsi_interrupt(n, level);
455     switch (n) {
456     case 0 ... ISA_NUM_IRQS - 1:
457         if (s->i8259_irq[n]) {
458             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
459             qemu_set_irq(s->i8259_irq[n], level);
460         }
461         /* fall through */
462     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
463 #ifdef CONFIG_XEN_EMU
464         /*
465          * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
466          * routing actually works properly under Xen). And then to
467          * *either* the PIRQ handling or the I/OAPIC depending on
468          * whether the former wants it.
469          */
470         if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
471             break;
472         }
473 #endif
474         qemu_set_irq(s->ioapic_irq[n], level);
475         break;
476     case IO_APIC_SECONDARY_IRQBASE
477         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
478         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
479         break;
480     }
481 }
482 
ioapic_init_gsi(GSIState * gsi_state,Object * parent)483 void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
484 {
485     DeviceState *dev;
486     SysBusDevice *d;
487     unsigned int i;
488 
489     assert(parent);
490     if (kvm_ioapic_in_kernel()) {
491         dev = qdev_new(TYPE_KVM_IOAPIC);
492     } else {
493         dev = qdev_new(TYPE_IOAPIC);
494     }
495     object_property_add_child(parent, "ioapic", OBJECT(dev));
496     d = SYS_BUS_DEVICE(dev);
497     sysbus_realize_and_unref(d, &error_fatal);
498     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
499 
500     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
501         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
502     }
503 }
504 
ioapic_init_secondary(GSIState * gsi_state)505 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
506 {
507     DeviceState *dev;
508     SysBusDevice *d;
509     unsigned int i;
510 
511     dev = qdev_new(TYPE_IOAPIC);
512     d = SYS_BUS_DEVICE(dev);
513     sysbus_realize_and_unref(d, &error_fatal);
514     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
515 
516     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
517         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
518     }
519     return dev;
520 }
521 
522 /*
523  * The entry point into the kernel for PVH boot is different from
524  * the native entry point.  The PVH entry is defined by the x86/HVM
525  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
526  *
527  * This function is passed to load_elf() when it is called from
528  * load_elfboot() which then additionally checks for an ELF Note of
529  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
530  * parse the PVH entry address from the ELF Note.
531  *
532  * Due to trickery in elf_opts.h, load_elf() is actually available as
533  * load_elf32() or load_elf64() and this routine needs to be able
534  * to deal with being called as 32 or 64 bit.
535  *
536  * The address of the PVH entry point is saved to the 'pvh_start_addr'
537  * global variable.  (although the entry point is 32-bit, the kernel
538  * binary can be either 32-bit or 64-bit).
539  */
read_pvh_start_addr(void * arg1,void * arg2,bool is64)540 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
541 {
542     size_t *elf_note_data_addr;
543 
544     /* Check if ELF Note header passed in is valid */
545     if (arg1 == NULL) {
546         return 0;
547     }
548 
549     if (is64) {
550         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
551         uint64_t nhdr_size64 = sizeof(struct elf64_note);
552         uint64_t phdr_align = *(uint64_t *)arg2;
553         uint64_t nhdr_namesz = nhdr64->n_namesz;
554 
555         elf_note_data_addr =
556             ((void *)nhdr64) + nhdr_size64 +
557             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
558 
559         pvh_start_addr = *elf_note_data_addr;
560     } else {
561         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
562         uint32_t nhdr_size32 = sizeof(struct elf32_note);
563         uint32_t phdr_align = *(uint32_t *)arg2;
564         uint32_t nhdr_namesz = nhdr32->n_namesz;
565 
566         elf_note_data_addr =
567             ((void *)nhdr32) + nhdr_size32 +
568             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
569 
570         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
571     }
572 
573     return pvh_start_addr;
574 }
575 
load_elfboot(const char * kernel_filename,int kernel_file_size,uint8_t * header,size_t pvh_xen_start_addr,FWCfgState * fw_cfg)576 static bool load_elfboot(const char *kernel_filename,
577                          int kernel_file_size,
578                          uint8_t *header,
579                          size_t pvh_xen_start_addr,
580                          FWCfgState *fw_cfg)
581 {
582     uint32_t flags = 0;
583     uint32_t mh_load_addr = 0;
584     uint32_t elf_kernel_size = 0;
585     uint64_t elf_entry;
586     uint64_t elf_low, elf_high;
587     int kernel_size;
588 
589     if (ldl_p(header) != 0x464c457f) {
590         return false; /* no elfboot */
591     }
592 
593     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
594     flags = elf_is64 ?
595         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
596 
597     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
598         error_report("elfboot unsupported flags = %x", flags);
599         exit(1);
600     }
601 
602     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
603     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
604                            NULL, &elf_note_type, &elf_entry,
605                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
606                            0, 0);
607 
608     if (kernel_size < 0) {
609         error_report("Error while loading elf kernel");
610         exit(1);
611     }
612     mh_load_addr = elf_low;
613     elf_kernel_size = elf_high - elf_low;
614 
615     if (pvh_start_addr == 0) {
616         error_report("Error loading uncompressed kernel without PVH ELF Note");
617         exit(1);
618     }
619     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
620     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
621     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
622 
623     return true;
624 }
625 
x86_load_linux(X86MachineState * x86ms,FWCfgState * fw_cfg,int acpi_data_size,bool pvh_enabled)626 void x86_load_linux(X86MachineState *x86ms,
627                     FWCfgState *fw_cfg,
628                     int acpi_data_size,
629                     bool pvh_enabled)
630 {
631     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
632     uint16_t protocol;
633     int setup_size, kernel_size, cmdline_size;
634     int dtb_size, setup_data_offset;
635     uint32_t initrd_max;
636     uint8_t header[8192], *setup, *kernel;
637     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
638     FILE *f;
639     char *vmode;
640     MachineState *machine = MACHINE(x86ms);
641     struct setup_data *setup_data;
642     const char *kernel_filename = machine->kernel_filename;
643     const char *initrd_filename = machine->initrd_filename;
644     const char *dtb_filename = machine->dtb;
645     const char *kernel_cmdline = machine->kernel_cmdline;
646     SevKernelLoaderContext sev_load_ctx = {};
647 
648     /* Align to 16 bytes as a paranoia measure */
649     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
650 
651     /* load the kernel header */
652     f = fopen(kernel_filename, "rb");
653     if (!f) {
654         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
655                 kernel_filename, strerror(errno));
656         exit(1);
657     }
658 
659     kernel_size = get_file_size(f);
660     if (!kernel_size ||
661         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
662         MIN(ARRAY_SIZE(header), kernel_size)) {
663         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
664                 kernel_filename, strerror(errno));
665         exit(1);
666     }
667 
668     /* kernel protocol version */
669     if (ldl_p(header + 0x202) == 0x53726448) {
670         protocol = lduw_p(header + 0x206);
671     } else {
672         /*
673          * This could be a multiboot kernel. If it is, let's stop treating it
674          * like a Linux kernel.
675          * Note: some multiboot images could be in the ELF format (the same of
676          * PVH), so we try multiboot first since we check the multiboot magic
677          * header before to load it.
678          */
679         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
680                            kernel_cmdline, kernel_size, header)) {
681             return;
682         }
683         /*
684          * Check if the file is an uncompressed kernel file (ELF) and load it,
685          * saving the PVH entry point used by the x86/HVM direct boot ABI.
686          * If load_elfboot() is successful, populate the fw_cfg info.
687          */
688         if (pvh_enabled &&
689             load_elfboot(kernel_filename, kernel_size,
690                          header, pvh_start_addr, fw_cfg)) {
691             fclose(f);
692 
693             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
694                 strlen(kernel_cmdline) + 1);
695             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
696 
697             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
698             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
699                              header, sizeof(header));
700 
701             /* load initrd */
702             if (initrd_filename) {
703                 GMappedFile *mapped_file;
704                 gsize initrd_size;
705                 gchar *initrd_data;
706                 GError *gerr = NULL;
707 
708                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
709                 if (!mapped_file) {
710                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
711                             initrd_filename, gerr->message);
712                     exit(1);
713                 }
714                 x86ms->initrd_mapped_file = mapped_file;
715 
716                 initrd_data = g_mapped_file_get_contents(mapped_file);
717                 initrd_size = g_mapped_file_get_length(mapped_file);
718                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
719                 if (initrd_size >= initrd_max) {
720                     fprintf(stderr, "qemu: initrd is too large, cannot support."
721                             "(max: %"PRIu32", need %"PRId64")\n",
722                             initrd_max, (uint64_t)initrd_size);
723                     exit(1);
724                 }
725 
726                 initrd_addr = (initrd_max - initrd_size) & ~4095;
727 
728                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
729                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
730                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
731                                  initrd_size);
732             }
733 
734             option_rom[nb_option_roms].bootindex = 0;
735             option_rom[nb_option_roms].name = "pvh.bin";
736             nb_option_roms++;
737 
738             return;
739         }
740         protocol = 0;
741     }
742 
743     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
744         /* Low kernel */
745         real_addr    = 0x90000;
746         cmdline_addr = 0x9a000 - cmdline_size;
747         prot_addr    = 0x10000;
748     } else if (protocol < 0x202) {
749         /* High but ancient kernel */
750         real_addr    = 0x90000;
751         cmdline_addr = 0x9a000 - cmdline_size;
752         prot_addr    = 0x100000;
753     } else {
754         /* High and recent kernel */
755         real_addr    = 0x10000;
756         cmdline_addr = 0x20000;
757         prot_addr    = 0x100000;
758     }
759 
760     /* highest address for loading the initrd */
761     if (protocol >= 0x20c &&
762         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
763         /*
764          * Linux has supported initrd up to 4 GB for a very long time (2007,
765          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
766          * though it only sets initrd_max to 2 GB to "work around bootloader
767          * bugs". Luckily, QEMU firmware(which does something like bootloader)
768          * has supported this.
769          *
770          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
771          * be loaded into any address.
772          *
773          * In addition, initrd_max is uint32_t simply because QEMU doesn't
774          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
775          * field).
776          *
777          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
778          */
779         initrd_max = UINT32_MAX;
780     } else if (protocol >= 0x203) {
781         initrd_max = ldl_p(header + 0x22c);
782     } else {
783         initrd_max = 0x37ffffff;
784     }
785 
786     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
787         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
788     }
789 
790     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
791     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
792     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
793     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
794     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
795 
796     if (protocol >= 0x202) {
797         stl_p(header + 0x228, cmdline_addr);
798     } else {
799         stw_p(header + 0x20, 0xA33F);
800         stw_p(header + 0x22, cmdline_addr - real_addr);
801     }
802 
803     /* handle vga= parameter */
804     vmode = strstr(kernel_cmdline, "vga=");
805     if (vmode) {
806         unsigned int video_mode;
807         const char *end;
808         int ret;
809         /* skip "vga=" */
810         vmode += 4;
811         if (!strncmp(vmode, "normal", 6)) {
812             video_mode = 0xffff;
813         } else if (!strncmp(vmode, "ext", 3)) {
814             video_mode = 0xfffe;
815         } else if (!strncmp(vmode, "ask", 3)) {
816             video_mode = 0xfffd;
817         } else {
818             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
819             if (ret != 0 || (*end && *end != ' ')) {
820                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
821                 exit(1);
822             }
823         }
824         stw_p(header + 0x1fa, video_mode);
825     }
826 
827     /* loader type */
828     /*
829      * High nybble = B reserved for QEMU; low nybble is revision number.
830      * If this code is substantially changed, you may want to consider
831      * incrementing the revision.
832      */
833     if (protocol >= 0x200) {
834         header[0x210] = 0xB0;
835     }
836     /* heap */
837     if (protocol >= 0x201) {
838         header[0x211] |= 0x80; /* CAN_USE_HEAP */
839         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
840     }
841 
842     /* load initrd */
843     if (initrd_filename) {
844         GMappedFile *mapped_file;
845         gsize initrd_size;
846         gchar *initrd_data;
847         GError *gerr = NULL;
848 
849         if (protocol < 0x200) {
850             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
851             exit(1);
852         }
853 
854         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
855         if (!mapped_file) {
856             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
857                     initrd_filename, gerr->message);
858             exit(1);
859         }
860         x86ms->initrd_mapped_file = mapped_file;
861 
862         initrd_data = g_mapped_file_get_contents(mapped_file);
863         initrd_size = g_mapped_file_get_length(mapped_file);
864         if (initrd_size >= initrd_max) {
865             fprintf(stderr, "qemu: initrd is too large, cannot support."
866                     "(max: %"PRIu32", need %"PRId64")\n",
867                     initrd_max, (uint64_t)initrd_size);
868             exit(1);
869         }
870 
871         initrd_addr = (initrd_max - initrd_size) & ~4095;
872 
873         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
874         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
875         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
876         sev_load_ctx.initrd_data = initrd_data;
877         sev_load_ctx.initrd_size = initrd_size;
878 
879         stl_p(header + 0x218, initrd_addr);
880         stl_p(header + 0x21c, initrd_size);
881     }
882 
883     /* load kernel and setup */
884     setup_size = header[0x1f1];
885     if (setup_size == 0) {
886         setup_size = 4;
887     }
888     setup_size = (setup_size + 1) * 512;
889     if (setup_size > kernel_size) {
890         fprintf(stderr, "qemu: invalid kernel header\n");
891         exit(1);
892     }
893     kernel_size -= setup_size;
894 
895     setup  = g_malloc(setup_size);
896     kernel = g_malloc(kernel_size);
897     fseek(f, 0, SEEK_SET);
898     if (fread(setup, 1, setup_size, f) != setup_size) {
899         fprintf(stderr, "fread() failed\n");
900         exit(1);
901     }
902     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
903         fprintf(stderr, "fread() failed\n");
904         exit(1);
905     }
906     fclose(f);
907 
908     /* append dtb to kernel */
909     if (dtb_filename) {
910         if (protocol < 0x209) {
911             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
912             exit(1);
913         }
914 
915         dtb_size = get_image_size(dtb_filename);
916         if (dtb_size <= 0) {
917             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
918                     dtb_filename, strerror(errno));
919             exit(1);
920         }
921 
922         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
923         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
924         kernel = g_realloc(kernel, kernel_size);
925 
926         stq_p(header + 0x250, prot_addr + setup_data_offset);
927 
928         setup_data = (struct setup_data *)(kernel + setup_data_offset);
929         setup_data->next = 0;
930         setup_data->type = cpu_to_le32(SETUP_DTB);
931         setup_data->len = cpu_to_le32(dtb_size);
932 
933         load_image_size(dtb_filename, setup_data->data, dtb_size);
934     }
935 
936     /*
937      * If we're starting an encrypted VM, it will be OVMF based, which uses the
938      * efi stub for booting and doesn't require any values to be placed in the
939      * kernel header.  We therefore don't update the header so the hash of the
940      * kernel on the other side of the fw_cfg interface matches the hash of the
941      * file the user passed in.
942      */
943     if (!sev_enabled()) {
944         memcpy(setup, header, MIN(sizeof(header), setup_size));
945     }
946 
947     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
948     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
949     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
950     sev_load_ctx.kernel_data = (char *)kernel;
951     sev_load_ctx.kernel_size = kernel_size;
952 
953     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
954     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
955     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
956     sev_load_ctx.setup_data = (char *)setup;
957     sev_load_ctx.setup_size = setup_size;
958 
959     if (sev_enabled()) {
960         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
961     }
962 
963     option_rom[nb_option_roms].bootindex = 0;
964     option_rom[nb_option_roms].name = "linuxboot.bin";
965     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
966         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
967     }
968     nb_option_roms++;
969 }
970 
x86_isa_bios_init(MemoryRegion * isa_bios,MemoryRegion * isa_memory,MemoryRegion * bios,bool read_only)971 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory,
972                        MemoryRegion *bios, bool read_only)
973 {
974     uint64_t bios_size = memory_region_size(bios);
975     uint64_t isa_bios_size = MIN(bios_size, 128 * KiB);
976 
977     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
978                              bios_size - isa_bios_size, isa_bios_size);
979     memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size,
980                                         isa_bios, 1);
981     memory_region_set_readonly(isa_bios, read_only);
982 }
983 
x86_bios_rom_init(X86MachineState * x86ms,const char * default_firmware,MemoryRegion * rom_memory,bool isapc_ram_fw)984 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware,
985                        MemoryRegion *rom_memory, bool isapc_ram_fw)
986 {
987     const char *bios_name;
988     char *filename;
989     int bios_size;
990     ssize_t ret;
991 
992     /* BIOS load */
993     bios_name = MACHINE(x86ms)->firmware ?: default_firmware;
994     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
995     if (filename) {
996         bios_size = get_image_size(filename);
997     } else {
998         bios_size = -1;
999     }
1000     if (bios_size <= 0 ||
1001         (bios_size % 65536) != 0) {
1002         goto bios_error;
1003     }
1004     memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size,
1005                            &error_fatal);
1006     if (sev_enabled()) {
1007         /*
1008          * The concept of a "reset" simply doesn't exist for
1009          * confidential computing guests, we have to destroy and
1010          * re-launch them instead.  So there is no need to register
1011          * the firmware as rom to properly re-initialize on reset.
1012          * Just go for a straight file load instead.
1013          */
1014         void *ptr = memory_region_get_ram_ptr(&x86ms->bios);
1015         load_image_size(filename, ptr, bios_size);
1016         x86_firmware_configure(ptr, bios_size);
1017     } else {
1018         memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw);
1019         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1020         if (ret != 0) {
1021             goto bios_error;
1022         }
1023     }
1024     g_free(filename);
1025 
1026     /* map the last 128KB of the BIOS in ISA space */
1027     x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios,
1028                       !isapc_ram_fw);
1029 
1030     /* map all the bios at the top of memory */
1031     memory_region_add_subregion(rom_memory,
1032                                 (uint32_t)(-bios_size),
1033                                 &x86ms->bios);
1034     return;
1035 
1036 bios_error:
1037     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1038     exit(1);
1039 }
1040