xref: /netbsd/crypto/external/bsd/openssh/dist/umac.c (revision d6f0ef90)
1 /*	$NetBSD: umac.c,v 1.22 2023/07/26 17:58:16 christos Exp $	*/
2 /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */
3 /* -----------------------------------------------------------------------
4  *
5  * umac.c -- C Implementation UMAC Message Authentication
6  *
7  * Version 0.93b of rfc4418.txt -- 2006 July 18
8  *
9  * For a full description of UMAC message authentication see the UMAC
10  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11  * Please report bugs and suggestions to the UMAC webpage.
12  *
13  * Copyright (c) 1999-2006 Ted Krovetz
14  *
15  * Permission to use, copy, modify, and distribute this software and
16  * its documentation for any purpose and with or without fee, is hereby
17  * granted provided that the above copyright notice appears in all copies
18  * and in supporting documentation, and that the name of the copyright
19  * holder not be used in advertising or publicity pertaining to
20  * distribution of the software without specific, written prior permission.
21  *
22  * Comments should be directed to Ted Krovetz (tdk@acm.org)
23  *
24  * ---------------------------------------------------------------------- */
25 
26  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27   *
28   * 1) This version does not work properly on messages larger than 16MB
29   *
30   * 2) If you set the switch to use SSE2, then all data must be 16-byte
31   *    aligned
32   *
33   * 3) When calling the function umac(), it is assumed that msg is in
34   * a writable buffer of length divisible by 32 bytes. The message itself
35   * does not have to fill the entire buffer, but bytes beyond msg may be
36   * zeroed.
37   *
38   * 4) Three free AES implementations are supported by this implementation of
39   * UMAC. Paulo Barreto's version is in the public domain and can be found
40   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43   * Public license at http://fp.gladman.plus.com/AES/index.htm. It
44   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45   * the third.
46   *
47   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48   * produced under gcc with optimizations set -O3 or higher. Dunno why.
49   *
50   /////////////////////////////////////////////////////////////////////// */
51 
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
55 
56 #ifndef UMAC_OUTPUT_LEN
57 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
58 #endif
59 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
60 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
61 /* #define SSE2                0  Is SSE2 is available?                   */
62 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
63 /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
64 
65 /* ---------------------------------------------------------------------- */
66 /* -- Global Includes --------------------------------------------------- */
67 /* ---------------------------------------------------------------------- */
68 
69 #include "includes.h"
70 __RCSID("$NetBSD: umac.c,v 1.22 2023/07/26 17:58:16 christos Exp $");
71 #include <sys/types.h>
72 #include <sys/endian.h>
73 #include <string.h>
74 #include <stdarg.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <stddef.h>
78 #include <time.h>
79 
80 #include "xmalloc.h"
81 #include "umac.h"
82 #include "misc.h"
83 
84 /* ---------------------------------------------------------------------- */
85 /* --- Primitive Data Types ---                                           */
86 /* ---------------------------------------------------------------------- */
87 
88 /* The following assumptions may need change on your system */
89 typedef u_int8_t	UINT8;  /* 1 byte   */
90 typedef u_int16_t	UINT16; /* 2 byte   */
91 typedef u_int32_t	UINT32; /* 4 byte   */
92 typedef u_int64_t	UINT64; /* 8 bytes  */
93 typedef unsigned int	UWORD;  /* Register */
94 
95 /* ---------------------------------------------------------------------- */
96 /* --- Constants -------------------------------------------------------- */
97 /* ---------------------------------------------------------------------- */
98 
99 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
100 
101 /* Message "words" are read from memory in an endian-specific manner.     */
102 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
103 /* be set true if the host computer is little-endian.                     */
104 
105 #if BYTE_ORDER == LITTLE_ENDIAN
106 #define __LITTLE_ENDIAN__ 1
107 #else
108 #define __LITTLE_ENDIAN__ 0
109 #endif
110 
111 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ----- Architecture Specific ------------------------------------------ */
114 /* ---------------------------------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 
117 
118 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ----- Primitive Routines --------------------------------------------- */
121 /* ---------------------------------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123 
124 
125 /* ---------------------------------------------------------------------- */
126 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
127 /* ---------------------------------------------------------------------- */
128 
129 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
130 
131 /* ---------------------------------------------------------------------- */
132 /* --- Endian Conversion --- Forcing assembly on some platforms           */
133 /* ---------------------------------------------------------------------- */
134 
135 /* The following definitions use the above reversal-primitives to do the right
136  * thing on endian specific load and stores.
137  */
138 
139 #if BYTE_ORDER == LITTLE_ENDIAN
140 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
141 #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
142 #else
143 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
144 #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
145 #endif
146 
147 #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
148 #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
149 
150 
151 
152 /* ---------------------------------------------------------------------- */
153 /* ---------------------------------------------------------------------- */
154 /* ----- Begin KDF & PDF Section ---------------------------------------- */
155 /* ---------------------------------------------------------------------- */
156 /* ---------------------------------------------------------------------- */
157 
158 /* UMAC uses AES with 16 byte block and key lengths */
159 #define AES_BLOCK_LEN  16
160 
161 #ifdef WITH_OPENSSL
162 #include <openssl/aes.h>
163 typedef AES_KEY aes_int_key[1];
164 #define aes_encryption(in,out,int_key)                  \
165   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
166 #define aes_key_setup(key,int_key)                      \
167   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
168 #else
169 #include "rijndael.h"
170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
172 #define aes_encryption(in,out,int_key) \
173   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
174 #define aes_key_setup(key,int_key) \
175   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
176   UMAC_KEY_LEN*8)
177 #endif
178 
179 /* The user-supplied UMAC key is stretched using AES in a counter
180  * mode to supply all random bits needed by UMAC. The kdf function takes
181  * an AES internal key representation 'key' and writes a stream of
182  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
183  * 'ndx' causes a distinct byte stream.
184  */
kdf(void * buffer_ptr,aes_int_key key,UINT8 ndx,int nbytes)185 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
186 {
187     UINT8 in_buf[AES_BLOCK_LEN] = {0};
188     UINT8 out_buf[AES_BLOCK_LEN];
189     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
190     int i;
191 
192     /* Setup the initial value */
193     in_buf[AES_BLOCK_LEN-9] = ndx;
194     in_buf[AES_BLOCK_LEN-1] = i = 1;
195 
196     while (nbytes >= AES_BLOCK_LEN) {
197         aes_encryption(in_buf, out_buf, key);
198         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
199         in_buf[AES_BLOCK_LEN-1] = ++i;
200         nbytes -= AES_BLOCK_LEN;
201         dst_buf += AES_BLOCK_LEN;
202     }
203     if (nbytes) {
204         aes_encryption(in_buf, out_buf, key);
205         memcpy(dst_buf,out_buf,nbytes);
206     }
207     explicit_bzero(in_buf, sizeof(in_buf));
208     explicit_bzero(out_buf, sizeof(out_buf));
209 }
210 
211 /* The final UHASH result is XOR'd with the output of a pseudorandom
212  * function. Here, we use AES to generate random output and
213  * xor the appropriate bytes depending on the last bits of nonce.
214  * This scheme is optimized for sequential, increasing big-endian nonces.
215  */
216 
217 typedef struct {
218     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
219     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
220     aes_int_key prf_key;         /* Expanded AES key for PDF          */
221 } pdf_ctx;
222 
pdf_init(pdf_ctx * pc,aes_int_key prf_key)223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224 {
225     UINT8 buf[UMAC_KEY_LEN];
226 
227     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228     aes_key_setup(buf, pc->prf_key);
229 
230     /* Initialize pdf and cache */
231     memset(pc->nonce, 0, sizeof(pc->nonce));
232     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233     explicit_bzero(buf, sizeof(buf));
234 }
235 
236 static inline void
xor64(uint8_t * dp,int di,uint8_t * sp,int si)237 xor64(uint8_t *dp, int di, uint8_t *sp, int si)
238 {
239     uint64_t dst, src;
240     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
241     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
242     dst ^= src;
243     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
244 }
245 
246 __unused static inline void
xor32(uint8_t * dp,int di,uint8_t * sp,int si)247 xor32(uint8_t *dp, int di, uint8_t *sp, int si)
248 {
249     uint32_t dst, src;
250     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
251     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
252     dst ^= src;
253     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
254 }
255 
pdf_gen_xor(pdf_ctx * pc,const UINT8 nonce[8],UINT8 buf[UMAC_OUTPUT_LEN])256 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8],
257     UINT8 buf[UMAC_OUTPUT_LEN])
258 {
259     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
260      * of the AES output. If last time around we returned the ndx-1st
261      * element, then we may have the result in the cache already.
262      */
263 
264 #if (UMAC_OUTPUT_LEN == 4)
265 #define LOW_BIT_MASK 3
266 #elif (UMAC_OUTPUT_LEN == 8)
267 #define LOW_BIT_MASK 1
268 #elif (UMAC_OUTPUT_LEN > 8)
269 #define LOW_BIT_MASK 0
270 #endif
271     union {
272         UINT8 tmp_nonce_lo[4];
273         UINT32 align;
274     } t;
275 #if LOW_BIT_MASK != 0
276     int ndx = nonce[7] & LOW_BIT_MASK;
277 #endif
278     memcpy(t.tmp_nonce_lo, nonce + 4, sizeof(t.tmp_nonce_lo));
279     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
280 
281     if (memcmp(t.tmp_nonce_lo, pc->nonce + 1, sizeof(t.tmp_nonce_lo)) != 0 ||
282          memcmp(nonce, pc->nonce, sizeof(t.tmp_nonce_lo)) != 0)
283     {
284 	memcpy(pc->nonce, nonce, sizeof(t.tmp_nonce_lo));
285 	memcpy(pc->nonce + 4, t.tmp_nonce_lo, sizeof(t.tmp_nonce_lo));
286         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
287     }
288 
289 #if (UMAC_OUTPUT_LEN == 4)
290     xor32(buf, 0, pc->cache, ndx);
291 #elif (UMAC_OUTPUT_LEN == 8)
292     xor64(buf, 0, pc->cache, ndx);
293 #elif (UMAC_OUTPUT_LEN == 12)
294     xor64(buf, 0, pc->cache, 0);
295     xor32(buf, 2, pc->cache, 2);
296 #elif (UMAC_OUTPUT_LEN == 16)
297     xor64(buf, 0, pc->cache, 0);
298     xor64(buf, 1, pc->cache, 1);
299 #endif
300 }
301 
302 /* ---------------------------------------------------------------------- */
303 /* ---------------------------------------------------------------------- */
304 /* ----- Begin NH Hash Section ------------------------------------------ */
305 /* ---------------------------------------------------------------------- */
306 /* ---------------------------------------------------------------------- */
307 
308 /* The NH-based hash functions used in UMAC are described in the UMAC paper
309  * and specification, both of which can be found at the UMAC website.
310  * The interface to this implementation has two
311  * versions, one expects the entire message being hashed to be passed
312  * in a single buffer and returns the hash result immediately. The second
313  * allows the message to be passed in a sequence of buffers. In the
314  * multiple-buffer interface, the client calls the routine nh_update() as
315  * many times as necessary. When there is no more data to be fed to the
316  * hash, the client calls nh_final() which calculates the hash output.
317  * Before beginning another hash calculation the nh_reset() routine
318  * must be called. The single-buffer routine, nh(), is equivalent to
319  * the sequence of calls nh_update() and nh_final(); however it is
320  * optimized and should be preferred whenever the multiple-buffer interface
321  * is not necessary. When using either interface, it is the client's
322  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
323  *
324  * The routine nh_init() initializes the nh_ctx data structure and
325  * must be called once, before any other PDF routine.
326  */
327 
328  /* The "nh_aux" routines do the actual NH hashing work. They
329   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
330   * produce output for all STREAMS NH iterations in one call,
331   * allowing the parallel implementation of the streams.
332   */
333 
334 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
335 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
336 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
337 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
338 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
339 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
340 
341 typedef struct {
342     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
343     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
344     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
345     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
346     UINT64 state[STREAMS];               /* on-line state     */
347 } nh_ctx;
348 
349 
350 #if (UMAC_OUTPUT_LEN == 4)
351 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)352 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
353 /* NH hashing primitive. Previous (partial) hash result is loaded and
354 * then stored via hp pointer. The length of the data pointed at by "dp",
355 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
356 * is expected to be endian compensated in memory at key setup.
357 */
358 {
359     UINT64 h;
360     UWORD c = dlen / 32;
361     UINT32 *k = (UINT32 *)kp;
362     const UINT32 *d = (const UINT32 *)dp;
363     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
364     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
365 
366     h = *((UINT64 *)hp);
367     do {
368         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
369         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
370         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
371         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
372         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
373         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
374         h += MUL64((k0 + d0), (k4 + d4));
375         h += MUL64((k1 + d1), (k5 + d5));
376         h += MUL64((k2 + d2), (k6 + d6));
377         h += MUL64((k3 + d3), (k7 + d7));
378 
379         d += 8;
380         k += 8;
381     } while (--c);
382   *((UINT64 *)hp) = h;
383 }
384 
385 #elif (UMAC_OUTPUT_LEN == 8)
386 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)387 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
388 /* Same as previous nh_aux, but two streams are handled in one pass,
389  * reading and writing 16 bytes of hash-state per call.
390  */
391 {
392   UINT64 h1,h2;
393   UWORD c = dlen / 32;
394   UINT32 *k = (UINT32 *)kp;
395   const UINT32 *d = (const UINT32 *)dp;
396   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
397   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
398         k8,k9,k10,k11;
399 
400   h1 = *((UINT64 *)hp);
401   h2 = *((UINT64 *)hp + 1);
402   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
403   do {
404     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
405     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
406     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
407     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
408     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
409     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
410 
411     h1 += MUL64((k0 + d0), (k4 + d4));
412     h2 += MUL64((k4 + d0), (k8 + d4));
413 
414     h1 += MUL64((k1 + d1), (k5 + d5));
415     h2 += MUL64((k5 + d1), (k9 + d5));
416 
417     h1 += MUL64((k2 + d2), (k6 + d6));
418     h2 += MUL64((k6 + d2), (k10 + d6));
419 
420     h1 += MUL64((k3 + d3), (k7 + d7));
421     h2 += MUL64((k7 + d3), (k11 + d7));
422 
423     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
424 
425     d += 8;
426     k += 8;
427   } while (--c);
428   ((UINT64 *)hp)[0] = h1;
429   ((UINT64 *)hp)[1] = h2;
430 }
431 
432 #elif (UMAC_OUTPUT_LEN == 12)
433 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)434 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
435 /* Same as previous nh_aux, but two streams are handled in one pass,
436  * reading and writing 24 bytes of hash-state per call.
437 */
438 {
439     UINT64 h1,h2,h3;
440     UWORD c = dlen / 32;
441     UINT32 *k = (UINT32 *)kp;
442     const UINT32 *d = (const UINT32 *)dp;
443     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
444     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
445         k8,k9,k10,k11,k12,k13,k14,k15;
446 
447     h1 = *((UINT64 *)hp);
448     h2 = *((UINT64 *)hp + 1);
449     h3 = *((UINT64 *)hp + 2);
450     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
451     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
452     do {
453         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
454         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
455         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
456         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
457         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
458         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
459 
460         h1 += MUL64((k0 + d0), (k4 + d4));
461         h2 += MUL64((k4 + d0), (k8 + d4));
462         h3 += MUL64((k8 + d0), (k12 + d4));
463 
464         h1 += MUL64((k1 + d1), (k5 + d5));
465         h2 += MUL64((k5 + d1), (k9 + d5));
466         h3 += MUL64((k9 + d1), (k13 + d5));
467 
468         h1 += MUL64((k2 + d2), (k6 + d6));
469         h2 += MUL64((k6 + d2), (k10 + d6));
470         h3 += MUL64((k10 + d2), (k14 + d6));
471 
472         h1 += MUL64((k3 + d3), (k7 + d7));
473         h2 += MUL64((k7 + d3), (k11 + d7));
474         h3 += MUL64((k11 + d3), (k15 + d7));
475 
476         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
477         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
478 
479         d += 8;
480         k += 8;
481     } while (--c);
482     ((UINT64 *)hp)[0] = h1;
483     ((UINT64 *)hp)[1] = h2;
484     ((UINT64 *)hp)[2] = h3;
485 }
486 
487 #elif (UMAC_OUTPUT_LEN == 16)
488 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)489 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
490 /* Same as previous nh_aux, but two streams are handled in one pass,
491  * reading and writing 24 bytes of hash-state per call.
492 */
493 {
494     UINT64 h1,h2,h3,h4;
495     UWORD c = dlen / 32;
496     UINT32 *k = (UINT32 *)kp;
497     const UINT32 *d = (const UINT32 *)dp;
498     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
499     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
500         k8,k9,k10,k11,k12,k13,k14,k15,
501         k16,k17,k18,k19;
502 
503     h1 = *((UINT64 *)hp);
504     h2 = *((UINT64 *)hp + 1);
505     h3 = *((UINT64 *)hp + 2);
506     h4 = *((UINT64 *)hp + 3);
507     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
508     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
509     do {
510         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
511         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
512         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
513         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
514         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
515         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
516         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
517 
518         h1 += MUL64((k0 + d0), (k4 + d4));
519         h2 += MUL64((k4 + d0), (k8 + d4));
520         h3 += MUL64((k8 + d0), (k12 + d4));
521         h4 += MUL64((k12 + d0), (k16 + d4));
522 
523         h1 += MUL64((k1 + d1), (k5 + d5));
524         h2 += MUL64((k5 + d1), (k9 + d5));
525         h3 += MUL64((k9 + d1), (k13 + d5));
526         h4 += MUL64((k13 + d1), (k17 + d5));
527 
528         h1 += MUL64((k2 + d2), (k6 + d6));
529         h2 += MUL64((k6 + d2), (k10 + d6));
530         h3 += MUL64((k10 + d2), (k14 + d6));
531         h4 += MUL64((k14 + d2), (k18 + d6));
532 
533         h1 += MUL64((k3 + d3), (k7 + d7));
534         h2 += MUL64((k7 + d3), (k11 + d7));
535         h3 += MUL64((k11 + d3), (k15 + d7));
536         h4 += MUL64((k15 + d3), (k19 + d7));
537 
538         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
539         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
540         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
541 
542         d += 8;
543         k += 8;
544     } while (--c);
545     ((UINT64 *)hp)[0] = h1;
546     ((UINT64 *)hp)[1] = h2;
547     ((UINT64 *)hp)[2] = h3;
548     ((UINT64 *)hp)[3] = h4;
549 }
550 
551 /* ---------------------------------------------------------------------- */
552 #endif  /* UMAC_OUTPUT_LENGTH */
553 /* ---------------------------------------------------------------------- */
554 
555 
556 /* ---------------------------------------------------------------------- */
557 
nh_transform(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)558 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
559 /* This function is a wrapper for the primitive NH hash functions. It takes
560  * as argument "hc" the current hash context and a buffer which must be a
561  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
562  * appropriately according to how much message has been hashed already.
563  */
564 {
565     UINT8 *key;
566 
567     key = hc->nh_key + hc->bytes_hashed;
568     nh_aux(key, buf, hc->state, nbytes);
569 }
570 
571 /* ---------------------------------------------------------------------- */
572 
573 #if (__LITTLE_ENDIAN__)
endian_convert(void * buf,UWORD bpw,UINT32 num_bytes)574 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
575 /* We endian convert the keys on little-endian computers to               */
576 /* compensate for the lack of big-endian memory reads during hashing.     */
577 {
578     UWORD iters = num_bytes / bpw;
579     if (bpw == 4) {
580         UINT32 *p = (UINT32 *)buf;
581         do {
582             *p = LOAD_UINT32_REVERSED(p);
583             p++;
584         } while (--iters);
585     } else if (bpw == 8) {
586         UINT64 *p = (UINT64 *)buf;
587         UINT64 th;
588         UINT64 t;
589         do {
590             t = LOAD_UINT32_REVERSED((UINT32 *)p+1);
591             th = LOAD_UINT32_REVERSED((UINT32 *)p);
592             *p++ = t | (th << 32);
593         } while (--iters);
594     }
595 }
596 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
597 #else
598 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
599 #endif
600 
601 /* ---------------------------------------------------------------------- */
602 
nh_reset(nh_ctx * hc)603 static void nh_reset(nh_ctx *hc)
604 /* Reset nh_ctx to ready for hashing of new data */
605 {
606     hc->bytes_hashed = 0;
607     hc->next_data_empty = 0;
608     hc->state[0] = 0;
609 #if (UMAC_OUTPUT_LEN >= 8)
610     hc->state[1] = 0;
611 #endif
612 #if (UMAC_OUTPUT_LEN >= 12)
613     hc->state[2] = 0;
614 #endif
615 #if (UMAC_OUTPUT_LEN == 16)
616     hc->state[3] = 0;
617 #endif
618 
619 }
620 
621 /* ---------------------------------------------------------------------- */
622 
nh_init(nh_ctx * hc,aes_int_key prf_key)623 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
624 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
625 {
626     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
627     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
628     nh_reset(hc);
629 }
630 
631 /* ---------------------------------------------------------------------- */
632 
nh_update(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)633 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
634 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
635 /* even multiple of HASH_BUF_BYTES.                                       */
636 {
637     UINT32 i,j;
638 
639     j = hc->next_data_empty;
640     if ((j + nbytes) >= HASH_BUF_BYTES) {
641         if (j) {
642             i = HASH_BUF_BYTES - j;
643             memcpy(hc->data+j, buf, i);
644             nh_transform(hc,hc->data,HASH_BUF_BYTES);
645             nbytes -= i;
646             buf += i;
647             hc->bytes_hashed += HASH_BUF_BYTES;
648         }
649         if (nbytes >= HASH_BUF_BYTES) {
650             i = nbytes & ~(HASH_BUF_BYTES - 1);
651             nh_transform(hc, buf, i);
652             nbytes -= i;
653             buf += i;
654             hc->bytes_hashed += i;
655         }
656         j = 0;
657     }
658     memcpy(hc->data + j, buf, nbytes);
659     hc->next_data_empty = j + nbytes;
660 }
661 
662 /* ---------------------------------------------------------------------- */
663 
zero_pad(UINT8 * p,int nbytes)664 static void zero_pad(UINT8 *p, int nbytes)
665 {
666 /* Write "nbytes" of zeroes, beginning at "p" */
667     if (nbytes >= (int)sizeof(UWORD)) {
668         while ((ptrdiff_t)p % sizeof(UWORD)) {
669             *p = 0;
670             nbytes--;
671             p++;
672         }
673         while (nbytes >= (int)sizeof(UWORD)) {
674             *(UWORD *)p = 0;
675             nbytes -= sizeof(UWORD);
676             p += sizeof(UWORD);
677         }
678     }
679     while (nbytes) {
680         *p = 0;
681         nbytes--;
682         p++;
683     }
684 }
685 
686 /* ---------------------------------------------------------------------- */
687 
nh_final(nh_ctx * hc,UINT8 * result)688 static void nh_final(nh_ctx *hc, UINT8 *result)
689 /* After passing some number of data buffers to nh_update() for integration
690  * into an NH context, nh_final is called to produce a hash result. If any
691  * bytes are in the buffer hc->data, incorporate them into the
692  * NH context. Finally, add into the NH accumulation "state" the total number
693  * of bits hashed. The resulting numbers are written to the buffer "result".
694  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
695  */
696 {
697     int nh_len, nbits;
698 
699     if (hc->next_data_empty != 0) {
700         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
701                                                 ~(L1_PAD_BOUNDARY - 1));
702         zero_pad(hc->data + hc->next_data_empty,
703                                           nh_len - hc->next_data_empty);
704         nh_transform(hc, hc->data, nh_len);
705         hc->bytes_hashed += hc->next_data_empty;
706     } else if (hc->bytes_hashed == 0) {
707 	nh_len = L1_PAD_BOUNDARY;
708         zero_pad(hc->data, L1_PAD_BOUNDARY);
709         nh_transform(hc, hc->data, nh_len);
710     }
711 
712     nbits = (hc->bytes_hashed << 3);
713     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
714 #if (UMAC_OUTPUT_LEN >= 8)
715     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
716 #endif
717 #if (UMAC_OUTPUT_LEN >= 12)
718     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
719 #endif
720 #if (UMAC_OUTPUT_LEN == 16)
721     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
722 #endif
723     nh_reset(hc);
724 }
725 
726 /* ---------------------------------------------------------------------- */
727 
nh(nh_ctx * hc,const UINT8 * buf,UINT32 padded_len,UINT32 unpadded_len,UINT8 * result)728 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
729                UINT32 unpadded_len, UINT8 *result)
730 /* All-in-one nh_update() and nh_final() equivalent.
731  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
732  * well aligned
733  */
734 {
735     UINT32 nbits;
736 
737     /* Initialize the hash state */
738     nbits = (unpadded_len << 3);
739 
740     ((UINT64 *)result)[0] = nbits;
741 #if (UMAC_OUTPUT_LEN >= 8)
742     ((UINT64 *)result)[1] = nbits;
743 #endif
744 #if (UMAC_OUTPUT_LEN >= 12)
745     ((UINT64 *)result)[2] = nbits;
746 #endif
747 #if (UMAC_OUTPUT_LEN == 16)
748     ((UINT64 *)result)[3] = nbits;
749 #endif
750 
751     nh_aux(hc->nh_key, buf, result, padded_len);
752 }
753 
754 /* ---------------------------------------------------------------------- */
755 /* ---------------------------------------------------------------------- */
756 /* ----- Begin UHASH Section -------------------------------------------- */
757 /* ---------------------------------------------------------------------- */
758 /* ---------------------------------------------------------------------- */
759 
760 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
761  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
762  * unless the initial data to be hashed is short. After the polynomial-
763  * layer, an inner-product hash is used to produce the final UHASH output.
764  *
765  * UHASH provides two interfaces, one all-at-once and another where data
766  * buffers are presented sequentially. In the sequential interface, the
767  * UHASH client calls the routine uhash_update() as many times as necessary.
768  * When there is no more data to be fed to UHASH, the client calls
769  * uhash_final() which
770  * calculates the UHASH output. Before beginning another UHASH calculation
771  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
772  * uhash(), is equivalent to the sequence of calls uhash_update() and
773  * uhash_final(); however it is optimized and should be
774  * used whenever the sequential interface is not necessary.
775  *
776  * The routine uhash_init() initializes the uhash_ctx data structure and
777  * must be called once, before any other UHASH routine.
778  */
779 
780 /* ---------------------------------------------------------------------- */
781 /* ----- Constants and uhash_ctx ---------------------------------------- */
782 /* ---------------------------------------------------------------------- */
783 
784 /* ---------------------------------------------------------------------- */
785 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
786 /* ---------------------------------------------------------------------- */
787 
788 /* Primes and masks */
789 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
790 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
791 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
792 
793 
794 /* ---------------------------------------------------------------------- */
795 
796 typedef struct uhash_ctx {
797     nh_ctx hash;                          /* Hash context for L1 NH hash  */
798     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
799     UINT64 poly_accum[STREAMS];           /* poly hash result             */
800     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
801     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
802     UINT32 msg_len;                       /* Total length of data passed  */
803                                           /* to uhash */
804 } uhash_ctx;
805 typedef struct uhash_ctx *uhash_ctx_t;
806 
807 /* ---------------------------------------------------------------------- */
808 
809 
810 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
811  * word at a time. As described in the specification, poly32 and poly64
812  * require keys from special domains. The following implementations exploit
813  * the special domains to avoid overflow. The results are not guaranteed to
814  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
815  * patches any errant values.
816  */
817 
poly64(UINT64 cur,UINT64 key,UINT64 data)818 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
819 {
820     UINT32 key_hi = (UINT32)(key >> 32),
821            key_lo = (UINT32)key,
822            cur_hi = (UINT32)(cur >> 32),
823            cur_lo = (UINT32)cur,
824            x_lo,
825            x_hi;
826     UINT64 X,T,res;
827 
828     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
829     x_lo = (UINT32)X;
830     x_hi = (UINT32)(X >> 32);
831 
832     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
833 
834     T = ((UINT64)x_lo << 32);
835     res += T;
836     if (res < T)
837         res += 59;
838 
839     res += data;
840     if (res < data)
841         res += 59;
842 
843     return res;
844 }
845 
846 
847 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
848  * implementation does not handle all ramp levels. Because we don't handle
849  * the ramp up to p128 modulus in this implementation, we are limited to
850  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
851  * bytes input to UMAC per tag, ie. 16MB).
852  */
poly_hash(uhash_ctx_t hc,UINT32 data_in[])853 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
854 {
855     int i;
856     UINT64 *data=(UINT64*)data_in;
857 
858     for (i = 0; i < STREAMS; i++) {
859         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
860             hc->poly_accum[i] = poly64(hc->poly_accum[i],
861                                        hc->poly_key_8[i], p64 - 1);
862             hc->poly_accum[i] = poly64(hc->poly_accum[i],
863                                        hc->poly_key_8[i], (data[i] - 59));
864         } else {
865             hc->poly_accum[i] = poly64(hc->poly_accum[i],
866                                        hc->poly_key_8[i], data[i]);
867         }
868     }
869 }
870 
871 
872 /* ---------------------------------------------------------------------- */
873 
874 
875 /* The final step in UHASH is an inner-product hash. The poly hash
876  * produces a result not necessarily WORD_LEN bytes long. The inner-
877  * product hash breaks the polyhash output into 16-bit chunks and
878  * multiplies each with a 36 bit key.
879  */
880 
ip_aux(UINT64 t,UINT64 * ipkp,UINT64 data)881 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
882 {
883     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
884     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
885     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
886     t = t + ipkp[3] * (UINT64)(UINT16)(data);
887 
888     return t;
889 }
890 
ip_reduce_p36(UINT64 t)891 static UINT32 ip_reduce_p36(UINT64 t)
892 {
893 /* Divisionless modular reduction */
894     UINT64 ret;
895 
896     ret = (t & m36) + 5 * (t >> 36);
897     if (ret >= p36)
898         ret -= p36;
899 
900     /* return least significant 32 bits */
901     return (UINT32)(ret);
902 }
903 
904 
905 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
906  * the polyhash stage is skipped and ip_short is applied directly to the
907  * NH output.
908  */
ip_short(uhash_ctx_t ahc,UINT8 * nh_res,u_char * res)909 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
910 {
911     UINT64 t;
912     UINT64 *nhp = (UINT64 *)nh_res;
913 
914     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
915     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
916 #if (UMAC_OUTPUT_LEN >= 8)
917     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
918     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
919 #endif
920 #if (UMAC_OUTPUT_LEN >= 12)
921     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
922     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
923 #endif
924 #if (UMAC_OUTPUT_LEN == 16)
925     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
926     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
927 #endif
928 }
929 
930 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
931  * the polyhash stage is not skipped and ip_long is applied to the
932  * polyhash output.
933  */
ip_long(uhash_ctx_t ahc,u_char * res)934 static void ip_long(uhash_ctx_t ahc, u_char *res)
935 {
936     int i;
937     UINT64 t;
938 
939     for (i = 0; i < STREAMS; i++) {
940         /* fix polyhash output not in Z_p64 */
941         if (ahc->poly_accum[i] >= p64)
942             ahc->poly_accum[i] -= p64;
943         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
944         STORE_UINT32_BIG((UINT32 *)res+i,
945                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
946     }
947 }
948 
949 
950 /* ---------------------------------------------------------------------- */
951 
952 /* ---------------------------------------------------------------------- */
953 
954 /* Reset uhash context for next hash session */
uhash_reset(uhash_ctx_t pc)955 static int uhash_reset(uhash_ctx_t pc)
956 {
957     nh_reset(&pc->hash);
958     pc->msg_len = 0;
959     pc->poly_accum[0] = 1;
960 #if (UMAC_OUTPUT_LEN >= 8)
961     pc->poly_accum[1] = 1;
962 #endif
963 #if (UMAC_OUTPUT_LEN >= 12)
964     pc->poly_accum[2] = 1;
965 #endif
966 #if (UMAC_OUTPUT_LEN == 16)
967     pc->poly_accum[3] = 1;
968 #endif
969     return 1;
970 }
971 
972 /* ---------------------------------------------------------------------- */
973 
974 /* Given a pointer to the internal key needed by kdf() and a uhash context,
975  * initialize the NH context and generate keys needed for poly and inner-
976  * product hashing. All keys are endian adjusted in memory so that native
977  * loads cause correct keys to be in registers during calculation.
978  */
uhash_init(uhash_ctx_t ahc,aes_int_key prf_key)979 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
980 {
981     int i;
982     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
983 
984     /* Zero the entire uhash context */
985     memset(ahc, 0, sizeof(uhash_ctx));
986 
987     /* Initialize the L1 hash */
988     nh_init(&ahc->hash, prf_key);
989 
990     /* Setup L2 hash variables */
991     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
992     for (i = 0; i < STREAMS; i++) {
993         /* Fill keys from the buffer, skipping bytes in the buffer not
994          * used by this implementation. Endian reverse the keys if on a
995          * little-endian computer.
996          */
997         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
998         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
999         /* Mask the 64-bit keys to their special domain */
1000         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
1001         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
1002     }
1003 
1004     /* Setup L3-1 hash variables */
1005     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
1006     for (i = 0; i < STREAMS; i++)
1007           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
1008                                                  4*sizeof(UINT64));
1009     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1010                                                   sizeof(ahc->ip_keys));
1011     for (i = 0; i < STREAMS*4; i++)
1012         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1013 
1014     /* Setup L3-2 hash variables    */
1015     /* Fill buffer with index 4 key */
1016     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1017     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1018                          STREAMS * sizeof(UINT32));
1019     explicit_bzero(buf, sizeof(buf));
1020 }
1021 
1022 /* ---------------------------------------------------------------------- */
1023 
1024 #if 0
1025 static uhash_ctx_t uhash_alloc(u_char key[])
1026 {
1027 /* Allocate memory and force to a 16-byte boundary. */
1028     uhash_ctx_t ctx;
1029     u_char bytes_to_add;
1030     aes_int_key prf_key;
1031 
1032     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1033     if (ctx) {
1034         if (ALLOC_BOUNDARY) {
1035             bytes_to_add = ALLOC_BOUNDARY -
1036                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1037             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1038             *((u_char *)ctx - 1) = bytes_to_add;
1039         }
1040         aes_key_setup(key,prf_key);
1041         uhash_init(ctx, prf_key);
1042     }
1043     return (ctx);
1044 }
1045 #endif
1046 
1047 /* ---------------------------------------------------------------------- */
1048 
1049 #if 0
1050 static int uhash_free(uhash_ctx_t ctx)
1051 {
1052 /* Free memory allocated by uhash_alloc */
1053     u_char bytes_to_sub;
1054 
1055     if (ctx) {
1056         if (ALLOC_BOUNDARY) {
1057             bytes_to_sub = *((u_char *)ctx - 1);
1058             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1059         }
1060         free(ctx);
1061     }
1062     return (1);
1063 }
1064 #endif
1065 /* ---------------------------------------------------------------------- */
1066 
uhash_update(uhash_ctx_t ctx,const u_char * input,long len)1067 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1068 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1069  * hash each one with NH, calling the polyhash on each NH output.
1070  */
1071 {
1072     UWORD bytes_hashed, bytes_remaining;
1073     UINT64 result_buf[STREAMS];
1074     UINT8 *nh_result = (UINT8 *)&result_buf;
1075 
1076     if (ctx->msg_len + len <= L1_KEY_LEN) {
1077         nh_update(&ctx->hash, (const UINT8 *)input, len);
1078         ctx->msg_len += len;
1079     } else {
1080 
1081          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1082          if (ctx->msg_len == L1_KEY_LEN)
1083              bytes_hashed = L1_KEY_LEN;
1084 
1085          if (bytes_hashed + len >= L1_KEY_LEN) {
1086 
1087              /* If some bytes have been passed to the hash function      */
1088              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1089              /* bytes to complete the current nh_block.                  */
1090              if (bytes_hashed) {
1091                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1092                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1093                  nh_final(&ctx->hash, nh_result);
1094                  ctx->msg_len += bytes_remaining;
1095                  poly_hash(ctx,(UINT32 *)nh_result);
1096                  len -= bytes_remaining;
1097                  input += bytes_remaining;
1098              }
1099 
1100              /* Hash directly from input stream if enough bytes */
1101              while (len >= L1_KEY_LEN) {
1102                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1103                                    L1_KEY_LEN, nh_result);
1104                  ctx->msg_len += L1_KEY_LEN;
1105                  len -= L1_KEY_LEN;
1106                  input += L1_KEY_LEN;
1107                  poly_hash(ctx,(UINT32 *)nh_result);
1108              }
1109          }
1110 
1111          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1112          if (len) {
1113              nh_update(&ctx->hash, (const UINT8 *)input, len);
1114              ctx->msg_len += len;
1115          }
1116      }
1117 
1118     return (1);
1119 }
1120 
1121 /* ---------------------------------------------------------------------- */
1122 
uhash_final(uhash_ctx_t ctx,u_char * res)1123 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1124 /* Incorporate any pending data, pad, and generate tag */
1125 {
1126     UINT64 result_buf[STREAMS];
1127     UINT8 *nh_result = (UINT8 *)&result_buf;
1128 
1129     if (ctx->msg_len > L1_KEY_LEN) {
1130         if (ctx->msg_len % L1_KEY_LEN) {
1131             nh_final(&ctx->hash, nh_result);
1132             poly_hash(ctx,(UINT32 *)nh_result);
1133         }
1134         ip_long(ctx, res);
1135     } else {
1136         nh_final(&ctx->hash, nh_result);
1137         ip_short(ctx,nh_result, res);
1138     }
1139     uhash_reset(ctx);
1140     return (1);
1141 }
1142 
1143 /* ---------------------------------------------------------------------- */
1144 
1145 #if 0
1146 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1147 /* assumes that msg is in a writable buffer of length divisible by */
1148 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1149 {
1150     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1151     UINT32 nh_len;
1152     int extra_zeroes_needed;
1153 
1154     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1155      * the polyhash.
1156      */
1157     if (len <= L1_KEY_LEN) {
1158 	if (len == 0)                  /* If zero length messages will not */
1159 		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1160 	else
1161 		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1162         extra_zeroes_needed = nh_len - len;
1163         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1164         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1165         ip_short(ahc,nh_result, res);
1166     } else {
1167         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1168          * output to poly_hash().
1169          */
1170         do {
1171             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1172             poly_hash(ahc,(UINT32 *)nh_result);
1173             len -= L1_KEY_LEN;
1174             msg += L1_KEY_LEN;
1175         } while (len >= L1_KEY_LEN);
1176         if (len) {
1177             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1178             extra_zeroes_needed = nh_len - len;
1179             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1180             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1181             poly_hash(ahc,(UINT32 *)nh_result);
1182         }
1183 
1184         ip_long(ahc, res);
1185     }
1186 
1187     uhash_reset(ahc);
1188     return 1;
1189 }
1190 #endif
1191 
1192 /* ---------------------------------------------------------------------- */
1193 /* ---------------------------------------------------------------------- */
1194 /* ----- Begin UMAC Section --------------------------------------------- */
1195 /* ---------------------------------------------------------------------- */
1196 /* ---------------------------------------------------------------------- */
1197 
1198 /* The UMAC interface has two interfaces, an all-at-once interface where
1199  * the entire message to be authenticated is passed to UMAC in one buffer,
1200  * and a sequential interface where the message is presented a little at a
1201  * time. The all-at-once is more optimized than the sequential version and
1202  * should be preferred when the sequential interface is not required.
1203  */
1204 struct umac_ctx {
1205     uhash_ctx hash;          /* Hash function for message compression    */
1206     pdf_ctx pdf;             /* PDF for hashed output                    */
1207     void *free_ptr;          /* Address to free this struct via          */
1208 } umac_ctx;
1209 
1210 /* ---------------------------------------------------------------------- */
1211 
1212 #if 0
1213 int umac_reset(struct umac_ctx *ctx)
1214 /* Reset the hash function to begin a new authentication.        */
1215 {
1216     uhash_reset(&ctx->hash);
1217     return (1);
1218 }
1219 #endif
1220 
1221 /* ---------------------------------------------------------------------- */
1222 
umac_delete(struct umac_ctx * ctx)1223 int umac_delete(struct umac_ctx *ctx)
1224 /* Deallocate the ctx structure */
1225 {
1226     if (ctx) {
1227         if (ALLOC_BOUNDARY)
1228             ctx = (struct umac_ctx *)ctx->free_ptr;
1229         freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1230     }
1231     return (1);
1232 }
1233 
1234 /* ---------------------------------------------------------------------- */
1235 
umac_new(const u_char key[])1236 struct umac_ctx *umac_new(const u_char key[])
1237 /* Dynamically allocate a umac_ctx struct, initialize variables,
1238  * generate subkeys from key. Align to 16-byte boundary.
1239  */
1240 {
1241     struct umac_ctx *ctx, *octx;
1242     size_t bytes_to_add;
1243     aes_int_key prf_key;
1244 
1245     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1246     if (ctx) {
1247         if (ALLOC_BOUNDARY) {
1248             bytes_to_add = ALLOC_BOUNDARY -
1249                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1250             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1251         }
1252         ctx->free_ptr = octx;
1253         aes_key_setup(key, prf_key);
1254         pdf_init(&ctx->pdf, prf_key);
1255         uhash_init(&ctx->hash, prf_key);
1256         explicit_bzero(prf_key, sizeof(prf_key));
1257     }
1258 
1259     return (ctx);
1260 }
1261 
1262 /* ---------------------------------------------------------------------- */
1263 
umac_final(struct umac_ctx * ctx,u_char tag[],const u_char nonce[8])1264 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1265 /* Incorporate any pending data, pad, and generate tag */
1266 {
1267     uhash_final(&ctx->hash, (u_char *)tag);
1268     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1269 
1270     return (1);
1271 }
1272 
1273 /* ---------------------------------------------------------------------- */
1274 
umac_update(struct umac_ctx * ctx,const u_char * input,long len)1275 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1276 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1277 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1278 /* output buffer is full.                                                 */
1279 {
1280     uhash_update(&ctx->hash, input, len);
1281     return (1);
1282 }
1283 
1284 /* ---------------------------------------------------------------------- */
1285 
1286 #if 0
1287 int umac(struct umac_ctx *ctx, u_char *input,
1288          long len, u_char tag[],
1289          u_char nonce[8])
1290 /* All-in-one version simply calls umac_update() and umac_final().        */
1291 {
1292     uhash(&ctx->hash, input, len, (u_char *)tag);
1293     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1294 
1295     return (1);
1296 }
1297 #endif
1298 
1299 /* ---------------------------------------------------------------------- */
1300 /* ---------------------------------------------------------------------- */
1301 /* ----- End UMAC Section ----------------------------------------------- */
1302 /* ---------------------------------------------------------------------- */
1303 /* ---------------------------------------------------------------------- */
1304