xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision f137afbc)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/spinlock2.h>
51 
52 #include <machine/clock.h>
53 #include <machine/stdarg.h>
54 
55 #include "cam.h"
56 #include "cam_ccb.h"
57 #include "cam_periph.h"
58 #include "cam_sim.h"
59 #include "cam_xpt.h"
60 #include "cam_xpt_sim.h"
61 #include "cam_xpt_periph.h"
62 #include "cam_debug.h"
63 
64 #include "scsi/scsi_all.h"
65 #include "scsi/scsi_message.h"
66 #include "scsi/scsi_pass.h"
67 #include <sys/kthread.h>
68 #include "opt_cam.h"
69 
70 /* Datastructures internal to the xpt layer */
71 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
72 
73 /* Object for defering XPT actions to a taskqueue */
74 struct xpt_task {
75 	struct task	task;
76 	void		*data1;
77 	uintptr_t	data2;
78 };
79 
80 /*
81  * Definition of an async handler callback block.  These are used to add
82  * SIMs and peripherals to the async callback lists.
83  */
84 struct async_node {
85 	SLIST_ENTRY(async_node)	links;
86 	u_int32_t	event_enable;	/* Async Event enables */
87 	void		(*callback)(void *arg, u_int32_t code,
88 				    struct cam_path *path, void *args);
89 	void		*callback_arg;
90 };
91 
92 SLIST_HEAD(async_list, async_node);
93 SLIST_HEAD(periph_list, cam_periph);
94 
95 /*
96  * This is the maximum number of high powered commands (e.g. start unit)
97  * that can be outstanding at a particular time.
98  */
99 #ifndef CAM_MAX_HIGHPOWER
100 #define CAM_MAX_HIGHPOWER  4
101 #endif
102 
103 /*
104  * Structure for queueing a device in a run queue.
105  * There is one run queue for allocating new ccbs,
106  * and another for sending ccbs to the controller.
107  */
108 struct cam_ed_qinfo {
109 	cam_pinfo pinfo;
110 	struct	  cam_ed *device;
111 };
112 
113 /*
114  * The CAM EDT (Existing Device Table) contains the device information for
115  * all devices for all busses in the system.  The table contains a
116  * cam_ed structure for each device on the bus.
117  */
118 struct cam_ed {
119 	TAILQ_ENTRY(cam_ed) links;
120 	struct	cam_ed_qinfo alloc_ccb_entry;
121 	struct	cam_ed_qinfo send_ccb_entry;
122 	struct	cam_et	 *target;
123 	struct	cam_sim  *sim;
124 	lun_id_t	 lun_id;
125 	struct	camq drvq;		/*
126 					 * Queue of type drivers wanting to do
127 					 * work on this device.
128 					 */
129 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
130 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
131 	struct	periph_list periphs;	/* All attached devices */
132 	u_int	generation;		/* Generation number */
133 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
134 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
135 					/* Storage for the inquiry data */
136 	cam_proto	 protocol;
137 	u_int		 protocol_version;
138 	cam_xport	 transport;
139 	u_int		 transport_version;
140 	struct		 scsi_inquiry_data inq_data;
141 	u_int8_t	 inq_flags;	/*
142 					 * Current settings for inquiry flags.
143 					 * This allows us to override settings
144 					 * like disconnection and tagged
145 					 * queuing for a device.
146 					 */
147 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
148 	u_int8_t	 serial_num_len;
149 	u_int8_t	*serial_num;
150 	u_int32_t	 qfrozen_cnt;
151 	u_int32_t	 flags;
152 #define CAM_DEV_UNCONFIGURED	 	0x01
153 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
154 #define CAM_DEV_REL_ON_COMPLETE		0x04
155 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
156 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
157 #define CAM_DEV_TAG_AFTER_COUNT		0x20
158 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
159 #define	CAM_DEV_IN_DV			0x80
160 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
161 	u_int32_t	 tag_delay_count;
162 #define	CAM_TAG_DELAY_COUNT		5
163 	u_int32_t	 tag_saved_openings;
164 	u_int32_t	 refcount;
165 	struct callout	 callout;
166 };
167 
168 /*
169  * Each target is represented by an ET (Existing Target).  These
170  * entries are created when a target is successfully probed with an
171  * identify, and removed when a device fails to respond after a number
172  * of retries, or a bus rescan finds the device missing.
173  */
174 struct cam_et {
175 	TAILQ_HEAD(, cam_ed) ed_entries;
176 	TAILQ_ENTRY(cam_et) links;
177 	struct	cam_eb	*bus;
178 	target_id_t	target_id;
179 	u_int32_t	refcount;
180 	u_int		generation;
181 	struct		timeval last_reset;	/* uptime of last reset */
182 };
183 
184 /*
185  * Each bus is represented by an EB (Existing Bus).  These entries
186  * are created by calls to xpt_bus_register and deleted by calls to
187  * xpt_bus_deregister.
188  */
189 struct cam_eb {
190 	TAILQ_HEAD(, cam_et) et_entries;
191 	TAILQ_ENTRY(cam_eb)  links;
192 	path_id_t	     path_id;
193 	struct cam_sim	     *sim;
194 	struct timeval	     last_reset;	/* uptime of last reset */
195 	u_int32_t	     flags;
196 #define	CAM_EB_RUNQ_SCHEDULED	0x01
197 	u_int32_t	     refcount;
198 	u_int		     generation;
199 	int		     counted_to_config;	/* busses_to_config */
200 };
201 
202 struct cam_path {
203 	struct cam_periph *periph;
204 	struct cam_eb	  *bus;
205 	struct cam_et	  *target;
206 	struct cam_ed	  *device;
207 };
208 
209 struct xpt_quirk_entry {
210 	struct scsi_inquiry_pattern inq_pat;
211 	u_int8_t quirks;
212 #define	CAM_QUIRK_NOLUNS	0x01
213 #define	CAM_QUIRK_NOSERIAL	0x02
214 #define	CAM_QUIRK_HILUNS	0x04
215 #define	CAM_QUIRK_NOHILUNS	0x08
216 	u_int mintags;
217 	u_int maxtags;
218 };
219 
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224     sysctl_cam_search_luns, "I",
225     "allow search above LUN 7 for SCSI3 and greater devices");
226 
227 #define	CAM_SCSI2_MAXLUN	8
228 /*
229  * If we're not quirked to search <= the first 8 luns
230  * and we are either quirked to search above lun 8,
231  * or we're > SCSI-2 and we've enabled hilun searching,
232  * or we're > SCSI-2 and the last lun was a success,
233  * we can look for luns above lun 8.
234  */
235 #define	CAN_SRCH_HI_SPARSE(dv)				\
236   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
237   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
238   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
239 
240 #define	CAN_SRCH_HI_DENSE(dv)				\
241   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
242   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
243   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
244 
245 typedef enum {
246 	XPT_FLAG_OPEN		= 0x01
247 } xpt_flags;
248 
249 struct xpt_softc {
250 	xpt_flags		flags;
251 	u_int32_t		xpt_generation;
252 
253 	/* number of high powered commands that can go through right now */
254 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
255 	int			num_highpower;
256 
257 	/* queue for handling async rescan requests. */
258 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
259 	int			ccb_scanq_running;
260 
261 	/* Registered busses */
262 	TAILQ_HEAD(,cam_eb)	xpt_busses;
263 	u_int			bus_generation;
264 
265 	struct intr_config_hook	*xpt_config_hook;
266 
267 	struct lock		xpt_topo_lock;
268 	struct lock		xpt_lock;
269 };
270 
271 static const char quantum[] = "QUANTUM";
272 static const char sony[] = "SONY";
273 static const char west_digital[] = "WDIGTL";
274 static const char samsung[] = "SAMSUNG";
275 static const char seagate[] = "SEAGATE";
276 static const char microp[] = "MICROP";
277 
278 static struct xpt_quirk_entry xpt_quirk_table[] =
279 {
280 	{
281 		/* Reports QUEUE FULL for temporary resource shortages */
282 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
283 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
284 	},
285 	{
286 		/* Reports QUEUE FULL for temporary resource shortages */
287 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
288 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
289 	},
290 	{
291 		/* Reports QUEUE FULL for temporary resource shortages */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
293 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
294 	},
295 	{
296 		/* Broken tagged queuing drive */
297 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
298 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
299 	},
300 	{
301 		/* Broken tagged queuing drive */
302 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
303 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
304 	},
305 	{
306 		/* Broken tagged queuing drive */
307 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
308 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
309 	},
310 	{
311 		/*
312 		 * Unfortunately, the Quantum Atlas III has the same
313 		 * problem as the Atlas II drives above.
314 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
315 		 *
316 		 * For future reference, the drive with the problem was:
317 		 * QUANTUM QM39100TD-SW N1B0
318 		 *
319 		 * It's possible that Quantum will fix the problem in later
320 		 * firmware revisions.  If that happens, the quirk entry
321 		 * will need to be made specific to the firmware revisions
322 		 * with the problem.
323 		 *
324 		 */
325 		/* Reports QUEUE FULL for temporary resource shortages */
326 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
327 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
328 	},
329 	{
330 		/*
331 		 * 18 Gig Atlas III, same problem as the 9G version.
332 		 * Reported by: Andre Albsmeier
333 		 *		<andre.albsmeier@mchp.siemens.de>
334 		 *
335 		 * For future reference, the drive with the problem was:
336 		 * QUANTUM QM318000TD-S N491
337 		 */
338 		/* Reports QUEUE FULL for temporary resource shortages */
339 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
340 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
341 	},
342 	{
343 		/*
344 		 * Broken tagged queuing drive
345 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
346 		 *         and: Martin Renters <martin@tdc.on.ca>
347 		 */
348 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
349 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
350 	},
351 		/*
352 		 * The Seagate Medalist Pro drives have very poor write
353 		 * performance with anything more than 2 tags.
354 		 *
355 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
356 		 * Drive:  <SEAGATE ST36530N 1444>
357 		 *
358 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
359 		 * Drive:  <SEAGATE ST34520W 1281>
360 		 *
361 		 * No one has actually reported that the 9G version
362 		 * (ST39140*) of the Medalist Pro has the same problem, but
363 		 * we're assuming that it does because the 4G and 6.5G
364 		 * versions of the drive are broken.
365 		 */
366 	{
367 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
368 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
369 	},
370 	{
371 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
372 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
373 	},
374 	{
375 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
376 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
377 	},
378 	{
379 		/*
380 		 * Slow when tagged queueing is enabled.  Write performance
381 		 * steadily drops off with more and more concurrent
382 		 * transactions.  Best sequential write performance with
383 		 * tagged queueing turned off and write caching turned on.
384 		 *
385 		 * PR:  kern/10398
386 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
387 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
388 		 *
389 		 * The drive with the problem had the "S65A" firmware
390 		 * revision, and has also been reported (by Stephen J.
391 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
392 		 * firmware revision.
393 		 *
394 		 * Although no one has reported problems with the 2 gig
395 		 * version of the DCAS drive, the assumption is that it
396 		 * has the same problems as the 4 gig version.  Therefore
397 		 * this quirk entries disables tagged queueing for all
398 		 * DCAS drives.
399 		 */
400 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
401 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* Broken tagged queuing drive */
405 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
406 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
407 	},
408 	{
409 		/* Broken tagged queuing drive */
410 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
411 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/* This does not support other than LUN 0 */
415 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
416 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
417 	},
418 	{
419 		/*
420 		 * Broken tagged queuing drive.
421 		 * Submitted by:
422 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
423 		 * in PR kern/9535
424 		 */
425 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
426 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
427 	},
428         {
429 		/*
430 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
431 		 * 8MB/sec.)
432 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
433 		 * Best performance with these drives is achieved with
434 		 * tagged queueing turned off, and write caching turned on.
435 		 */
436 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
437 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
438         },
439         {
440 		/*
441 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
442 		 * 8MB/sec.)
443 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
444 		 * Best performance with these drives is achieved with
445 		 * tagged queueing turned off, and write caching turned on.
446 		 */
447 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
448 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
449         },
450 	{
451 		/*
452 		 * Doesn't handle queue full condition correctly,
453 		 * so we need to limit maxtags to what the device
454 		 * can handle instead of determining this automatically.
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
457 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
458 	},
459 	{
460 		/* Really only one LUN */
461 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
462 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
463 	},
464 	{
465 		/* I can't believe we need a quirk for DPT volumes. */
466 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
467 		CAM_QUIRK_NOLUNS,
468 		/*mintags*/0, /*maxtags*/255
469 	},
470 	{
471 		/*
472 		 * Many Sony CDROM drives don't like multi-LUN probing.
473 		 */
474 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
475 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
476 	},
477 	{
478 		/*
479 		 * This drive doesn't like multiple LUN probing.
480 		 * Submitted by:  Parag Patel <parag@cgt.com>
481 		 */
482 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
483 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484 	},
485 	{
486 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
487 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 	},
489 	{
490 		/*
491 		 * The 8200 doesn't like multi-lun probing, and probably
492 		 * don't like serial number requests either.
493 		 */
494 		{
495 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
496 			"EXB-8200*", "*"
497 		},
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/*
502 		 * Let's try the same as above, but for a drive that says
503 		 * it's an IPL-6860 but is actually an EXB 8200.
504 		 */
505 		{
506 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
507 			"IPL-6860*", "*"
508 		},
509 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
510 	},
511 	{
512 		/*
513 		 * These Hitachi drives don't like multi-lun probing.
514 		 * The PR submitter has a DK319H, but says that the Linux
515 		 * kernel has a similar work-around for the DK312 and DK314,
516 		 * so all DK31* drives are quirked here.
517 		 * PR:            misc/18793
518 		 * Submitted by:  Paul Haddad <paul@pth.com>
519 		 */
520 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
521 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
522 	},
523 	{
524 		/*
525 		 * The Hitachi CJ series with J8A8 firmware apparantly has
526 		 * problems with tagged commands.
527 		 * PR: 23536
528 		 * Reported by: amagai@nue.org
529 		 */
530 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
531 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
532 	},
533 	{
534 		/*
535 		 * These are the large storage arrays.
536 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
537 		 */
538 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
539 		CAM_QUIRK_HILUNS, 2, 1024
540 	},
541 	{
542 		/*
543 		 * This old revision of the TDC3600 is also SCSI-1, and
544 		 * hangs upon serial number probing.
545 		 */
546 		{
547 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
548 			" TDC 3600", "U07:"
549 		},
550 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
551 	},
552 	{
553 		/*
554 		 * Would repond to all LUNs if asked for.
555 		 */
556 		{
557 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
558 			"CP150", "*"
559 		},
560 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
561 	},
562 	{
563 		/*
564 		 * Would repond to all LUNs if asked for.
565 		 */
566 		{
567 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
568 			"96X2*", "*"
569 		},
570 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
571 	},
572 	{
573 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
574 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
575 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
576 	},
577 	{
578 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
579 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
580 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
581 	},
582 	{
583 		/* TeraSolutions special settings for TRC-22 RAID */
584 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
585 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
586 	},
587 	{
588 		/* Veritas Storage Appliance */
589 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
590 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
591 	},
592 	{
593 		/*
594 		 * Would respond to all LUNs.  Device type and removable
595 		 * flag are jumper-selectable.
596 		 */
597 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
598 		  "Tahiti 1", "*"
599 		},
600 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
601 	},
602 	{
603 		/* EasyRAID E5A aka. areca ARC-6010 */
604 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
605 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
606 	},
607 	{
608 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
609 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
610 	},
611 	{
612 		/* Default tagged queuing parameters for all devices */
613 		{
614 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
615 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
616 		},
617 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
618 	},
619 };
620 
621 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
622 
623 typedef enum {
624 	DM_RET_COPY		= 0x01,
625 	DM_RET_FLAG_MASK	= 0x0f,
626 	DM_RET_NONE		= 0x00,
627 	DM_RET_STOP		= 0x10,
628 	DM_RET_DESCEND		= 0x20,
629 	DM_RET_ERROR		= 0x30,
630 	DM_RET_ACTION_MASK	= 0xf0
631 } dev_match_ret;
632 
633 typedef enum {
634 	XPT_DEPTH_BUS,
635 	XPT_DEPTH_TARGET,
636 	XPT_DEPTH_DEVICE,
637 	XPT_DEPTH_PERIPH
638 } xpt_traverse_depth;
639 
640 struct xpt_traverse_config {
641 	xpt_traverse_depth	depth;
642 	void			*tr_func;
643 	void			*tr_arg;
644 };
645 
646 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
647 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
648 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
649 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
650 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
651 
652 /* Transport layer configuration information */
653 static struct xpt_softc xsoftc;
654 
655 /* Queues for our software interrupt handler */
656 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
657 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
658 static cam_simq_t cam_simq;
659 static struct spinlock cam_simq_spin;
660 
661 struct cam_periph *xpt_periph;
662 
663 static periph_init_t xpt_periph_init;
664 
665 static periph_init_t probe_periph_init;
666 
667 static struct periph_driver xpt_driver =
668 {
669 	xpt_periph_init, "xpt",
670 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
671 };
672 
673 static struct periph_driver probe_driver =
674 {
675 	probe_periph_init, "probe",
676 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
677 };
678 
679 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
680 PERIPHDRIVER_DECLARE(probe, probe_driver);
681 
682 static d_open_t xptopen;
683 static d_close_t xptclose;
684 static d_ioctl_t xptioctl;
685 
686 static struct dev_ops xpt_ops = {
687 	{ "xpt", 0, D_MPSAFE },
688 	.d_open = xptopen,
689 	.d_close = xptclose,
690 	.d_ioctl = xptioctl
691 };
692 
693 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
694 static void dead_sim_poll(struct cam_sim *sim);
695 
696 /* Dummy SIM that is used when the real one has gone. */
697 static struct cam_sim cam_dead_sim;
698 static struct lock    cam_dead_lock;
699 
700 /* Storage for debugging datastructures */
701 #ifdef	CAMDEBUG
702 struct cam_path *cam_dpath;
703 u_int32_t cam_dflags;
704 u_int32_t cam_debug_delay;
705 #endif
706 
707 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
708 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
709 #endif
710 
711 /*
712  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
713  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
714  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
715  */
716 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
717     || defined(CAM_DEBUG_LUN)
718 #ifdef CAMDEBUG
719 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
720     || !defined(CAM_DEBUG_LUN)
721 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
722         and CAM_DEBUG_LUN"
723 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
724 #else /* !CAMDEBUG */
725 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
726 #endif /* CAMDEBUG */
727 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
728 
729 /* Our boot-time initialization hook */
730 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
731 
732 static moduledata_t cam_moduledata = {
733 	"cam",
734 	cam_module_event_handler,
735 	NULL
736 };
737 
738 static int	xpt_init(void *);
739 
740 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
741 MODULE_VERSION(cam, 1);
742 
743 
744 static cam_status	xpt_compile_path(struct cam_path *new_path,
745 					 struct cam_periph *perph,
746 					 path_id_t path_id,
747 					 target_id_t target_id,
748 					 lun_id_t lun_id);
749 
750 static void		xpt_release_path(struct cam_path *path);
751 
752 static void		xpt_async_bcast(struct async_list *async_head,
753 					u_int32_t async_code,
754 					struct cam_path *path,
755 					void *async_arg);
756 static void		xpt_dev_async(u_int32_t async_code,
757 				      struct cam_eb *bus,
758 				      struct cam_et *target,
759 				      struct cam_ed *device,
760 				      void *async_arg);
761 static path_id_t xptnextfreepathid(void);
762 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
763 static union ccb *xpt_get_ccb(struct cam_ed *device);
764 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
765 				  u_int32_t new_priority);
766 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
767 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
768 static timeout_t xpt_release_devq_timeout;
769 static void	 xpt_release_bus(struct cam_eb *bus);
770 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
771 					 int run_queue);
772 static struct cam_et*
773 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
774 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
775 static struct cam_ed*
776 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
777 				  lun_id_t lun_id);
778 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
779 				    struct cam_ed *device);
780 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
781 static struct cam_eb*
782 		 xpt_find_bus(path_id_t path_id);
783 static struct cam_et*
784 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
785 static struct cam_ed*
786 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
787 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
788 static void	 xpt_scan_lun(struct cam_periph *periph,
789 			      struct cam_path *path, cam_flags flags,
790 			      union ccb *ccb);
791 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
792 static xpt_busfunc_t	xptconfigbuscountfunc;
793 static xpt_busfunc_t	xptconfigfunc;
794 static void	 xpt_config(void *arg);
795 static xpt_devicefunc_t xptpassannouncefunc;
796 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
797 static void	 xpt_uncount_bus (struct cam_eb *bus);
798 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
799 static void	 xptpoll(struct cam_sim *sim);
800 static inthand2_t swi_cambio;
801 static void	 camisr(void *);
802 static void	 camisr_runqueue(struct cam_sim *);
803 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
804 				    u_int num_patterns, struct cam_eb *bus);
805 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
806 				       u_int num_patterns,
807 				       struct cam_ed *device);
808 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
809 				       u_int num_patterns,
810 				       struct cam_periph *periph);
811 static xpt_busfunc_t	xptedtbusfunc;
812 static xpt_targetfunc_t	xptedttargetfunc;
813 static xpt_devicefunc_t	xptedtdevicefunc;
814 static xpt_periphfunc_t	xptedtperiphfunc;
815 static xpt_pdrvfunc_t	xptplistpdrvfunc;
816 static xpt_periphfunc_t	xptplistperiphfunc;
817 static int		xptedtmatch(struct ccb_dev_match *cdm);
818 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
819 static int		xptbustraverse(struct cam_eb *start_bus,
820 				       xpt_busfunc_t *tr_func, void *arg);
821 static int		xpttargettraverse(struct cam_eb *bus,
822 					  struct cam_et *start_target,
823 					  xpt_targetfunc_t *tr_func, void *arg);
824 static int		xptdevicetraverse(struct cam_et *target,
825 					  struct cam_ed *start_device,
826 					  xpt_devicefunc_t *tr_func, void *arg);
827 static int		xptperiphtraverse(struct cam_ed *device,
828 					  struct cam_periph *start_periph,
829 					  xpt_periphfunc_t *tr_func, void *arg);
830 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
831 					xpt_pdrvfunc_t *tr_func, void *arg);
832 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
833 					    struct cam_periph *start_periph,
834 					    xpt_periphfunc_t *tr_func,
835 					    void *arg);
836 static xpt_busfunc_t	xptdefbusfunc;
837 static xpt_targetfunc_t	xptdeftargetfunc;
838 static xpt_devicefunc_t	xptdefdevicefunc;
839 static xpt_periphfunc_t	xptdefperiphfunc;
840 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
841 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
842 					    void *arg);
843 static xpt_devicefunc_t	xptsetasyncfunc;
844 static xpt_busfunc_t	xptsetasyncbusfunc;
845 static cam_status	xptregister(struct cam_periph *periph,
846 				    void *arg);
847 static cam_status	proberegister(struct cam_periph *periph,
848 				      void *arg);
849 static void	 probeschedule(struct cam_periph *probe_periph);
850 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
851 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
852 static int       proberequestbackoff(struct cam_periph *periph,
853 				     struct cam_ed *device);
854 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
855 static void	 probecleanup(struct cam_periph *periph);
856 static void	 xpt_find_quirk(struct cam_ed *device);
857 static void	 xpt_devise_transport(struct cam_path *path);
858 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
859 					   struct cam_ed *device,
860 					   int async_update);
861 static void	 xpt_toggle_tags(struct cam_path *path);
862 static void	 xpt_start_tags(struct cam_path *path);
863 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
864 					    struct cam_ed *dev);
865 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
866 					   struct cam_ed *dev);
867 static __inline int periph_is_queued(struct cam_periph *periph);
868 static __inline int device_is_alloc_queued(struct cam_ed *device);
869 static __inline int device_is_send_queued(struct cam_ed *device);
870 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
871 
872 static __inline int
xpt_schedule_dev_allocq(struct cam_eb * bus,struct cam_ed * dev)873 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
874 {
875 	int retval;
876 
877 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
878 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
879 			cam_ccbq_resize(&dev->ccbq,
880 					dev->ccbq.dev_openings
881 					+ dev->ccbq.dev_active);
882 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
883 		}
884 		/*
885 		 * The priority of a device waiting for CCB resources
886 		 * is that of the the highest priority peripheral driver
887 		 * enqueued.
888 		 */
889 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
890 					  &dev->alloc_ccb_entry.pinfo,
891 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
892 	} else {
893 		retval = 0;
894 	}
895 
896 	return (retval);
897 }
898 
899 static __inline int
xpt_schedule_dev_sendq(struct cam_eb * bus,struct cam_ed * dev)900 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
901 {
902 	int	retval;
903 
904 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
905 		/*
906 		 * The priority of a device waiting for controller
907 		 * resources is that of the the highest priority CCB
908 		 * enqueued.
909 		 */
910 		retval =
911 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
912 				     &dev->send_ccb_entry.pinfo,
913 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
914 	} else {
915 		retval = 0;
916 	}
917 	return (retval);
918 }
919 
920 static __inline int
periph_is_queued(struct cam_periph * periph)921 periph_is_queued(struct cam_periph *periph)
922 {
923 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
924 }
925 
926 static __inline int
device_is_alloc_queued(struct cam_ed * device)927 device_is_alloc_queued(struct cam_ed *device)
928 {
929 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
930 }
931 
932 static __inline int
device_is_send_queued(struct cam_ed * device)933 device_is_send_queued(struct cam_ed *device)
934 {
935 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
936 }
937 
938 static __inline int
dev_allocq_is_runnable(struct cam_devq * devq)939 dev_allocq_is_runnable(struct cam_devq *devq)
940 {
941 	/*
942 	 * Have work to do.
943 	 * Have space to do more work.
944 	 * Allowed to do work.
945 	 */
946 	return ((devq->alloc_queue.qfrozen_cnt == 0)
947 	     && (devq->alloc_queue.entries > 0)
948 	     && (devq->alloc_openings > 0));
949 }
950 
951 static void
xpt_periph_init(void)952 xpt_periph_init(void)
953 {
954 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
955 }
956 
957 static void
probe_periph_init(void)958 probe_periph_init(void)
959 {
960 }
961 
962 
963 static void
xptdone(struct cam_periph * periph,union ccb * done_ccb)964 xptdone(struct cam_periph *periph, union ccb *done_ccb)
965 {
966 	/* Caller will release the CCB */
967 	wakeup(&done_ccb->ccb_h.cbfcnp);
968 }
969 
970 static int
xptopen(struct dev_open_args * ap)971 xptopen(struct dev_open_args *ap)
972 {
973 	cdev_t dev = ap->a_head.a_dev;
974 
975 	/*
976 	 * Only allow read-write access.
977 	 */
978 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
979 		return(EPERM);
980 
981 	/*
982 	 * We don't allow nonblocking access.
983 	 */
984 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
985 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
986 		return(ENODEV);
987 	}
988 
989 	/* Mark ourselves open */
990 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
991 	xsoftc.flags |= XPT_FLAG_OPEN;
992 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
993 
994 	return(0);
995 }
996 
997 static int
xptclose(struct dev_close_args * ap)998 xptclose(struct dev_close_args *ap)
999 {
1000 
1001 	/* Mark ourselves closed */
1002 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1003 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1004 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1005 
1006 	return(0);
1007 }
1008 
1009 /*
1010  * Don't automatically grab the xpt softc lock here even though this is going
1011  * through the xpt device.  The xpt device is really just a back door for
1012  * accessing other devices and SIMs, so the right thing to do is to grab
1013  * the appropriate SIM lock once the bus/SIM is located.
1014  */
1015 static int
xptioctl(struct dev_ioctl_args * ap)1016 xptioctl(struct dev_ioctl_args *ap)
1017 {
1018 	int error;
1019 
1020 	error = 0;
1021 
1022 	switch(ap->a_cmd) {
1023 	/*
1024 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1025 	 * to accept CCB types that don't quite make sense to send through a
1026 	 * passthrough driver.
1027 	 */
1028 	case CAMIOCOMMAND: {
1029 		union ccb *ccb;
1030 		union ccb *inccb;
1031 		struct cam_eb *bus;
1032 
1033 		inccb = (union ccb *)ap->a_data;
1034 
1035 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1036 		if (bus == NULL) {
1037 			error = EINVAL;
1038 			break;
1039 		}
1040 
1041 		switch(inccb->ccb_h.func_code) {
1042 		case XPT_SCAN_BUS:
1043 		case XPT_RESET_BUS:
1044 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1045 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1046 				error = EINVAL;
1047 				break;
1048 			}
1049 			/* FALLTHROUGH */
1050 		case XPT_PATH_INQ:
1051 		case XPT_ENG_INQ:
1052 		case XPT_SCAN_LUN:
1053 
1054 			ccb = xpt_alloc_ccb();
1055 
1056 			CAM_SIM_LOCK(bus->sim);
1057 
1058 			/*
1059 			 * Create a path using the bus, target, and lun the
1060 			 * user passed in.
1061 			 */
1062 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1063 					    inccb->ccb_h.path_id,
1064 					    inccb->ccb_h.target_id,
1065 					    inccb->ccb_h.target_lun) !=
1066 					    CAM_REQ_CMP){
1067 				error = EINVAL;
1068 				CAM_SIM_UNLOCK(bus->sim);
1069 				xpt_free_ccb(&ccb->ccb_h);
1070 				break;
1071 			}
1072 			/* Ensure all of our fields are correct */
1073 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1074 				      inccb->ccb_h.pinfo.priority);
1075 			xpt_merge_ccb(ccb, inccb);
1076 			ccb->ccb_h.cbfcnp = xptdone;
1077 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1078 			bcopy(ccb, inccb, sizeof(union ccb));
1079 			xpt_free_path(ccb->ccb_h.path);
1080 			xpt_free_ccb(&ccb->ccb_h);
1081 			CAM_SIM_UNLOCK(bus->sim);
1082 			break;
1083 
1084 		case XPT_DEBUG: {
1085 			union ccb *ccb;
1086 
1087 			ccb = xpt_alloc_ccb();
1088 
1089 			/*
1090 			 * This is an immediate CCB, so it's okay to
1091 			 * allocate it on the stack.
1092 			 */
1093 
1094 			CAM_SIM_LOCK(bus->sim);
1095 
1096 			/*
1097 			 * Create a path using the bus, target, and lun the
1098 			 * user passed in.
1099 			 */
1100 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1101 					    inccb->ccb_h.path_id,
1102 					    inccb->ccb_h.target_id,
1103 					    inccb->ccb_h.target_lun) !=
1104 					    CAM_REQ_CMP){
1105 				error = EINVAL;
1106 				CAM_SIM_UNLOCK(bus->sim);
1107 				xpt_free_ccb(&ccb->ccb_h);
1108 				break;
1109 			}
1110 			/* Ensure all of our fields are correct */
1111 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1112 				      inccb->ccb_h.pinfo.priority);
1113 			xpt_merge_ccb(ccb, inccb);
1114 			ccb->ccb_h.cbfcnp = xptdone;
1115 			xpt_action(ccb);
1116 			CAM_SIM_UNLOCK(bus->sim);
1117 			bcopy(ccb, inccb, sizeof(union ccb));
1118 			inccb->ccb_h.timeout_ch = NULL;	/* SAFETY */
1119 			xpt_free_path(ccb->ccb_h.path);
1120 			xpt_free_ccb(&ccb->ccb_h);
1121 
1122 			break;
1123 
1124 		}
1125 		case XPT_DEV_MATCH: {
1126 			struct cam_periph_map_info mapinfo;
1127 			struct cam_path *old_path;
1128 
1129 			/*
1130 			 * We can't deal with physical addresses for this
1131 			 * type of transaction.
1132 			 */
1133 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1134 				error = EINVAL;
1135 				break;
1136 			}
1137 
1138 			/*
1139 			 * Save this in case the caller had it set to
1140 			 * something in particular.
1141 			 */
1142 			old_path = inccb->ccb_h.path;
1143 
1144 			/*
1145 			 * We really don't need a path for the matching
1146 			 * code.  The path is needed because of the
1147 			 * debugging statements in xpt_action().  They
1148 			 * assume that the CCB has a valid path.
1149 			 */
1150 			inccb->ccb_h.path = xpt_periph->path;
1151 
1152 			bzero(&mapinfo, sizeof(mapinfo));
1153 
1154 			/*
1155 			 * Map the pattern and match buffers into kernel
1156 			 * virtual address space.
1157 			 */
1158 			error = cam_periph_mapmem(inccb, &mapinfo);
1159 
1160 			if (error) {
1161 				inccb->ccb_h.path = old_path;
1162 				break;
1163 			}
1164 
1165 			/*
1166 			 * This is an immediate CCB, we can send it on directly.
1167 			 */
1168 			xpt_action(inccb);
1169 
1170 			/*
1171 			 * Map the buffers back into user space.
1172 			 */
1173 			cam_periph_unmapmem(inccb, &mapinfo);
1174 
1175 			inccb->ccb_h.path = old_path;
1176 
1177 			error = 0;
1178 			break;
1179 		}
1180 		default:
1181 			error = ENOTSUP;
1182 			break;
1183 		}
1184 		xpt_release_bus(bus);
1185 		break;
1186 	}
1187 	/*
1188 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1189 	 * with the periphal driver name and unit name filled in.  The other
1190 	 * fields don't really matter as input.  The passthrough driver name
1191 	 * ("pass"), and unit number are passed back in the ccb.  The current
1192 	 * device generation number, and the index into the device peripheral
1193 	 * driver list, and the status are also passed back.  Note that
1194 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1195 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1196 	 * (or rather should be) impossible for the device peripheral driver
1197 	 * list to change since we look at the whole thing in one pass, and
1198 	 * we do it with lock protection.
1199 	 *
1200 	 */
1201 	case CAMGETPASSTHRU: {
1202 		union ccb *ccb;
1203 		struct cam_periph *periph;
1204 		struct periph_driver **p_drv;
1205 		char   *name;
1206 		u_int unit;
1207 		u_int cur_generation;
1208 		int base_periph_found;
1209 		int splbreaknum;
1210 
1211 		ccb = (union ccb *)ap->a_data;
1212 		unit = ccb->cgdl.unit_number;
1213 		name = ccb->cgdl.periph_name;
1214 		/*
1215 		 * Every 100 devices, we want to drop our lock protection to
1216 		 * give the software interrupt handler a chance to run.
1217 		 * Most systems won't run into this check, but this should
1218 		 * avoid starvation in the software interrupt handler in
1219 		 * large systems.
1220 		 */
1221 		splbreaknum = 100;
1222 
1223 		ccb = (union ccb *)ap->a_data;
1224 
1225 		base_periph_found = 0;
1226 
1227 		/*
1228 		 * Sanity check -- make sure we don't get a null peripheral
1229 		 * driver name.
1230 		 */
1231 		if (*ccb->cgdl.periph_name == '\0') {
1232 			error = EINVAL;
1233 			break;
1234 		}
1235 
1236 		/* Keep the list from changing while we traverse it */
1237 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1238 ptstartover:
1239 		cur_generation = xsoftc.xpt_generation;
1240 
1241 		/* first find our driver in the list of drivers */
1242 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1243 			if (strcmp((*p_drv)->driver_name, name) == 0)
1244 				break;
1245 		}
1246 
1247 		if (*p_drv == NULL) {
1248 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1249 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1250 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1251 			*ccb->cgdl.periph_name = '\0';
1252 			ccb->cgdl.unit_number = 0;
1253 			error = ENOENT;
1254 			break;
1255 		}
1256 
1257 		/*
1258 		 * Run through every peripheral instance of this driver
1259 		 * and check to see whether it matches the unit passed
1260 		 * in by the user.  If it does, get out of the loops and
1261 		 * find the passthrough driver associated with that
1262 		 * peripheral driver.
1263 		 */
1264 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1265 
1266 			if (periph->unit_number == unit) {
1267 				break;
1268 			} else if (--splbreaknum == 0) {
1269 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1270 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1271 				splbreaknum = 100;
1272 				if (cur_generation != xsoftc.xpt_generation)
1273 				       goto ptstartover;
1274 			}
1275 		}
1276 		/*
1277 		 * If we found the peripheral driver that the user passed
1278 		 * in, go through all of the peripheral drivers for that
1279 		 * particular device and look for a passthrough driver.
1280 		 */
1281 		if (periph != NULL) {
1282 			struct cam_ed *device;
1283 			int i;
1284 
1285 			base_periph_found = 1;
1286 			device = periph->path->device;
1287 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1288 			     periph != NULL;
1289 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1290 				/*
1291 				 * Check to see whether we have a
1292 				 * passthrough device or not.
1293 				 */
1294 				if (strcmp(periph->periph_name, "pass") == 0) {
1295 					/*
1296 					 * Fill in the getdevlist fields.
1297 					 */
1298 					strcpy(ccb->cgdl.periph_name,
1299 					       periph->periph_name);
1300 					ccb->cgdl.unit_number =
1301 						periph->unit_number;
1302 					if (SLIST_NEXT(periph, periph_links))
1303 						ccb->cgdl.status =
1304 							CAM_GDEVLIST_MORE_DEVS;
1305 					else
1306 						ccb->cgdl.status =
1307 						       CAM_GDEVLIST_LAST_DEVICE;
1308 					ccb->cgdl.generation =
1309 						device->generation;
1310 					ccb->cgdl.index = i;
1311 					/*
1312 					 * Fill in some CCB header fields
1313 					 * that the user may want.
1314 					 */
1315 					ccb->ccb_h.path_id =
1316 						periph->path->bus->path_id;
1317 					ccb->ccb_h.target_id =
1318 						periph->path->target->target_id;
1319 					ccb->ccb_h.target_lun =
1320 						periph->path->device->lun_id;
1321 					ccb->ccb_h.status = CAM_REQ_CMP;
1322 					break;
1323 				}
1324 			}
1325 		}
1326 
1327 		/*
1328 		 * If the periph is null here, one of two things has
1329 		 * happened.  The first possibility is that we couldn't
1330 		 * find the unit number of the particular peripheral driver
1331 		 * that the user is asking about.  e.g. the user asks for
1332 		 * the passthrough driver for "da11".  We find the list of
1333 		 * "da" peripherals all right, but there is no unit 11.
1334 		 * The other possibility is that we went through the list
1335 		 * of peripheral drivers attached to the device structure,
1336 		 * but didn't find one with the name "pass".  Either way,
1337 		 * we return ENOENT, since we couldn't find something.
1338 		 */
1339 		if (periph == NULL) {
1340 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1341 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1342 			*ccb->cgdl.periph_name = '\0';
1343 			ccb->cgdl.unit_number = 0;
1344 			error = ENOENT;
1345 			/*
1346 			 * It is unfortunate that this is even necessary,
1347 			 * but there are many, many clueless users out there.
1348 			 * If this is true, the user is looking for the
1349 			 * passthrough driver, but doesn't have one in his
1350 			 * kernel.
1351 			 */
1352 			if (base_periph_found == 1) {
1353 				kprintf("xptioctl: pass driver is not in the "
1354 				       "kernel\n");
1355 				kprintf("xptioctl: put \"device pass\" in "
1356 				       "your kernel config file\n");
1357 			}
1358 		}
1359 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1360 		break;
1361 		}
1362 	default:
1363 		error = ENOTTY;
1364 		break;
1365 	}
1366 
1367 	return(error);
1368 }
1369 
1370 static int
cam_module_event_handler(module_t mod,int what,void * arg)1371 cam_module_event_handler(module_t mod, int what, void *arg)
1372 {
1373 	int error;
1374 
1375 	switch (what) {
1376 	case MOD_LOAD:
1377 		if ((error = xpt_init(NULL)) != 0)
1378 			return (error);
1379 		break;
1380 	case MOD_UNLOAD:
1381 		return EBUSY;
1382 	default:
1383 		return EOPNOTSUPP;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Thread to handle asynchronous main-context requests.
1391  *
1392  * This function is typically used by drivers to perform complex actions
1393  * such as bus scans and engineering requests in a main context instead
1394  * of an interrupt context.
1395  */
1396 static void
xpt_scanner_thread(void * dummy)1397 xpt_scanner_thread(void *dummy)
1398 {
1399 	union ccb	*ccb;
1400 	struct cam_sim	*sim;
1401 
1402 	for (;;) {
1403 		xpt_lock_buses();
1404 		xsoftc.ccb_scanq_running = 1;
1405 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1406 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1407 				     sim_links.tqe);
1408 			xpt_unlock_buses();
1409 
1410 			sim = ccb->ccb_h.path->bus->sim;
1411 			CAM_SIM_LOCK(sim);
1412 			xpt_action(ccb);
1413 			CAM_SIM_UNLOCK(sim);
1414 
1415 			xpt_lock_buses();
1416 		}
1417 		xsoftc.ccb_scanq_running = 0;
1418 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1419 		xpt_unlock_buses();
1420 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1421 	}
1422 }
1423 
1424 /*
1425  * Issue an asynchronous asction
1426  */
1427 void
xpt_action_async(union ccb * ccb)1428 xpt_action_async(union ccb *ccb)
1429 {
1430 	xpt_lock_buses();
1431 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432 	if (xsoftc.ccb_scanq_running == 0) {
1433 		xsoftc.ccb_scanq_running = 1;
1434 		wakeup(&xsoftc.ccb_scanq);
1435 	}
1436 	xpt_unlock_buses();
1437 }
1438 
1439 
1440 /* Functions accessed by the peripheral drivers */
1441 static int
xpt_init(void * dummy)1442 xpt_init(void *dummy)
1443 {
1444 	struct cam_sim *xpt_sim;
1445 	struct cam_path *path;
1446 	struct cam_devq *devq;
1447 	cam_status status;
1448 
1449 	TAILQ_INIT(&xsoftc.xpt_busses);
1450 	TAILQ_INIT(&cam_simq);
1451 	TAILQ_INIT(&xsoftc.ccb_scanq);
1452 	STAILQ_INIT(&xsoftc.highpowerq);
1453 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1454 
1455 	spin_init(&cam_simq_spin, "cam_simq_spin");
1456 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1458 
1459 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461 	spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1462 	cam_dead_sim.sim_action = dead_sim_action;
1463 	cam_dead_sim.sim_poll = dead_sim_poll;
1464 	cam_dead_sim.sim_name = "dead_sim";
1465 	cam_dead_sim.lock = &cam_dead_lock;
1466 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1468 
1469 	/*
1470 	 * The xpt layer is, itself, the equivelent of a SIM.
1471 	 * Allow 16 ccbs in the ccb pool for it.  This should
1472 	 * give decent parallelism when we probe busses and
1473 	 * perform other XPT functions.
1474 	 */
1475 	devq = cam_simq_alloc(16);
1476 	xpt_sim = cam_sim_alloc(xptaction,
1477 				xptpoll,
1478 				"xpt",
1479 				/*softc*/NULL,
1480 				/*unit*/0,
1481 				/*lock*/&xsoftc.xpt_lock,
1482 				/*max_dev_transactions*/0,
1483 				/*max_tagged_dev_transactions*/0,
1484 				devq);
1485 	cam_simq_release(devq);
1486 	if (xpt_sim == NULL)
1487 		return (ENOMEM);
1488 
1489 	xpt_sim->max_ccbs = 16;
1490 
1491 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509 		       " failing attach\n", status);
1510 		return (EINVAL);
1511 	}
1512 
1513 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514 			 path, NULL, 0, xpt_sim);
1515 	xpt_free_path(path);
1516 
1517 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1518 
1519 	/*
1520 	 * Register a callback for when interrupts are enabled.
1521 	 */
1522 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1524 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1525 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1526 	xsoftc.xpt_config_hook->ich_order = 1000;
1527 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529 		kprintf("xpt_init: config_intrhook_establish failed "
1530 		       "- failing attach\n");
1531 	}
1532 
1533 	/* fire up rescan thread */
1534 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535 		kprintf("xpt_init: failed to create rescan thread\n");
1536 	}
1537 	/* Install our software interrupt handlers */
1538 	register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1539 
1540 	return (0);
1541 }
1542 
1543 static cam_status
xptregister(struct cam_periph * periph,void * arg)1544 xptregister(struct cam_periph *periph, void *arg)
1545 {
1546 	struct cam_sim *xpt_sim;
1547 
1548 	if (periph == NULL) {
1549 		kprintf("xptregister: periph was NULL!!\n");
1550 		return(CAM_REQ_CMP_ERR);
1551 	}
1552 
1553 	xpt_sim = (struct cam_sim *)arg;
1554 	xpt_sim->softc = periph;
1555 	xpt_periph = periph;
1556 	periph->softc = NULL;
1557 
1558 	return(CAM_REQ_CMP);
1559 }
1560 
1561 int32_t
xpt_add_periph(struct cam_periph * periph)1562 xpt_add_periph(struct cam_periph *periph)
1563 {
1564 	struct cam_ed *device;
1565 	int32_t	 status;
1566 	struct periph_list *periph_head;
1567 
1568 	sim_lock_assert_owned(periph->sim->lock);
1569 
1570 	device = periph->path->device;
1571 
1572 	periph_head = &device->periphs;
1573 
1574 	status = CAM_REQ_CMP;
1575 
1576 	if (device != NULL) {
1577 		/*
1578 		 * Make room for this peripheral
1579 		 * so it will fit in the queue
1580 		 * when it's scheduled to run
1581 		 */
1582 		status = camq_resize(&device->drvq,
1583 				     device->drvq.array_size + 1);
1584 
1585 		device->generation++;
1586 
1587 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1588 	}
1589 
1590 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591 	xsoftc.xpt_generation++;
1592 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1593 
1594 	return (status);
1595 }
1596 
1597 void
xpt_remove_periph(struct cam_periph * periph)1598 xpt_remove_periph(struct cam_periph *periph)
1599 {
1600 	struct cam_ed *device;
1601 
1602 	sim_lock_assert_owned(periph->sim->lock);
1603 
1604 	device = periph->path->device;
1605 
1606 	if (device != NULL) {
1607 		struct periph_list *periph_head;
1608 
1609 		periph_head = &device->periphs;
1610 
1611 		/* Release the slot for this peripheral */
1612 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1613 
1614 		device->generation++;
1615 
1616 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1617 	}
1618 
1619 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620 	xsoftc.xpt_generation++;
1621 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1622 }
1623 
1624 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627 	struct	ccb_pathinq *cpi;
1628 	struct	ccb_trans_settings *cts;
1629 	struct	cam_path *path;
1630 	u_int	speed;
1631 	u_int	freq;
1632 	u_int	mb;
1633 
1634 	sim_lock_assert_owned(periph->sim->lock);
1635 
1636 	path = periph->path;
1637 
1638 	/* Report basic attachment and inquiry data */
1639 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640 	       periph->periph_name, periph->unit_number,
1641 	       path->bus->sim->sim_name,
1642 	       path->bus->sim->unit_number,
1643 	       path->bus->sim->bus_id,
1644 	       path->target->target_id,
1645 	       path->device->lun_id);
1646 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647 	scsi_print_inquiry(&path->device->inq_data);
1648 
1649 	/* Report serial number */
1650 	if (path->device->serial_num_len > 0) {
1651 		/* Don't wrap the screen  - print only the first 60 chars */
1652 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653 		       periph->unit_number, path->device->serial_num);
1654 	}
1655 
1656 	/* Acquire and report transfer speed */
1657 	cts = &xpt_alloc_ccb()->cts;
1658 	xpt_setup_ccb(&cts->ccb_h, path, /*priority*/1);
1659 	cts->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1660 	cts->type = CTS_TYPE_CURRENT_SETTINGS;
1661 	xpt_action((union ccb*)cts);
1662 	if ((cts->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1663 		xpt_free_ccb(&cts->ccb_h);
1664 		return;
1665 	}
1666 
1667 	/* Ask the SIM for its base transfer speed */
1668 	cpi = &xpt_alloc_ccb()->cpi;
1669 	xpt_setup_ccb(&cpi->ccb_h, path, /*priority*/1);
1670 	cpi->ccb_h.func_code = XPT_PATH_INQ;
1671 	xpt_action((union ccb *)cpi);
1672 
1673 	speed = cpi->base_transfer_speed;
1674 	freq = 0;
1675 	if (cts->ccb_h.status == CAM_REQ_CMP && cts->transport == XPORT_SPI) {
1676 		struct	ccb_trans_settings_spi *spi;
1677 
1678 		spi = &cts->xport_specific.spi;
1679 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1680 		  && spi->sync_offset != 0) {
1681 			freq = scsi_calc_syncsrate(spi->sync_period);
1682 			speed = freq;
1683 		}
1684 
1685 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1686 			speed *= (0x01 << spi->bus_width);
1687 	}
1688 	if (cts->ccb_h.status == CAM_REQ_CMP && cts->transport == XPORT_FC) {
1689 		struct	ccb_trans_settings_fc *fc = &cts->xport_specific.fc;
1690 		if (fc->valid & CTS_FC_VALID_SPEED) {
1691 			speed = fc->bitrate;
1692 		}
1693 	}
1694 
1695 	if (cts->ccb_h.status == CAM_REQ_CMP && cts->transport == XPORT_SAS) {
1696 		struct	ccb_trans_settings_sas *sas = &cts->xport_specific.sas;
1697 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1698 			speed = sas->bitrate;
1699 		}
1700 	}
1701 
1702 	mb = speed / 1000;
1703 	if (mb > 0)
1704 		kprintf("%s%d: %d.%03dMB/s transfers",
1705 		       periph->periph_name, periph->unit_number,
1706 		       mb, speed % 1000);
1707 	else
1708 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1709 		       periph->unit_number, speed);
1710 
1711 	/* Report additional information about SPI connections */
1712 	if (cts->ccb_h.status == CAM_REQ_CMP && cts->transport == XPORT_SPI) {
1713 		struct	ccb_trans_settings_spi *spi;
1714 
1715 		spi = &cts->xport_specific.spi;
1716 		if (freq != 0) {
1717 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1718 			       freq % 1000,
1719 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1720 			     ? " DT" : "",
1721 			       spi->sync_offset);
1722 		}
1723 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1724 		 && spi->bus_width > 0) {
1725 			if (freq != 0) {
1726 				kprintf(", ");
1727 			} else {
1728 				kprintf(" (");
1729 			}
1730 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1731 		} else if (freq != 0) {
1732 			kprintf(")");
1733 		}
1734 	}
1735 	if (cts->ccb_h.status == CAM_REQ_CMP && cts->transport == XPORT_FC) {
1736 		struct	ccb_trans_settings_fc *fc;
1737 
1738 		fc = &cts->xport_specific.fc;
1739 		if (fc->valid & CTS_FC_VALID_WWNN)
1740 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1741 		if (fc->valid & CTS_FC_VALID_WWPN)
1742 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1743 		if (fc->valid & CTS_FC_VALID_PORT)
1744 			kprintf(" PortID 0x%x", fc->port);
1745 	}
1746 
1747 	if (path->device->inq_flags & SID_CmdQue ||
1748 	    path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1749 		kprintf("\n%s%d: Command Queueing Enabled",
1750 		       periph->periph_name, periph->unit_number);
1751 	}
1752 	kprintf("\n");
1753 
1754 	xpt_free_ccb(&cpi->ccb_h);
1755 	xpt_free_ccb(&cts->ccb_h);
1756 
1757 	/*
1758 	 * We only want to print the caller's announce string if they've
1759 	 * passed one in..
1760 	 */
1761 	if (announce_string != NULL)
1762 		kprintf("%s%d: %s\n", periph->periph_name,
1763 		       periph->unit_number, announce_string);
1764 }
1765 
1766 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1767 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1768 	    struct cam_eb *bus)
1769 {
1770 	dev_match_ret retval;
1771 	int i;
1772 
1773 	retval = DM_RET_NONE;
1774 
1775 	/*
1776 	 * If we aren't given something to match against, that's an error.
1777 	 */
1778 	if (bus == NULL)
1779 		return(DM_RET_ERROR);
1780 
1781 	/*
1782 	 * If there are no match entries, then this bus matches no
1783 	 * matter what.
1784 	 */
1785 	if ((patterns == NULL) || (num_patterns == 0))
1786 		return(DM_RET_DESCEND | DM_RET_COPY);
1787 
1788 	for (i = 0; i < num_patterns; i++) {
1789 		struct bus_match_pattern *cur_pattern;
1790 
1791 		/*
1792 		 * If the pattern in question isn't for a bus node, we
1793 		 * aren't interested.  However, we do indicate to the
1794 		 * calling routine that we should continue descending the
1795 		 * tree, since the user wants to match against lower-level
1796 		 * EDT elements.
1797 		 */
1798 		if (patterns[i].type != DEV_MATCH_BUS) {
1799 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1800 				retval |= DM_RET_DESCEND;
1801 			continue;
1802 		}
1803 
1804 		cur_pattern = &patterns[i].pattern.bus_pattern;
1805 
1806 		/*
1807 		 * If they want to match any bus node, we give them any
1808 		 * device node.
1809 		 */
1810 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1811 			/* set the copy flag */
1812 			retval |= DM_RET_COPY;
1813 
1814 			/*
1815 			 * If we've already decided on an action, go ahead
1816 			 * and return.
1817 			 */
1818 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1819 				return(retval);
1820 		}
1821 
1822 		/*
1823 		 * Not sure why someone would do this...
1824 		 */
1825 		if (cur_pattern->flags == BUS_MATCH_NONE)
1826 			continue;
1827 
1828 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1829 		 && (cur_pattern->path_id != bus->path_id))
1830 			continue;
1831 
1832 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1833 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1834 			continue;
1835 
1836 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1837 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1838 			continue;
1839 
1840 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1841 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1842 			     DEV_IDLEN) != 0))
1843 			continue;
1844 
1845 		/*
1846 		 * If we get to this point, the user definitely wants
1847 		 * information on this bus.  So tell the caller to copy the
1848 		 * data out.
1849 		 */
1850 		retval |= DM_RET_COPY;
1851 
1852 		/*
1853 		 * If the return action has been set to descend, then we
1854 		 * know that we've already seen a non-bus matching
1855 		 * expression, therefore we need to further descend the tree.
1856 		 * This won't change by continuing around the loop, so we
1857 		 * go ahead and return.  If we haven't seen a non-bus
1858 		 * matching expression, we keep going around the loop until
1859 		 * we exhaust the matching expressions.  We'll set the stop
1860 		 * flag once we fall out of the loop.
1861 		 */
1862 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1863 			return(retval);
1864 	}
1865 
1866 	/*
1867 	 * If the return action hasn't been set to descend yet, that means
1868 	 * we haven't seen anything other than bus matching patterns.  So
1869 	 * tell the caller to stop descending the tree -- the user doesn't
1870 	 * want to match against lower level tree elements.
1871 	 */
1872 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1873 		retval |= DM_RET_STOP;
1874 
1875 	return(retval);
1876 }
1877 
1878 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1879 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1880 	       struct cam_ed *device)
1881 {
1882 	dev_match_ret retval;
1883 	int i;
1884 
1885 	retval = DM_RET_NONE;
1886 
1887 	/*
1888 	 * If we aren't given something to match against, that's an error.
1889 	 */
1890 	if (device == NULL)
1891 		return(DM_RET_ERROR);
1892 
1893 	/*
1894 	 * If there are no match entries, then this device matches no
1895 	 * matter what.
1896 	 */
1897 	if ((patterns == NULL) || (num_patterns == 0))
1898 		return(DM_RET_DESCEND | DM_RET_COPY);
1899 
1900 	for (i = 0; i < num_patterns; i++) {
1901 		struct device_match_pattern *cur_pattern;
1902 
1903 		/*
1904 		 * If the pattern in question isn't for a device node, we
1905 		 * aren't interested.
1906 		 */
1907 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1908 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1909 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1910 				retval |= DM_RET_DESCEND;
1911 			continue;
1912 		}
1913 
1914 		cur_pattern = &patterns[i].pattern.device_pattern;
1915 
1916 		/*
1917 		 * If they want to match any device node, we give them any
1918 		 * device node.
1919 		 */
1920 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1921 			/* set the copy flag */
1922 			retval |= DM_RET_COPY;
1923 
1924 
1925 			/*
1926 			 * If we've already decided on an action, go ahead
1927 			 * and return.
1928 			 */
1929 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1930 				return(retval);
1931 		}
1932 
1933 		/*
1934 		 * Not sure why someone would do this...
1935 		 */
1936 		if (cur_pattern->flags == DEV_MATCH_NONE)
1937 			continue;
1938 
1939 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1940 		 && (cur_pattern->path_id != device->target->bus->path_id))
1941 			continue;
1942 
1943 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1944 		 && (cur_pattern->target_id != device->target->target_id))
1945 			continue;
1946 
1947 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1948 		 && (cur_pattern->target_lun != device->lun_id))
1949 			continue;
1950 
1951 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1952 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1953 				    (caddr_t)&cur_pattern->inq_pat,
1954 				    1, sizeof(cur_pattern->inq_pat),
1955 				    scsi_static_inquiry_match) == NULL))
1956 			continue;
1957 
1958 		/*
1959 		 * If we get to this point, the user definitely wants
1960 		 * information on this device.  So tell the caller to copy
1961 		 * the data out.
1962 		 */
1963 		retval |= DM_RET_COPY;
1964 
1965 		/*
1966 		 * If the return action has been set to descend, then we
1967 		 * know that we've already seen a peripheral matching
1968 		 * expression, therefore we need to further descend the tree.
1969 		 * This won't change by continuing around the loop, so we
1970 		 * go ahead and return.  If we haven't seen a peripheral
1971 		 * matching expression, we keep going around the loop until
1972 		 * we exhaust the matching expressions.  We'll set the stop
1973 		 * flag once we fall out of the loop.
1974 		 */
1975 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1976 			return(retval);
1977 	}
1978 
1979 	/*
1980 	 * If the return action hasn't been set to descend yet, that means
1981 	 * we haven't seen any peripheral matching patterns.  So tell the
1982 	 * caller to stop descending the tree -- the user doesn't want to
1983 	 * match against lower level tree elements.
1984 	 */
1985 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1986 		retval |= DM_RET_STOP;
1987 
1988 	return(retval);
1989 }
1990 
1991 /*
1992  * Match a single peripheral against any number of match patterns.
1993  */
1994 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1995 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1996 	       struct cam_periph *periph)
1997 {
1998 	dev_match_ret retval;
1999 	int i;
2000 
2001 	/*
2002 	 * If we aren't given something to match against, that's an error.
2003 	 */
2004 	if (periph == NULL)
2005 		return(DM_RET_ERROR);
2006 
2007 	/*
2008 	 * If there are no match entries, then this peripheral matches no
2009 	 * matter what.
2010 	 */
2011 	if ((patterns == NULL) || (num_patterns == 0))
2012 		return(DM_RET_STOP | DM_RET_COPY);
2013 
2014 	/*
2015 	 * There aren't any nodes below a peripheral node, so there's no
2016 	 * reason to descend the tree any further.
2017 	 */
2018 	retval = DM_RET_STOP;
2019 
2020 	for (i = 0; i < num_patterns; i++) {
2021 		struct periph_match_pattern *cur_pattern;
2022 
2023 		/*
2024 		 * If the pattern in question isn't for a peripheral, we
2025 		 * aren't interested.
2026 		 */
2027 		if (patterns[i].type != DEV_MATCH_PERIPH)
2028 			continue;
2029 
2030 		cur_pattern = &patterns[i].pattern.periph_pattern;
2031 
2032 		/*
2033 		 * If they want to match on anything, then we will do so.
2034 		 */
2035 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2036 			/* set the copy flag */
2037 			retval |= DM_RET_COPY;
2038 
2039 			/*
2040 			 * We've already set the return action to stop,
2041 			 * since there are no nodes below peripherals in
2042 			 * the tree.
2043 			 */
2044 			return(retval);
2045 		}
2046 
2047 		/*
2048 		 * Not sure why someone would do this...
2049 		 */
2050 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2051 			continue;
2052 
2053 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2054 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2055 			continue;
2056 
2057 		/*
2058 		 * For the target and lun id's, we have to make sure the
2059 		 * target and lun pointers aren't NULL.  The xpt peripheral
2060 		 * has a wildcard target and device.
2061 		 */
2062 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2063 		 && ((periph->path->target == NULL)
2064 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2065 			continue;
2066 
2067 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2068 		 && ((periph->path->device == NULL)
2069 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2070 			continue;
2071 
2072 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2073 		 && (cur_pattern->unit_number != periph->unit_number))
2074 			continue;
2075 
2076 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2077 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2078 			     DEV_IDLEN) != 0))
2079 			continue;
2080 
2081 		/*
2082 		 * If we get to this point, the user definitely wants
2083 		 * information on this peripheral.  So tell the caller to
2084 		 * copy the data out.
2085 		 */
2086 		retval |= DM_RET_COPY;
2087 
2088 		/*
2089 		 * The return action has already been set to stop, since
2090 		 * peripherals don't have any nodes below them in the EDT.
2091 		 */
2092 		return(retval);
2093 	}
2094 
2095 	/*
2096 	 * If we get to this point, the peripheral that was passed in
2097 	 * doesn't match any of the patterns.
2098 	 */
2099 	return(retval);
2100 }
2101 
2102 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)2103 xptedtbusfunc(struct cam_eb *bus, void *arg)
2104 {
2105 	struct ccb_dev_match *cdm;
2106 	dev_match_ret retval;
2107 
2108 	cdm = (struct ccb_dev_match *)arg;
2109 
2110 	/*
2111 	 * If our position is for something deeper in the tree, that means
2112 	 * that we've already seen this node.  So, we keep going down.
2113 	 */
2114 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2115 	 && (cdm->pos.cookie.bus == bus)
2116 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2117 	 && (cdm->pos.cookie.target != NULL))
2118 		retval = DM_RET_DESCEND;
2119 	else
2120 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2121 
2122 	/*
2123 	 * If we got an error, bail out of the search.
2124 	 */
2125 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2126 		cdm->status = CAM_DEV_MATCH_ERROR;
2127 		return(0);
2128 	}
2129 
2130 	/*
2131 	 * If the copy flag is set, copy this bus out.
2132 	 */
2133 	if (retval & DM_RET_COPY) {
2134 		int spaceleft, j;
2135 
2136 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2137 			sizeof(struct dev_match_result));
2138 
2139 		/*
2140 		 * If we don't have enough space to put in another
2141 		 * match result, save our position and tell the
2142 		 * user there are more devices to check.
2143 		 */
2144 		if (spaceleft < sizeof(struct dev_match_result)) {
2145 			bzero(&cdm->pos, sizeof(cdm->pos));
2146 			cdm->pos.position_type =
2147 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2148 
2149 			cdm->pos.cookie.bus = bus;
2150 			cdm->pos.generations[CAM_BUS_GENERATION]=
2151 				xsoftc.bus_generation;
2152 			cdm->status = CAM_DEV_MATCH_MORE;
2153 			return(0);
2154 		}
2155 		j = cdm->num_matches;
2156 		cdm->num_matches++;
2157 		cdm->matches[j].type = DEV_MATCH_BUS;
2158 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2159 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2160 		cdm->matches[j].result.bus_result.unit_number =
2161 			bus->sim->unit_number;
2162 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2163 			bus->sim->sim_name, DEV_IDLEN);
2164 	}
2165 
2166 	/*
2167 	 * If the user is only interested in busses, there's no
2168 	 * reason to descend to the next level in the tree.
2169 	 */
2170 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2171 		return(1);
2172 
2173 	/*
2174 	 * If there is a target generation recorded, check it to
2175 	 * make sure the target list hasn't changed.
2176 	 */
2177 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2178 	 && (bus == cdm->pos.cookie.bus)
2179 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2180 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2181 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2182 	     bus->generation)) {
2183 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2184 		return(0);
2185 	}
2186 
2187 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2188 	 && (cdm->pos.cookie.bus == bus)
2189 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2190 	 && (cdm->pos.cookie.target != NULL))
2191 		return(xpttargettraverse(bus,
2192 					(struct cam_et *)cdm->pos.cookie.target,
2193 					 xptedttargetfunc, arg));
2194 	else
2195 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2196 }
2197 
2198 static int
xptedttargetfunc(struct cam_et * target,void * arg)2199 xptedttargetfunc(struct cam_et *target, void *arg)
2200 {
2201 	struct ccb_dev_match *cdm;
2202 
2203 	cdm = (struct ccb_dev_match *)arg;
2204 
2205 	/*
2206 	 * If there is a device list generation recorded, check it to
2207 	 * make sure the device list hasn't changed.
2208 	 */
2209 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2210 	 && (cdm->pos.cookie.bus == target->bus)
2211 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2212 	 && (cdm->pos.cookie.target == target)
2213 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2214 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2215 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2216 	     target->generation)) {
2217 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2218 		return(0);
2219 	}
2220 
2221 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2222 	 && (cdm->pos.cookie.bus == target->bus)
2223 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2224 	 && (cdm->pos.cookie.target == target)
2225 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2226 	 && (cdm->pos.cookie.device != NULL))
2227 		return(xptdevicetraverse(target,
2228 					(struct cam_ed *)cdm->pos.cookie.device,
2229 					 xptedtdevicefunc, arg));
2230 	else
2231 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2232 }
2233 
2234 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)2235 xptedtdevicefunc(struct cam_ed *device, void *arg)
2236 {
2237 
2238 	struct ccb_dev_match *cdm;
2239 	dev_match_ret retval;
2240 
2241 	cdm = (struct ccb_dev_match *)arg;
2242 
2243 	/*
2244 	 * If our position is for something deeper in the tree, that means
2245 	 * that we've already seen this node.  So, we keep going down.
2246 	 */
2247 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2248 	 && (cdm->pos.cookie.device == device)
2249 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2250 	 && (cdm->pos.cookie.periph != NULL))
2251 		retval = DM_RET_DESCEND;
2252 	else
2253 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2254 					device);
2255 
2256 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2257 		cdm->status = CAM_DEV_MATCH_ERROR;
2258 		return(0);
2259 	}
2260 
2261 	/*
2262 	 * If the copy flag is set, copy this device out.
2263 	 */
2264 	if (retval & DM_RET_COPY) {
2265 		int spaceleft, j;
2266 
2267 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2268 			sizeof(struct dev_match_result));
2269 
2270 		/*
2271 		 * If we don't have enough space to put in another
2272 		 * match result, save our position and tell the
2273 		 * user there are more devices to check.
2274 		 */
2275 		if (spaceleft < sizeof(struct dev_match_result)) {
2276 			bzero(&cdm->pos, sizeof(cdm->pos));
2277 			cdm->pos.position_type =
2278 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2279 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2280 
2281 			cdm->pos.cookie.bus = device->target->bus;
2282 			cdm->pos.generations[CAM_BUS_GENERATION]=
2283 				xsoftc.bus_generation;
2284 			cdm->pos.cookie.target = device->target;
2285 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2286 				device->target->bus->generation;
2287 			cdm->pos.cookie.device = device;
2288 			cdm->pos.generations[CAM_DEV_GENERATION] =
2289 				device->target->generation;
2290 			cdm->status = CAM_DEV_MATCH_MORE;
2291 			return(0);
2292 		}
2293 		j = cdm->num_matches;
2294 		cdm->num_matches++;
2295 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2296 		cdm->matches[j].result.device_result.path_id =
2297 			device->target->bus->path_id;
2298 		cdm->matches[j].result.device_result.target_id =
2299 			device->target->target_id;
2300 		cdm->matches[j].result.device_result.target_lun =
2301 			device->lun_id;
2302 		bcopy(&device->inq_data,
2303 		      &cdm->matches[j].result.device_result.inq_data,
2304 		      sizeof(struct scsi_inquiry_data));
2305 
2306 		/* Let the user know whether this device is unconfigured */
2307 		if (device->flags & CAM_DEV_UNCONFIGURED)
2308 			cdm->matches[j].result.device_result.flags =
2309 				DEV_RESULT_UNCONFIGURED;
2310 		else
2311 			cdm->matches[j].result.device_result.flags =
2312 				DEV_RESULT_NOFLAG;
2313 	}
2314 
2315 	/*
2316 	 * If the user isn't interested in peripherals, don't descend
2317 	 * the tree any further.
2318 	 */
2319 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2320 		return(1);
2321 
2322 	/*
2323 	 * If there is a peripheral list generation recorded, make sure
2324 	 * it hasn't changed.
2325 	 */
2326 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2327 	 && (device->target->bus == cdm->pos.cookie.bus)
2328 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2329 	 && (device->target == cdm->pos.cookie.target)
2330 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2331 	 && (device == cdm->pos.cookie.device)
2332 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2333 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2334 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2335 	     device->generation)){
2336 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2337 		return(0);
2338 	}
2339 
2340 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2341 	 && (cdm->pos.cookie.bus == device->target->bus)
2342 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2343 	 && (cdm->pos.cookie.target == device->target)
2344 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2345 	 && (cdm->pos.cookie.device == device)
2346 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2347 	 && (cdm->pos.cookie.periph != NULL))
2348 		return(xptperiphtraverse(device,
2349 				(struct cam_periph *)cdm->pos.cookie.periph,
2350 				xptedtperiphfunc, arg));
2351 	else
2352 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2353 }
2354 
2355 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)2356 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2357 {
2358 	struct ccb_dev_match *cdm;
2359 	dev_match_ret retval;
2360 
2361 	cdm = (struct ccb_dev_match *)arg;
2362 
2363 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2364 
2365 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2366 		cdm->status = CAM_DEV_MATCH_ERROR;
2367 		return(0);
2368 	}
2369 
2370 	/*
2371 	 * If the copy flag is set, copy this peripheral out.
2372 	 */
2373 	if (retval & DM_RET_COPY) {
2374 		int spaceleft, j;
2375 
2376 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2377 			sizeof(struct dev_match_result));
2378 
2379 		/*
2380 		 * If we don't have enough space to put in another
2381 		 * match result, save our position and tell the
2382 		 * user there are more devices to check.
2383 		 */
2384 		if (spaceleft < sizeof(struct dev_match_result)) {
2385 			bzero(&cdm->pos, sizeof(cdm->pos));
2386 			cdm->pos.position_type =
2387 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2388 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2389 				CAM_DEV_POS_PERIPH;
2390 
2391 			cdm->pos.cookie.bus = periph->path->bus;
2392 			cdm->pos.generations[CAM_BUS_GENERATION]=
2393 				xsoftc.bus_generation;
2394 			cdm->pos.cookie.target = periph->path->target;
2395 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2396 				periph->path->bus->generation;
2397 			cdm->pos.cookie.device = periph->path->device;
2398 			cdm->pos.generations[CAM_DEV_GENERATION] =
2399 				periph->path->target->generation;
2400 			cdm->pos.cookie.periph = periph;
2401 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2402 				periph->path->device->generation;
2403 			cdm->status = CAM_DEV_MATCH_MORE;
2404 			return(0);
2405 		}
2406 
2407 		j = cdm->num_matches;
2408 		cdm->num_matches++;
2409 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2410 		cdm->matches[j].result.periph_result.path_id =
2411 			periph->path->bus->path_id;
2412 		cdm->matches[j].result.periph_result.target_id =
2413 			periph->path->target->target_id;
2414 		cdm->matches[j].result.periph_result.target_lun =
2415 			periph->path->device->lun_id;
2416 		cdm->matches[j].result.periph_result.unit_number =
2417 			periph->unit_number;
2418 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2419 			periph->periph_name, DEV_IDLEN);
2420 	}
2421 
2422 	return(1);
2423 }
2424 
2425 static int
xptedtmatch(struct ccb_dev_match * cdm)2426 xptedtmatch(struct ccb_dev_match *cdm)
2427 {
2428 	int ret;
2429 
2430 	cdm->num_matches = 0;
2431 
2432 	/*
2433 	 * Check the bus list generation.  If it has changed, the user
2434 	 * needs to reset everything and start over.
2435 	 */
2436 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2438 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2439 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2440 		return(0);
2441 	}
2442 
2443 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2444 	 && (cdm->pos.cookie.bus != NULL))
2445 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2446 				     xptedtbusfunc, cdm);
2447 	else
2448 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2449 
2450 	/*
2451 	 * If we get back 0, that means that we had to stop before fully
2452 	 * traversing the EDT.  It also means that one of the subroutines
2453 	 * has set the status field to the proper value.  If we get back 1,
2454 	 * we've fully traversed the EDT and copied out any matching entries.
2455 	 */
2456 	if (ret == 1)
2457 		cdm->status = CAM_DEV_MATCH_LAST;
2458 
2459 	return(ret);
2460 }
2461 
2462 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)2463 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2464 {
2465 	struct ccb_dev_match *cdm;
2466 
2467 	cdm = (struct ccb_dev_match *)arg;
2468 
2469 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2470 	 && (cdm->pos.cookie.pdrv == pdrv)
2471 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2472 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2473 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2474 	     (*pdrv)->generation)) {
2475 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2476 		return(0);
2477 	}
2478 
2479 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2480 	 && (cdm->pos.cookie.pdrv == pdrv)
2481 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2482 	 && (cdm->pos.cookie.periph != NULL))
2483 		return(xptpdperiphtraverse(pdrv,
2484 				(struct cam_periph *)cdm->pos.cookie.periph,
2485 				xptplistperiphfunc, arg));
2486 	else
2487 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2488 }
2489 
2490 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)2491 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2492 {
2493 	struct ccb_dev_match *cdm;
2494 	dev_match_ret retval;
2495 
2496 	cdm = (struct ccb_dev_match *)arg;
2497 
2498 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2499 
2500 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2501 		cdm->status = CAM_DEV_MATCH_ERROR;
2502 		return(0);
2503 	}
2504 
2505 	/*
2506 	 * If the copy flag is set, copy this peripheral out.
2507 	 */
2508 	if (retval & DM_RET_COPY) {
2509 		int spaceleft, j;
2510 
2511 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2512 			sizeof(struct dev_match_result));
2513 
2514 		/*
2515 		 * If we don't have enough space to put in another
2516 		 * match result, save our position and tell the
2517 		 * user there are more devices to check.
2518 		 */
2519 		if (spaceleft < sizeof(struct dev_match_result)) {
2520 			struct periph_driver **pdrv;
2521 
2522 			pdrv = NULL;
2523 			bzero(&cdm->pos, sizeof(cdm->pos));
2524 			cdm->pos.position_type =
2525 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2526 				CAM_DEV_POS_PERIPH;
2527 
2528 			/*
2529 			 * This may look a bit non-sensical, but it is
2530 			 * actually quite logical.  There are very few
2531 			 * peripheral drivers, and bloating every peripheral
2532 			 * structure with a pointer back to its parent
2533 			 * peripheral driver linker set entry would cost
2534 			 * more in the long run than doing this quick lookup.
2535 			 */
2536 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2537 				if (strcmp((*pdrv)->driver_name,
2538 				    periph->periph_name) == 0)
2539 					break;
2540 			}
2541 
2542 			if (*pdrv == NULL) {
2543 				cdm->status = CAM_DEV_MATCH_ERROR;
2544 				return(0);
2545 			}
2546 
2547 			cdm->pos.cookie.pdrv = pdrv;
2548 			/*
2549 			 * The periph generation slot does double duty, as
2550 			 * does the periph pointer slot.  They are used for
2551 			 * both edt and pdrv lookups and positioning.
2552 			 */
2553 			cdm->pos.cookie.periph = periph;
2554 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2555 				(*pdrv)->generation;
2556 			cdm->status = CAM_DEV_MATCH_MORE;
2557 			return(0);
2558 		}
2559 
2560 		j = cdm->num_matches;
2561 		cdm->num_matches++;
2562 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2563 		cdm->matches[j].result.periph_result.path_id =
2564 			periph->path->bus->path_id;
2565 
2566 		/*
2567 		 * The transport layer peripheral doesn't have a target or
2568 		 * lun.
2569 		 */
2570 		if (periph->path->target)
2571 			cdm->matches[j].result.periph_result.target_id =
2572 				periph->path->target->target_id;
2573 		else
2574 			cdm->matches[j].result.periph_result.target_id = -1;
2575 
2576 		if (periph->path->device)
2577 			cdm->matches[j].result.periph_result.target_lun =
2578 				periph->path->device->lun_id;
2579 		else
2580 			cdm->matches[j].result.periph_result.target_lun = -1;
2581 
2582 		cdm->matches[j].result.periph_result.unit_number =
2583 			periph->unit_number;
2584 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2585 			periph->periph_name, DEV_IDLEN);
2586 	}
2587 
2588 	return(1);
2589 }
2590 
2591 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2592 xptperiphlistmatch(struct ccb_dev_match *cdm)
2593 {
2594 	int ret;
2595 
2596 	cdm->num_matches = 0;
2597 
2598 	/*
2599 	 * At this point in the edt traversal function, we check the bus
2600 	 * list generation to make sure that no busses have been added or
2601 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2602 	 * For the peripheral driver list traversal function, however, we
2603 	 * don't have to worry about new peripheral driver types coming or
2604 	 * going; they're in a linker set, and therefore can't change
2605 	 * without a recompile.
2606 	 */
2607 
2608 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2609 	 && (cdm->pos.cookie.pdrv != NULL))
2610 		ret = xptpdrvtraverse(
2611 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2612 				xptplistpdrvfunc, cdm);
2613 	else
2614 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2615 
2616 	/*
2617 	 * If we get back 0, that means that we had to stop before fully
2618 	 * traversing the peripheral driver tree.  It also means that one of
2619 	 * the subroutines has set the status field to the proper value.  If
2620 	 * we get back 1, we've fully traversed the EDT and copied out any
2621 	 * matching entries.
2622 	 */
2623 	if (ret == 1)
2624 		cdm->status = CAM_DEV_MATCH_LAST;
2625 
2626 	return(ret);
2627 }
2628 
2629 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2630 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2631 {
2632 	struct cam_eb *bus, *next_bus;
2633 	int retval;
2634 
2635 	retval = 1;
2636 
2637 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2638 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2639 	     bus != NULL;
2640 	     bus = next_bus) {
2641 		next_bus = TAILQ_NEXT(bus, links);
2642 
2643 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2644 		CAM_SIM_LOCK(bus->sim);
2645 		retval = tr_func(bus, arg);
2646 		CAM_SIM_UNLOCK(bus->sim);
2647 		if (retval == 0)
2648 			return(retval);
2649 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2650 	}
2651 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2652 
2653 	return(retval);
2654 }
2655 
2656 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2657 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2658 		  xpt_targetfunc_t *tr_func, void *arg)
2659 {
2660 	struct cam_et *target, *next_target;
2661 	int retval;
2662 
2663 	retval = 1;
2664 	for (target = (start_target ? start_target :
2665 		       TAILQ_FIRST(&bus->et_entries));
2666 	     target != NULL; target = next_target) {
2667 
2668 		next_target = TAILQ_NEXT(target, links);
2669 
2670 		retval = tr_func(target, arg);
2671 
2672 		if (retval == 0)
2673 			return(retval);
2674 	}
2675 
2676 	return(retval);
2677 }
2678 
2679 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2680 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2681 		  xpt_devicefunc_t *tr_func, void *arg)
2682 {
2683 	struct cam_ed *device, *next_device;
2684 	int retval;
2685 
2686 	retval = 1;
2687 	for (device = (start_device ? start_device :
2688 		       TAILQ_FIRST(&target->ed_entries));
2689 	     device != NULL;
2690 	     device = next_device) {
2691 
2692 		next_device = TAILQ_NEXT(device, links);
2693 
2694 		retval = tr_func(device, arg);
2695 
2696 		if (retval == 0)
2697 			return(retval);
2698 	}
2699 
2700 	return(retval);
2701 }
2702 
2703 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2704 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2705 		  xpt_periphfunc_t *tr_func, void *arg)
2706 {
2707 	struct cam_periph *periph, *next_periph;
2708 	int retval;
2709 
2710 	retval = 1;
2711 
2712 	for (periph = (start_periph ? start_periph :
2713 		       SLIST_FIRST(&device->periphs));
2714 	     periph != NULL;
2715 	     periph = next_periph) {
2716 
2717 		next_periph = SLIST_NEXT(periph, periph_links);
2718 
2719 		retval = tr_func(periph, arg);
2720 		if (retval == 0)
2721 			return(retval);
2722 	}
2723 
2724 	return(retval);
2725 }
2726 
2727 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2728 xptpdrvtraverse(struct periph_driver **start_pdrv,
2729 		xpt_pdrvfunc_t *tr_func, void *arg)
2730 {
2731 	struct periph_driver **pdrv;
2732 	int retval;
2733 
2734 	retval = 1;
2735 
2736 	/*
2737 	 * We don't traverse the peripheral driver list like we do the
2738 	 * other lists, because it is a linker set, and therefore cannot be
2739 	 * changed during runtime.  If the peripheral driver list is ever
2740 	 * re-done to be something other than a linker set (i.e. it can
2741 	 * change while the system is running), the list traversal should
2742 	 * be modified to work like the other traversal functions.
2743 	 */
2744 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2745 	     *pdrv != NULL; pdrv++) {
2746 		retval = tr_func(pdrv, arg);
2747 
2748 		if (retval == 0)
2749 			return(retval);
2750 	}
2751 
2752 	return(retval);
2753 }
2754 
2755 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2756 xptpdperiphtraverse(struct periph_driver **pdrv,
2757 		    struct cam_periph *start_periph,
2758 		    xpt_periphfunc_t *tr_func, void *arg)
2759 {
2760 	struct cam_periph *periph, *next_periph;
2761 	int retval;
2762 
2763 	retval = 1;
2764 
2765 	for (periph = (start_periph ? start_periph :
2766 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2767 	     periph = next_periph) {
2768 
2769 		next_periph = TAILQ_NEXT(periph, unit_links);
2770 
2771 		retval = tr_func(periph, arg);
2772 		if (retval == 0)
2773 			return(retval);
2774 	}
2775 	return(retval);
2776 }
2777 
2778 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2779 xptdefbusfunc(struct cam_eb *bus, void *arg)
2780 {
2781 	struct xpt_traverse_config *tr_config;
2782 
2783 	tr_config = (struct xpt_traverse_config *)arg;
2784 
2785 	if (tr_config->depth == XPT_DEPTH_BUS) {
2786 		xpt_busfunc_t *tr_func;
2787 
2788 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2789 
2790 		return(tr_func(bus, tr_config->tr_arg));
2791 	} else
2792 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2793 }
2794 
2795 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2796 xptdeftargetfunc(struct cam_et *target, void *arg)
2797 {
2798 	struct xpt_traverse_config *tr_config;
2799 
2800 	tr_config = (struct xpt_traverse_config *)arg;
2801 
2802 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2803 		xpt_targetfunc_t *tr_func;
2804 
2805 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2806 
2807 		return(tr_func(target, tr_config->tr_arg));
2808 	} else
2809 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2810 }
2811 
2812 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2813 xptdefdevicefunc(struct cam_ed *device, void *arg)
2814 {
2815 	struct xpt_traverse_config *tr_config;
2816 
2817 	tr_config = (struct xpt_traverse_config *)arg;
2818 
2819 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2820 		xpt_devicefunc_t *tr_func;
2821 
2822 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2823 
2824 		return(tr_func(device, tr_config->tr_arg));
2825 	} else
2826 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2827 }
2828 
2829 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2830 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2831 {
2832 	struct xpt_traverse_config *tr_config;
2833 	xpt_periphfunc_t *tr_func;
2834 
2835 	tr_config = (struct xpt_traverse_config *)arg;
2836 
2837 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2838 
2839 	/*
2840 	 * Unlike the other default functions, we don't check for depth
2841 	 * here.  The peripheral driver level is the last level in the EDT,
2842 	 * so if we're here, we should execute the function in question.
2843 	 */
2844 	return(tr_func(periph, tr_config->tr_arg));
2845 }
2846 
2847 /*
2848  * Execute the given function for every bus in the EDT.
2849  */
2850 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2851 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2852 {
2853 	struct xpt_traverse_config tr_config;
2854 
2855 	tr_config.depth = XPT_DEPTH_BUS;
2856 	tr_config.tr_func = tr_func;
2857 	tr_config.tr_arg = arg;
2858 
2859 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2860 }
2861 
2862 /*
2863  * Execute the given function for every device in the EDT.
2864  */
2865 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2866 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2867 {
2868 	struct xpt_traverse_config tr_config;
2869 
2870 	tr_config.depth = XPT_DEPTH_DEVICE;
2871 	tr_config.tr_func = tr_func;
2872 	tr_config.tr_arg = arg;
2873 
2874 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2875 }
2876 
2877 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2878 xptsetasyncfunc(struct cam_ed *device, void *arg)
2879 {
2880 	struct cam_path path;
2881 	struct ccb_getdev *cgd;
2882 	struct async_node *cur_entry;
2883 
2884 	cur_entry = (struct async_node *)arg;
2885 
2886 	/*
2887 	 * Don't report unconfigured devices (Wildcard devs,
2888 	 * devices only for target mode, device instances
2889 	 * that have been invalidated but are waiting for
2890 	 * their last reference count to be released).
2891 	 */
2892 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2893 		return (1);
2894 
2895 	xpt_compile_path(&path,
2896 			 NULL,
2897 			 device->target->bus->path_id,
2898 			 device->target->target_id,
2899 			 device->lun_id);
2900 
2901 	cgd = &xpt_alloc_ccb()->cgd;
2902 	xpt_setup_ccb(&cgd->ccb_h, &path, /*priority*/1);
2903 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
2904 	xpt_action((union ccb *)cgd);
2905 	cur_entry->callback(cur_entry->callback_arg,
2906 			    AC_FOUND_DEVICE,
2907 			    &path, cgd);
2908 	xpt_release_path(&path);
2909 	xpt_free_ccb(&cgd->ccb_h);
2910 
2911 	return(1);
2912 }
2913 
2914 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2915 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2916 {
2917 	struct cam_path path;
2918 	struct ccb_pathinq *cpi;
2919 	struct async_node *cur_entry;
2920 
2921 	cur_entry = (struct async_node *)arg;
2922 
2923 	xpt_compile_path(&path, /*periph*/NULL,
2924 			 bus->sim->path_id,
2925 			 CAM_TARGET_WILDCARD,
2926 			 CAM_LUN_WILDCARD);
2927 	cpi = &xpt_alloc_ccb()->cpi;
2928 	xpt_setup_ccb(&cpi->ccb_h, &path, /*priority*/1);
2929 	cpi->ccb_h.func_code = XPT_PATH_INQ;
2930 	xpt_action((union ccb *)cpi);
2931 	cur_entry->callback(cur_entry->callback_arg,
2932 			    AC_PATH_REGISTERED,
2933 			    &path, cpi);
2934 	xpt_release_path(&path);
2935 	xpt_free_ccb(&cpi->ccb_h);
2936 
2937 	return(1);
2938 }
2939 
2940 static void
xpt_action_sasync_cb(void * context,int pending)2941 xpt_action_sasync_cb(void *context, int pending)
2942 {
2943 	struct async_node *cur_entry;
2944 	struct xpt_task *task;
2945 	uint32_t added;
2946 
2947 	task = (struct xpt_task *)context;
2948 	cur_entry = (struct async_node *)task->data1;
2949 	added = task->data2;
2950 
2951 	if ((added & AC_FOUND_DEVICE) != 0) {
2952 		/*
2953 		 * Get this peripheral up to date with all
2954 		 * the currently existing devices.
2955 		 */
2956 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2957 	}
2958 	if ((added & AC_PATH_REGISTERED) != 0) {
2959 		/*
2960 		 * Get this peripheral up to date with all
2961 		 * the currently existing busses.
2962 		 */
2963 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2964 	}
2965 	kfree(task, M_CAMXPT);
2966 }
2967 
2968 void
xpt_action(union ccb * start_ccb)2969 xpt_action(union ccb *start_ccb)
2970 {
2971 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2972 
2973 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2974 
2975 	switch (start_ccb->ccb_h.func_code) {
2976 	case XPT_SCSI_IO:
2977 	case XPT_TRIM:
2978 	{
2979 		struct cam_ed *device;
2980 #ifdef CAMDEBUG
2981 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2982 		struct cam_path *path;
2983 
2984 		path = start_ccb->ccb_h.path;
2985 #endif
2986 
2987 		/*
2988 		 * For the sake of compatibility with SCSI-1
2989 		 * devices that may not understand the identify
2990 		 * message, we include lun information in the
2991 		 * second byte of all commands.  SCSI-1 specifies
2992 		 * that luns are a 3 bit value and reserves only 3
2993 		 * bits for lun information in the CDB.  Later
2994 		 * revisions of the SCSI spec allow for more than 8
2995 		 * luns, but have deprecated lun information in the
2996 		 * CDB.  So, if the lun won't fit, we must omit.
2997 		 *
2998 		 * Also be aware that during initial probing for devices,
2999 		 * the inquiry information is unknown but initialized to 0.
3000 		 * This means that this code will be exercised while probing
3001 		 * devices with an ANSI revision greater than 2.
3002 		 */
3003 		device = start_ccb->ccb_h.path->device;
3004 		if (device->protocol_version <= SCSI_REV_2
3005 		 && start_ccb->ccb_h.target_lun < 8
3006 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3007 
3008 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
3009 			    start_ccb->ccb_h.target_lun << 5;
3010 		}
3011 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3012 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3013 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3014 			  	       &path->device->inq_data),
3015 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3016 					  cdb_str, sizeof(cdb_str))));
3017 		/* FALLTHROUGH */
3018 	}
3019 	case XPT_TARGET_IO:
3020 	case XPT_CONT_TARGET_IO:
3021 		start_ccb->csio.sense_resid = 0;
3022 		start_ccb->csio.resid = 0;
3023 		/* FALLTHROUGH */
3024 	case XPT_RESET_DEV:
3025 	case XPT_ENG_EXEC:
3026 	{
3027 		struct cam_path *path;
3028 		struct cam_sim *sim;
3029 		int runq;
3030 
3031 		path = start_ccb->ccb_h.path;
3032 
3033 		sim = path->bus->sim;
3034 		if (sim == &cam_dead_sim) {
3035 			/* The SIM has gone; just execute the CCB directly. */
3036 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3037 			(*(sim->sim_action))(sim, start_ccb);
3038 			break;
3039 		}
3040 
3041 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3042 		if (path->device->qfrozen_cnt == 0)
3043 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3044 		else
3045 			runq = 0;
3046 		if (runq != 0)
3047 			xpt_run_dev_sendq(path->bus);
3048 		break;
3049 	}
3050 	case XPT_SET_TRAN_SETTINGS:
3051 	{
3052 		xpt_set_transfer_settings(&start_ccb->cts,
3053 					  start_ccb->ccb_h.path->device,
3054 					  /*async_update*/FALSE);
3055 		break;
3056 	}
3057 	case XPT_CALC_GEOMETRY:
3058 	{
3059 		struct cam_sim *sim;
3060 
3061 		/* Filter out garbage */
3062 		if (start_ccb->ccg.block_size == 0
3063 		 || start_ccb->ccg.volume_size == 0) {
3064 			start_ccb->ccg.cylinders = 0;
3065 			start_ccb->ccg.heads = 0;
3066 			start_ccb->ccg.secs_per_track = 0;
3067 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3068 			break;
3069 		}
3070 		sim = start_ccb->ccb_h.path->bus->sim;
3071 		(*(sim->sim_action))(sim, start_ccb);
3072 		break;
3073 	}
3074 	case XPT_ABORT:
3075 	{
3076 		union ccb* abort_ccb;
3077 
3078 		abort_ccb = start_ccb->cab.abort_ccb;
3079 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3080 
3081 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3082 				struct cam_ccbq *ccbq;
3083 
3084 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3085 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3086 				abort_ccb->ccb_h.status =
3087 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3088 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3089 				xpt_done(abort_ccb);
3090 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3091 				break;
3092 			}
3093 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3094 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3095 				/*
3096 				 * We've caught this ccb en route to
3097 				 * the SIM.  Flag it for abort and the
3098 				 * SIM will do so just before starting
3099 				 * real work on the CCB.
3100 				 */
3101 				abort_ccb->ccb_h.status =
3102 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3103 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3104 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3105 				break;
3106 			}
3107 		}
3108 		if (XPT_FC_IS_QUEUED(abort_ccb)
3109 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3110 			/*
3111 			 * It's already completed but waiting
3112 			 * for our SWI to get to it.
3113 			 */
3114 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3115 			break;
3116 		}
3117 		/*
3118 		 * If we weren't able to take care of the abort request
3119 		 * in the XPT, pass the request down to the SIM for processing.
3120 		 */
3121 		/* FALLTHROUGH */
3122 	}
3123 	case XPT_ACCEPT_TARGET_IO:
3124 	case XPT_EN_LUN:
3125 	case XPT_IMMED_NOTIFY:
3126 	case XPT_NOTIFY_ACK:
3127 	case XPT_GET_TRAN_SETTINGS:
3128 	case XPT_RESET_BUS:
3129 	{
3130 		struct cam_sim *sim;
3131 
3132 		sim = start_ccb->ccb_h.path->bus->sim;
3133 		(*(sim->sim_action))(sim, start_ccb);
3134 		break;
3135 	}
3136 	case XPT_PATH_INQ:
3137 	{
3138 		struct cam_sim *sim;
3139 
3140 		sim = start_ccb->ccb_h.path->bus->sim;
3141 		(*(sim->sim_action))(sim, start_ccb);
3142 		break;
3143 	}
3144 	case XPT_PATH_STATS:
3145 		start_ccb->cpis.last_reset =
3146 			start_ccb->ccb_h.path->bus->last_reset;
3147 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3148 		break;
3149 	case XPT_GDEV_TYPE:
3150 	{
3151 		struct cam_ed *dev;
3152 
3153 		dev = start_ccb->ccb_h.path->device;
3154 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3155 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3156 		} else {
3157 			struct ccb_getdev *cgd;
3158 
3159 			cgd = &start_ccb->cgd;
3160 			cgd->inq_data = dev->inq_data;
3161 			cgd->ccb_h.status = CAM_REQ_CMP;
3162 			cgd->serial_num_len = dev->serial_num_len;
3163 			if ((dev->serial_num_len > 0)
3164 			 && (dev->serial_num != NULL))
3165 				bcopy(dev->serial_num, cgd->serial_num,
3166 				      dev->serial_num_len);
3167 		}
3168 		break;
3169 	}
3170 	case XPT_GDEV_STATS:
3171 	{
3172 		struct cam_ed *dev;
3173 
3174 		dev = start_ccb->ccb_h.path->device;
3175 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3176 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3177 		} else {
3178 			struct ccb_getdevstats *cgds;
3179 			struct cam_eb *bus;
3180 			struct cam_et *tar;
3181 
3182 			cgds = &start_ccb->cgds;
3183 			bus = cgds->ccb_h.path->bus;
3184 			tar = cgds->ccb_h.path->target;
3185 			cgds->dev_openings = dev->ccbq.dev_openings;
3186 			cgds->dev_active = dev->ccbq.dev_active;
3187 			cgds->devq_openings = dev->ccbq.devq_openings;
3188 			cgds->devq_queued = dev->ccbq.queue.entries;
3189 			cgds->held = dev->ccbq.held;
3190 			cgds->last_reset = tar->last_reset;
3191 			cgds->maxtags = dev->quirk->maxtags;
3192 			cgds->mintags = dev->quirk->mintags;
3193 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3194 				cgds->last_reset = bus->last_reset;
3195 			cgds->ccb_h.status = CAM_REQ_CMP;
3196 		}
3197 		break;
3198 	}
3199 	case XPT_GDEVLIST:
3200 	{
3201 		struct cam_periph	*nperiph;
3202 		struct periph_list	*periph_head;
3203 		struct ccb_getdevlist	*cgdl;
3204 		u_int			i;
3205 		struct cam_ed		*device;
3206 		int			found;
3207 
3208 
3209 		found = 0;
3210 
3211 		/*
3212 		 * Don't want anyone mucking with our data.
3213 		 */
3214 		device = start_ccb->ccb_h.path->device;
3215 		periph_head = &device->periphs;
3216 		cgdl = &start_ccb->cgdl;
3217 
3218 		/*
3219 		 * Check and see if the list has changed since the user
3220 		 * last requested a list member.  If so, tell them that the
3221 		 * list has changed, and therefore they need to start over
3222 		 * from the beginning.
3223 		 */
3224 		if ((cgdl->index != 0) &&
3225 		    (cgdl->generation != device->generation)) {
3226 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3227 			break;
3228 		}
3229 
3230 		/*
3231 		 * Traverse the list of peripherals and attempt to find
3232 		 * the requested peripheral.
3233 		 */
3234 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3235 		     (nperiph != NULL) && (i <= cgdl->index);
3236 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3237 			if (i == cgdl->index) {
3238 				strncpy(cgdl->periph_name,
3239 					nperiph->periph_name,
3240 					DEV_IDLEN);
3241 				cgdl->unit_number = nperiph->unit_number;
3242 				found = 1;
3243 			}
3244 		}
3245 		if (found == 0) {
3246 			cgdl->status = CAM_GDEVLIST_ERROR;
3247 			break;
3248 		}
3249 
3250 		if (nperiph == NULL)
3251 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3252 		else
3253 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3254 
3255 		cgdl->index++;
3256 		cgdl->generation = device->generation;
3257 
3258 		cgdl->ccb_h.status = CAM_REQ_CMP;
3259 		break;
3260 	}
3261 	case XPT_DEV_MATCH:
3262 	{
3263 		dev_pos_type position_type;
3264 		struct ccb_dev_match *cdm;
3265 		int ret;
3266 
3267 		cdm = &start_ccb->cdm;
3268 
3269 		/*
3270 		 * There are two ways of getting at information in the EDT.
3271 		 * The first way is via the primary EDT tree.  It starts
3272 		 * with a list of busses, then a list of targets on a bus,
3273 		 * then devices/luns on a target, and then peripherals on a
3274 		 * device/lun.  The "other" way is by the peripheral driver
3275 		 * lists.  The peripheral driver lists are organized by
3276 		 * peripheral driver.  (obviously)  So it makes sense to
3277 		 * use the peripheral driver list if the user is looking
3278 		 * for something like "da1", or all "da" devices.  If the
3279 		 * user is looking for something on a particular bus/target
3280 		 * or lun, it's generally better to go through the EDT tree.
3281 		 */
3282 
3283 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3284 			position_type = cdm->pos.position_type;
3285 		else {
3286 			u_int i;
3287 
3288 			position_type = CAM_DEV_POS_NONE;
3289 
3290 			for (i = 0; i < cdm->num_patterns; i++) {
3291 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3292 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3293 					position_type = CAM_DEV_POS_EDT;
3294 					break;
3295 				}
3296 			}
3297 
3298 			if (cdm->num_patterns == 0)
3299 				position_type = CAM_DEV_POS_EDT;
3300 			else if (position_type == CAM_DEV_POS_NONE)
3301 				position_type = CAM_DEV_POS_PDRV;
3302 		}
3303 
3304 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3305 		case CAM_DEV_POS_EDT:
3306 			ret = xptedtmatch(cdm);
3307 			break;
3308 		case CAM_DEV_POS_PDRV:
3309 			ret = xptperiphlistmatch(cdm);
3310 			break;
3311 		default:
3312 			cdm->status = CAM_DEV_MATCH_ERROR;
3313 			break;
3314 		}
3315 
3316 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3317 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3318 		else
3319 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3320 
3321 		break;
3322 	}
3323 	case XPT_SASYNC_CB:
3324 	{
3325 		struct ccb_setasync *csa;
3326 		struct async_node *cur_entry;
3327 		struct async_list *async_head;
3328 		u_int32_t added;
3329 
3330 		csa = &start_ccb->csa;
3331 		added = csa->event_enable;
3332 		async_head = &csa->ccb_h.path->device->asyncs;
3333 
3334 		/*
3335 		 * If there is already an entry for us, simply
3336 		 * update it.
3337 		 */
3338 		cur_entry = SLIST_FIRST(async_head);
3339 		while (cur_entry != NULL) {
3340 			if ((cur_entry->callback_arg == csa->callback_arg)
3341 			 && (cur_entry->callback == csa->callback))
3342 				break;
3343 			cur_entry = SLIST_NEXT(cur_entry, links);
3344 		}
3345 
3346 		if (cur_entry != NULL) {
3347 		 	/*
3348 			 * If the request has no flags set,
3349 			 * remove the entry.
3350 			 */
3351 			added &= ~cur_entry->event_enable;
3352 			if (csa->event_enable == 0) {
3353 				SLIST_REMOVE(async_head, cur_entry,
3354 					     async_node, links);
3355 				atomic_add_int(
3356 					&csa->ccb_h.path->device->refcount, -1);
3357 				kfree(cur_entry, M_CAMXPT);
3358 			} else {
3359 				cur_entry->event_enable = csa->event_enable;
3360 			}
3361 		} else {
3362 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3363 					   M_INTWAIT);
3364 			cur_entry->event_enable = csa->event_enable;
3365 			cur_entry->callback_arg = csa->callback_arg;
3366 			cur_entry->callback = csa->callback;
3367 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3368 			atomic_add_int(&csa->ccb_h.path->device->refcount, 1);
3369 		}
3370 
3371 		/*
3372 		 * Need to decouple this operation via a taskqueue so that
3373 		 * the locking doesn't become a mess.
3374 		 */
3375 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3376 			struct xpt_task *task;
3377 
3378 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3379 				      M_INTWAIT);
3380 
3381 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3382 			task->data1 = cur_entry;
3383 			task->data2 = added;
3384 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3385 					  &task->task);
3386 		}
3387 
3388 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3389 		break;
3390 	}
3391 	case XPT_REL_SIMQ:
3392 	{
3393 		struct ccb_relsim *crs;
3394 		struct cam_ed *dev;
3395 
3396 		crs = &start_ccb->crs;
3397 		dev = crs->ccb_h.path->device;
3398 		if (dev == NULL) {
3399 
3400 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3401 			break;
3402 		}
3403 
3404 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3405 
3406  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3407 				/* Don't ever go below one opening */
3408 				if (crs->openings > 0) {
3409 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3410 							    crs->openings);
3411 
3412 					if (bootverbose) {
3413 						xpt_print(crs->ccb_h.path,
3414 						    "tagged openings now %d\n",
3415 						    crs->openings);
3416 					}
3417 				}
3418 			}
3419 		}
3420 
3421 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3422 
3423 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3424 
3425 				/*
3426 				 * Just extend the old timeout and decrement
3427 				 * the freeze count so that a single timeout
3428 				 * is sufficient for releasing the queue.
3429 				 */
3430 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3431 				callout_stop(&dev->callout);
3432 			} else {
3433 
3434 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3435 			}
3436 
3437 			callout_reset(&dev->callout,
3438 				      (crs->release_timeout * hz) / 1000,
3439 				      xpt_release_devq_timeout, dev);
3440 
3441 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3442 
3443 		}
3444 
3445 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3446 
3447 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3448 				/*
3449 				 * Decrement the freeze count so that a single
3450 				 * completion is still sufficient to unfreeze
3451 				 * the queue.
3452 				 */
3453 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3454 			} else {
3455 
3456 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3457 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3458 			}
3459 		}
3460 
3461 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3462 
3463 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3464 			 || (dev->ccbq.dev_active == 0)) {
3465 
3466 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3467 			} else {
3468 
3469 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3470 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3471 			}
3472 		}
3473 
3474 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3475 
3476 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3477 					 /*run_queue*/TRUE);
3478 		}
3479 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3480 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3481 		break;
3482 	}
3483 	case XPT_SCAN_BUS:
3484 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3485 		break;
3486 	case XPT_SCAN_LUN:
3487 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3488 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3489 			     start_ccb);
3490 		break;
3491 	case XPT_DEBUG: {
3492 #ifdef CAMDEBUG
3493 #ifdef CAM_DEBUG_DELAY
3494 		cam_debug_delay = CAM_DEBUG_DELAY;
3495 #endif
3496 		cam_dflags = start_ccb->cdbg.flags;
3497 		if (cam_dpath != NULL) {
3498 			xpt_free_path(cam_dpath);
3499 			cam_dpath = NULL;
3500 		}
3501 
3502 		if (cam_dflags != CAM_DEBUG_NONE) {
3503 			if (xpt_create_path(&cam_dpath, xpt_periph,
3504 					    start_ccb->ccb_h.path_id,
3505 					    start_ccb->ccb_h.target_id,
3506 					    start_ccb->ccb_h.target_lun) !=
3507 					    CAM_REQ_CMP) {
3508 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3509 				cam_dflags = CAM_DEBUG_NONE;
3510 			} else {
3511 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3512 				xpt_print(cam_dpath, "debugging flags now %x\n",
3513 				    cam_dflags);
3514 			}
3515 		} else {
3516 			cam_dpath = NULL;
3517 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3518 		}
3519 #else /* !CAMDEBUG */
3520 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3521 #endif /* CAMDEBUG */
3522 		break;
3523 	}
3524 	case XPT_NOOP:
3525 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3526 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3527 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3528 		break;
3529 	default:
3530 	case XPT_SDEV_TYPE:
3531 	case XPT_TERM_IO:
3532 	case XPT_ENG_INQ:
3533 		/* XXX Implement */
3534 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3535 		break;
3536 	}
3537 }
3538 
3539 void
xpt_polled_action(union ccb * start_ccb)3540 xpt_polled_action(union ccb *start_ccb)
3541 {
3542 	u_int32_t timeout;
3543 	struct	  cam_sim *sim;
3544 	struct	  cam_devq *devq;
3545 	struct	  cam_ed *dev;
3546 
3547 	timeout = start_ccb->ccb_h.timeout;
3548 	sim = start_ccb->ccb_h.path->bus->sim;
3549 	devq = sim->devq;
3550 	dev = start_ccb->ccb_h.path->device;
3551 
3552 	sim_lock_assert_owned(sim->lock);
3553 
3554 	/*
3555 	 * Steal an opening so that no other queued requests
3556 	 * can get it before us while we simulate interrupts.
3557 	 */
3558 	dev->ccbq.devq_openings--;
3559 	dev->ccbq.dev_openings--;
3560 
3561 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3562 	   && (--timeout > 0)) {
3563 		DELAY(1000);
3564 		(*(sim->sim_poll))(sim);
3565 		camisr_runqueue(sim);
3566 	}
3567 
3568 	dev->ccbq.devq_openings++;
3569 	dev->ccbq.dev_openings++;
3570 
3571 	if (timeout != 0) {
3572 		xpt_action(start_ccb);
3573 		while(--timeout > 0) {
3574 			(*(sim->sim_poll))(sim);
3575 			camisr_runqueue(sim);
3576 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3577 			    != CAM_REQ_INPROG)
3578 				break;
3579 			DELAY(1000);
3580 		}
3581 		if (timeout == 0) {
3582 			/*
3583 			 * XXX Is it worth adding a sim_timeout entry
3584 			 * point so we can attempt recovery?  If
3585 			 * this is only used for dumps, I don't think
3586 			 * it is.
3587 			 */
3588 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3589 		}
3590 	} else {
3591 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3592 	}
3593 }
3594 
3595 /*
3596  * Schedule a peripheral driver to receive a ccb when it's
3597  * target device has space for more transactions.
3598  */
3599 void
xpt_schedule(struct cam_periph * perph,u_int32_t new_priority)3600 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3601 {
3602 	struct cam_ed *device;
3603 	union ccb *work_ccb;
3604 	int runq;
3605 
3606 	sim_lock_assert_owned(perph->sim->lock);
3607 
3608 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3609 	device = perph->path->device;
3610 	if (periph_is_queued(perph)) {
3611 		/* Simply reorder based on new priority */
3612 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3613 			  ("   change priority to %d\n", new_priority));
3614 		if (new_priority < perph->pinfo.priority) {
3615 			camq_change_priority(&device->drvq,
3616 					     perph->pinfo.index,
3617 					     new_priority);
3618 		}
3619 		runq = 0;
3620 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3621 		/* The SIM is gone so just call periph_start directly. */
3622 		work_ccb = xpt_get_ccb(perph->path->device);
3623 		if (work_ccb == NULL)
3624 			return; /* XXX */
3625 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3626 		perph->pinfo.priority = new_priority;
3627 		perph->periph_start(perph, work_ccb);
3628 		return;
3629 	} else {
3630 		/* New entry on the queue */
3631 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3632 			  ("   added periph to queue\n"));
3633 		perph->pinfo.priority = new_priority;
3634 		perph->pinfo.generation = ++device->drvq.generation;
3635 		camq_insert(&device->drvq, &perph->pinfo);
3636 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3637 	}
3638 	if (runq != 0) {
3639 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3640 			  ("   calling xpt_run_devq\n"));
3641 		xpt_run_dev_allocq(perph->path->bus);
3642 	}
3643 }
3644 
3645 
3646 /*
3647  * Schedule a device to run on a given queue.
3648  * If the device was inserted as a new entry on the queue,
3649  * return 1 meaning the device queue should be run. If we
3650  * were already queued, implying someone else has already
3651  * started the queue, return 0 so the caller doesn't attempt
3652  * to run the queue.
3653  */
3654 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,u_int32_t new_priority)3655 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3656 		 u_int32_t new_priority)
3657 {
3658 	int retval;
3659 	u_int32_t old_priority;
3660 
3661 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3662 
3663 	old_priority = pinfo->priority;
3664 
3665 	/*
3666 	 * Are we already queued?
3667 	 */
3668 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3669 		/* Simply reorder based on new priority */
3670 		if (new_priority < old_priority) {
3671 			camq_change_priority(queue, pinfo->index,
3672 					     new_priority);
3673 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3674 					("changed priority to %d\n",
3675 					 new_priority));
3676 		}
3677 		retval = 0;
3678 	} else {
3679 		/* New entry on the queue */
3680 		if (new_priority < old_priority)
3681 			pinfo->priority = new_priority;
3682 
3683 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3684 				("Inserting onto queue\n"));
3685 		pinfo->generation = ++queue->generation;
3686 		camq_insert(queue, pinfo);
3687 		retval = 1;
3688 	}
3689 	return (retval);
3690 }
3691 
3692 static void
xpt_run_dev_allocq(struct cam_eb * bus)3693 xpt_run_dev_allocq(struct cam_eb *bus)
3694 {
3695 	struct	cam_devq *devq;
3696 
3697 	if ((devq = bus->sim->devq) == NULL) {
3698 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3699 		return;
3700 	}
3701 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3702 
3703 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3704 			("   qfrozen_cnt == 0x%x, entries == %d, "
3705 			 "openings == %d, active == %d\n",
3706 			 devq->alloc_queue.qfrozen_cnt,
3707 			 devq->alloc_queue.entries,
3708 			 devq->alloc_openings,
3709 			 devq->alloc_active));
3710 
3711 	devq->alloc_queue.qfrozen_cnt++;
3712 	while ((devq->alloc_queue.entries > 0)
3713 	    && (devq->alloc_openings > 0)
3714 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3715 		struct	cam_ed_qinfo *qinfo;
3716 		struct	cam_ed *device;
3717 		union	ccb *work_ccb;
3718 		struct	cam_periph *drv;
3719 		struct	camq *drvq;
3720 
3721 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3722 							   CAMQ_HEAD);
3723 		device = qinfo->device;
3724 
3725 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3726 				("running device %p\n", device));
3727 
3728 		drvq = &device->drvq;
3729 
3730 #ifdef CAMDEBUG
3731 		if (drvq->entries <= 0) {
3732 			panic("xpt_run_dev_allocq: "
3733 			      "Device on queue without any work to do");
3734 		}
3735 #endif
3736 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3737 			devq->alloc_openings--;
3738 			devq->alloc_active++;
3739 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3740 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3741 				      drv->pinfo.priority);
3742 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3743 					("calling periph start\n"));
3744 			drv->periph_start(drv, work_ccb);
3745 		} else {
3746 			/*
3747 			 * Malloc failure in alloc_ccb
3748 			 */
3749 			/*
3750 			 * XXX add us to a list to be run from free_ccb
3751 			 * if we don't have any ccbs active on this
3752 			 * device queue otherwise we may never get run
3753 			 * again.
3754 			 */
3755 			break;
3756 		}
3757 
3758 		if (drvq->entries > 0) {
3759 			/* We have more work.  Attempt to reschedule */
3760 			xpt_schedule_dev_allocq(bus, device);
3761 		}
3762 	}
3763 	devq->alloc_queue.qfrozen_cnt--;
3764 }
3765 
3766 static void
xpt_run_dev_sendq(struct cam_eb * bus)3767 xpt_run_dev_sendq(struct cam_eb *bus)
3768 {
3769 	struct	cam_devq *devq;
3770 
3771 	if ((devq = bus->sim->devq) == NULL) {
3772 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3773 		return;
3774 	}
3775 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3776 
3777 	devq->send_queue.qfrozen_cnt++;
3778 	while ((devq->send_queue.entries > 0)
3779 	    && (devq->send_openings > 0)) {
3780 		struct	cam_ed_qinfo *qinfo;
3781 		struct	cam_ed *device;
3782 		union ccb *work_ccb;
3783 		struct	cam_sim *sim;
3784 
3785 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3786 			break;
3787 		}
3788 
3789 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3790 							   CAMQ_HEAD);
3791 		device = qinfo->device;
3792 
3793 		/*
3794 		 * If the device has been "frozen", don't attempt
3795 		 * to run it.
3796 		 */
3797 		if (device->qfrozen_cnt > 0) {
3798 			continue;
3799 		}
3800 
3801 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3802 				("running device %p\n", device));
3803 
3804 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3805 		if (work_ccb == NULL) {
3806 			kprintf("device on run queue with no ccbs???\n");
3807 			continue;
3808 		}
3809 
3810 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3811 
3812 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3813 			if (xsoftc.num_highpower <= 0) {
3814 				/*
3815 				 * We got a high power command, but we
3816 				 * don't have any available slots.  Freeze
3817 				 * the device queue until we have a slot
3818 				 * available.
3819 				 */
3820 				device->qfrozen_cnt++;
3821 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3822 						   &work_ccb->ccb_h,
3823 						   xpt_links.stqe);
3824 
3825 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3826 				continue;
3827 			} else {
3828 				/*
3829 				 * Consume a high power slot while
3830 				 * this ccb runs.
3831 				 */
3832 				xsoftc.num_highpower--;
3833 			}
3834 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3835 		}
3836 		devq->active_dev = device;
3837 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3838 
3839 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3840 
3841 		devq->send_openings--;
3842 		devq->send_active++;
3843 
3844 		if (device->ccbq.queue.entries > 0)
3845 			xpt_schedule_dev_sendq(bus, device);
3846 
3847 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3848 			/*
3849 			 * The client wants to freeze the queue
3850 			 * after this CCB is sent.
3851 			 */
3852 			device->qfrozen_cnt++;
3853 		}
3854 
3855 		/* In Target mode, the peripheral driver knows best... */
3856 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3857 			if ((device->inq_flags & SID_CmdQue) != 0
3858 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3859 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3860 			else
3861 				/*
3862 				 * Clear this in case of a retried CCB that
3863 				 * failed due to a rejected tag.
3864 				 */
3865 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3866 		}
3867 
3868 		/*
3869 		 * Device queues can be shared among multiple sim instances
3870 		 * that reside on different busses.  Use the SIM in the queue
3871 		 * CCB's path, rather than the one in the bus that was passed
3872 		 * into this function.
3873 		 */
3874 		sim = work_ccb->ccb_h.path->bus->sim;
3875 		(*(sim->sim_action))(sim, work_ccb);
3876 
3877 		devq->active_dev = NULL;
3878 	}
3879 	devq->send_queue.qfrozen_cnt--;
3880 }
3881 
3882 /*
3883  * This function merges stuff from the slave ccb into the master ccb, while
3884  * keeping important fields in the master ccb constant.
3885  */
3886 void
xpt_merge_ccb(union ccb * master_ccb,union ccb * slave_ccb)3887 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3888 {
3889 	/*
3890 	 * Pull fields that are valid for peripheral drivers to set
3891 	 * into the master CCB along with the CCB "payload".
3892 	 */
3893 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3894 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3895 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3896 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3897 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3898 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3899 }
3900 
3901 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,u_int32_t priority)3902 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3903 {
3904 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3905 	callout_init(ccb_h->timeout_ch);
3906 	ccb_h->pinfo.priority = priority;
3907 	ccb_h->path = path;
3908 	ccb_h->path_id = path->bus->path_id;
3909 	if (path->target)
3910 		ccb_h->target_id = path->target->target_id;
3911 	else
3912 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3913 	if (path->device) {
3914 		ccb_h->target_lun = path->device->lun_id;
3915 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3916 	} else {
3917 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3918 	}
3919 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3920 	ccb_h->flags = 0;
3921 }
3922 
3923 /* Path manipulation functions */
3924 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3925 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3926 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3927 {
3928 	struct	   cam_path *path;
3929 	cam_status status;
3930 
3931 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3932 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3933 	if (status != CAM_REQ_CMP) {
3934 		kfree(path, M_CAMXPT);
3935 		path = NULL;
3936 	}
3937 	*new_path_ptr = path;
3938 	return (status);
3939 }
3940 
3941 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3942 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3943 			 struct cam_periph *periph, path_id_t path_id,
3944 			 target_id_t target_id, lun_id_t lun_id)
3945 {
3946 	struct	   cam_path *path;
3947 	struct	   cam_eb *bus = NULL;
3948 	cam_status status;
3949 	int	   need_unlock = 0;
3950 
3951 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3952 
3953 	if (path_id != CAM_BUS_WILDCARD) {
3954 		bus = xpt_find_bus(path_id);
3955 		if (bus != NULL) {
3956 			need_unlock = 1;
3957 			CAM_SIM_LOCK(bus->sim);
3958 		}
3959 	}
3960 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3961 	if (need_unlock)
3962 		CAM_SIM_UNLOCK(bus->sim);
3963 	if (status != CAM_REQ_CMP) {
3964 		kfree(path, M_CAMXPT);
3965 		path = NULL;
3966 	}
3967 	*new_path_ptr = path;
3968 	return (status);
3969 }
3970 
3971 static cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3972 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3973 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3974 {
3975 	struct	     cam_eb *bus;
3976 	struct	     cam_et *target;
3977 	struct	     cam_ed *device;
3978 	cam_status   status;
3979 
3980 	status = CAM_REQ_CMP;	/* Completed without error */
3981 	target = NULL;		/* Wildcarded */
3982 	device = NULL;		/* Wildcarded */
3983 
3984 	/*
3985 	 * We will potentially modify the EDT, so block interrupts
3986 	 * that may attempt to create cam paths.
3987 	 */
3988 	bus = xpt_find_bus(path_id);
3989 	if (bus == NULL) {
3990 		status = CAM_PATH_INVALID;
3991 	} else {
3992 		target = xpt_find_target(bus, target_id);
3993 		if (target == NULL) {
3994 			/* Create one */
3995 			struct cam_et *new_target;
3996 
3997 			new_target = xpt_alloc_target(bus, target_id);
3998 			if (new_target == NULL) {
3999 				status = CAM_RESRC_UNAVAIL;
4000 			} else {
4001 				target = new_target;
4002 			}
4003 		}
4004 		if (target != NULL) {
4005 			device = xpt_find_device(target, lun_id);
4006 			if (device == NULL) {
4007 				/* Create one */
4008 				struct cam_ed *new_device;
4009 
4010 				new_device = xpt_alloc_device(bus,
4011 							      target,
4012 							      lun_id);
4013 				if (new_device == NULL) {
4014 					status = CAM_RESRC_UNAVAIL;
4015 				} else {
4016 					device = new_device;
4017 				}
4018 			}
4019 		}
4020 	}
4021 
4022 	/*
4023 	 * Only touch the user's data if we are successful.
4024 	 */
4025 	if (status == CAM_REQ_CMP) {
4026 		new_path->periph = perph;
4027 		new_path->bus = bus;
4028 		new_path->target = target;
4029 		new_path->device = device;
4030 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4031 	} else {
4032 		if (device != NULL)
4033 			xpt_release_device(bus, target, device);
4034 		if (target != NULL)
4035 			xpt_release_target(bus, target);
4036 		if (bus != NULL)
4037 			xpt_release_bus(bus);
4038 	}
4039 	return (status);
4040 }
4041 
4042 static void
xpt_release_path(struct cam_path * path)4043 xpt_release_path(struct cam_path *path)
4044 {
4045 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4046 	if (path->device != NULL) {
4047 		xpt_release_device(path->bus, path->target, path->device);
4048 		path->device = NULL;
4049 	}
4050 	if (path->target != NULL) {
4051 		xpt_release_target(path->bus, path->target);
4052 		path->target = NULL;
4053 	}
4054 	if (path->bus != NULL) {
4055 		xpt_release_bus(path->bus);
4056 		path->bus = NULL;
4057 	}
4058 }
4059 
4060 void
xpt_free_path(struct cam_path * path)4061 xpt_free_path(struct cam_path *path)
4062 {
4063 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4064 	xpt_release_path(path);
4065 	kfree(path, M_CAMXPT);
4066 }
4067 
4068 
4069 /*
4070  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4071  * in path1, 2 for match with wildcards in path2.
4072  */
4073 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)4074 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4075 {
4076 	int retval = 0;
4077 
4078 	if (path1->bus != path2->bus) {
4079 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4080 			retval = 1;
4081 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4082 			retval = 2;
4083 		else
4084 			return (-1);
4085 	}
4086 	if (path1->target != path2->target) {
4087 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4088 			if (retval == 0)
4089 				retval = 1;
4090 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4091 			retval = 2;
4092 		else
4093 			return (-1);
4094 	}
4095 	if (path1->device != path2->device) {
4096 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4097 			if (retval == 0)
4098 				retval = 1;
4099 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4100 			retval = 2;
4101 		else
4102 			return (-1);
4103 	}
4104 	return (retval);
4105 }
4106 
4107 void
xpt_print_path(struct cam_path * path)4108 xpt_print_path(struct cam_path *path)
4109 {
4110 
4111 	if (path == NULL)
4112 		kprintf("(nopath): ");
4113 	else {
4114 		if (path->periph != NULL)
4115 			kprintf("(%s%d:", path->periph->periph_name,
4116 			       path->periph->unit_number);
4117 		else
4118 			kprintf("(noperiph:");
4119 
4120 		if (path->bus != NULL)
4121 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4122 			       path->bus->sim->unit_number,
4123 			       path->bus->sim->bus_id);
4124 		else
4125 			kprintf("nobus:");
4126 
4127 		if (path->target != NULL)
4128 			kprintf("%d:", path->target->target_id);
4129 		else
4130 			kprintf("X:");
4131 
4132 		if (path->device != NULL)
4133 			kprintf("%d): ", path->device->lun_id);
4134 		else
4135 			kprintf("X): ");
4136 	}
4137 }
4138 
4139 void
xpt_print(struct cam_path * path,const char * fmt,...)4140 xpt_print(struct cam_path *path, const char *fmt, ...)
4141 {
4142 	__va_list ap;
4143 	xpt_print_path(path);
4144 	__va_start(ap, fmt);
4145 	kvprintf(fmt, ap);
4146 	__va_end(ap);
4147 }
4148 
4149 int
xpt_path_string(struct cam_path * path,char * str,size_t str_len)4150 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4151 {
4152 	struct sbuf sb;
4153 
4154 	sim_lock_assert_owned(path->bus->sim->lock);
4155 
4156 	sbuf_new(&sb, str, str_len, 0);
4157 
4158 	if (path == NULL)
4159 		sbuf_printf(&sb, "(nopath): ");
4160 	else {
4161 		if (path->periph != NULL)
4162 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4163 				    path->periph->unit_number);
4164 		else
4165 			sbuf_printf(&sb, "(noperiph:");
4166 
4167 		if (path->bus != NULL)
4168 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4169 				    path->bus->sim->unit_number,
4170 				    path->bus->sim->bus_id);
4171 		else
4172 			sbuf_printf(&sb, "nobus:");
4173 
4174 		if (path->target != NULL)
4175 			sbuf_printf(&sb, "%d:", path->target->target_id);
4176 		else
4177 			sbuf_printf(&sb, "X:");
4178 
4179 		if (path->device != NULL)
4180 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4181 		else
4182 			sbuf_printf(&sb, "X): ");
4183 	}
4184 	sbuf_finish(&sb);
4185 
4186 	return(sbuf_len(&sb));
4187 }
4188 
4189 path_id_t
xpt_path_path_id(struct cam_path * path)4190 xpt_path_path_id(struct cam_path *path)
4191 {
4192 	sim_lock_assert_owned(path->bus->sim->lock);
4193 
4194 	return(path->bus->path_id);
4195 }
4196 
4197 target_id_t
xpt_path_target_id(struct cam_path * path)4198 xpt_path_target_id(struct cam_path *path)
4199 {
4200 	sim_lock_assert_owned(path->bus->sim->lock);
4201 
4202 	if (path->target != NULL)
4203 		return (path->target->target_id);
4204 	else
4205 		return (CAM_TARGET_WILDCARD);
4206 }
4207 
4208 lun_id_t
xpt_path_lun_id(struct cam_path * path)4209 xpt_path_lun_id(struct cam_path *path)
4210 {
4211 	sim_lock_assert_owned(path->bus->sim->lock);
4212 
4213 	if (path->device != NULL)
4214 		return (path->device->lun_id);
4215 	else
4216 		return (CAM_LUN_WILDCARD);
4217 }
4218 
4219 struct cam_sim *
xpt_path_sim(struct cam_path * path)4220 xpt_path_sim(struct cam_path *path)
4221 {
4222 	return (path->bus->sim);
4223 }
4224 
4225 struct cam_periph*
xpt_path_periph(struct cam_path * path)4226 xpt_path_periph(struct cam_path *path)
4227 {
4228 	sim_lock_assert_owned(path->bus->sim->lock);
4229 
4230 	return (path->periph);
4231 }
4232 
4233 char *
xpt_path_serialno(struct cam_path * path)4234 xpt_path_serialno(struct cam_path *path)
4235 {
4236 	return (path->device->serial_num);
4237 }
4238 
4239 /*
4240  * Release a CAM control block for the caller.  Remit the cost of the structure
4241  * to the device referenced by the path.  If the this device had no 'credits'
4242  * and peripheral drivers have registered async callbacks for this notification
4243  * call them now.
4244  */
4245 void
xpt_release_ccb(union ccb * free_ccb)4246 xpt_release_ccb(union ccb *free_ccb)
4247 {
4248 	struct	 cam_path *path;
4249 	struct	 cam_ed *device;
4250 	struct	 cam_eb *bus;
4251 	struct   cam_sim *sim;
4252 
4253 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4254 	path = free_ccb->ccb_h.path;
4255 	device = path->device;
4256 	bus = path->bus;
4257 	sim = bus->sim;
4258 
4259 	sim_lock_assert_owned(sim->lock);
4260 
4261 	cam_ccbq_release_opening(&device->ccbq);
4262 	if (sim->ccb_count > sim->max_ccbs) {
4263 		xpt_free_ccb(&free_ccb->ccb_h);
4264 		sim->ccb_count--;
4265 	} else if (sim == &cam_dead_sim) {
4266 		xpt_free_ccb(&free_ccb->ccb_h);
4267 	} else  {
4268 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4269 				  xpt_links.sle);
4270 	}
4271 	if (sim->devq == NULL) {
4272 		return;
4273 	}
4274 	sim->devq->alloc_openings++;
4275 	sim->devq->alloc_active--;
4276 	/* XXX Turn this into an inline function - xpt_run_device?? */
4277 	if ((device_is_alloc_queued(device) == 0)
4278 	 && (device->drvq.entries > 0)) {
4279 		xpt_schedule_dev_allocq(bus, device);
4280 	}
4281 	if (dev_allocq_is_runnable(sim->devq))
4282 		xpt_run_dev_allocq(bus);
4283 }
4284 
4285 /* Functions accessed by SIM drivers */
4286 
4287 /*
4288  * A sim structure, listing the SIM entry points and instance
4289  * identification info is passed to xpt_bus_register to hook the SIM
4290  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4291  * for this new bus and places it in the array of busses and assigns
4292  * it a path_id.  The path_id may be influenced by "hard wiring"
4293  * information specified by the user.  Once interrupt services are
4294  * availible, the bus will be probed.
4295  */
4296 int32_t
xpt_bus_register(struct cam_sim * sim,u_int32_t bus)4297 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4298 {
4299 	struct cam_eb *new_bus;
4300 	struct cam_eb *old_bus;
4301 	struct ccb_pathinq *cpi;
4302 
4303 	sim_lock_assert_owned(sim->lock);
4304 
4305 	sim->bus_id = bus;
4306 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4307 
4308 	/*
4309 	 * Must hold topo lock across xptpathid() through installation of
4310 	 * new_bus to avoid duplication due to SMP races.
4311 	 */
4312 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4313 	if (strcmp(sim->sim_name, "xpt") != 0) {
4314 		sim->path_id =
4315 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4316 	}
4317 
4318 	TAILQ_INIT(&new_bus->et_entries);
4319 	new_bus->path_id = sim->path_id;
4320 	new_bus->sim = sim;
4321 	atomic_add_int(&sim->refcount, 1);
4322 	timevalclear(&new_bus->last_reset);
4323 	new_bus->flags = 0;
4324 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4325 	new_bus->generation = 0;
4326 	new_bus->counted_to_config = 0;
4327 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4328 	while (old_bus != NULL && old_bus->path_id < new_bus->path_id)
4329 		old_bus = TAILQ_NEXT(old_bus, links);
4330 	if (old_bus != NULL)
4331 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4332 	else
4333 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4334 	xsoftc.bus_generation++;
4335 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4336 
4337 	/* Notify interested parties */
4338 	if (sim->path_id != CAM_XPT_PATH_ID) {
4339 		struct cam_path path;
4340 
4341 		cpi = &xpt_alloc_ccb()->cpi;
4342 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4343 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4344 		xpt_setup_ccb(&cpi->ccb_h, &path, /*priority*/1);
4345 		cpi->ccb_h.func_code = XPT_PATH_INQ;
4346 		xpt_action((union ccb *)cpi);
4347 		xpt_async(AC_PATH_REGISTERED, &path, cpi);
4348 		xpt_release_path(&path);
4349 		xpt_free_ccb(&cpi->ccb_h);
4350 	}
4351 	return (CAM_SUCCESS);
4352 }
4353 
4354 /*
4355  * Deregister a bus.  We must clean out all transactions pending on the bus.
4356  * This routine is typically called prior to cam_sim_free() (e.g. see
4357  * dev/usbmisc/umass/umass.c)
4358  */
4359 int32_t
xpt_bus_deregister(path_id_t pathid)4360 xpt_bus_deregister(path_id_t pathid)
4361 {
4362 	struct cam_path bus_path;
4363 	struct cam_et *target;
4364 	struct cam_ed *device;
4365 	struct cam_ed_qinfo *qinfo;
4366 	struct cam_devq *devq;
4367 	struct cam_periph *periph;
4368 	struct cam_sim *ccbsim;
4369 	union ccb *work_ccb;
4370 	cam_status status;
4371 	int retries = 0;
4372 
4373 	status = xpt_compile_path(&bus_path, NULL, pathid,
4374 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4375 	if (status != CAM_REQ_CMP)
4376 		return (status);
4377 
4378 	/*
4379 	 * This should clear out all pending requests and timeouts, but
4380 	 * the ccb's may be queued to a software interrupt.
4381 	 *
4382 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4383 	 * and it really ought to.
4384 	 */
4385 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4386 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4387 
4388 	/*
4389 	 * Mark the SIM as having been deregistered.  This prevents
4390 	 * certain operations from re-queueing to it, stops new devices
4391 	 * from being added, etc.
4392 	 */
4393 	devq = bus_path.bus->sim->devq;
4394 	ccbsim = bus_path.bus->sim;
4395 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4396 
4397 again:
4398 	/*
4399 	 * Execute any pending operations now.
4400 	 */
4401 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4402 	    CAMQ_HEAD)) != NULL ||
4403 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4404 	    CAMQ_HEAD)) != NULL) {
4405 		do {
4406 			device = qinfo->device;
4407 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4408 			if (work_ccb != NULL) {
4409 				devq->active_dev = device;
4410 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4411 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4412 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4413 			}
4414 
4415 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4416 			    CAMQ_HEAD);
4417 			if (periph != NULL)
4418 				xpt_schedule(periph, periph->pinfo.priority);
4419 		} while (work_ccb != NULL || periph != NULL);
4420 	}
4421 
4422 	/*
4423 	 * Make sure all completed CCBs are processed.
4424 	 */
4425 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4426 		camisr_runqueue(ccbsim);
4427 	}
4428 
4429 	/*
4430 	 * Check for requeues, reissues asyncs if necessary
4431 	 */
4432 	if (CAMQ_GET_HEAD(&devq->send_queue))
4433 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4434 			devq->send_queue.entries);
4435 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4436 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4437 			devq->alloc_queue.entries);
4438 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4439 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4440 		if (++retries < 5) {
4441 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4442 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4443 			goto again;
4444 		}
4445 	}
4446 
4447 	/*
4448 	 * Retarget the bus and all cached sim pointers to dead_sim.
4449 	 *
4450 	 * Various CAM subsystems may be holding on to targets, devices,
4451 	 * and/or peripherals and may attempt to use the sim pointer cached
4452 	 * in some of these structures during close.
4453 	 */
4454 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4455 	bus_path.bus->sim = &cam_dead_sim;
4456 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4457 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4458 			device->sim = &cam_dead_sim;
4459 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4460 				periph->sim = &cam_dead_sim;
4461 			}
4462 		}
4463 	}
4464 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4465 
4466 	/*
4467 	 * Repeat the async's for the benefit of any new devices, such as
4468 	 * might be created from completed probes.  Any new device
4469 	 * ops will run on dead_sim.
4470 	 *
4471 	 * XXX There are probably races :-(
4472 	 */
4473 	CAM_SIM_LOCK(&cam_dead_sim);
4474 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4475 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4476 	CAM_SIM_UNLOCK(&cam_dead_sim);
4477 
4478 	/* Release the reference count held while registered. */
4479 	xpt_release_bus(bus_path.bus);
4480 	xpt_release_path(&bus_path);
4481 
4482 	/* Release the ref we got when the bus was registered */
4483 	cam_sim_release(ccbsim, 0);
4484 
4485 	return (CAM_REQ_CMP);
4486 }
4487 
4488 /*
4489  * Must be called with xpt_topo_lock held.
4490  */
4491 static path_id_t
xptnextfreepathid(void)4492 xptnextfreepathid(void)
4493 {
4494 	struct cam_eb *bus;
4495 	path_id_t pathid;
4496 	const char *strval;
4497 
4498 	pathid = 0;
4499 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4500 retry:
4501 	/* Find an unoccupied pathid */
4502 	while (bus != NULL && bus->path_id <= pathid) {
4503 		if (bus->path_id == pathid)
4504 			pathid++;
4505 		bus = TAILQ_NEXT(bus, links);
4506 	}
4507 
4508 	/*
4509 	 * Ensure that this pathid is not reserved for
4510 	 * a bus that may be registered in the future.
4511 	 */
4512 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4513 		++pathid;
4514 		/* Start the search over */
4515 		goto retry;
4516 	}
4517 	return (pathid);
4518 }
4519 
4520 /*
4521  * Must be called with xpt_topo_lock held.
4522  */
4523 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4524 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4525 {
4526 	path_id_t pathid;
4527 	int i, dunit, val;
4528 	char buf[32];
4529 
4530 	pathid = CAM_XPT_PATH_ID;
4531 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4532 	i = -1;
4533 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4534 		if (strcmp(resource_query_name(i), "scbus")) {
4535 			/* Avoid a bit of foot shooting. */
4536 			continue;
4537 		}
4538 		dunit = resource_query_unit(i);
4539 		if (dunit < 0)		/* unwired?! */
4540 			continue;
4541 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4542 			if (sim_bus == val) {
4543 				pathid = dunit;
4544 				break;
4545 			}
4546 		} else if (sim_bus == 0) {
4547 			/* Unspecified matches bus 0 */
4548 			pathid = dunit;
4549 			break;
4550 		} else {
4551 			kprintf("Ambiguous scbus configuration for %s%d "
4552 			       "bus %d, cannot wire down.  The kernel "
4553 			       "config entry for scbus%d should "
4554 			       "specify a controller bus.\n"
4555 			       "Scbus will be assigned dynamically.\n",
4556 			       sim_name, sim_unit, sim_bus, dunit);
4557 			break;
4558 		}
4559 	}
4560 
4561 	if (pathid == CAM_XPT_PATH_ID)
4562 		pathid = xptnextfreepathid();
4563 	return (pathid);
4564 }
4565 
4566 void
xpt_async(u_int32_t async_code,struct cam_path * path,void * async_arg)4567 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4568 {
4569 	struct cam_eb *bus;
4570 	struct cam_et *target, *next_target;
4571 	struct cam_ed *device, *next_device;
4572 
4573 	sim_lock_assert_owned(path->bus->sim->lock);
4574 
4575 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4576 
4577 	/*
4578 	 * Most async events come from a CAM interrupt context.  In
4579 	 * a few cases, the error recovery code at the peripheral layer,
4580 	 * which may run from our SWI or a process context, may signal
4581 	 * deferred events with a call to xpt_async.
4582 	 */
4583 
4584 	bus = path->bus;
4585 
4586 	if (async_code == AC_BUS_RESET) {
4587 		/* Update our notion of when the last reset occurred */
4588 		microuptime(&bus->last_reset);
4589 	}
4590 
4591 	for (target = TAILQ_FIRST(&bus->et_entries);
4592 	     target != NULL;
4593 	     target = next_target) {
4594 
4595 		next_target = TAILQ_NEXT(target, links);
4596 
4597 		if (path->target != target
4598 		 && path->target->target_id != CAM_TARGET_WILDCARD
4599 		 && target->target_id != CAM_TARGET_WILDCARD)
4600 			continue;
4601 
4602 		if (async_code == AC_SENT_BDR) {
4603 			/* Update our notion of when the last reset occurred */
4604 			microuptime(&path->target->last_reset);
4605 		}
4606 
4607 		for (device = TAILQ_FIRST(&target->ed_entries);
4608 		     device != NULL;
4609 		     device = next_device) {
4610 
4611 			next_device = TAILQ_NEXT(device, links);
4612 
4613 			if (path->device != device
4614 			 && path->device->lun_id != CAM_LUN_WILDCARD
4615 			 && device->lun_id != CAM_LUN_WILDCARD)
4616 				continue;
4617 
4618 			xpt_dev_async(async_code, bus, target,
4619 				      device, async_arg);
4620 
4621 			xpt_async_bcast(&device->asyncs, async_code,
4622 					path, async_arg);
4623 		}
4624 	}
4625 
4626 	/*
4627 	 * If this wasn't a fully wildcarded async, tell all
4628 	 * clients that want all async events.
4629 	 */
4630 	if (bus != xpt_periph->path->bus)
4631 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4632 				path, async_arg);
4633 }
4634 
4635 static void
xpt_async_bcast(struct async_list * async_head,u_int32_t async_code,struct cam_path * path,void * async_arg)4636 xpt_async_bcast(struct async_list *async_head,
4637 		u_int32_t async_code,
4638 		struct cam_path *path, void *async_arg)
4639 {
4640 	struct async_node *cur_entry;
4641 
4642 	cur_entry = SLIST_FIRST(async_head);
4643 	while (cur_entry != NULL) {
4644 		struct async_node *next_entry;
4645 		/*
4646 		 * Grab the next list entry before we call the current
4647 		 * entry's callback.  This is because the callback function
4648 		 * can delete its async callback entry.
4649 		 */
4650 		next_entry = SLIST_NEXT(cur_entry, links);
4651 		if ((cur_entry->event_enable & async_code) != 0)
4652 			cur_entry->callback(cur_entry->callback_arg,
4653 					    async_code, path,
4654 					    async_arg);
4655 		cur_entry = next_entry;
4656 	}
4657 }
4658 
4659 /*
4660  * Handle any per-device event notifications that require action by the XPT.
4661  */
4662 static void
xpt_dev_async(u_int32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4663 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4664 	      struct cam_ed *device, void *async_arg)
4665 {
4666 	cam_status status;
4667 	struct cam_path newpath;
4668 
4669 	/*
4670 	 * We only need to handle events for real devices.
4671 	 */
4672 	if (target->target_id == CAM_TARGET_WILDCARD
4673 	 || device->lun_id == CAM_LUN_WILDCARD)
4674 		return;
4675 
4676 	/*
4677 	 * We need our own path with wildcards expanded to
4678 	 * handle certain types of events.
4679 	 */
4680 	if ((async_code == AC_SENT_BDR)
4681 	 || (async_code == AC_BUS_RESET)
4682 	 || (async_code == AC_INQ_CHANGED))
4683 		status = xpt_compile_path(&newpath, NULL,
4684 					  bus->path_id,
4685 					  target->target_id,
4686 					  device->lun_id);
4687 	else
4688 		status = CAM_REQ_CMP_ERR;
4689 
4690 	if (status == CAM_REQ_CMP) {
4691 
4692 		/*
4693 		 * Allow transfer negotiation to occur in a
4694 		 * tag free environment.
4695 		 */
4696 		if (async_code == AC_SENT_BDR
4697 		 || async_code == AC_BUS_RESET)
4698 			xpt_toggle_tags(&newpath);
4699 
4700 		if (async_code == AC_INQ_CHANGED) {
4701 			/*
4702 			 * We've sent a start unit command, or
4703 			 * something similar to a device that
4704 			 * may have caused its inquiry data to
4705 			 * change. So we re-scan the device to
4706 			 * refresh the inquiry data for it.
4707 			 */
4708 			xpt_scan_lun(newpath.periph, &newpath,
4709 				     CAM_EXPECT_INQ_CHANGE, NULL);
4710 		}
4711 		xpt_release_path(&newpath);
4712 	} else if (async_code == AC_LOST_DEVICE) {
4713 		/*
4714 		 * When we lose a device the device may be about to detach
4715 		 * the sim, we have to clear out all pending timeouts and
4716 		 * requests before that happens.
4717 		 *
4718 		 * This typically happens most often with USB/UMASS devices.
4719 		 *
4720 		 * XXX it would be nice if we could abort the requests
4721 		 * pertaining to the device.
4722 		 */
4723 		xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4724 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4725 			device->flags |= CAM_DEV_UNCONFIGURED;
4726 			xpt_release_device(bus, target, device);
4727 		}
4728 	} else if (async_code == AC_TRANSFER_NEG) {
4729 		struct ccb_trans_settings *settings;
4730 
4731 		settings = (struct ccb_trans_settings *)async_arg;
4732 		xpt_set_transfer_settings(settings, device,
4733 					  /*async_update*/TRUE);
4734 	}
4735 }
4736 
4737 u_int32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4738 xpt_freeze_devq(struct cam_path *path, u_int count)
4739 {
4740 	struct ccb_hdr *ccbh;
4741 
4742 	sim_lock_assert_owned(path->bus->sim->lock);
4743 
4744 	path->device->qfrozen_cnt += count;
4745 
4746 	/*
4747 	 * Mark the last CCB in the queue as needing
4748 	 * to be requeued if the driver hasn't
4749 	 * changed it's state yet.  This fixes a race
4750 	 * where a ccb is just about to be queued to
4751 	 * a controller driver when it's interrupt routine
4752 	 * freezes the queue.  To completly close the
4753 	 * hole, controller drives must check to see
4754 	 * if a ccb's status is still CAM_REQ_INPROG
4755 	 * just before they queue
4756 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4757 	 * an example.
4758 	 */
4759 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4760 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4761 		ccbh->status = CAM_REQUEUE_REQ;
4762 	return (path->device->qfrozen_cnt);
4763 }
4764 
4765 u_int32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4766 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4767 {
4768 	sim_lock_assert_owned(sim->lock);
4769 
4770 	if (sim->devq == NULL)
4771 		return(count);
4772 	sim->devq->send_queue.qfrozen_cnt += count;
4773 	if (sim->devq->active_dev != NULL) {
4774 		struct ccb_hdr *ccbh;
4775 
4776 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4777 				  ccb_hdr_tailq);
4778 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4779 			ccbh->status = CAM_REQUEUE_REQ;
4780 	}
4781 	return (sim->devq->send_queue.qfrozen_cnt);
4782 }
4783 
4784 /*
4785  * Release the device queue after a timeout has expired, typically used to
4786  * introduce a delay before retrying after an I/O error or other problem.
4787  */
4788 static void
xpt_release_devq_timeout(void * arg)4789 xpt_release_devq_timeout(void *arg)
4790 {
4791 	struct cam_ed *device;
4792 
4793 	device = (struct cam_ed *)arg;
4794 	CAM_SIM_LOCK(device->sim);
4795 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4796 	CAM_SIM_UNLOCK(device->sim);
4797 }
4798 
4799 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4800 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4801 {
4802 	sim_lock_assert_owned(path->bus->sim->lock);
4803 
4804 	xpt_release_devq_device(path->device, count, run_queue);
4805 }
4806 
4807 static void
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4808 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4809 {
4810 	int	rundevq;
4811 
4812 	rundevq = 0;
4813 
4814 	if (dev->qfrozen_cnt > 0) {
4815 
4816 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4817 		dev->qfrozen_cnt -= count;
4818 		if (dev->qfrozen_cnt == 0) {
4819 
4820 			/*
4821 			 * No longer need to wait for a successful
4822 			 * command completion.
4823 			 */
4824 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4825 
4826 			/*
4827 			 * Remove any timeouts that might be scheduled
4828 			 * to release this queue.
4829 			 */
4830 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4831 				callout_stop(&dev->callout);
4832 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4833 			}
4834 
4835 			/*
4836 			 * Now that we are unfrozen schedule the
4837 			 * device so any pending transactions are
4838 			 * run.
4839 			 */
4840 			if ((dev->ccbq.queue.entries > 0)
4841 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4842 			 && (run_queue != 0)) {
4843 				rundevq = 1;
4844 			}
4845 		}
4846 	}
4847 	if (rundevq != 0)
4848 		xpt_run_dev_sendq(dev->target->bus);
4849 }
4850 
4851 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4852 xpt_release_simq(struct cam_sim *sim, int run_queue)
4853 {
4854 	struct	camq *sendq;
4855 
4856 	sim_lock_assert_owned(sim->lock);
4857 
4858 	if (sim->devq == NULL)
4859 		return;
4860 
4861 	sendq = &(sim->devq->send_queue);
4862 	if (sendq->qfrozen_cnt > 0) {
4863 		sendq->qfrozen_cnt--;
4864 		if (sendq->qfrozen_cnt == 0) {
4865 			struct cam_eb *bus;
4866 
4867 			/*
4868 			 * If there is a timeout scheduled to release this
4869 			 * sim queue, remove it.  The queue frozen count is
4870 			 * already at 0.
4871 			 */
4872 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4873 				callout_stop(&sim->callout);
4874 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4875 			}
4876 			bus = xpt_find_bus(sim->path_id);
4877 
4878 			if (run_queue) {
4879 				/*
4880 				 * Now that we are unfrozen run the send queue.
4881 				 */
4882 				xpt_run_dev_sendq(bus);
4883 			}
4884 			xpt_release_bus(bus);
4885 		}
4886 	}
4887 }
4888 
4889 void
xpt_done(union ccb * done_ccb)4890 xpt_done(union ccb *done_ccb)
4891 {
4892 	struct cam_sim *sim;
4893 
4894 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4895 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4896 		/*
4897 		 * Queue up the request for handling by our SWI handler
4898 		 * any of the "non-immediate" type of ccbs.
4899 		 */
4900 		sim = done_ccb->ccb_h.path->bus->sim;
4901 		switch (done_ccb->ccb_h.path->periph->type) {
4902 		case CAM_PERIPH_BIO:
4903 			spin_lock(&sim->sim_spin);
4904 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4905 					  sim_links.tqe);
4906 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4907 			spin_unlock(&sim->sim_spin);
4908 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4909 				spin_lock(&cam_simq_spin);
4910 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4911 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4912 							  links);
4913 					sim->flags |= CAM_SIM_ON_DONEQ;
4914 				}
4915 				spin_unlock(&cam_simq_spin);
4916 			}
4917 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4918 				setsoftcambio();
4919 			break;
4920 		default:
4921 			panic("unknown periph type %d",
4922 				done_ccb->ccb_h.path->periph->type);
4923 		}
4924 	}
4925 }
4926 
4927 union ccb *
xpt_alloc_ccb(void)4928 xpt_alloc_ccb(void)
4929 {
4930 	union ccb *new_ccb;
4931 
4932 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4933 	new_ccb->ccb_h.timeout_ch = kmalloc(sizeof(struct callout), M_CAMXPT,
4934 					    M_INTWAIT | M_ZERO);
4935 
4936 	return (new_ccb);
4937 }
4938 
4939 void
xpt_free_ccb(struct ccb_hdr * free_ccb)4940 xpt_free_ccb(struct ccb_hdr *free_ccb)
4941 {
4942 	KKASSERT(free_ccb->timeout_ch != NULL);
4943 	kfree(free_ccb->timeout_ch, M_CAMXPT);
4944 	free_ccb->timeout_ch = NULL;
4945 	kfree(free_ccb, M_CAMXPT);
4946 }
4947 
4948 /* Private XPT functions */
4949 
4950 /*
4951  * Get a CAM control block for the caller. Charge the structure to the device
4952  * referenced by the path.  If the this device has no 'credits' then the
4953  * device already has the maximum number of outstanding operations under way
4954  * and we return NULL. If we don't have sufficient resources to allocate more
4955  * ccbs, we also return NULL.
4956  */
4957 static union ccb *
xpt_get_ccb(struct cam_ed * device)4958 xpt_get_ccb(struct cam_ed *device)
4959 {
4960 	union ccb *new_ccb;
4961 	struct cam_sim *sim;
4962 
4963 	sim = device->sim;
4964 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4965 		new_ccb = xpt_alloc_ccb();
4966 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4967 			callout_init(new_ccb->ccb_h.timeout_ch);
4968 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4969 				  xpt_links.sle);
4970 		sim->ccb_count++;
4971 	}
4972 	cam_ccbq_take_opening(&device->ccbq);
4973 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4974 	return (new_ccb);
4975 }
4976 
4977 static void
xpt_release_bus(struct cam_eb * bus)4978 xpt_release_bus(struct cam_eb *bus)
4979 {
4980 	for (;;) {
4981 		int count = bus->refcount;
4982 
4983 		cpu_ccfence();
4984 		if (count == 1) {
4985 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4986 			if (atomic_cmpset_int(&bus->refcount, 1, 0)) {
4987 				if (TAILQ_EMPTY(&bus->et_entries)) {
4988 					TAILQ_REMOVE(&xsoftc.xpt_busses,
4989 						     bus, links);
4990 					xsoftc.bus_generation++;
4991 					kfree(bus, M_CAMXPT);
4992 				}
4993 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4994 				return;
4995 			}
4996 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4997 		} else {
4998 			if (atomic_cmpset_int(&bus->refcount, count, count-1)) {
4999 				return;
5000 			}
5001 		}
5002 	}
5003 }
5004 
5005 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)5006 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
5007 {
5008 	struct cam_et *target;
5009 	struct cam_et *cur_target;
5010 
5011 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
5012 
5013 	TAILQ_INIT(&target->ed_entries);
5014 	target->bus = bus;
5015 	target->target_id = target_id;
5016 	target->refcount = 1;
5017 	target->generation = 0;
5018 	timevalclear(&target->last_reset);
5019 
5020 	/*
5021 	 * Hold a reference to our parent bus so it
5022 	 * will not go away before we do.
5023 	 */
5024 	atomic_add_int(&bus->refcount, 1);
5025 
5026 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5027 	/* Insertion sort into our bus's target list */
5028 	cur_target = TAILQ_FIRST(&bus->et_entries);
5029 	while (cur_target != NULL && cur_target->target_id < target_id)
5030 		cur_target = TAILQ_NEXT(cur_target, links);
5031 
5032 	if (cur_target != NULL) {
5033 		TAILQ_INSERT_BEFORE(cur_target, target, links);
5034 	} else {
5035 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
5036 	}
5037 	bus->generation++;
5038 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5039 
5040 	return (target);
5041 }
5042 
5043 static void
xpt_release_target(struct cam_eb * bus,struct cam_et * target)5044 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5045 {
5046 	for (;;) {
5047 		int count = target->refcount;
5048 
5049 		cpu_ccfence();
5050 		if (count == 1) {
5051 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5052 			if (atomic_cmpset_int(&target->refcount, 1, 0)) {
5053 				KKASSERT(TAILQ_EMPTY(&target->ed_entries));
5054 				TAILQ_REMOVE(&bus->et_entries, target, links);
5055 				bus->generation++;
5056 				kfree(target, M_CAMXPT);
5057 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5058 				xpt_release_bus(bus);
5059 				return;
5060 			}
5061 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5062 		} else {
5063 			if (atomic_cmpset_int(&target->refcount,
5064 					      count, count - 1)) {
5065 				return;
5066 			}
5067 		}
5068 	}
5069 }
5070 
5071 static struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)5072 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5073 {
5074 	struct	   cam_path path;
5075 	struct	   cam_ed *device;
5076 	struct	   cam_devq *devq;
5077 	cam_status status;
5078 
5079 	/*
5080 	 * Disallow new devices while trying to deregister a sim
5081 	 */
5082 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5083 		return (NULL);
5084 
5085 	/*
5086 	 * Make space for us in the device queue on our bus
5087 	 */
5088 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5089 	devq = bus->sim->devq;
5090 	if (devq == NULL) {
5091 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5092 		return(NULL);
5093 	}
5094 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5095 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5096 
5097 	if (status != CAM_REQ_CMP) {
5098 		device = NULL;
5099 	} else {
5100 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5101 	}
5102 
5103 	if (device != NULL) {
5104 		struct cam_ed *cur_device;
5105 
5106 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5107 		device->alloc_ccb_entry.device = device;
5108 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5109 		device->send_ccb_entry.device = device;
5110 		device->target = target;
5111 		device->lun_id = lun_id;
5112 		device->sim = bus->sim;
5113 		/* Initialize our queues */
5114 		if (camq_init(&device->drvq, 0) != 0) {
5115 			kfree(device, M_CAMXPT);
5116 			return (NULL);
5117 		}
5118 		if (cam_ccbq_init(&device->ccbq,
5119 				  bus->sim->max_dev_openings) != 0) {
5120 			camq_fini(&device->drvq);
5121 			kfree(device, M_CAMXPT);
5122 			return (NULL);
5123 		}
5124 		SLIST_INIT(&device->asyncs);
5125 		SLIST_INIT(&device->periphs);
5126 		device->generation = 0;
5127 		device->owner = NULL;
5128 		/*
5129 		 * Take the default quirk entry until we have inquiry
5130 		 * data and can determine a better quirk to use.
5131 		 */
5132 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5133 		bzero(&device->inq_data, sizeof(device->inq_data));
5134 		device->inq_flags = 0;
5135 		device->queue_flags = 0;
5136 		device->serial_num = NULL;
5137 		device->serial_num_len = 0;
5138 		device->qfrozen_cnt = 0;
5139 		device->flags = CAM_DEV_UNCONFIGURED;
5140 		device->tag_delay_count = 0;
5141 		device->tag_saved_openings = 0;
5142 		device->refcount = 1;
5143 		callout_init(&device->callout);
5144 
5145 		/*
5146 		 * Hold a reference to our parent target so it
5147 		 * will not go away before we do.
5148 		 */
5149 		atomic_add_int(&target->refcount, 1);
5150 
5151 		/*
5152 		 * XXX should be limited by number of CCBs this bus can
5153 		 * do.
5154 		 */
5155 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5156 		/* Insertion sort into our target's device list */
5157 		cur_device = TAILQ_FIRST(&target->ed_entries);
5158 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5159 			cur_device = TAILQ_NEXT(cur_device, links);
5160 		if (cur_device != NULL) {
5161 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5162 		} else {
5163 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5164 		}
5165 		target->generation++;
5166 		if (lun_id != CAM_LUN_WILDCARD) {
5167 			xpt_compile_path(&path,
5168 					 NULL,
5169 					 bus->path_id,
5170 					 target->target_id,
5171 					 lun_id);
5172 			xpt_devise_transport(&path);
5173 			xpt_release_path(&path);
5174 		}
5175 	}
5176 	return (device);
5177 }
5178 
5179 static void
xpt_reference_device(struct cam_ed * device)5180 xpt_reference_device(struct cam_ed *device)
5181 {
5182 	atomic_add_int(&device->refcount, 1);
5183 }
5184 
5185 static void
xpt_release_device(struct cam_eb * bus,struct cam_et * target,struct cam_ed * device)5186 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5187 		   struct cam_ed *device)
5188 {
5189 	struct cam_devq *devq;
5190 
5191 	for (;;) {
5192 		int count = device->refcount;
5193 
5194 		if (count == 1) {
5195 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5196 			if (atomic_cmpset_int(&device->refcount, 1, 0)) {
5197 				KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5198 				if (device->alloc_ccb_entry.pinfo.index !=
5199 				     CAM_UNQUEUED_INDEX ||
5200 				    device->send_ccb_entry.pinfo.index !=
5201 				     CAM_UNQUEUED_INDEX) {
5202 					panic("Removing device while "
5203 					      "still queued for ccbs");
5204 				}
5205 				if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5206 					device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5207 					callout_stop(&device->callout);
5208 				}
5209 				TAILQ_REMOVE(&target->ed_entries, device, links);
5210 				target->generation++;
5211 				bus->sim->max_ccbs -= device->ccbq.devq_openings;
5212 				if ((devq = bus->sim->devq) != NULL) {
5213 					/* Release our slot in the devq */
5214 					cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5215 				}
5216 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5217 
5218 				camq_fini(&device->drvq);
5219 				camq_fini(&device->ccbq.queue);
5220 				xpt_release_target(bus, target);
5221 				kfree(device, M_CAMXPT);
5222 				return;
5223 			}
5224 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5225 		} else {
5226 			if (atomic_cmpset_int(&device->refcount,
5227 					      count, count - 1)) {
5228 				return;
5229 			}
5230 		}
5231 	}
5232 }
5233 
5234 static u_int32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)5235 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5236 {
5237 	int	diff;
5238 	int	result;
5239 	struct	cam_ed *dev;
5240 
5241 	dev = path->device;
5242 
5243 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5244 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5245 	if (result == CAM_REQ_CMP && (diff < 0)) {
5246 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5247 	}
5248 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5249 	 || (dev->inq_flags & SID_CmdQue) != 0)
5250 		dev->tag_saved_openings = newopenings;
5251 	/* Adjust the global limit */
5252 	dev->sim->max_ccbs += diff;
5253 	return (result);
5254 }
5255 
5256 static struct cam_eb *
xpt_find_bus(path_id_t path_id)5257 xpt_find_bus(path_id_t path_id)
5258 {
5259 	struct cam_eb *bus;
5260 
5261 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5262 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5263 		if (bus->path_id == path_id) {
5264 			atomic_add_int(&bus->refcount, 1);
5265 			break;
5266 		}
5267 	}
5268 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5269 
5270 	return (bus);
5271 }
5272 
5273 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)5274 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5275 {
5276 	struct cam_et *target;
5277 
5278 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5279 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5280 		if (target->target_id == target_id) {
5281 			atomic_add_int(&target->refcount, 1);
5282 			break;
5283 		}
5284 	}
5285 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5286 
5287 	return (target);
5288 }
5289 
5290 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)5291 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5292 {
5293 	struct cam_ed *device;
5294 
5295 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5296 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5297 		if (device->lun_id == lun_id) {
5298 			atomic_add_int(&device->refcount, 1);
5299 			break;
5300 		}
5301 	}
5302 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5303 
5304 	return (device);
5305 }
5306 
5307 typedef struct {
5308 	union	ccb *request_ccb;
5309 	struct 	ccb_pathinq *cpi;
5310 	int	counter;
5311 } xpt_scan_bus_info;
5312 
5313 /*
5314  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5315  * As the scan progresses, xpt_scan_bus is used as the
5316  * callback on completion function.
5317  */
5318 static void
xpt_scan_bus(struct cam_periph * periph,union ccb * request_ccb)5319 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5320 {
5321 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5322 		  ("xpt_scan_bus\n"));
5323 	switch (request_ccb->ccb_h.func_code) {
5324 	case XPT_SCAN_BUS:
5325 	{
5326 		xpt_scan_bus_info *scan_info;
5327 		union	ccb *work_ccb;
5328 		struct	cam_path *path;
5329 		u_int	i;
5330 		u_int	max_target;
5331 		u_int	initiator_id;
5332 
5333 		/* Find out the characteristics of the bus */
5334 		work_ccb = xpt_alloc_ccb();
5335 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5336 			      request_ccb->ccb_h.pinfo.priority);
5337 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5338 		xpt_action(work_ccb);
5339 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5340 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5341 			xpt_free_ccb(&work_ccb->ccb_h);
5342 			xpt_done(request_ccb);
5343 			return;
5344 		}
5345 
5346 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5347 			/*
5348 			 * Can't scan the bus on an adapter that
5349 			 * cannot perform the initiator role.
5350 			 */
5351 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5352 			xpt_free_ccb(&work_ccb->ccb_h);
5353 			xpt_done(request_ccb);
5354 			return;
5355 		}
5356 
5357 		/* Save some state for use while we probe for devices */
5358 		scan_info = (xpt_scan_bus_info *)
5359 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5360 		scan_info->request_ccb = request_ccb;
5361 		scan_info->cpi = &work_ccb->cpi;
5362 
5363 		/* Cache on our stack so we can work asynchronously */
5364 		max_target = scan_info->cpi->max_target;
5365 		initiator_id = scan_info->cpi->initiator_id;
5366 
5367 
5368 		/*
5369 		 * We can scan all targets in parallel, or do it sequentially.
5370 		 */
5371 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5372 			max_target = 0;
5373 			scan_info->counter = 0;
5374 		} else {
5375 			scan_info->counter = scan_info->cpi->max_target + 1;
5376 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5377 				scan_info->counter--;
5378 			}
5379 		}
5380 
5381 		for (i = 0; i <= max_target; i++) {
5382 			cam_status status;
5383 			if (i == initiator_id)
5384 				continue;
5385 
5386 			status = xpt_create_path(&path, xpt_periph,
5387 						 request_ccb->ccb_h.path_id,
5388 						 i, 0);
5389 			if (status != CAM_REQ_CMP) {
5390 				kprintf("xpt_scan_bus: xpt_create_path failed"
5391 				       " with status %#x, bus scan halted\n",
5392 				       status);
5393 				kfree(scan_info, M_CAMXPT);
5394 				request_ccb->ccb_h.status = status;
5395 				xpt_free_ccb(&work_ccb->ccb_h);
5396 				xpt_done(request_ccb);
5397 				break;
5398 			}
5399 			work_ccb = xpt_alloc_ccb();
5400 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5401 				      request_ccb->ccb_h.pinfo.priority);
5402 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5403 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5404 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5405 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5406 			xpt_action(work_ccb);
5407 		}
5408 		break;
5409 	}
5410 	case XPT_SCAN_LUN:
5411 	{
5412 		cam_status status;
5413 		struct cam_path *path;
5414 		xpt_scan_bus_info *scan_info;
5415 		path_id_t path_id;
5416 		target_id_t target_id;
5417 		lun_id_t lun_id;
5418 
5419 		/* Reuse the same CCB to query if a device was really found */
5420 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5421 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5422 			      request_ccb->ccb_h.pinfo.priority);
5423 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5424 
5425 		path_id = request_ccb->ccb_h.path_id;
5426 		target_id = request_ccb->ccb_h.target_id;
5427 		lun_id = request_ccb->ccb_h.target_lun;
5428 		xpt_action(request_ccb);
5429 
5430 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5431 			struct cam_ed *device;
5432 			struct cam_et *target;
5433 			int phl;
5434 
5435 			/*
5436 			 * If we already probed lun 0 successfully, or
5437 			 * we have additional configured luns on this
5438 			 * target that might have "gone away", go onto
5439 			 * the next lun.
5440 			 */
5441 			target = request_ccb->ccb_h.path->target;
5442 			/*
5443 			 * We may touch devices that we don't
5444 			 * hold references too, so ensure they
5445 			 * don't disappear out from under us.
5446 			 * The target above is referenced by the
5447 			 * path in the request ccb.
5448 			 */
5449 			phl = 0;
5450 			device = TAILQ_FIRST(&target->ed_entries);
5451 			if (device != NULL) {
5452 				phl = CAN_SRCH_HI_SPARSE(device);
5453 				if (device->lun_id == 0)
5454 					device = TAILQ_NEXT(device, links);
5455 			}
5456 			if ((lun_id != 0) || (device != NULL)) {
5457 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5458 					lun_id++;
5459 			}
5460 		} else {
5461 			struct cam_ed *device;
5462 
5463 			device = request_ccb->ccb_h.path->device;
5464 
5465 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5466 				/* Try the next lun */
5467 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5468 				  || CAN_SRCH_HI_DENSE(device))
5469 					lun_id++;
5470 			}
5471 		}
5472 
5473 		/*
5474 		 * Free the current request path- we're done with it.
5475 		 */
5476 		xpt_free_path(request_ccb->ccb_h.path);
5477 
5478 		/*
5479 		 * Check to see if we scan any further luns.
5480 		 */
5481 		if (lun_id == request_ccb->ccb_h.target_lun
5482                  || lun_id > scan_info->cpi->max_lun) {
5483 			int done;
5484 
5485  hop_again:
5486 			done = 0;
5487 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5488 				scan_info->counter++;
5489 				if (scan_info->counter ==
5490 				    scan_info->cpi->initiator_id) {
5491 					scan_info->counter++;
5492 				}
5493 				if (scan_info->counter >=
5494 				    scan_info->cpi->max_target+1) {
5495 					done = 1;
5496 				}
5497 			} else {
5498 				scan_info->counter--;
5499 				if (scan_info->counter == 0) {
5500 					done = 1;
5501 				}
5502 			}
5503 			if (done) {
5504 				xpt_free_ccb(&request_ccb->ccb_h);
5505 				xpt_free_ccb(&scan_info->cpi->ccb_h);
5506 				request_ccb = scan_info->request_ccb;
5507 				kfree(scan_info, M_CAMXPT);
5508 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5509 				xpt_done(request_ccb);
5510 				break;
5511 			}
5512 
5513 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5514 				break;
5515 			}
5516 			status = xpt_create_path(&path, xpt_periph,
5517 			    scan_info->request_ccb->ccb_h.path_id,
5518 			    scan_info->counter, 0);
5519 			if (status != CAM_REQ_CMP) {
5520 				kprintf("xpt_scan_bus: xpt_create_path failed"
5521 				    " with status %#x, bus scan halted\n",
5522 			       	    status);
5523 				xpt_free_ccb(&request_ccb->ccb_h);
5524 				xpt_free_ccb(&scan_info->cpi->ccb_h);
5525 				request_ccb = scan_info->request_ccb;
5526 				kfree(scan_info, M_CAMXPT);
5527 				request_ccb->ccb_h.status = status;
5528 				xpt_done(request_ccb);
5529 				break;
5530 			}
5531 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5532 				      request_ccb->ccb_h.pinfo.priority);
5533 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5534 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5535 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5536 			request_ccb->crcn.flags =
5537 			    scan_info->request_ccb->crcn.flags;
5538 		} else {
5539 			status = xpt_create_path(&path, xpt_periph,
5540 						 path_id, target_id, lun_id);
5541 			if (status != CAM_REQ_CMP) {
5542 				kprintf("xpt_scan_bus: xpt_create_path failed "
5543 				       "with status %#x, halting LUN scan\n",
5544 			 	       status);
5545 				goto hop_again;
5546 			}
5547 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5548 				      request_ccb->ccb_h.pinfo.priority);
5549 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5550 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5551 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5552 			request_ccb->crcn.flags =
5553 				scan_info->request_ccb->crcn.flags;
5554 		}
5555 		xpt_action(request_ccb);
5556 		break;
5557 	}
5558 	default:
5559 		break;
5560 	}
5561 }
5562 
5563 typedef enum {
5564 	PROBE_TUR,
5565 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5566 	PROBE_FULL_INQUIRY,
5567 	PROBE_MODE_SENSE,
5568 	PROBE_SERIAL_NUM_0,
5569 	PROBE_SERIAL_NUM_1,
5570 	PROBE_TUR_FOR_NEGOTIATION,
5571 	PROBE_INQUIRY_BASIC_DV1,
5572 	PROBE_INQUIRY_BASIC_DV2,
5573 	PROBE_DV_EXIT,
5574 	PROBE_INVALID
5575 } probe_action;
5576 
5577 static char *probe_action_text[] = {
5578 	"PROBE_TUR",
5579 	"PROBE_INQUIRY",
5580 	"PROBE_FULL_INQUIRY",
5581 	"PROBE_MODE_SENSE",
5582 	"PROBE_SERIAL_NUM_0",
5583 	"PROBE_SERIAL_NUM_1",
5584 	"PROBE_TUR_FOR_NEGOTIATION",
5585 	"PROBE_INQUIRY_BASIC_DV1",
5586 	"PROBE_INQUIRY_BASIC_DV2",
5587 	"PROBE_DV_EXIT",
5588 	"PROBE_INVALID"
5589 };
5590 
5591 #define PROBE_SET_ACTION(softc, newaction)	\
5592 do {									\
5593 	char **text;							\
5594 	text = probe_action_text;					\
5595 	CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO,		\
5596 	    ("Probe %s to %s\n", text[(softc)->action],			\
5597 	    text[(newaction)]));					\
5598 	(softc)->action = (newaction);					\
5599 } while(0)
5600 
5601 typedef enum {
5602 	PROBE_INQUIRY_CKSUM	= 0x01,
5603 	PROBE_SERIAL_CKSUM	= 0x02,
5604 	PROBE_NO_ANNOUNCE	= 0x04
5605 } probe_flags;
5606 
5607 typedef struct {
5608 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5609 	probe_action	action;
5610 	union ccb	saved_ccb;
5611 	probe_flags	flags;
5612 	MD5_CTX		context;
5613 	u_int8_t	digest[16];
5614 	struct cam_periph *periph;
5615 } probe_softc;
5616 
5617 static void
xpt_scan_lun(struct cam_periph * periph,struct cam_path * path,cam_flags flags,union ccb * request_ccb)5618 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5619 	     cam_flags flags, union ccb *request_ccb)
5620 {
5621 	struct ccb_pathinq *cpi;
5622 	cam_status status;
5623 	struct cam_path *new_path;
5624 	struct cam_periph *old_periph;
5625 
5626 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5627 		  ("xpt_scan_lun\n"));
5628 
5629 	cpi = &xpt_alloc_ccb()->cpi;
5630 	xpt_setup_ccb(&cpi->ccb_h, path, /*priority*/1);
5631 	cpi->ccb_h.func_code = XPT_PATH_INQ;
5632 	xpt_action((union ccb *)cpi);
5633 
5634 	if (cpi->ccb_h.status != CAM_REQ_CMP) {
5635 		if (request_ccb != NULL) {
5636 			request_ccb->ccb_h.status = cpi->ccb_h.status;
5637 			xpt_done(request_ccb);
5638 		}
5639 		xpt_free_ccb(&cpi->ccb_h);
5640 		return;
5641 	}
5642 
5643 	if ((cpi->hba_misc & PIM_NOINITIATOR) != 0) {
5644 		/*
5645 		 * Can't scan the bus on an adapter that
5646 		 * cannot perform the initiator role.
5647 		 */
5648 		if (request_ccb != NULL) {
5649 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5650 			xpt_done(request_ccb);
5651 		}
5652 		xpt_free_ccb(&cpi->ccb_h);
5653 		return;
5654 	}
5655 	xpt_free_ccb(&cpi->ccb_h);
5656 
5657 	if (request_ccb == NULL) {
5658 		request_ccb = xpt_alloc_ccb();
5659 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5660 		status = xpt_compile_path(new_path, xpt_periph,
5661 					  path->bus->path_id,
5662 					  path->target->target_id,
5663 					  path->device->lun_id);
5664 
5665 		if (status != CAM_REQ_CMP) {
5666 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5667 			    "can't continue\n");
5668 			xpt_free_ccb(&request_ccb->ccb_h);
5669 			kfree(new_path, M_CAMXPT);
5670 			return;
5671 		}
5672 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5673 		request_ccb->ccb_h.cbfcnp = xptscandone;
5674 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5675 		request_ccb->crcn.flags = flags;
5676 	}
5677 
5678 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5679 		probe_softc *softc;
5680 
5681 		softc = (probe_softc *)old_periph->softc;
5682 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5683 				  periph_links.tqe);
5684 	} else {
5685 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5686 					  probestart, "probe",
5687 					  CAM_PERIPH_BIO,
5688 					  request_ccb->ccb_h.path, NULL, 0,
5689 					  request_ccb);
5690 
5691 		if (status != CAM_REQ_CMP) {
5692 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5693 			    "returned an error, can't continue probe\n");
5694 			request_ccb->ccb_h.status = status;
5695 			xpt_done(request_ccb);
5696 		}
5697 	}
5698 }
5699 
5700 static void
xptscandone(struct cam_periph * periph,union ccb * done_ccb)5701 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5702 {
5703 	xpt_release_path(done_ccb->ccb_h.path);
5704 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5705 	xpt_free_ccb(&done_ccb->ccb_h);
5706 }
5707 
5708 static cam_status
proberegister(struct cam_periph * periph,void * arg)5709 proberegister(struct cam_periph *periph, void *arg)
5710 {
5711 	union ccb *request_ccb;	/* CCB representing the probe request */
5712 	cam_status status;
5713 	probe_softc *softc;
5714 
5715 	request_ccb = (union ccb *)arg;
5716 	if (periph == NULL) {
5717 		kprintf("proberegister: periph was NULL!!\n");
5718 		return(CAM_REQ_CMP_ERR);
5719 	}
5720 
5721 	if (request_ccb == NULL) {
5722 		kprintf("proberegister: no probe CCB, "
5723 		       "can't register device\n");
5724 		return(CAM_REQ_CMP_ERR);
5725 	}
5726 
5727 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5728 	TAILQ_INIT(&softc->request_ccbs);
5729 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5730 			  periph_links.tqe);
5731 	softc->flags = 0;
5732 	periph->softc = softc;
5733 	softc->periph = periph;
5734 	softc->action = PROBE_INVALID;
5735 	status = cam_periph_acquire(periph);
5736 	if (status != CAM_REQ_CMP) {
5737 		return (status);
5738 	}
5739 
5740 
5741 	/*
5742 	 * Ensure we've waited at least a bus settle
5743 	 * delay before attempting to probe the device.
5744 	 * For HBAs that don't do bus resets, this won't make a difference.
5745 	 */
5746 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5747 				      scsi_delay);
5748 	probeschedule(periph);
5749 	return(CAM_REQ_CMP);
5750 }
5751 
5752 static void
probeschedule(struct cam_periph * periph)5753 probeschedule(struct cam_periph *periph)
5754 {
5755 	struct ccb_pathinq *cpi;
5756 	union ccb *ccb;
5757 	probe_softc *softc;
5758 
5759 	softc = (probe_softc *)periph->softc;
5760 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5761 
5762 	cpi = &xpt_alloc_ccb()->cpi;
5763 	xpt_setup_ccb(&cpi->ccb_h, periph->path, /*priority*/1);
5764 	cpi->ccb_h.func_code = XPT_PATH_INQ;
5765 	xpt_action((union ccb *)cpi);
5766 
5767 	/*
5768 	 * If a device has gone away and another device, or the same one,
5769 	 * is back in the same place, it should have a unit attention
5770 	 * condition pending.  It will not report the unit attention in
5771 	 * response to an inquiry, which may leave invalid transfer
5772 	 * negotiations in effect.  The TUR will reveal the unit attention
5773 	 * condition.  Only send the TUR for lun 0, since some devices
5774 	 * will get confused by commands other than inquiry to non-existent
5775 	 * luns.  If you think a device has gone away start your scan from
5776 	 * lun 0.  This will insure that any bogus transfer settings are
5777 	 * invalidated.
5778 	 *
5779 	 * If we haven't seen the device before and the controller supports
5780 	 * some kind of transfer negotiation, negotiate with the first
5781 	 * sent command if no bus reset was performed at startup.  This
5782 	 * ensures that the device is not confused by transfer negotiation
5783 	 * settings left over by loader or BIOS action.
5784 	 */
5785 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5786 	 && (ccb->ccb_h.target_lun == 0)) {
5787 		PROBE_SET_ACTION(softc, PROBE_TUR);
5788 	} else if ((cpi->hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5789 	      && (cpi->hba_misc & PIM_NOBUSRESET) != 0) {
5790 		proberequestdefaultnegotiation(periph);
5791 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5792 	} else {
5793 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5794 	}
5795 
5796 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5797 		softc->flags |= PROBE_NO_ANNOUNCE;
5798 	else
5799 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5800 
5801 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5802 	xpt_free_ccb(&cpi->ccb_h);
5803 }
5804 
5805 static void
probestart(struct cam_periph * periph,union ccb * start_ccb)5806 probestart(struct cam_periph *periph, union ccb *start_ccb)
5807 {
5808 	/* Probe the device that our peripheral driver points to */
5809 	struct ccb_scsiio *csio;
5810 	probe_softc *softc;
5811 
5812 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5813 
5814 	softc = (probe_softc *)periph->softc;
5815 	csio = &start_ccb->csio;
5816 
5817 	switch (softc->action) {
5818 	case PROBE_TUR:
5819 	case PROBE_TUR_FOR_NEGOTIATION:
5820 	case PROBE_DV_EXIT:
5821 	{
5822 		scsi_test_unit_ready(csio,
5823 				     /*retries*/4,
5824 				     probedone,
5825 				     MSG_SIMPLE_Q_TAG,
5826 				     SSD_FULL_SIZE,
5827 				     /*timeout*/60000);
5828 		break;
5829 	}
5830 	case PROBE_INQUIRY:
5831 	case PROBE_FULL_INQUIRY:
5832 	case PROBE_INQUIRY_BASIC_DV1:
5833 	case PROBE_INQUIRY_BASIC_DV2:
5834 	{
5835 		u_int inquiry_len;
5836 		struct scsi_inquiry_data *inq_buf;
5837 
5838 		inq_buf = &periph->path->device->inq_data;
5839 
5840 		/*
5841 		 * If the device is currently configured, we calculate an
5842 		 * MD5 checksum of the inquiry data, and if the serial number
5843 		 * length is greater than 0, add the serial number data
5844 		 * into the checksum as well.  Once the inquiry and the
5845 		 * serial number check finish, we attempt to figure out
5846 		 * whether we still have the same device.
5847 		 */
5848 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5849 
5850 			MD5Init(&softc->context);
5851 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5852 				  sizeof(struct scsi_inquiry_data));
5853 			softc->flags |= PROBE_INQUIRY_CKSUM;
5854 			if (periph->path->device->serial_num_len > 0) {
5855 				MD5Update(&softc->context,
5856 					  periph->path->device->serial_num,
5857 					  periph->path->device->serial_num_len);
5858 				softc->flags |= PROBE_SERIAL_CKSUM;
5859 			}
5860 			MD5Final(softc->digest, &softc->context);
5861 		}
5862 
5863 		if (softc->action == PROBE_INQUIRY)
5864 			inquiry_len = SHORT_INQUIRY_LENGTH;
5865 		else
5866 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5867 
5868 		/*
5869 		 * Some parallel SCSI devices fail to send an
5870 		 * ignore wide residue message when dealing with
5871 		 * odd length inquiry requests.  Round up to be
5872 		 * safe.
5873 		 */
5874 		inquiry_len = roundup2(inquiry_len, 2);
5875 
5876 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5877 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5878 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5879 		}
5880 		scsi_inquiry(csio,
5881 			     /*retries*/4,
5882 			     probedone,
5883 			     MSG_SIMPLE_Q_TAG,
5884 			     (u_int8_t *)inq_buf,
5885 			     inquiry_len,
5886 			     /*evpd*/FALSE,
5887 			     /*page_code*/0,
5888 			     SSD_MIN_SIZE,
5889 			     /*timeout*/60 * 1000);
5890 		break;
5891 	}
5892 	case PROBE_MODE_SENSE:
5893 	{
5894 		void  *mode_buf;
5895 		int    mode_buf_len;
5896 
5897 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5898 			     + sizeof(struct scsi_mode_blk_desc)
5899 			     + sizeof(struct scsi_control_page);
5900 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5901 		scsi_mode_sense(csio,
5902 				/*retries*/4,
5903 				probedone,
5904 				MSG_SIMPLE_Q_TAG,
5905 				/*dbd*/FALSE,
5906 				SMS_PAGE_CTRL_CURRENT,
5907 				SMS_CONTROL_MODE_PAGE,
5908 				mode_buf,
5909 				mode_buf_len,
5910 				SSD_FULL_SIZE,
5911 				/*timeout*/60000);
5912 		break;
5913 	}
5914 	case PROBE_SERIAL_NUM_0:
5915 	{
5916 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5917 		struct cam_ed *device;
5918 
5919 		device = periph->path->device;
5920 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5921 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5922 			    M_INTWAIT | M_ZERO);
5923 		}
5924 
5925 		if (vpd_list != NULL) {
5926 			scsi_inquiry(csio,
5927 				     /*retries*/4,
5928 				     probedone,
5929 				     MSG_SIMPLE_Q_TAG,
5930 				     (u_int8_t *)vpd_list,
5931 				     sizeof(*vpd_list),
5932 				     /*evpd*/TRUE,
5933 				     SVPD_SUPPORTED_PAGE_LIST,
5934 				     SSD_MIN_SIZE,
5935 				     /*timeout*/60 * 1000);
5936 			break;
5937 		}
5938 		/*
5939 		 * We'll have to do without, let our probedone
5940 		 * routine finish up for us.
5941 		 */
5942 		start_ccb->csio.data_ptr = NULL;
5943 		probedone(periph, start_ccb);
5944 		return;
5945 	}
5946 	case PROBE_SERIAL_NUM_1:
5947 	{
5948 		struct scsi_vpd_unit_serial_number *serial_buf;
5949 		struct cam_ed* device;
5950 
5951 		serial_buf = NULL;
5952 		device = periph->path->device;
5953 		device->serial_num = NULL;
5954 		device->serial_num_len = 0;
5955 
5956 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5957 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5958 				M_INTWAIT | M_ZERO);
5959 		scsi_inquiry(csio,
5960 			     /*retries*/4,
5961 			     probedone,
5962 			     MSG_SIMPLE_Q_TAG,
5963 			     (u_int8_t *)serial_buf,
5964 			     sizeof(*serial_buf),
5965 			     /*evpd*/TRUE,
5966 			     SVPD_UNIT_SERIAL_NUMBER,
5967 			     SSD_MIN_SIZE,
5968 			     /*timeout*/60 * 1000);
5969 		break;
5970 	}
5971 	case PROBE_INVALID:
5972 		CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5973 		    ("probestart: invalid action state\n"));
5974 	default:
5975 		break;
5976 	}
5977 	xpt_action(start_ccb);
5978 }
5979 
5980 static void
proberequestdefaultnegotiation(struct cam_periph * periph)5981 proberequestdefaultnegotiation(struct cam_periph *periph)
5982 {
5983 	struct ccb_trans_settings *cts;
5984 
5985 	cts = &xpt_alloc_ccb()->cts;
5986 	xpt_setup_ccb(&cts->ccb_h, periph->path, /*priority*/1);
5987 	cts->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5988 	cts->type = CTS_TYPE_USER_SETTINGS;
5989 	xpt_action((union ccb *)cts);
5990 	if ((cts->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5991 		xpt_free_ccb(&cts->ccb_h);
5992 		return;
5993 	}
5994 	cts->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5995 	cts->type = CTS_TYPE_CURRENT_SETTINGS;
5996 	xpt_action((union ccb *)cts);
5997 	xpt_free_ccb(&cts->ccb_h);
5998 }
5999 
6000 /*
6001  * Backoff Negotiation Code- only pertinent for SPI devices.
6002  */
6003 static int
proberequestbackoff(struct cam_periph * periph,struct cam_ed * device)6004 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
6005 {
6006 	struct ccb_trans_settings *cts;
6007 	struct ccb_trans_settings_spi *spi;
6008 	int result;
6009 
6010 	result = 0;
6011 	cts = &xpt_alloc_ccb()->cts;
6012 	xpt_setup_ccb(&cts->ccb_h, periph->path, /*priority*/1);
6013 	cts->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6014 	cts->type = CTS_TYPE_CURRENT_SETTINGS;
6015 	xpt_action((union ccb *)cts);
6016 	if ((cts->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6017 		if (bootverbose) {
6018 			xpt_print(periph->path,
6019 			    "failed to get current device settings\n");
6020 		}
6021 		goto done;
6022 	}
6023 	if (cts->transport != XPORT_SPI) {
6024 		if (bootverbose) {
6025 			xpt_print(periph->path, "not SPI transport\n");
6026 		}
6027 		goto done;
6028 	}
6029 	spi = &cts->xport_specific.spi;
6030 
6031 	/*
6032 	 * We cannot renegotiate sync rate if we don't have one.
6033 	 */
6034 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
6035 		if (bootverbose) {
6036 			xpt_print(periph->path, "no sync rate known\n");
6037 		}
6038 		goto done;
6039 	}
6040 
6041 	/*
6042 	 * We'll assert that we don't have to touch PPR options- the
6043 	 * SIM will see what we do with period and offset and adjust
6044 	 * the PPR options as appropriate.
6045 	 */
6046 
6047 	/*
6048 	 * A sync rate with unknown or zero offset is nonsensical.
6049 	 * A sync period of zero means Async.
6050 	 */
6051 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
6052 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
6053 		if (bootverbose) {
6054 			xpt_print(periph->path, "no sync rate available\n");
6055 		}
6056 		goto done;
6057 	}
6058 
6059 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
6060 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6061 		    ("hit async: giving up on DV\n"));
6062 		goto done;
6063 	}
6064 
6065 
6066 	/*
6067 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
6068 	 * We don't try to remember 'last' settings to see if the SIM actually
6069 	 * gets into the speed we want to set. We check on the SIM telling
6070 	 * us that a requested speed is bad, but otherwise don't try and
6071 	 * check the speed due to the asynchronous and handshake nature
6072 	 * of speed setting.
6073 	 */
6074 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
6075 	for (;;) {
6076 		spi->sync_period++;
6077 		if (spi->sync_period >= 0xf) {
6078 			spi->sync_period = 0;
6079 			spi->sync_offset = 0;
6080 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6081 			    ("setting to async for DV\n"));
6082 			/*
6083 			 * Once we hit async, we don't want to try
6084 			 * any more settings.
6085 			 */
6086 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
6087 		} else if (bootverbose) {
6088 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6089 			    ("DV: period 0x%x\n", spi->sync_period));
6090 			kprintf("setting period to 0x%x\n", spi->sync_period);
6091 		}
6092 		cts->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6093 		cts->type = CTS_TYPE_CURRENT_SETTINGS;
6094 		xpt_action((union ccb *)cts);
6095 		if ((cts->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6096 			break;
6097 		}
6098 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6099 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
6100 		if (spi->sync_period == 0)
6101 			goto done;
6102 	}
6103 	result = 1;
6104 done:
6105 	xpt_free_ccb(&cts->ccb_h);
6106 
6107 	return result;
6108 }
6109 
6110 static void
probedone(struct cam_periph * periph,union ccb * done_ccb)6111 probedone(struct cam_periph *periph, union ccb *done_ccb)
6112 {
6113 	probe_softc *softc;
6114 	struct cam_path *path;
6115 	u_int32_t  priority;
6116 
6117 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6118 
6119 	softc = (probe_softc *)periph->softc;
6120 	path = done_ccb->ccb_h.path;
6121 	priority = done_ccb->ccb_h.pinfo.priority;
6122 
6123 	switch (softc->action) {
6124 	case PROBE_TUR:
6125 	{
6126 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6127 
6128 			if (cam_periph_error(done_ccb, 0,
6129 					     SF_NO_PRINT, NULL) == ERESTART)
6130 				return;
6131 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6132 				/* Don't wedge the queue */
6133 				xpt_release_devq(done_ccb->ccb_h.path,
6134 						 /*count*/1,
6135 						 /*run_queue*/TRUE);
6136 		}
6137 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6138 		xpt_release_ccb(done_ccb);
6139 		xpt_schedule(periph, priority);
6140 		return;
6141 	}
6142 	case PROBE_INQUIRY:
6143 	case PROBE_FULL_INQUIRY:
6144 	{
6145 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6146 			struct scsi_inquiry_data *inq_buf;
6147 			u_int8_t periph_qual;
6148 
6149 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6150 			inq_buf = &path->device->inq_data;
6151 
6152 			periph_qual = SID_QUAL(inq_buf);
6153 
6154 			switch(periph_qual) {
6155 			case SID_QUAL_LU_CONNECTED:
6156 			{
6157 				u_int8_t len;
6158 
6159 				/*
6160 				 * We conservatively request only
6161 				 * SHORT_INQUIRY_LEN bytes of inquiry
6162 				 * information during our first try
6163 				 * at sending an INQUIRY. If the device
6164 				 * has more information to give,
6165 				 * perform a second request specifying
6166 				 * the amount of information the device
6167 				 * is willing to give.
6168 				 */
6169 				len = inq_buf->additional_length
6170 				    + offsetof(struct scsi_inquiry_data,
6171 						additional_length) + 1;
6172 				if (softc->action == PROBE_INQUIRY
6173 				    && len > SHORT_INQUIRY_LENGTH) {
6174 					PROBE_SET_ACTION(softc,
6175 					    PROBE_FULL_INQUIRY);
6176 					xpt_release_ccb(done_ccb);
6177 					xpt_schedule(periph, priority);
6178 					return;
6179 				}
6180 
6181 				xpt_find_quirk(path->device);
6182 
6183 				xpt_devise_transport(path);
6184 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6185 					PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6186 				else
6187 					PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6188 
6189 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6190 				xpt_reference_device(path->device);
6191 
6192 				xpt_release_ccb(done_ccb);
6193 				xpt_schedule(periph, priority);
6194 				return;
6195 			}
6196 			default:
6197 				break;
6198 			}
6199 		} else if (cam_periph_error(done_ccb, 0,
6200 					    done_ccb->ccb_h.target_lun > 0
6201 					    ? SF_RETRY_UA|SF_QUIET_IR|SF_NO_PRINT
6202 					    : SF_RETRY_UA|SF_NO_PRINT,
6203 					    &softc->saved_ccb) == ERESTART) {
6204 			return;
6205 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6206 			/* Don't wedge the queue */
6207 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6208 					 /*run_queue*/TRUE);
6209 		}
6210 		/*
6211 		 * If we get to this point, we got an error status back
6212 		 * from the inquiry and the error status doesn't require
6213 		 * automatically retrying the command.  Therefore, the
6214 		 * inquiry failed.  If we had inquiry information before
6215 		 * for this device, but this latest inquiry command failed,
6216 		 * the device has probably gone away.  If this device isn't
6217 		 * already marked unconfigured, notify the peripheral
6218 		 * drivers that this device is no more.
6219 		 */
6220 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6221 			/* Send the async notification. */
6222 			xpt_async(AC_LOST_DEVICE, path, NULL);
6223 		}
6224 
6225 		xpt_release_ccb(done_ccb);
6226 		break;
6227 	}
6228 	case PROBE_MODE_SENSE:
6229 	{
6230 		struct ccb_scsiio *csio;
6231 		struct scsi_mode_header_6 *mode_hdr;
6232 
6233 		csio = &done_ccb->csio;
6234 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6235 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6236 			struct scsi_control_page *page;
6237 			u_int8_t *offset;
6238 
6239 			offset = ((u_int8_t *)&mode_hdr[1])
6240 			    + mode_hdr->blk_desc_len;
6241 			page = (struct scsi_control_page *)offset;
6242 			path->device->queue_flags = page->queue_flags;
6243 		} else if (cam_periph_error(done_ccb, 0,
6244 					    SF_RETRY_UA|SF_NO_PRINT,
6245 					    &softc->saved_ccb) == ERESTART) {
6246 			return;
6247 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6248 			/* Don't wedge the queue */
6249 			xpt_release_devq(done_ccb->ccb_h.path,
6250 					 /*count*/1, /*run_queue*/TRUE);
6251 		}
6252 		xpt_release_ccb(done_ccb);
6253 		kfree(mode_hdr, M_CAMXPT);
6254 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6255 		xpt_schedule(periph, priority);
6256 		return;
6257 	}
6258 	case PROBE_SERIAL_NUM_0:
6259 	{
6260 		struct ccb_scsiio *csio;
6261 		struct scsi_vpd_supported_page_list *page_list;
6262 		int length, serialnum_supported, i;
6263 
6264 		serialnum_supported = 0;
6265 		csio = &done_ccb->csio;
6266 		page_list =
6267 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6268 
6269 		if (page_list == NULL) {
6270 			/*
6271 			 * Don't process the command as it was never sent
6272 			 */
6273 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6274 		    && (page_list->length > 0)) {
6275 			length = min(page_list->length,
6276 			    SVPD_SUPPORTED_PAGES_SIZE);
6277 			for (i = 0; i < length; i++) {
6278 				if (page_list->list[i] ==
6279 				    SVPD_UNIT_SERIAL_NUMBER) {
6280 					serialnum_supported = 1;
6281 					break;
6282 				}
6283 			}
6284 		} else if (cam_periph_error(done_ccb, 0,
6285 					    SF_RETRY_UA|SF_NO_PRINT,
6286 					    &softc->saved_ccb) == ERESTART) {
6287 			return;
6288 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6289 			/* Don't wedge the queue */
6290 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6291 					 /*run_queue*/TRUE);
6292 		}
6293 
6294 		if (page_list != NULL)
6295 			kfree(page_list, M_DEVBUF);
6296 
6297 		if (serialnum_supported) {
6298 			xpt_release_ccb(done_ccb);
6299 			PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6300 			xpt_schedule(periph, priority);
6301 			return;
6302 		}
6303 
6304 		csio->data_ptr = NULL;
6305 		/* FALLTHROUGH */
6306 	}
6307 
6308 	case PROBE_SERIAL_NUM_1:
6309 	{
6310 		struct ccb_scsiio *csio;
6311 		struct scsi_vpd_unit_serial_number *serial_buf;
6312 		u_int32_t  priority;
6313 		int changed;
6314 		int have_serialnum;
6315 
6316 		changed = 1;
6317 		have_serialnum = 0;
6318 		csio = &done_ccb->csio;
6319 		priority = done_ccb->ccb_h.pinfo.priority;
6320 		serial_buf =
6321 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6322 
6323 		/* Clean up from previous instance of this device */
6324 		if (path->device->serial_num != NULL) {
6325 			kfree(path->device->serial_num, M_CAMXPT);
6326 			path->device->serial_num = NULL;
6327 			path->device->serial_num_len = 0;
6328 		}
6329 
6330 		if (serial_buf == NULL) {
6331 			/*
6332 			 * Don't process the command as it was never sent
6333 			 */
6334 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6335 			&& (serial_buf->length > 0)) {
6336 
6337 			have_serialnum = 1;
6338 			path->device->serial_num =
6339 				kmalloc((serial_buf->length + 1),
6340 				       M_CAMXPT, M_INTWAIT);
6341 			bcopy(serial_buf->serial_num,
6342 			      path->device->serial_num,
6343 			      serial_buf->length);
6344 			path->device->serial_num_len = serial_buf->length;
6345 			path->device->serial_num[serial_buf->length] = '\0';
6346 		} else if (cam_periph_error(done_ccb, 0,
6347 					    SF_RETRY_UA|SF_NO_PRINT,
6348 					    &softc->saved_ccb) == ERESTART) {
6349 			return;
6350 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6351 			/* Don't wedge the queue */
6352 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6353 					 /*run_queue*/TRUE);
6354 		}
6355 
6356 		/*
6357 		 * Let's see if we have seen this device before.
6358 		 */
6359 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6360 			MD5_CTX context;
6361 			u_int8_t digest[16];
6362 
6363 			MD5Init(&context);
6364 
6365 			MD5Update(&context,
6366 				  (unsigned char *)&path->device->inq_data,
6367 				  sizeof(struct scsi_inquiry_data));
6368 
6369 			if (have_serialnum)
6370 				MD5Update(&context, serial_buf->serial_num,
6371 					  serial_buf->length);
6372 
6373 			MD5Final(digest, &context);
6374 			if (bcmp(softc->digest, digest, 16) == 0)
6375 				changed = 0;
6376 
6377 			/*
6378 			 * XXX Do we need to do a TUR in order to ensure
6379 			 *     that the device really hasn't changed???
6380 			 */
6381 			if ((changed != 0)
6382 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6383 				xpt_async(AC_LOST_DEVICE, path, NULL);
6384 		}
6385 		if (serial_buf != NULL)
6386 			kfree(serial_buf, M_CAMXPT);
6387 
6388 		if (changed != 0) {
6389 			/*
6390 			 * Now that we have all the necessary
6391 			 * information to safely perform transfer
6392 			 * negotiations... Controllers don't perform
6393 			 * any negotiation or tagged queuing until
6394 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6395 			 * received.  So, on a new device, just retrieve
6396 			 * the user settings, and set them as the current
6397 			 * settings to set the device up.
6398 			 */
6399 			proberequestdefaultnegotiation(periph);
6400 			xpt_release_ccb(done_ccb);
6401 
6402 			/*
6403 			 * Perform a TUR to allow the controller to
6404 			 * perform any necessary transfer negotiation.
6405 			 */
6406 			PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6407 			xpt_schedule(periph, priority);
6408 			return;
6409 		}
6410 		xpt_release_ccb(done_ccb);
6411 		break;
6412 	}
6413 	case PROBE_TUR_FOR_NEGOTIATION:
6414 	case PROBE_DV_EXIT:
6415 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6416 			/* Don't wedge the queue */
6417 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6418 					 /*run_queue*/TRUE);
6419 		}
6420 
6421 		xpt_reference_device(path->device);
6422 
6423 		/*
6424 		 * Do Domain Validation for lun 0 on devices that claim
6425 		 * to support Synchronous Transfer modes.
6426 		 *
6427 		 * The SID_Sync flag is obsolete or misused in some
6428 		 * situations (some virtio block devices), ignore it.
6429 		 */
6430 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6431 		 && done_ccb->ccb_h.target_lun == 0
6432 		 /* && (path->device->inq_data.flags & SID_Sync) != 0 */
6433                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6434 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6435 			    ("Begin Domain Validation\n"));
6436 			path->device->flags |= CAM_DEV_IN_DV;
6437 			xpt_release_ccb(done_ccb);
6438 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6439 			xpt_schedule(periph, priority);
6440 			return;
6441 		}
6442 		if (softc->action == PROBE_DV_EXIT) {
6443 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6444 			    ("Leave Domain Validation\n"));
6445 		}
6446 		path->device->flags &=
6447 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6448 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6449 			/* Inform the XPT that a new device has been found */
6450 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6451 			xpt_action(done_ccb);
6452 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6453 				  done_ccb);
6454 		}
6455 		xpt_release_ccb(done_ccb);
6456 		break;
6457 	case PROBE_INQUIRY_BASIC_DV1:
6458 	case PROBE_INQUIRY_BASIC_DV2:
6459 	{
6460 		struct scsi_inquiry_data *nbuf;
6461 		struct ccb_scsiio *csio;
6462 
6463 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6464 			/* Don't wedge the queue */
6465 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6466 					 /*run_queue*/TRUE);
6467 		}
6468 		csio = &done_ccb->csio;
6469 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6470 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6471 			xpt_print(path,
6472 			    "inquiry data fails comparison at DV%d step\n",
6473 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6474 			if (proberequestbackoff(periph, path->device)) {
6475 				path->device->flags &= ~CAM_DEV_IN_DV;
6476 				PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6477 			} else {
6478 				/* give up */
6479 				PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6480 			}
6481 			kfree(nbuf, M_CAMXPT);
6482 			xpt_release_ccb(done_ccb);
6483 			xpt_schedule(periph, priority);
6484 			return;
6485 		}
6486 		kfree(nbuf, M_CAMXPT);
6487 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6488 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6489 			xpt_release_ccb(done_ccb);
6490 			xpt_schedule(periph, priority);
6491 			return;
6492 		}
6493 		if (softc->action == PROBE_DV_EXIT) {
6494 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6495 			    ("Leave Domain Validation Successfully\n"));
6496 		}
6497 		path->device->flags &=
6498 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6499 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6500 			/* Inform the XPT that a new device has been found */
6501 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6502 			xpt_action(done_ccb);
6503 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6504 				  done_ccb);
6505 		}
6506 		xpt_release_ccb(done_ccb);
6507 		break;
6508 	}
6509 	case PROBE_INVALID:
6510 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6511 		    ("probedone: invalid action state\n"));
6512 	default:
6513 		break;
6514 	}
6515 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6516 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6517 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6518 	xpt_done(done_ccb);
6519 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6520 		cam_periph_invalidate(periph);
6521 		cam_periph_release(periph);
6522 	} else {
6523 		probeschedule(periph);
6524 	}
6525 }
6526 
6527 static void
probecleanup(struct cam_periph * periph)6528 probecleanup(struct cam_periph *periph)
6529 {
6530 	kfree(periph->softc, M_CAMXPT);
6531 }
6532 
6533 static void
xpt_find_quirk(struct cam_ed * device)6534 xpt_find_quirk(struct cam_ed *device)
6535 {
6536 	caddr_t	match;
6537 
6538 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6539 			       (caddr_t)xpt_quirk_table,
6540 			       NELEM(xpt_quirk_table),
6541 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6542 
6543 	if (match == NULL)
6544 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6545 
6546 	device->quirk = (struct xpt_quirk_entry *)match;
6547 }
6548 
6549 static int
sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)6550 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6551 {
6552 	int error, lbool;
6553 
6554 	lbool = cam_srch_hi;
6555 	error = sysctl_handle_int(oidp, &lbool, 0, req);
6556 	if (error != 0 || req->newptr == NULL)
6557 		return (error);
6558 	if (lbool == 0 || lbool == 1) {
6559 		cam_srch_hi = lbool;
6560 		return (0);
6561 	} else {
6562 		return (EINVAL);
6563 	}
6564 }
6565 
6566 static void
xpt_devise_transport(struct cam_path * path)6567 xpt_devise_transport(struct cam_path *path)
6568 {
6569 	struct ccb_pathinq *cpi;
6570 	struct ccb_trans_settings *cts;
6571 	struct scsi_inquiry_data *inq_buf;
6572 
6573 	/* Get transport information from the SIM */
6574 	cpi = &xpt_alloc_ccb()->cpi;
6575 	cts = &xpt_alloc_ccb()->cts;
6576 
6577 	xpt_setup_ccb(&cpi->ccb_h, path, /*priority*/1);
6578 	cpi->ccb_h.func_code = XPT_PATH_INQ;
6579 	xpt_action((union ccb *)cpi);
6580 
6581 	inq_buf = NULL;
6582 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6583 		inq_buf = &path->device->inq_data;
6584 	path->device->protocol = PROTO_SCSI;
6585 	path->device->protocol_version =
6586 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi->protocol_version;
6587 	path->device->transport = cpi->transport;
6588 	path->device->transport_version = cpi->transport_version;
6589 
6590 	/*
6591 	 * Any device not using SPI3 features should
6592 	 * be considered SPI2 or lower.
6593 	 */
6594 	if (inq_buf != NULL) {
6595 		if (path->device->transport == XPORT_SPI
6596 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6597 		 && path->device->transport_version > 2)
6598 			path->device->transport_version = 2;
6599 	} else {
6600 		struct cam_ed* otherdev;
6601 
6602 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6603 		     otherdev != NULL;
6604 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6605 			if (otherdev != path->device)
6606 				break;
6607 		}
6608 
6609 		if (otherdev != NULL) {
6610 			/*
6611 			 * Initially assume the same versioning as
6612 			 * prior luns for this target.
6613 			 */
6614 			path->device->protocol_version =
6615 			    otherdev->protocol_version;
6616 			path->device->transport_version =
6617 			    otherdev->transport_version;
6618 		} else {
6619 			/* Until we know better, opt for safty */
6620 			path->device->protocol_version = 2;
6621 			if (path->device->transport == XPORT_SPI)
6622 				path->device->transport_version = 2;
6623 			else
6624 				path->device->transport_version = 0;
6625 		}
6626 	}
6627 
6628 	/*
6629 	 * XXX
6630 	 * For a device compliant with SPC-2 we should be able
6631 	 * to determine the transport version supported by
6632 	 * scrutinizing the version descriptors in the
6633 	 * inquiry buffer.
6634 	 */
6635 
6636 	/* Tell the controller what we think */
6637 	xpt_setup_ccb(&cts->ccb_h, path, /*priority*/1);
6638 	cts->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6639 	cts->type = CTS_TYPE_CURRENT_SETTINGS;
6640 	cts->transport = path->device->transport;
6641 	cts->transport_version = path->device->transport_version;
6642 	cts->protocol = path->device->protocol;
6643 	cts->protocol_version = path->device->protocol_version;
6644 	cts->proto_specific.valid = 0;
6645 	cts->xport_specific.valid = 0;
6646 	xpt_action((union ccb *)cts);
6647 
6648 	xpt_free_ccb(&cts->ccb_h);
6649 	xpt_free_ccb(&cpi->ccb_h);
6650 }
6651 
6652 static void
xpt_set_transfer_settings(struct ccb_trans_settings * cts,struct cam_ed * device,int async_update)6653 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6654 			  int async_update)
6655 {
6656 	struct	ccb_pathinq *cpi;
6657 	struct	ccb_trans_settings *cur_cts;
6658 	struct	ccb_trans_settings_scsi *scsi;
6659 	struct	ccb_trans_settings_scsi *cur_scsi;
6660 	struct	cam_sim *sim;
6661 	struct	scsi_inquiry_data *inq_data;
6662 
6663 	if (device == NULL) {
6664 		cts->ccb_h.status = CAM_PATH_INVALID;
6665 		xpt_done((union ccb *)cts);
6666 		return;
6667 	}
6668 
6669 	if (cts->protocol == PROTO_UNKNOWN
6670 	 || cts->protocol == PROTO_UNSPECIFIED) {
6671 		cts->protocol = device->protocol;
6672 		cts->protocol_version = device->protocol_version;
6673 	}
6674 
6675 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6676 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6677 		cts->protocol_version = device->protocol_version;
6678 
6679 	if (cts->protocol != device->protocol) {
6680 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6681 		       cts->protocol, device->protocol);
6682 		cts->protocol = device->protocol;
6683 	}
6684 
6685 	if (cts->protocol_version > device->protocol_version) {
6686 		if (bootverbose) {
6687 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6688 			    "Version from %d to %d?\n", cts->protocol_version,
6689 			    device->protocol_version);
6690 		}
6691 		cts->protocol_version = device->protocol_version;
6692 	}
6693 
6694 	if (cts->transport == XPORT_UNKNOWN
6695 	 || cts->transport == XPORT_UNSPECIFIED) {
6696 		cts->transport = device->transport;
6697 		cts->transport_version = device->transport_version;
6698 	}
6699 
6700 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6701 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6702 		cts->transport_version = device->transport_version;
6703 
6704 	if (cts->transport != device->transport) {
6705 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6706 		    cts->transport, device->transport);
6707 		cts->transport = device->transport;
6708 	}
6709 
6710 	if (cts->transport_version > device->transport_version) {
6711 		if (bootverbose) {
6712 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6713 			    "Version from %d to %d?\n", cts->transport_version,
6714 			    device->transport_version);
6715 		}
6716 		cts->transport_version = device->transport_version;
6717 	}
6718 
6719 	sim = cts->ccb_h.path->bus->sim;
6720 
6721 	/*
6722 	 * Nothing more of interest to do unless
6723 	 * this is a device connected via the
6724 	 * SCSI protocol.
6725 	 */
6726 	if (cts->protocol != PROTO_SCSI) {
6727 		if (async_update == FALSE)
6728 			(*(sim->sim_action))(sim, (union ccb *)cts);
6729 		return;
6730 	}
6731 
6732 	cpi = &xpt_alloc_ccb()->cpi;
6733 	cur_cts = &xpt_alloc_ccb()->cts;
6734 
6735 	inq_data = &device->inq_data;
6736 	scsi = &cts->proto_specific.scsi;
6737 	xpt_setup_ccb(&cpi->ccb_h, cts->ccb_h.path, /*priority*/1);
6738 	cpi->ccb_h.func_code = XPT_PATH_INQ;
6739 	xpt_action((union ccb *)cpi);
6740 
6741 	/* SCSI specific sanity checking */
6742 	if ((cpi->hba_inquiry & PI_TAG_ABLE) == 0
6743 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6744 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6745 	 || (device->quirk->mintags == 0)) {
6746 		/*
6747 		 * Can't tag on hardware that doesn't support tags,
6748 		 * doesn't have it enabled, or has broken tag support.
6749 		 */
6750 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6751 	}
6752 
6753 	if (async_update == FALSE) {
6754 		/*
6755 		 * Perform sanity checking against what the
6756 		 * controller and device can do.
6757 		 */
6758 		xpt_setup_ccb(&cur_cts->ccb_h, cts->ccb_h.path, /*priority*/1);
6759 		cur_cts->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6760 		cur_cts->type = cts->type;
6761 		xpt_action((union ccb *)cur_cts);
6762 		if ((cur_cts->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6763 			goto done;
6764 		}
6765 		cur_scsi = &cur_cts->proto_specific.scsi;
6766 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6767 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6768 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6769 		}
6770 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6771 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6772 	}
6773 
6774 	/* SPI specific sanity checking */
6775 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6776 		u_int spi3caps;
6777 		struct ccb_trans_settings_spi *spi;
6778 		struct ccb_trans_settings_spi *cur_spi;
6779 
6780 		spi = &cts->xport_specific.spi;
6781 
6782 		cur_spi = &cur_cts->xport_specific.spi;
6783 
6784 		/* Fill in any gaps in what the user gave us */
6785 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6786 			spi->sync_period = cur_spi->sync_period;
6787 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6788 			spi->sync_period = 0;
6789 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6790 			spi->sync_offset = cur_spi->sync_offset;
6791 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6792 			spi->sync_offset = 0;
6793 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6794 			spi->ppr_options = cur_spi->ppr_options;
6795 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6796 			spi->ppr_options = 0;
6797 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6798 			spi->bus_width = cur_spi->bus_width;
6799 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6800 			spi->bus_width = 0;
6801 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6802 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6803 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6804 		}
6805 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6806 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6807 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6808 		  && (inq_data->flags & SID_Sync) == 0
6809 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6810 		 || ((cpi->hba_inquiry & PI_SDTR_ABLE) == 0)) {
6811 			/* Force async */
6812 			spi->sync_period = 0;
6813 			spi->sync_offset = 0;
6814 		}
6815 
6816 		switch (spi->bus_width) {
6817 		case MSG_EXT_WDTR_BUS_32_BIT:
6818 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6819 			  || (inq_data->flags & SID_WBus32) != 0
6820 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6821 			 && (cpi->hba_inquiry & PI_WIDE_32) != 0)
6822 				break;
6823 			/* Fall Through to 16-bit */
6824 		case MSG_EXT_WDTR_BUS_16_BIT:
6825 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6826 			  || (inq_data->flags & SID_WBus16) != 0
6827 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6828 			 && (cpi->hba_inquiry & PI_WIDE_16) != 0) {
6829 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6830 				break;
6831 			}
6832 			/* Fall Through to 8-bit */
6833 		default: /* New bus width?? */
6834 		case MSG_EXT_WDTR_BUS_8_BIT:
6835 			/* All targets can do this */
6836 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6837 			break;
6838 		}
6839 
6840 		spi3caps = cpi->xport_specific.spi.ppr_options;
6841 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6842 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6843 			spi3caps &= inq_data->spi3data;
6844 
6845 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6846 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6847 
6848 		if ((spi3caps & SID_SPI_IUS) == 0)
6849 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6850 
6851 		if ((spi3caps & SID_SPI_QAS) == 0)
6852 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6853 
6854 		/* No SPI Transfer settings are allowed unless we are wide */
6855 		if (spi->bus_width == 0)
6856 			spi->ppr_options = 0;
6857 
6858 		if ((spi->valid & CTS_SPI_VALID_DISC)
6859 		 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6860 			/*
6861 			 * Can't tag queue without disconnection.
6862 			 */
6863 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6864 			scsi->valid |= CTS_SCSI_VALID_TQ;
6865 		}
6866 
6867 		/*
6868 		 * If we are currently performing tagged transactions to
6869 		 * this device and want to change its negotiation parameters,
6870 		 * go non-tagged for a bit to give the controller a chance to
6871 		 * negotiate unhampered by tag messages.
6872 		 */
6873 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6874 		 && (device->inq_flags & SID_CmdQue) != 0
6875 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6876 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6877 				   CTS_SPI_VALID_SYNC_OFFSET|
6878 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6879 			xpt_toggle_tags(cts->ccb_h.path);
6880 	}
6881 
6882 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6883 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6884 		int device_tagenb;
6885 
6886 		/*
6887 		 * If we are transitioning from tags to no-tags or
6888 		 * vice-versa, we need to carefully freeze and restart
6889 		 * the queue so that we don't overlap tagged and non-tagged
6890 		 * commands.  We also temporarily stop tags if there is
6891 		 * a change in transfer negotiation settings to allow
6892 		 * "tag-less" negotiation.
6893 		 */
6894 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6895 		 || (device->inq_flags & SID_CmdQue) != 0)
6896 			device_tagenb = TRUE;
6897 		else
6898 			device_tagenb = FALSE;
6899 
6900 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6901 		  && device_tagenb == FALSE)
6902 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6903 		  && device_tagenb == TRUE)) {
6904 
6905 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6906 				/*
6907 				 * Delay change to use tags until after a
6908 				 * few commands have gone to this device so
6909 				 * the controller has time to perform transfer
6910 				 * negotiations without tagged messages getting
6911 				 * in the way.
6912 				 */
6913 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6914 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6915 			} else {
6916 				struct ccb_relsim crs;
6917 
6918 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6919 				device->inq_flags &= ~SID_CmdQue;
6920 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6921 						    sim->max_dev_openings);
6922 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6923 				device->tag_delay_count = 0;
6924 
6925 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6926 					      /*priority*/1);
6927 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6928 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6929 				crs.openings
6930 				    = crs.release_timeout
6931 				    = crs.qfrozen_cnt
6932 				    = 0;
6933 				xpt_action((union ccb *)&crs);
6934 			}
6935 		}
6936 	}
6937 	if (async_update == FALSE)
6938 		(*(sim->sim_action))(sim, (union ccb *)cts);
6939 done:
6940 	xpt_free_ccb(&cur_cts->ccb_h);
6941 	xpt_free_ccb(&cpi->ccb_h);
6942 }
6943 
6944 static void
xpt_toggle_tags(struct cam_path * path)6945 xpt_toggle_tags(struct cam_path *path)
6946 {
6947 	struct cam_ed *dev;
6948 
6949 	/*
6950 	 * Give controllers a chance to renegotiate
6951 	 * before starting tag operations.  We
6952 	 * "toggle" tagged queuing off then on
6953 	 * which causes the tag enable command delay
6954 	 * counter to come into effect.
6955 	 */
6956 	dev = path->device;
6957 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6958 	 || ((dev->inq_flags & SID_CmdQue) != 0
6959  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6960 		struct ccb_trans_settings *cts;
6961 
6962 		cts = &xpt_alloc_ccb()->cts;
6963 		xpt_setup_ccb(&cts->ccb_h, path, 1);
6964 		cts->protocol = PROTO_SCSI;
6965 		cts->protocol_version = PROTO_VERSION_UNSPECIFIED;
6966 		cts->transport = XPORT_UNSPECIFIED;
6967 		cts->transport_version = XPORT_VERSION_UNSPECIFIED;
6968 		cts->proto_specific.scsi.flags = 0;
6969 		cts->proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6970 		xpt_set_transfer_settings(cts, path->device,
6971 					  /*async_update*/TRUE);
6972 		cts->proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6973 		xpt_set_transfer_settings(cts, path->device,
6974 					  /*async_update*/TRUE);
6975 		xpt_free_ccb(&cts->ccb_h);
6976 	}
6977 }
6978 
6979 static void
xpt_start_tags(struct cam_path * path)6980 xpt_start_tags(struct cam_path *path)
6981 {
6982 	struct ccb_relsim *crs;
6983 	struct cam_ed *device;
6984 	struct cam_sim *sim;
6985 	int    newopenings;
6986 
6987 	crs = &xpt_alloc_ccb()->crs;
6988 	device = path->device;
6989 	sim = path->bus->sim;
6990 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6991 	xpt_freeze_devq(path, /*count*/1);
6992 	device->inq_flags |= SID_CmdQue;
6993 	if (device->tag_saved_openings != 0)
6994 		newopenings = device->tag_saved_openings;
6995 	else
6996 		newopenings = min(device->quirk->maxtags,
6997 				  sim->max_tagged_dev_openings);
6998 	xpt_dev_ccbq_resize(path, newopenings);
6999 	xpt_setup_ccb(&crs->ccb_h, path, /*priority*/1);
7000 	crs->ccb_h.func_code = XPT_REL_SIMQ;
7001 	crs->release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
7002 	crs->openings
7003 	    = crs->release_timeout
7004 	    = crs->qfrozen_cnt
7005 	    = 0;
7006 	xpt_action((union ccb *)crs);
7007 	xpt_free_ccb(&crs->ccb_h);
7008 }
7009 
7010 static int busses_to_config;
7011 static int busses_to_reset;
7012 
7013 static int
xptconfigbuscountfunc(struct cam_eb * bus,void * arg)7014 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
7015 {
7016 	sim_lock_assert_owned(bus->sim->lock);
7017 
7018 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
7019 		struct cam_path path;
7020 		struct ccb_pathinq *cpi;
7021 		int can_negotiate;
7022 
7023 		if (bootverbose) {
7024 			kprintf("CAM: Configuring bus:");
7025 			if (bus->sim) {
7026 				kprintf(" %s%d\n",
7027 					bus->sim->sim_name,
7028 					bus->sim->unit_number);
7029 			} else {
7030 				kprintf(" (unknown)\n");
7031 			}
7032 		}
7033 
7034 		cpi = &xpt_alloc_ccb()->cpi;
7035 
7036 		atomic_add_int(&busses_to_config, 1);
7037 		bus->counted_to_config = 1;
7038 		xpt_compile_path(&path, NULL, bus->path_id,
7039 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7040 		xpt_setup_ccb(&cpi->ccb_h, &path, /*priority*/1);
7041 		cpi->ccb_h.func_code = XPT_PATH_INQ;
7042 		xpt_action((union ccb *)cpi);
7043 		can_negotiate = cpi->hba_inquiry;
7044 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
7045 		if ((cpi->hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
7046 			busses_to_reset++;
7047 		xpt_release_path(&path);
7048 		xpt_free_ccb(&cpi->ccb_h);
7049 	} else
7050 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
7051 		/* this is our dummy periph/bus */
7052 		atomic_add_int(&busses_to_config, 1);
7053 		bus->counted_to_config = 1;
7054 	}
7055 
7056 	return(1);
7057 }
7058 
7059 static int
xptconfigfunc(struct cam_eb * bus,void * arg)7060 xptconfigfunc(struct cam_eb *bus, void *arg)
7061 {
7062 	struct	cam_path *path;
7063 	union	ccb *work_ccb;
7064 
7065 	sim_lock_assert_owned(bus->sim->lock);
7066 
7067 	if (bus->path_id != CAM_XPT_PATH_ID) {
7068 		cam_status status;
7069 		int can_negotiate;
7070 
7071 		work_ccb = xpt_alloc_ccb();
7072 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
7073 					      CAM_TARGET_WILDCARD,
7074 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
7075 			kprintf("xptconfigfunc: xpt_create_path failed with "
7076 			       "status %#x for bus %d\n", status, bus->path_id);
7077 			kprintf("xptconfigfunc: halting bus configuration\n");
7078 			xpt_free_ccb(&work_ccb->ccb_h);
7079 			xpt_uncount_bus(bus);
7080 			return(0);
7081 		}
7082 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7083 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
7084 		xpt_action(work_ccb);
7085 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
7086 			kprintf("xptconfigfunc: CPI failed on bus %d "
7087 			       "with status %d\n", bus->path_id,
7088 			       work_ccb->ccb_h.status);
7089 			xpt_finishconfig(xpt_periph, work_ccb);
7090 			return(1);
7091 		}
7092 
7093 		can_negotiate = work_ccb->cpi.hba_inquiry;
7094 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
7095 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
7096 		 && (can_negotiate != 0)) {
7097 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7098 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7099 			work_ccb->ccb_h.cbfcnp = NULL;
7100 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
7101 				  ("Resetting Bus\n"));
7102 			xpt_action(work_ccb);
7103 			xpt_finishconfig(xpt_periph, work_ccb);
7104 		} else {
7105 			/* Act as though we performed a successful BUS RESET */
7106 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7107 			xpt_finishconfig(xpt_periph, work_ccb);
7108 		}
7109 	} else {
7110 		xpt_uncount_bus(bus);
7111 	}
7112 
7113 	return(1);
7114 }
7115 
7116 /*
7117  * Now that interrupts are enabled, go find our devices.
7118  *
7119  * This hook function is called once by run_interrupt_driven_config_hooks().
7120  * XPT is expected to disestablish its hook when done.
7121  */
7122 static void
xpt_config(void * arg)7123 xpt_config(void *arg)
7124 {
7125 
7126 #ifdef CAMDEBUG
7127 	/* Setup debugging flags and path */
7128 #ifdef CAM_DEBUG_FLAGS
7129 	cam_dflags = CAM_DEBUG_FLAGS;
7130 #else /* !CAM_DEBUG_FLAGS */
7131 	cam_dflags = CAM_DEBUG_NONE;
7132 #endif /* CAM_DEBUG_FLAGS */
7133 #ifdef CAM_DEBUG_BUS
7134 	if (cam_dflags != CAM_DEBUG_NONE) {
7135 		/*
7136 		 * Locking is specifically omitted here.  No SIMs have
7137 		 * registered yet, so xpt_create_path will only be searching
7138 		 * empty lists of targets and devices.
7139 		 */
7140 		if (xpt_create_path(&cam_dpath, xpt_periph,
7141 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7142 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7143 			kprintf("xpt_config: xpt_create_path() failed for debug"
7144 			       " target %d:%d:%d, debugging disabled\n",
7145 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7146 			cam_dflags = CAM_DEBUG_NONE;
7147 		}
7148 	} else {
7149 		cam_dpath = NULL;
7150 	}
7151 #else /* !CAM_DEBUG_BUS */
7152 	cam_dpath = NULL;
7153 #endif /* CAM_DEBUG_BUS */
7154 #endif /* CAMDEBUG */
7155 
7156 	/*
7157 	 * Scan all installed busses.  This will also add a count
7158 	 * for our dummy placeholder (xpt_periph).
7159 	 */
7160 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7161 
7162 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7163 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7164 		kprintf("Waiting %d seconds for SCSI "
7165 			"devices to settle\n",
7166 			scsi_delay/1000);
7167 	}
7168 	xpt_for_all_busses(xptconfigfunc, NULL);
7169 }
7170 
7171 /*
7172  * If the given device only has one peripheral attached to it, and if that
7173  * peripheral is the passthrough driver, announce it.  This insures that the
7174  * user sees some sort of announcement for every peripheral in their system.
7175  */
7176 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)7177 xptpassannouncefunc(struct cam_ed *device, void *arg)
7178 {
7179 	struct cam_periph *periph;
7180 	int i;
7181 
7182 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7183 	     periph = SLIST_NEXT(periph, periph_links), i++);
7184 
7185 	periph = SLIST_FIRST(&device->periphs);
7186 	if ((i == 1)
7187 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7188 		xpt_announce_periph(periph, NULL);
7189 
7190 	return(1);
7191 }
7192 
7193 static void
xpt_finishconfig_task(void * context,int pending)7194 xpt_finishconfig_task(void *context, int pending)
7195 {
7196 	struct	periph_driver **p_drv;
7197 	int	i;
7198 
7199 	kprintf("CAM: finished configuring all busses\n");
7200 
7201 	if (busses_to_config == 0) {
7202 		/* Register all the peripheral drivers */
7203 		/* XXX This will have to change when we have loadable modules */
7204 		p_drv = periph_drivers;
7205 		for (i = 0; p_drv[i] != NULL; i++) {
7206 			(*p_drv[i]->init)();
7207 		}
7208 
7209 		/*
7210 		 * Check for devices with no "standard" peripheral driver
7211 		 * attached.  For any devices like that, announce the
7212 		 * passthrough driver so the user will see something.
7213 		 */
7214 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7215 
7216 		/* Release our hook so that the boot can continue. */
7217 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7218 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7219 		xsoftc.xpt_config_hook = NULL;
7220 	}
7221 	kfree(context, M_CAMXPT);
7222 }
7223 
7224 static void
xpt_uncount_bus(struct cam_eb * bus)7225 xpt_uncount_bus (struct cam_eb *bus)
7226 {
7227 	struct xpt_task *task;
7228 
7229 	if (bus->counted_to_config) {
7230 		bus->counted_to_config = 0;
7231 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7232 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7233 				       M_INTWAIT | M_ZERO);
7234 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7235 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7236 					  &task->task);
7237 		}
7238 	}
7239 }
7240 
7241 static void
xpt_finishconfig(struct cam_periph * periph,union ccb * done_ccb)7242 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7243 {
7244 	struct cam_path *path;
7245 
7246 	path = done_ccb->ccb_h.path;
7247 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7248 
7249 	switch(done_ccb->ccb_h.func_code) {
7250 	case XPT_RESET_BUS:
7251 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7252 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7253 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7254 			done_ccb->crcn.flags = 0;
7255 			xpt_action(done_ccb);
7256 			return;
7257 		}
7258 		/* FALLTHROUGH */
7259 	case XPT_SCAN_BUS:
7260 	default:
7261 		if (bootverbose) {
7262 			kprintf("CAM: Finished configuring bus:");
7263 			if (path->bus->sim) {
7264 				kprintf(" %s%d\n",
7265 					path->bus->sim->sim_name,
7266 					path->bus->sim->unit_number);
7267 			} else {
7268 				kprintf(" (unknown)\n");
7269 			}
7270 		}
7271 		xpt_uncount_bus(path->bus);
7272 		xpt_free_path(path);
7273 		xpt_free_ccb(&done_ccb->ccb_h);
7274 		break;
7275 	}
7276 }
7277 
7278 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)7279 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7280 		   struct cam_path *path)
7281 {
7282 	struct ccb_setasync *csa;
7283 	cam_status status;
7284 	int xptpath = 0;
7285 
7286 	if (path == NULL) {
7287 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7288 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7289 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7290 		if (status != CAM_REQ_CMP) {
7291 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7292 			return (status);
7293 		}
7294 		xptpath = 1;
7295 	}
7296 
7297 	csa = &xpt_alloc_ccb()->csa;
7298 	xpt_setup_ccb(&csa->ccb_h, path, /*priority*/5);
7299 	csa->ccb_h.func_code = XPT_SASYNC_CB;
7300 	csa->event_enable = event;
7301 	csa->callback = cbfunc;
7302 	csa->callback_arg = cbarg;
7303 	xpt_action((union ccb *)csa);
7304 	status = csa->ccb_h.status;
7305 	if (xptpath) {
7306 		xpt_free_path(path);
7307 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7308 	}
7309 	xpt_free_ccb(&csa->ccb_h);
7310 
7311 	return (status);
7312 }
7313 
7314 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)7315 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7316 {
7317 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7318 
7319 	switch (work_ccb->ccb_h.func_code) {
7320 	/* Common cases first */
7321 	case XPT_PATH_INQ:		/* Path routing inquiry */
7322 	{
7323 		struct ccb_pathinq *cpi;
7324 
7325 		cpi = &work_ccb->cpi;
7326 		cpi->version_num = 1; /* XXX??? */
7327 		cpi->hba_inquiry = 0;
7328 		cpi->target_sprt = 0;
7329 		cpi->hba_misc = 0;
7330 		cpi->hba_eng_cnt = 0;
7331 		cpi->max_target = 0;
7332 		cpi->max_lun = 0;
7333 		cpi->initiator_id = 0;
7334 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7335 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7336 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7337 		cpi->unit_number = sim->unit_number;
7338 		cpi->bus_id = sim->bus_id;
7339 		cpi->base_transfer_speed = 0;
7340 		cpi->protocol = PROTO_UNSPECIFIED;
7341 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7342 		cpi->transport = XPORT_UNSPECIFIED;
7343 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7344 		cpi->ccb_h.status = CAM_REQ_CMP;
7345 		xpt_done(work_ccb);
7346 		break;
7347 	}
7348 	default:
7349 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7350 		xpt_done(work_ccb);
7351 		break;
7352 	}
7353 }
7354 
7355 /*
7356  * The xpt as a "controller" has no interrupt sources, so polling
7357  * is a no-op.
7358  */
7359 static void
xptpoll(struct cam_sim * sim)7360 xptpoll(struct cam_sim *sim)
7361 {
7362 }
7363 
7364 void
xpt_lock_buses(void)7365 xpt_lock_buses(void)
7366 {
7367 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7368 }
7369 
7370 void
xpt_unlock_buses(void)7371 xpt_unlock_buses(void)
7372 {
7373 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7374 }
7375 
7376 
7377 /*
7378  * Should only be called by the machine interrupt dispatch routines,
7379  * so put these prototypes here instead of in the header.
7380  */
7381 
7382 static void
swi_cambio(void * arg,void * frame)7383 swi_cambio(void *arg, void *frame)
7384 {
7385 	camisr(NULL);
7386 }
7387 
7388 static void
camisr(void * dummy)7389 camisr(void *dummy)
7390 {
7391 	cam_simq_t queue;
7392 	struct cam_sim *sim;
7393 
7394 	spin_lock(&cam_simq_spin);
7395 	TAILQ_INIT(&queue);
7396 	TAILQ_CONCAT(&queue, &cam_simq, links);
7397 	spin_unlock(&cam_simq_spin);
7398 
7399 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7400 		TAILQ_REMOVE(&queue, sim, links);
7401 		CAM_SIM_LOCK(sim);
7402 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7403 		camisr_runqueue(sim);
7404 		CAM_SIM_UNLOCK(sim);
7405 	}
7406 }
7407 
7408 static void
camisr_runqueue(struct cam_sim * sim)7409 camisr_runqueue(struct cam_sim *sim)
7410 {
7411 	struct	ccb_hdr *ccb_h;
7412 	int	runq;
7413 
7414 	spin_lock(&sim->sim_spin);
7415 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7416 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7417 		spin_unlock(&sim->sim_spin);
7418 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7419 
7420 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7421 			  ("camisr\n"));
7422 
7423 		runq = FALSE;
7424 
7425 		if (ccb_h->flags & CAM_HIGH_POWER) {
7426 			struct highpowerlist	*hphead;
7427 			union ccb		*send_ccb;
7428 
7429 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7430 			hphead = &xsoftc.highpowerq;
7431 
7432 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7433 
7434 			/*
7435 			 * Increment the count since this command is done.
7436 			 */
7437 			xsoftc.num_highpower++;
7438 
7439 			/*
7440 			 * Any high powered commands queued up?
7441 			 */
7442 			if (send_ccb != NULL) {
7443 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7444 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7445 
7446 				xpt_release_devq(send_ccb->ccb_h.path,
7447 						 /*count*/1, /*runqueue*/TRUE);
7448 			} else
7449 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7450 		}
7451 
7452 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7453 			struct cam_ed *dev;
7454 
7455 			dev = ccb_h->path->device;
7456 
7457 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7458 
7459 			/*
7460 			 * devq may be NULL if this is cam_dead_sim
7461 			 */
7462 			if (ccb_h->path->bus->sim->devq) {
7463 				ccb_h->path->bus->sim->devq->send_active--;
7464 				ccb_h->path->bus->sim->devq->send_openings++;
7465 			}
7466 
7467 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7468 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7469 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7470 			  && (dev->ccbq.dev_active == 0))) {
7471 
7472 				xpt_release_devq(ccb_h->path, /*count*/1,
7473 						 /*run_queue*/TRUE);
7474 			}
7475 
7476 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7477 			 && (--dev->tag_delay_count == 0))
7478 				xpt_start_tags(ccb_h->path);
7479 
7480 			if ((dev->ccbq.queue.entries > 0)
7481 			 && (dev->qfrozen_cnt == 0)
7482 			 && (device_is_send_queued(dev) == 0)) {
7483 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7484 							      dev);
7485 			}
7486 		}
7487 
7488 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7489 			xpt_release_simq(ccb_h->path->bus->sim,
7490 					 /*run_queue*/TRUE);
7491 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7492 			runq = FALSE;
7493 		}
7494 
7495 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7496 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7497 			xpt_release_devq(ccb_h->path, /*count*/1,
7498 					 /*run_queue*/TRUE);
7499 			ccb_h->status &= ~CAM_DEV_QFRZN;
7500 		} else if (runq) {
7501 			xpt_run_dev_sendq(ccb_h->path->bus);
7502 		}
7503 
7504 		/* Call the peripheral driver's callback */
7505 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7506 		spin_lock(&sim->sim_spin);
7507 	}
7508 	spin_unlock(&sim->sim_spin);
7509 }
7510 
7511 /*
7512  * The dead_sim isn't completely hooked into CAM, we have to make sure
7513  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7514  * doesn't block.
7515  */
7516 static void
dead_sim_action(struct cam_sim * sim,union ccb * ccb)7517 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7518 {
7519 
7520 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7521 	xpt_done(ccb);
7522 	camisr_runqueue(sim);
7523 }
7524 
7525 static void
dead_sim_poll(struct cam_sim * sim)7526 dead_sim_poll(struct cam_sim *sim)
7527 {
7528 }
7529