xref: /freebsd/usr.sbin/makefs/zfs/zap.c (revision be2f92a9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2022 The FreeBSD Foundation
5  *
6  * This software was developed by Mark Johnston under sponsorship from
7  * the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/endian.h>
33 
34 #include <assert.h>
35 #include <stddef.h>
36 #include <stdlib.h>
37 #include <string.h>
38 
39 #include <util.h>
40 
41 #include "makefs.h"
42 #include "zfs.h"
43 
44 typedef struct zfs_zap_entry {
45 	char		*name;		/* entry key, private copy */
46 	uint64_t	hash;		/* key hash */
47 	union {
48 		uint8_t	 *valp;
49 		uint16_t *val16p;
50 		uint32_t *val32p;
51 		uint64_t *val64p;
52 	};				/* entry value, an integer array */
53 	uint64_t	val64;		/* embedded value for a common case */
54 	size_t		intsz;		/* array element size; 1, 2, 4 or 8 */
55 	size_t		intcnt;		/* array size */
56 	STAILQ_ENTRY(zfs_zap_entry) next;
57 } zfs_zap_entry_t;
58 
59 struct zfs_zap {
60 	STAILQ_HEAD(, zfs_zap_entry) kvps;
61 	uint64_t	hashsalt;	/* key hash input */
62 	unsigned long	kvpcnt;		/* number of key-value pairs */
63 	unsigned long	chunks;		/* count of chunks needed for fat ZAP */
64 	bool		micro;		/* can this be a micro ZAP? */
65 
66 	dnode_phys_t	*dnode;		/* backpointer */
67 	zfs_objset_t	*os;		/* backpointer */
68 };
69 
70 static uint16_t
zap_entry_chunks(zfs_zap_entry_t * ent)71 zap_entry_chunks(zfs_zap_entry_t *ent)
72 {
73 	return (1 + howmany(strlen(ent->name) + 1, ZAP_LEAF_ARRAY_BYTES) +
74 	    howmany(ent->intsz * ent->intcnt, ZAP_LEAF_ARRAY_BYTES));
75 }
76 
77 static uint64_t
zap_hash(uint64_t salt,const char * name)78 zap_hash(uint64_t salt, const char *name)
79 {
80 	static uint64_t crc64_table[256];
81 	const uint64_t crc64_poly = 0xC96C5795D7870F42UL;
82 	const uint8_t *cp;
83 	uint64_t crc;
84 	uint8_t c;
85 
86 	assert(salt != 0);
87 	if (crc64_table[128] == 0) {
88 		for (int i = 0; i < 256; i++) {
89 			uint64_t *t;
90 
91 			t = crc64_table + i;
92 			*t = i;
93 			for (int j = 8; j > 0; j--)
94 				*t = (*t >> 1) ^ (-(*t & 1) & crc64_poly);
95 		}
96 	}
97 	assert(crc64_table[128] == crc64_poly);
98 
99 	for (cp = (const uint8_t *)name, crc = salt; (c = *cp) != '\0'; cp++)
100 		crc = (crc >> 8) ^ crc64_table[(crc ^ c) & 0xFF];
101 
102 	/*
103 	 * Only use 28 bits, since we need 4 bits in the cookie for the
104 	 * collision differentiator.  We MUST use the high bits, since
105 	 * those are the ones that we first pay attention to when
106 	 * choosing the bucket.
107 	 */
108 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
109 
110 	return (crc);
111 }
112 
113 zfs_zap_t *
zap_alloc(zfs_objset_t * os,dnode_phys_t * dnode)114 zap_alloc(zfs_objset_t *os, dnode_phys_t *dnode)
115 {
116 	zfs_zap_t *zap;
117 
118 	zap = ecalloc(1, sizeof(*zap));
119 	STAILQ_INIT(&zap->kvps);
120 	zap->hashsalt = ((uint64_t)random() << 32) | random();
121 	zap->micro = true;
122 	zap->kvpcnt = 0;
123 	zap->chunks = 0;
124 	zap->dnode = dnode;
125 	zap->os = os;
126 	return (zap);
127 }
128 
129 void
zap_add(zfs_zap_t * zap,const char * name,size_t intsz,size_t intcnt,const uint8_t * val)130 zap_add(zfs_zap_t *zap, const char *name, size_t intsz, size_t intcnt,
131     const uint8_t *val)
132 {
133 	zfs_zap_entry_t *ent;
134 
135 	assert(intsz == 1 || intsz == 2 || intsz == 4 || intsz == 8);
136 	assert(strlen(name) + 1 <= ZAP_MAXNAMELEN);
137 	assert(intcnt <= ZAP_MAXVALUELEN && intcnt * intsz <= ZAP_MAXVALUELEN);
138 
139 	ent = ecalloc(1, sizeof(*ent));
140 	ent->name = estrdup(name);
141 	ent->hash = zap_hash(zap->hashsalt, ent->name);
142 	ent->intsz = intsz;
143 	ent->intcnt = intcnt;
144 	if (intsz == sizeof(uint64_t) && intcnt == 1) {
145 		/*
146 		 * Micro-optimization to elide a memory allocation in that most
147 		 * common case where this is a directory entry.
148 		 */
149 		ent->val64p = &ent->val64;
150 	} else {
151 		ent->valp = ecalloc(intcnt, intsz);
152 	}
153 	memcpy(ent->valp, val, intcnt * intsz);
154 	zap->kvpcnt++;
155 	zap->chunks += zap_entry_chunks(ent);
156 	STAILQ_INSERT_TAIL(&zap->kvps, ent, next);
157 
158 	if (zap->micro && (intcnt != 1 || intsz != sizeof(uint64_t) ||
159 	    strlen(name) + 1 > MZAP_NAME_LEN || zap->kvpcnt > MZAP_ENT_MAX))
160 		zap->micro = false;
161 }
162 
163 void
zap_add_uint64(zfs_zap_t * zap,const char * name,uint64_t val)164 zap_add_uint64(zfs_zap_t *zap, const char *name, uint64_t val)
165 {
166 	zap_add(zap, name, sizeof(uint64_t), 1, (uint8_t *)&val);
167 }
168 
169 void
zap_add_uint64_self(zfs_zap_t * zap,uint64_t val)170 zap_add_uint64_self(zfs_zap_t *zap, uint64_t val)
171 {
172 	char name[32];
173 
174 	snprintf(name, sizeof(name), "%jx", (uintmax_t)val);
175 	zap_add(zap, name, sizeof(uint64_t), 1, (uint8_t *)&val);
176 }
177 
178 void
zap_add_string(zfs_zap_t * zap,const char * name,const char * val)179 zap_add_string(zfs_zap_t *zap, const char *name, const char *val)
180 {
181 	zap_add(zap, name, 1, strlen(val) + 1, val);
182 }
183 
184 bool
zap_entry_exists(zfs_zap_t * zap,const char * name)185 zap_entry_exists(zfs_zap_t *zap, const char *name)
186 {
187 	zfs_zap_entry_t *ent;
188 
189 	STAILQ_FOREACH(ent, &zap->kvps, next) {
190 		if (strcmp(ent->name, name) == 0)
191 			return (true);
192 	}
193 	return (false);
194 }
195 
196 static void
zap_micro_write(zfs_opt_t * zfs,zfs_zap_t * zap)197 zap_micro_write(zfs_opt_t *zfs, zfs_zap_t *zap)
198 {
199 	dnode_phys_t *dnode;
200 	zfs_zap_entry_t *ent;
201 	mzap_phys_t *mzap;
202 	mzap_ent_phys_t *ment;
203 	off_t bytes, loc;
204 
205 	memset(zfs->filebuf, 0, sizeof(zfs->filebuf));
206 	mzap = (mzap_phys_t *)&zfs->filebuf[0];
207 	mzap->mz_block_type = ZBT_MICRO;
208 	mzap->mz_salt = zap->hashsalt;
209 	mzap->mz_normflags = 0;
210 
211 	bytes = sizeof(*mzap) + (zap->kvpcnt - 1) * sizeof(*ment);
212 	assert(bytes <= (off_t)MZAP_MAX_BLKSZ);
213 
214 	ment = &mzap->mz_chunk[0];
215 	STAILQ_FOREACH(ent, &zap->kvps, next) {
216 		memcpy(&ment->mze_value, ent->valp, ent->intsz * ent->intcnt);
217 		ment->mze_cd = 0; /* XXX-MJ */
218 		strlcpy(ment->mze_name, ent->name, sizeof(ment->mze_name));
219 		ment++;
220 	}
221 
222 	loc = objset_space_alloc(zfs, zap->os, &bytes);
223 
224 	dnode = zap->dnode;
225 	dnode->dn_maxblkid = 0;
226 	dnode->dn_datablkszsec = bytes >> MINBLOCKSHIFT;
227 
228 	vdev_pwrite_dnode_data(zfs, dnode, zfs->filebuf, bytes, loc);
229 }
230 
231 /*
232  * Write some data to the fat ZAP leaf chunk starting at index "li".
233  *
234  * Note that individual integers in the value may be split among consecutive
235  * leaves.
236  */
237 static void
zap_fat_write_array_chunk(zap_leaf_t * l,uint16_t li,size_t sz,const uint8_t * val)238 zap_fat_write_array_chunk(zap_leaf_t *l, uint16_t li, size_t sz,
239     const uint8_t *val)
240 {
241 	struct zap_leaf_array *la;
242 
243 	assert(sz <= ZAP_MAXVALUELEN);
244 
245 	for (uint16_t n, resid = sz; resid > 0; resid -= n, val += n, li++) {
246 		n = MIN(resid, ZAP_LEAF_ARRAY_BYTES);
247 
248 		la = &ZAP_LEAF_CHUNK(l, li).l_array;
249 		assert(la->la_type == ZAP_CHUNK_FREE);
250 		la->la_type = ZAP_CHUNK_ARRAY;
251 		memcpy(la->la_array, val, n);
252 		la->la_next = li + 1;
253 	}
254 	la->la_next = 0xffff;
255 }
256 
257 /*
258  * Find the shortest hash prefix length which lets us distribute keys without
259  * overflowing a leaf block.  This is not (space) optimal, but is simple, and
260  * directories large enough to overflow a single 128KB leaf block are uncommon.
261  */
262 static unsigned int
zap_fat_write_prefixlen(zfs_zap_t * zap,zap_leaf_t * l)263 zap_fat_write_prefixlen(zfs_zap_t *zap, zap_leaf_t *l)
264 {
265 	zfs_zap_entry_t *ent;
266 	unsigned int prefixlen;
267 
268 	if (zap->chunks <= ZAP_LEAF_NUMCHUNKS(l)) {
269 		/*
270 		 * All chunks will fit in a single leaf block.
271 		 */
272 		return (0);
273 	}
274 
275 	for (prefixlen = 1; prefixlen < (unsigned int)l->l_bs; prefixlen++) {
276 		uint32_t *leafchunks;
277 
278 		leafchunks = ecalloc(1u << prefixlen, sizeof(*leafchunks));
279 		STAILQ_FOREACH(ent, &zap->kvps, next) {
280 			uint64_t li;
281 			uint16_t chunks;
282 
283 			li = ZAP_HASH_IDX(ent->hash, prefixlen);
284 
285 			chunks = zap_entry_chunks(ent);
286 			if (ZAP_LEAF_NUMCHUNKS(l) - leafchunks[li] < chunks) {
287 				/*
288 				 * Not enough space, grow the prefix and retry.
289 				 */
290 				break;
291 			}
292 			leafchunks[li] += chunks;
293 		}
294 		free(leafchunks);
295 
296 		if (ent == NULL) {
297 			/*
298 			 * Everything fits, we're done.
299 			 */
300 			break;
301 		}
302 	}
303 
304 	/*
305 	 * If this fails, then we need to expand the pointer table.  For now
306 	 * this situation is unhandled since it is hard to trigger.
307 	 */
308 	assert(prefixlen < (unsigned int)l->l_bs);
309 
310 	return (prefixlen);
311 }
312 
313 /*
314  * Initialize a fat ZAP leaf block.
315  */
316 static void
zap_fat_write_leaf_init(zap_leaf_t * l,uint64_t prefix,int prefixlen)317 zap_fat_write_leaf_init(zap_leaf_t *l, uint64_t prefix, int prefixlen)
318 {
319 	zap_leaf_phys_t *leaf;
320 
321 	leaf = l->l_phys;
322 
323 	leaf->l_hdr.lh_block_type = ZBT_LEAF;
324 	leaf->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
325 	leaf->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
326 	leaf->l_hdr.lh_prefix = prefix;
327 	leaf->l_hdr.lh_prefix_len = prefixlen;
328 
329 	/* Initialize the leaf hash table. */
330 	assert(leaf->l_hdr.lh_nfree < 0xffff);
331 	memset(leaf->l_hash, 0xff,
332 	    ZAP_LEAF_HASH_NUMENTRIES(l) * sizeof(*leaf->l_hash));
333 
334 	/* Initialize the leaf chunks. */
335 	for (uint16_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
336 		struct zap_leaf_free *lf;
337 
338 		lf = &ZAP_LEAF_CHUNK(l, i).l_free;
339 		lf->lf_type = ZAP_CHUNK_FREE;
340 		if (i + 1 == ZAP_LEAF_NUMCHUNKS(l))
341 			lf->lf_next = 0xffff;
342 		else
343 			lf->lf_next = i + 1;
344 	}
345 }
346 
347 static void
zap_fat_write(zfs_opt_t * zfs,zfs_zap_t * zap)348 zap_fat_write(zfs_opt_t *zfs, zfs_zap_t *zap)
349 {
350 	struct dnode_cursor *c;
351 	zap_leaf_t l;
352 	zap_phys_t *zaphdr;
353 	struct zap_table_phys *zt;
354 	zfs_zap_entry_t *ent;
355 	dnode_phys_t *dnode;
356 	uint8_t *leafblks;
357 	uint64_t lblkcnt, *ptrhasht;
358 	off_t loc, blksz;
359 	size_t blkshift;
360 	unsigned int prefixlen;
361 	int ptrcnt;
362 
363 	/*
364 	 * For simplicity, always use the largest block size.  This should be ok
365 	 * since most directories will be micro ZAPs, but it's space inefficient
366 	 * for small ZAPs and might need to be revisited.
367 	 */
368 	blkshift = MAXBLOCKSHIFT;
369 	blksz = (off_t)1 << blkshift;
370 
371 	/*
372 	 * Embedded pointer tables give up to 8192 entries.  This ought to be
373 	 * enough for anything except massive directories.
374 	 */
375 	ptrcnt = (blksz / 2) / sizeof(uint64_t);
376 
377 	memset(zfs->filebuf, 0, sizeof(zfs->filebuf));
378 	zaphdr = (zap_phys_t *)&zfs->filebuf[0];
379 	zaphdr->zap_block_type = ZBT_HEADER;
380 	zaphdr->zap_magic = ZAP_MAGIC;
381 	zaphdr->zap_num_entries = zap->kvpcnt;
382 	zaphdr->zap_salt = zap->hashsalt;
383 
384 	l.l_bs = blkshift;
385 	l.l_phys = NULL;
386 
387 	zt = &zaphdr->zap_ptrtbl;
388 	zt->zt_blk = 0;
389 	zt->zt_numblks = 0;
390 	zt->zt_shift = flsll(ptrcnt) - 1;
391 	zt->zt_nextblk = 0;
392 	zt->zt_blks_copied = 0;
393 
394 	/*
395 	 * How many leaf blocks do we need?  Initialize them and update the
396 	 * header.
397 	 */
398 	prefixlen = zap_fat_write_prefixlen(zap, &l);
399 	lblkcnt = (uint64_t)1 << prefixlen;
400 	leafblks = ecalloc(lblkcnt, blksz);
401 	for (unsigned int li = 0; li < lblkcnt; li++) {
402 		l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz);
403 		zap_fat_write_leaf_init(&l, li, prefixlen);
404 	}
405 	zaphdr->zap_num_leafs = lblkcnt;
406 	zaphdr->zap_freeblk = lblkcnt + 1;
407 
408 	/*
409 	 * For each entry, figure out which leaf block it belongs to based on
410 	 * the upper bits of its hash, allocate chunks from that leaf, and fill
411 	 * them out.
412 	 */
413 	ptrhasht = (uint64_t *)(&zfs->filebuf[0] + blksz / 2);
414 	STAILQ_FOREACH(ent, &zap->kvps, next) {
415 		struct zap_leaf_entry *le;
416 		uint16_t *lptr;
417 		uint64_t hi, li;
418 		uint16_t namelen, nchunks, nnamechunks, nvalchunks;
419 
420 		hi = ZAP_HASH_IDX(ent->hash, zt->zt_shift);
421 		li = ZAP_HASH_IDX(ent->hash, prefixlen);
422 		assert(ptrhasht[hi] == 0 || ptrhasht[hi] == li + 1);
423 		ptrhasht[hi] = li + 1;
424 		l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz);
425 
426 		namelen = strlen(ent->name) + 1;
427 
428 		/*
429 		 * How many leaf chunks do we need for this entry?
430 		 */
431 		nnamechunks = howmany(namelen, ZAP_LEAF_ARRAY_BYTES);
432 		nvalchunks = howmany(ent->intcnt,
433 		    ZAP_LEAF_ARRAY_BYTES / ent->intsz);
434 		nchunks = 1 + nnamechunks + nvalchunks;
435 
436 		/*
437 		 * Allocate a run of free leaf chunks for this entry,
438 		 * potentially extending a hash chain.
439 		 */
440 		assert(l.l_phys->l_hdr.lh_nfree >= nchunks);
441 		l.l_phys->l_hdr.lh_nfree -= nchunks;
442 		l.l_phys->l_hdr.lh_nentries++;
443 		lptr = ZAP_LEAF_HASH_ENTPTR(&l, ent->hash);
444 		while (*lptr != 0xffff) {
445 			assert(*lptr < ZAP_LEAF_NUMCHUNKS(&l));
446 			le = ZAP_LEAF_ENTRY(&l, *lptr);
447 			assert(le->le_type == ZAP_CHUNK_ENTRY);
448 			le->le_cd++;
449 			lptr = &le->le_next;
450 		}
451 		*lptr = l.l_phys->l_hdr.lh_freelist;
452 		l.l_phys->l_hdr.lh_freelist += nchunks;
453 		assert(l.l_phys->l_hdr.lh_freelist <=
454 		    ZAP_LEAF_NUMCHUNKS(&l));
455 		if (l.l_phys->l_hdr.lh_freelist ==
456 		    ZAP_LEAF_NUMCHUNKS(&l))
457 			l.l_phys->l_hdr.lh_freelist = 0xffff;
458 
459 		/*
460 		 * Integer values must be stored in big-endian format.
461 		 */
462 		switch (ent->intsz) {
463 		case 1:
464 			break;
465 		case 2:
466 			for (uint16_t *v = ent->val16p;
467 			    v - ent->val16p < (ptrdiff_t)ent->intcnt;
468 			    v++)
469 				*v = htobe16(*v);
470 			break;
471 		case 4:
472 			for (uint32_t *v = ent->val32p;
473 			    v - ent->val32p < (ptrdiff_t)ent->intcnt;
474 			    v++)
475 				*v = htobe32(*v);
476 			break;
477 		case 8:
478 			for (uint64_t *v = ent->val64p;
479 			    v - ent->val64p < (ptrdiff_t)ent->intcnt;
480 			    v++)
481 				*v = htobe64(*v);
482 			break;
483 		default:
484 			assert(0);
485 		}
486 
487 		/*
488 		 * Finally, write out the leaf chunks for this entry.
489 		 */
490 		le = ZAP_LEAF_ENTRY(&l, *lptr);
491 		assert(le->le_type == ZAP_CHUNK_FREE);
492 		le->le_type = ZAP_CHUNK_ENTRY;
493 		le->le_next = 0xffff;
494 		le->le_name_chunk = *lptr + 1;
495 		le->le_name_numints = namelen;
496 		le->le_value_chunk = *lptr + 1 + nnamechunks;
497 		le->le_value_intlen = ent->intsz;
498 		le->le_value_numints = ent->intcnt;
499 		le->le_hash = ent->hash;
500 		zap_fat_write_array_chunk(&l, *lptr + 1, namelen, ent->name);
501 		zap_fat_write_array_chunk(&l, *lptr + 1 + nnamechunks,
502 		    ent->intcnt * ent->intsz, ent->valp);
503 	}
504 
505 	/*
506 	 * Initialize unused slots of the pointer table.
507 	 */
508 	for (int i = 0; i < ptrcnt; i++)
509 		if (ptrhasht[i] == 0)
510 			ptrhasht[i] = (i >> (zt->zt_shift - prefixlen)) + 1;
511 
512 	/*
513 	 * Write the whole thing to disk.
514 	 */
515 	dnode = zap->dnode;
516 	dnode->dn_datablkszsec = blksz >> MINBLOCKSHIFT;
517 	dnode->dn_maxblkid = lblkcnt + 1;
518 
519 	c = dnode_cursor_init(zfs, zap->os, zap->dnode,
520 	    (lblkcnt + 1) * blksz, blksz);
521 
522 	loc = objset_space_alloc(zfs, zap->os, &blksz);
523 	vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, zfs->filebuf, blksz, loc,
524 	    dnode_cursor_next(zfs, c, 0));
525 
526 	for (uint64_t i = 0; i < lblkcnt; i++) {
527 		loc = objset_space_alloc(zfs, zap->os, &blksz);
528 		vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, leafblks + i * blksz,
529 		    blksz, loc, dnode_cursor_next(zfs, c, (i + 1) * blksz));
530 	}
531 
532 	dnode_cursor_finish(zfs, c);
533 
534 	free(leafblks);
535 }
536 
537 void
zap_write(zfs_opt_t * zfs,zfs_zap_t * zap)538 zap_write(zfs_opt_t *zfs, zfs_zap_t *zap)
539 {
540 	zfs_zap_entry_t *ent;
541 
542 	if (zap->micro) {
543 		zap_micro_write(zfs, zap);
544 	} else {
545 		assert(!STAILQ_EMPTY(&zap->kvps));
546 		assert(zap->kvpcnt > 0);
547 		zap_fat_write(zfs, zap);
548 	}
549 
550 	while ((ent = STAILQ_FIRST(&zap->kvps)) != NULL) {
551 		STAILQ_REMOVE_HEAD(&zap->kvps, next);
552 		if (ent->val64p != &ent->val64)
553 			free(ent->valp);
554 		free(ent->name);
555 		free(ent);
556 	}
557 	free(zap);
558 }
559