xref: /netbsd/sys/rump/librump/rumpkern/vm.c (revision b83efe70)
1 /*	$NetBSD: vm.c,v 1.196 2023/04/22 13:53:53 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.196 2023/04/22 13:53:53 riastradh Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 #include <sys/radixtree.h>
56 #include <sys/module.h>
57 
58 #include <machine/pmap.h>
59 
60 #if defined(__i386__) || defined(__x86_64__)
61 /*
62  * This file abuses the pmap abstraction to create its own statically
63  * allocated struct pmap object, even though it can't do anything
64  * useful with such a thing from userland.  On x86 the struct pmap
65  * definition is private, so we have to go to extra effort to abuse it
66  * there.  This should be fixed -- all of the struct pmap definitions
67  * should be private, and then rump can furnish its own fake struct
68  * pmap without clashing with anything.
69  */
70 #include <machine/pmap_private.h>
71 #endif
72 
73 #include <uvm/uvm.h>
74 #include <uvm/uvm_ddb.h>
75 #include <uvm/uvm_pdpolicy.h>
76 #include <uvm/uvm_prot.h>
77 #include <uvm/uvm_readahead.h>
78 #include <uvm/uvm_device.h>
79 
80 #include <rump-sys/kern.h>
81 #include <rump-sys/vfs.h>
82 
83 #include <rump/rumpuser.h>
84 
85 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
86 kmutex_t uvm_swap_data_lock;
87 
88 struct uvmexp uvmexp;
89 struct uvm uvm;
90 
91 #ifdef __uvmexp_pagesize
92 const int * const uvmexp_pagesize = &uvmexp.pagesize;
93 const int * const uvmexp_pagemask = &uvmexp.pagemask;
94 const int * const uvmexp_pageshift = &uvmexp.pageshift;
95 #endif
96 
97 static struct vm_map kernel_map_store;
98 struct vm_map *kernel_map = &kernel_map_store;
99 
100 static struct vm_map module_map_store;
101 
102 static struct pmap pmap_kernel;
103 struct pmap rump_pmap_local;
104 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
105 
106 vmem_t *kmem_arena;
107 vmem_t *kmem_va_arena;
108 
109 static unsigned int pdaemon_waiters;
110 static kmutex_t pdaemonmtx;
111 static kcondvar_t pdaemoncv, oomwait;
112 
113 /* all local non-proc0 processes share this vmspace */
114 struct vmspace *rump_vmspace_local;
115 
116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
118 static unsigned long curphysmem;
119 static unsigned long dddlim;		/* 90% of memory limit used */
120 #define NEED_PAGEDAEMON() \
121     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
122 #define PDRESERVE (2*MAXPHYS)
123 
124 /*
125  * Try to free two pages worth of pages from objects.
126  * If this successfully frees a full page cache page, we'll
127  * free the released page plus PAGE_SIZE/sizeof(vm_page).
128  */
129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
130 
131 /*
132  * Keep a list of least recently used pages.  Since the only way a
133  * rump kernel can "access" a page is via lookup, we put the page
134  * at the back of queue every time a lookup for it is done.  If the
135  * page is in front of this global queue and we're short of memory,
136  * it's a candidate for pageout.
137  */
138 static struct pglist vmpage_lruqueue;
139 static unsigned vmpage_onqueue;
140 
141 /*
142  * vm pages
143  */
144 
145 static int
pgctor(void * arg,void * obj,int flags)146 pgctor(void *arg, void *obj, int flags)
147 {
148 	struct vm_page *pg = obj;
149 
150 	memset(pg, 0, sizeof(*pg));
151 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
152 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
153 	return pg->uanon == NULL;
154 }
155 
156 static void
pgdtor(void * arg,void * obj)157 pgdtor(void *arg, void *obj)
158 {
159 	struct vm_page *pg = obj;
160 
161 	rump_hyperfree(pg->uanon, PAGE_SIZE);
162 }
163 
164 static struct pool_cache pagecache;
165 
166 /* stub for UVM_OBJ_IS_VNODE */
167 struct uvm_pagerops rump_uvm_vnodeops;
168 __weak_alias(uvm_vnodeops,rump_uvm_vnodeops);
169 
170 /*
171  * Called with the object locked.  We don't support anons.
172  */
173 struct vm_page *
uvm_pagealloc_strat(struct uvm_object * uobj,voff_t off,struct vm_anon * anon,int flags,int strat,int free_list)174 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
175 	int flags, int strat, int free_list)
176 {
177 	struct vm_page *pg;
178 
179 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
180 	KASSERT(anon == NULL);
181 
182 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
183 	if (__predict_false(pg == NULL)) {
184 		return NULL;
185 	}
186 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
187 
188 	pg->offset = off;
189 	pg->uobject = uobj;
190 
191 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
192 	    pg) != 0) {
193 		pool_cache_put(&pagecache, pg);
194 		return NULL;
195 	}
196 
197 	if (UVM_OBJ_IS_VNODE(uobj)) {
198 		if (uobj->uo_npages == 0) {
199 			struct vnode *vp = (struct vnode *)uobj;
200 			mutex_enter(vp->v_interlock);
201 			vp->v_iflag |= VI_PAGES;
202 			mutex_exit(vp->v_interlock);
203 		}
204 		pg->flags |= PG_FILE;
205 	}
206 	uobj->uo_npages++;
207 
208 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
209 	if (flags & UVM_PGA_ZERO) {
210 		uvm_pagezero(pg);
211 	}
212 
213 	/*
214 	 * Don't put anons on the LRU page queue.  We can't flush them
215 	 * (there's no concept of swap in a rump kernel), so no reason
216 	 * to bother with them.
217 	 */
218 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
219 		atomic_inc_uint(&vmpage_onqueue);
220 		mutex_enter(&vmpage_lruqueue_lock);
221 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
222 		mutex_exit(&vmpage_lruqueue_lock);
223 	} else {
224 		pg->flags |= PG_AOBJ;
225 	}
226 
227 	return pg;
228 }
229 
230 /*
231  * Release a page.
232  *
233  * Called with the vm object locked.
234  */
235 void
uvm_pagefree(struct vm_page * pg)236 uvm_pagefree(struct vm_page *pg)
237 {
238 	struct uvm_object *uobj = pg->uobject;
239 	struct vm_page *pg2 __unused;
240 
241 	KASSERT(rw_write_held(uobj->vmobjlock));
242 
243 	mutex_enter(&pg->interlock);
244 	uvm_pagewakeup(pg);
245 	mutex_exit(&pg->interlock);
246 
247 	uobj->uo_npages--;
248 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
249 	KASSERT(pg == pg2);
250 
251 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
252 		mutex_enter(&vmpage_lruqueue_lock);
253 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
254 		mutex_exit(&vmpage_lruqueue_lock);
255 		atomic_dec_uint(&vmpage_onqueue);
256 	}
257 
258 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
259 		struct vnode *vp = (struct vnode *)uobj;
260 		mutex_enter(vp->v_interlock);
261 		vp->v_iflag &= ~VI_PAGES;
262 		mutex_exit(vp->v_interlock);
263 	}
264 
265 	mutex_destroy(&pg->interlock);
266 	pool_cache_put(&pagecache, pg);
267 }
268 
269 void
uvm_pagezero(struct vm_page * pg)270 uvm_pagezero(struct vm_page *pg)
271 {
272 
273 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
274 	memset((void *)pg->uanon, 0, PAGE_SIZE);
275 }
276 
277 /*
278  * uvm_page_owner_locked_p: return true if object associated with page is
279  * locked.  this is a weak check for runtime assertions only.
280  */
281 
282 bool
uvm_page_owner_locked_p(struct vm_page * pg,bool exclusive)283 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
284 {
285 
286 	if (exclusive)
287 		return rw_write_held(pg->uobject->vmobjlock);
288 	else
289 		return rw_lock_held(pg->uobject->vmobjlock);
290 }
291 
292 /*
293  * Misc routines
294  */
295 
296 static kmutex_t pagermtx;
297 
298 void
uvm_init(void)299 uvm_init(void)
300 {
301 	char buf[64];
302 
303 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
304 		unsigned long tmp;
305 		char *ep;
306 		int mult;
307 
308 		tmp = strtoul(buf, &ep, 10);
309 		if (strlen(ep) > 1)
310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 
312 		/* mini-dehumanize-number */
313 		mult = 1;
314 		switch (*ep) {
315 		case 'k':
316 			mult = 1024;
317 			break;
318 		case 'm':
319 			mult = 1024*1024;
320 			break;
321 		case 'g':
322 			mult = 1024*1024*1024;
323 			break;
324 		case 0:
325 			break;
326 		default:
327 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
328 		}
329 		rump_physmemlimit = tmp * mult;
330 
331 		if (rump_physmemlimit / mult != tmp)
332 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
333 
334 		/* reserve some memory for the pager */
335 		if (rump_physmemlimit <= PDRESERVE)
336 			panic("uvm_init: system reserves %d bytes of mem, "
337 			    "only %lu bytes given",
338 			    PDRESERVE, rump_physmemlimit);
339 		pdlimit = rump_physmemlimit;
340 		rump_physmemlimit -= PDRESERVE;
341 
342 		if (pdlimit < 1024*1024)
343 			printf("uvm_init: WARNING: <1MB RAM limit, "
344 			    "hope you know what you're doing\n");
345 
346 #define HUMANIZE_BYTES 9
347 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
348 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
349 #undef HUMANIZE_BYTES
350 		dddlim = 9 * (rump_physmemlimit / 10);
351 	} else {
352 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
353 	}
354 	aprint_verbose("total memory = %s\n", buf);
355 
356 	TAILQ_INIT(&vmpage_lruqueue);
357 
358 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
359 		uvmexp.npages = physmem;
360 	} else {
361 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
362 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
363 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
364 	}
365 	/*
366 	 * uvmexp.free is not used internally or updated.  The reason is
367 	 * that the memory hypercall allocator is allowed to allocate
368 	 * non-page sized chunks.  We use a byte count in curphysmem
369 	 * instead.
370 	 */
371 	uvmexp.free = uvmexp.npages;
372 
373 #ifndef __uvmexp_pagesize
374 	uvmexp.pagesize = PAGE_SIZE;
375 	uvmexp.pagemask = PAGE_MASK;
376 	uvmexp.pageshift = PAGE_SHIFT;
377 #else
378 #define FAKE_PAGE_SHIFT 12
379 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
380 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
381 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
382 #undef FAKE_PAGE_SHIFT
383 #endif
384 
385 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
386 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
387 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
388 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
389 
390 	cv_init(&pdaemoncv, "pdaemon");
391 	cv_init(&oomwait, "oomwait");
392 
393 	module_map = &module_map_store;
394 
395 	kernel_map->pmap = pmap_kernel();
396 
397 	pool_subsystem_init();
398 
399 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
400 	    NULL, NULL, NULL,
401 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
402 
403 	vmem_subsystem_init(kmem_arena);
404 
405 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
406 	    vmem_alloc, vmem_free, kmem_arena,
407 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
408 
409 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
410 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
411 
412 	radix_tree_init();
413 
414 	/* create vmspace used by local clients */
415 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
416 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
417 }
418 
419 void
uvmspace_init(struct vmspace * vm,struct pmap * pmap,vaddr_t vmin,vaddr_t vmax,bool topdown)420 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
421     bool topdown)
422 {
423 
424 	vm->vm_map.pmap = pmap;
425 	vm->vm_refcnt = 1;
426 }
427 
428 int
uvm_map_pageable(struct vm_map * map,vaddr_t start,vaddr_t end,bool new_pageable,int lockflags)429 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
430     bool new_pageable, int lockflags)
431 {
432 	return 0;
433 }
434 
435 void
uvm_pagewire(struct vm_page * pg)436 uvm_pagewire(struct vm_page *pg)
437 {
438 
439 	/* nada */
440 }
441 
442 void
uvm_pageunwire(struct vm_page * pg)443 uvm_pageunwire(struct vm_page *pg)
444 {
445 
446 	/* nada */
447 }
448 
449 int
uvm_availmem(bool cached)450 uvm_availmem(bool cached)
451 {
452 
453 	return uvmexp.free;
454 }
455 
456 void
uvm_pagelock(struct vm_page * pg)457 uvm_pagelock(struct vm_page *pg)
458 {
459 
460 	mutex_enter(&pg->interlock);
461 }
462 
463 void
uvm_pagelock2(struct vm_page * pg1,struct vm_page * pg2)464 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
465 {
466 
467 	if (pg1 < pg2) {
468 		mutex_enter(&pg1->interlock);
469 		mutex_enter(&pg2->interlock);
470 	} else {
471 		mutex_enter(&pg2->interlock);
472 		mutex_enter(&pg1->interlock);
473 	}
474 }
475 
476 void
uvm_pageunlock(struct vm_page * pg)477 uvm_pageunlock(struct vm_page *pg)
478 {
479 
480 	mutex_exit(&pg->interlock);
481 }
482 
483 void
uvm_pageunlock2(struct vm_page * pg1,struct vm_page * pg2)484 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
485 {
486 
487 	mutex_exit(&pg1->interlock);
488 	mutex_exit(&pg2->interlock);
489 }
490 
491 /* where's your schmonz now? */
492 #define PUNLIMIT(a)	\
493 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
494 void
uvm_init_limits(struct proc * p)495 uvm_init_limits(struct proc *p)
496 {
497 
498 #ifndef DFLSSIZ
499 #define DFLSSIZ (16*1024*1024)
500 #endif
501 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
502 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
503 	PUNLIMIT(RLIMIT_DATA);
504 	PUNLIMIT(RLIMIT_RSS);
505 	PUNLIMIT(RLIMIT_AS);
506 	/* nice, cascade */
507 }
508 #undef PUNLIMIT
509 
510 /*
511  * This satisfies the "disgusting mmap hack" used by proplib.
512  */
513 int
uvm_mmap_anon(struct proc * p,void ** addrp,size_t size)514 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
515 {
516 	int error;
517 
518 	/* no reason in particular, but cf. uvm_default_mapaddr() */
519 	if (*addrp != NULL)
520 		panic("uvm_mmap() variant unsupported");
521 
522 	if (RUMP_LOCALPROC_P(curproc)) {
523 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
524 	} else {
525 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
526 		    size, addrp);
527 	}
528 	return error;
529 }
530 
531 /*
532  * Stubs for things referenced from vfs_vnode.c but not used.
533  */
534 const dev_t zerodev;
535 
536 struct uvm_object *
udv_attach(dev_t device,vm_prot_t accessprot,voff_t off,vsize_t size)537 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
538 {
539 	return NULL;
540 }
541 
542 struct pagerinfo {
543 	vaddr_t pgr_kva;
544 	int pgr_npages;
545 	struct vm_page **pgr_pgs;
546 	bool pgr_read;
547 
548 	LIST_ENTRY(pagerinfo) pgr_entries;
549 };
550 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
551 
552 /*
553  * Pager "map" in routine.  Instead of mapping, we allocate memory
554  * and copy page contents there.  The reason for copying instead of
555  * mapping is simple: we do not assume we are running on virtual
556  * memory.  Even if we could emulate virtual memory in some envs
557  * such as userspace, copying is much faster than trying to awkardly
558  * cope with remapping (see "Design and Implementation" pp.95-98).
559  * The downside of the approach is that the pager requires MAXPHYS
560  * free memory to perform paging, but short of virtual memory or
561  * making the pager do I/O in page-sized chunks we cannot do much
562  * about that.
563  */
564 vaddr_t
uvm_pagermapin(struct vm_page ** pgs,int npages,int flags)565 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
566 {
567 	struct pagerinfo *pgri;
568 	vaddr_t curkva;
569 	int i;
570 
571 	/* allocate structures */
572 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
573 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
574 	pgri->pgr_npages = npages;
575 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
576 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
577 
578 	/* copy contents to "mapped" memory */
579 	for (i = 0, curkva = pgri->pgr_kva;
580 	    i < npages;
581 	    i++, curkva += PAGE_SIZE) {
582 		/*
583 		 * We need to copy the previous contents of the pages to
584 		 * the window even if we are reading from the
585 		 * device, since the device might not fill the contents of
586 		 * the full mapped range and we will end up corrupting
587 		 * data when we unmap the window.
588 		 */
589 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
590 		pgri->pgr_pgs[i] = pgs[i];
591 	}
592 
593 	mutex_enter(&pagermtx);
594 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
595 	mutex_exit(&pagermtx);
596 
597 	return pgri->pgr_kva;
598 }
599 
600 /*
601  * map out the pager window.  return contents from VA to page storage
602  * and free structures.
603  *
604  * Note: does not currently support partial frees
605  */
606 void
uvm_pagermapout(vaddr_t kva,int npages)607 uvm_pagermapout(vaddr_t kva, int npages)
608 {
609 	struct pagerinfo *pgri;
610 	vaddr_t curkva;
611 	int i;
612 
613 	mutex_enter(&pagermtx);
614 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
615 		if (pgri->pgr_kva == kva)
616 			break;
617 	}
618 	KASSERT(pgri);
619 	if (pgri->pgr_npages != npages)
620 		panic("uvm_pagermapout: partial unmapping not supported");
621 	LIST_REMOVE(pgri, pgr_entries);
622 	mutex_exit(&pagermtx);
623 
624 	if (pgri->pgr_read) {
625 		for (i = 0, curkva = pgri->pgr_kva;
626 		    i < pgri->pgr_npages;
627 		    i++, curkva += PAGE_SIZE) {
628 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
629 		}
630 	}
631 
632 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
633 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
634 	kmem_free(pgri, sizeof(*pgri));
635 }
636 
637 /*
638  * convert va in pager window to page structure.
639  * XXX: how expensive is this (global lock, list traversal)?
640  */
641 struct vm_page *
uvm_pageratop(vaddr_t va)642 uvm_pageratop(vaddr_t va)
643 {
644 	struct pagerinfo *pgri;
645 	struct vm_page *pg = NULL;
646 	int i;
647 
648 	mutex_enter(&pagermtx);
649 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
650 		if (pgri->pgr_kva <= va
651 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
652 			break;
653 	}
654 	if (pgri) {
655 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
656 		pg = pgri->pgr_pgs[i];
657 	}
658 	mutex_exit(&pagermtx);
659 
660 	return pg;
661 }
662 
663 /*
664  * Called with the vm object locked.
665  *
666  * Put vnode object pages at the end of the access queue to indicate
667  * they have been recently accessed and should not be immediate
668  * candidates for pageout.  Do not do this for lookups done by
669  * the pagedaemon to mimic pmap_kentered mappings which don't track
670  * access information.
671  */
672 struct vm_page *
uvm_pagelookup(struct uvm_object * uobj,voff_t off)673 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
674 {
675 	struct vm_page *pg;
676 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
677 
678 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
679 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
680 		mutex_enter(&vmpage_lruqueue_lock);
681 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
682 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
683 		mutex_exit(&vmpage_lruqueue_lock);
684 	}
685 
686 	return pg;
687 }
688 
689 void
uvm_page_unbusy(struct vm_page ** pgs,int npgs)690 uvm_page_unbusy(struct vm_page **pgs, int npgs)
691 {
692 	struct vm_page *pg;
693 	int i, pageout_done;
694 
695 	KASSERT(npgs > 0);
696 
697 	pageout_done = 0;
698 	for (i = 0; i < npgs; i++) {
699 		pg = pgs[i];
700 		if (pg == NULL || pg == PGO_DONTCARE) {
701 			continue;
702 		}
703 
704 #if 0
705 		KASSERT(uvm_page_owner_locked_p(pg, true));
706 #else
707 		/*
708 		 * uvm_page_owner_locked_p() is not available in rump,
709 		 * and rump doesn't support amaps anyway.
710 		 */
711 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
712 #endif
713 		KASSERT(pg->flags & PG_BUSY);
714 
715 		if (pg->flags & PG_PAGEOUT) {
716 			pg->flags &= ~PG_PAGEOUT;
717 			pg->flags |= PG_RELEASED;
718 			pageout_done++;
719 			atomic_inc_uint(&uvmexp.pdfreed);
720 		}
721 		if (pg->flags & PG_RELEASED) {
722 			KASSERT(pg->uobject != NULL ||
723 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
724 			pg->flags &= ~PG_RELEASED;
725 			uvm_pagefree(pg);
726 		} else {
727 			KASSERT((pg->flags & PG_FAKE) == 0);
728 			pg->flags &= ~PG_BUSY;
729 			uvm_pagelock(pg);
730 			uvm_pagewakeup(pg);
731 			uvm_pageunlock(pg);
732 			UVM_PAGE_OWN(pg, NULL);
733 		}
734 	}
735 	if (pageout_done != 0) {
736 		uvm_pageout_done(pageout_done);
737 	}
738 }
739 
740 void
uvm_pagewait(struct vm_page * pg,krwlock_t * lock,const char * wmesg)741 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
742 {
743 
744 	KASSERT(rw_lock_held(lock));
745 	KASSERT((pg->flags & PG_BUSY) != 0);
746 
747 	mutex_enter(&pg->interlock);
748 	pg->pqflags |= PQ_WANTED;
749 	rw_exit(lock);
750 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
751 }
752 
753 void
uvm_pagewakeup(struct vm_page * pg)754 uvm_pagewakeup(struct vm_page *pg)
755 {
756 
757 	KASSERT(mutex_owned(&pg->interlock));
758 
759 	if ((pg->pqflags & PQ_WANTED) != 0) {
760 		pg->pqflags &= ~PQ_WANTED;
761 		wakeup(pg);
762 	}
763 }
764 
765 void
uvm_estimatepageable(int * active,int * inactive)766 uvm_estimatepageable(int *active, int *inactive)
767 {
768 
769 	/* XXX: guessing game */
770 	*active = 1024;
771 	*inactive = 1024;
772 }
773 
774 int
uvm_loan(struct vm_map * map,vaddr_t start,vsize_t len,void * v,int flags)775 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
776 {
777 
778 	panic("%s: unimplemented", __func__);
779 }
780 
781 void
uvm_unloan(void * v,int npages,int flags)782 uvm_unloan(void *v, int npages, int flags)
783 {
784 
785 	panic("%s: unimplemented", __func__);
786 }
787 
788 int
uvm_loanuobjpages(struct uvm_object * uobj,voff_t pgoff,int orignpages,struct vm_page ** opp)789 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
790 	struct vm_page **opp)
791 {
792 
793 	return EBUSY;
794 }
795 
796 struct vm_page *
uvm_loanbreak(struct vm_page * pg)797 uvm_loanbreak(struct vm_page *pg)
798 {
799 
800 	panic("%s: unimplemented", __func__);
801 }
802 
803 void
ubc_purge(struct uvm_object * uobj)804 ubc_purge(struct uvm_object *uobj)
805 {
806 
807 }
808 
809 vaddr_t
uvm_default_mapaddr(struct proc * p,vaddr_t base,vsize_t sz,int topdown)810 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
811 {
812 
813 	return 0;
814 }
815 
816 int
uvm_map_protect(struct vm_map * map,vaddr_t start,vaddr_t end,vm_prot_t prot,bool set_max)817 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
818 	vm_prot_t prot, bool set_max)
819 {
820 
821 	return EOPNOTSUPP;
822 }
823 
824 int
uvm_map(struct vm_map * map,vaddr_t * startp,vsize_t size,struct uvm_object * uobj,voff_t uoffset,vsize_t align,uvm_flag_t flags)825 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
826     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
827     uvm_flag_t flags)
828 {
829 
830 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
831 	return *startp != 0 ? 0 : ENOMEM;
832 }
833 
834 void
uvm_unmap1(struct vm_map * map,vaddr_t start,vaddr_t end,int flags)835 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
836 {
837 
838 	rump_hyperfree((void*)start, end-start);
839 }
840 
841 
842 /*
843  * UVM km
844  */
845 
846 vaddr_t
uvm_km_alloc(struct vm_map * map,vsize_t size,vsize_t align,uvm_flag_t flags)847 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
848 {
849 	void *rv, *desired = NULL;
850 	int alignbit, error;
851 
852 #ifdef __x86_64__
853 	/*
854 	 * On amd64, allocate all module memory from the lowest 2GB.
855 	 * This is because NetBSD kernel modules are compiled
856 	 * with -mcmodel=kernel and reserve only 4 bytes for
857 	 * offsets.  If we load code compiled with -mcmodel=kernel
858 	 * anywhere except the lowest or highest 2GB, it will not
859 	 * work.  Since userspace does not have access to the highest
860 	 * 2GB, use the lowest 2GB.
861 	 *
862 	 * Note: this assumes the rump kernel resides in
863 	 * the lowest 2GB as well.
864 	 *
865 	 * Note2: yes, it's a quick hack, but since this the only
866 	 * place where we care about the map we're allocating from,
867 	 * just use a simple "if" instead of coming up with a fancy
868 	 * generic solution.
869 	 */
870 	if (map == module_map) {
871 		desired = (void *)(0x80000000 - size);
872 	}
873 #endif
874 
875 	if (__predict_false(map == module_map)) {
876 		alignbit = 0;
877 		if (align) {
878 			alignbit = ffs(align)-1;
879 		}
880 		error = rumpuser_anonmmap(desired, size, alignbit,
881 		    flags & UVM_KMF_EXEC, &rv);
882 	} else {
883 		error = rumpuser_malloc(size, align, &rv);
884 	}
885 
886 	if (error) {
887 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
888 			return 0;
889 		else
890 			panic("uvm_km_alloc failed");
891 	}
892 
893 	if (flags & UVM_KMF_ZERO)
894 		memset(rv, 0, size);
895 
896 	return (vaddr_t)rv;
897 }
898 
899 void
uvm_km_free(struct vm_map * map,vaddr_t vaddr,vsize_t size,uvm_flag_t flags)900 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
901 {
902 
903 	if (__predict_false(map == module_map))
904 		rumpuser_unmap((void *)vaddr, size);
905 	else
906 		rumpuser_free((void *)vaddr, size);
907 }
908 
909 int
uvm_km_protect(struct vm_map * map,vaddr_t vaddr,vsize_t size,vm_prot_t prot)910 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
911 {
912 	return 0;
913 }
914 
915 struct vm_map *
uvm_km_suballoc(struct vm_map * map,vaddr_t * minaddr,vaddr_t * maxaddr,vsize_t size,int pageable,bool fixed,struct vm_map * submap)916 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
917 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
918 {
919 
920 	return (struct vm_map *)417416;
921 }
922 
923 int
uvm_km_kmem_alloc(vmem_t * vm,vmem_size_t size,vm_flag_t flags,vmem_addr_t * addr)924 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
925     vmem_addr_t *addr)
926 {
927 	vaddr_t va;
928 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
929 	    (flags & VM_SLEEP), "kmalloc");
930 
931 	if (va) {
932 		*addr = va;
933 		return 0;
934 	} else {
935 		return ENOMEM;
936 	}
937 }
938 
939 void
uvm_km_kmem_free(vmem_t * vm,vmem_addr_t addr,vmem_size_t size)940 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
941 {
942 
943 	rump_hyperfree((void *)addr, size);
944 }
945 
946 /*
947  * VM space locking routines.  We don't really have to do anything,
948  * since the pages are always "wired" (both local and remote processes).
949  */
950 int
uvm_vslock(struct vmspace * vs,void * addr,size_t len,vm_prot_t access)951 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
952 {
953 
954 	return 0;
955 }
956 
957 void
uvm_vsunlock(struct vmspace * vs,void * addr,size_t len)958 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
959 {
960 
961 }
962 
963 /*
964  * For the local case the buffer mappers don't need to do anything.
965  * For the remote case we need to reserve space and copy data in or
966  * out, depending on B_READ/B_WRITE.
967  */
968 int
vmapbuf(struct buf * bp,vsize_t len)969 vmapbuf(struct buf *bp, vsize_t len)
970 {
971 	int error = 0;
972 
973 	bp->b_saveaddr = bp->b_data;
974 
975 	/* remote case */
976 	if (!RUMP_LOCALPROC_P(curproc)) {
977 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
978 		if (BUF_ISWRITE(bp)) {
979 			error = copyin(bp->b_saveaddr, bp->b_data, len);
980 			if (error) {
981 				rump_hyperfree(bp->b_data, len);
982 				bp->b_data = bp->b_saveaddr;
983 				bp->b_saveaddr = 0;
984 			}
985 		}
986 	}
987 
988 	return error;
989 }
990 
991 void
vunmapbuf(struct buf * bp,vsize_t len)992 vunmapbuf(struct buf *bp, vsize_t len)
993 {
994 
995 	/* remote case */
996 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
997 		if (BUF_ISREAD(bp)) {
998 			bp->b_error = copyout_proc(bp->b_proc,
999 			    bp->b_data, bp->b_saveaddr, len);
1000 		}
1001 		rump_hyperfree(bp->b_data, len);
1002 	}
1003 
1004 	bp->b_data = bp->b_saveaddr;
1005 	bp->b_saveaddr = 0;
1006 }
1007 
1008 void
uvmspace_addref(struct vmspace * vm)1009 uvmspace_addref(struct vmspace *vm)
1010 {
1011 
1012 	/*
1013 	 * No dynamically allocated vmspaces exist.
1014 	 */
1015 }
1016 
1017 void
uvmspace_free(struct vmspace * vm)1018 uvmspace_free(struct vmspace *vm)
1019 {
1020 
1021 	/* nothing for now */
1022 }
1023 
1024 /*
1025  * page life cycle stuff.  it really doesn't exist, so just stubs.
1026  */
1027 
1028 void
uvm_pageactivate(struct vm_page * pg)1029 uvm_pageactivate(struct vm_page *pg)
1030 {
1031 
1032 	/* nada */
1033 }
1034 
1035 void
uvm_pagedeactivate(struct vm_page * pg)1036 uvm_pagedeactivate(struct vm_page *pg)
1037 {
1038 
1039 	/* nada */
1040 }
1041 
1042 void
uvm_pagedequeue(struct vm_page * pg)1043 uvm_pagedequeue(struct vm_page *pg)
1044 {
1045 
1046 	/* nada*/
1047 }
1048 
1049 void
uvm_pageenqueue(struct vm_page * pg)1050 uvm_pageenqueue(struct vm_page *pg)
1051 {
1052 
1053 	/* nada */
1054 }
1055 
1056 void
uvmpdpol_anfree(struct vm_anon * an)1057 uvmpdpol_anfree(struct vm_anon *an)
1058 {
1059 
1060 	/* nada */
1061 }
1062 
1063 /*
1064  * Physical address accessors.
1065  */
1066 
1067 struct vm_page *
uvm_phys_to_vm_page(paddr_t pa)1068 uvm_phys_to_vm_page(paddr_t pa)
1069 {
1070 
1071 	return NULL;
1072 }
1073 
1074 paddr_t
uvm_vm_page_to_phys(const struct vm_page * pg)1075 uvm_vm_page_to_phys(const struct vm_page *pg)
1076 {
1077 
1078 	return 0;
1079 }
1080 
1081 vaddr_t
uvm_uarea_alloc(void)1082 uvm_uarea_alloc(void)
1083 {
1084 
1085 	/* non-zero */
1086 	return (vaddr_t)11;
1087 }
1088 
1089 void
uvm_uarea_free(vaddr_t uarea)1090 uvm_uarea_free(vaddr_t uarea)
1091 {
1092 
1093 	/* nata, so creamy */
1094 }
1095 
1096 /*
1097  * Routines related to the Page Baroness.
1098  */
1099 
1100 void
uvm_wait(const char * msg)1101 uvm_wait(const char *msg)
1102 {
1103 
1104 	if (__predict_false(rump_threads == 0))
1105 		panic("pagedaemon missing (RUMP_THREADS = 0)");
1106 
1107 	if (curlwp == uvm.pagedaemon_lwp) {
1108 		/* is it possible for us to later get memory? */
1109 		if (!uvmexp.paging)
1110 			panic("pagedaemon out of memory");
1111 	}
1112 
1113 	mutex_enter(&pdaemonmtx);
1114 	pdaemon_waiters++;
1115 	cv_signal(&pdaemoncv);
1116 	cv_wait(&oomwait, &pdaemonmtx);
1117 	mutex_exit(&pdaemonmtx);
1118 }
1119 
1120 void
uvm_pageout_start(int npages)1121 uvm_pageout_start(int npages)
1122 {
1123 
1124 	mutex_enter(&pdaemonmtx);
1125 	uvmexp.paging += npages;
1126 	mutex_exit(&pdaemonmtx);
1127 }
1128 
1129 void
uvm_pageout_done(int npages)1130 uvm_pageout_done(int npages)
1131 {
1132 
1133 	if (!npages)
1134 		return;
1135 
1136 	mutex_enter(&pdaemonmtx);
1137 	KASSERT(uvmexp.paging >= npages);
1138 	uvmexp.paging -= npages;
1139 
1140 	if (pdaemon_waiters) {
1141 		pdaemon_waiters = 0;
1142 		cv_broadcast(&oomwait);
1143 	}
1144 	mutex_exit(&pdaemonmtx);
1145 }
1146 
1147 static bool
processpage(struct vm_page * pg)1148 processpage(struct vm_page *pg)
1149 {
1150 	struct uvm_object *uobj;
1151 
1152 	uobj = pg->uobject;
1153 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1154 		if ((pg->flags & PG_BUSY) == 0) {
1155 			mutex_exit(&vmpage_lruqueue_lock);
1156 			uobj->pgops->pgo_put(uobj, pg->offset,
1157 			    pg->offset + PAGE_SIZE,
1158 			    PGO_CLEANIT|PGO_FREE);
1159 			KASSERT(!rw_write_held(uobj->vmobjlock));
1160 			return true;
1161 		} else {
1162 			rw_exit(uobj->vmobjlock);
1163 		}
1164 	}
1165 
1166 	return false;
1167 }
1168 
1169 /*
1170  * The Diabolical pageDaemon Director (DDD).
1171  *
1172  * This routine can always use better heuristics.
1173  */
1174 void
uvm_pageout(void * arg)1175 uvm_pageout(void *arg)
1176 {
1177 	struct vm_page *pg;
1178 	struct pool *pp, *pp_first;
1179 	int cleaned, skip, skipped;
1180 	bool succ;
1181 
1182 	mutex_enter(&pdaemonmtx);
1183 	for (;;) {
1184 		if (pdaemon_waiters) {
1185 			pdaemon_waiters = 0;
1186 			cv_broadcast(&oomwait);
1187 		}
1188 		if (!NEED_PAGEDAEMON()) {
1189 			kernel_map->flags &= ~VM_MAP_WANTVA;
1190 			cv_wait(&pdaemoncv, &pdaemonmtx);
1191 		}
1192 		uvmexp.pdwoke++;
1193 
1194 		/* tell the world that we are hungry */
1195 		kernel_map->flags |= VM_MAP_WANTVA;
1196 		mutex_exit(&pdaemonmtx);
1197 
1198 		/*
1199 		 * step one: reclaim the page cache.  this should give
1200 		 * us the biggest earnings since whole pages are released
1201 		 * into backing memory.
1202 		 */
1203 		pool_cache_reclaim(&pagecache);
1204 		if (!NEED_PAGEDAEMON()) {
1205 			mutex_enter(&pdaemonmtx);
1206 			continue;
1207 		}
1208 
1209 		/*
1210 		 * Ok, so that didn't help.  Next, try to hunt memory
1211 		 * by pushing out vnode pages.  The pages might contain
1212 		 * useful cached data, but we need the memory.
1213 		 */
1214 		cleaned = 0;
1215 		skip = 0;
1216  again:
1217 		mutex_enter(&vmpage_lruqueue_lock);
1218 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1219 			skipped = 0;
1220 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1221 
1222 				/*
1223 				 * skip over pages we _might_ have tried
1224 				 * to handle earlier.  they might not be
1225 				 * exactly the same ones, but I'm not too
1226 				 * concerned.
1227 				 */
1228 				while (skipped++ < skip)
1229 					continue;
1230 
1231 				if (processpage(pg)) {
1232 					cleaned++;
1233 					goto again;
1234 				}
1235 
1236 				skip++;
1237 			}
1238 			break;
1239 		}
1240 		mutex_exit(&vmpage_lruqueue_lock);
1241 
1242 		/*
1243 		 * And of course we need to reclaim the page cache
1244 		 * again to actually release memory.
1245 		 */
1246 		pool_cache_reclaim(&pagecache);
1247 		if (!NEED_PAGEDAEMON()) {
1248 			mutex_enter(&pdaemonmtx);
1249 			continue;
1250 		}
1251 
1252 		/*
1253 		 * And then drain the pools.  Wipe them out ... all of them.
1254 		 */
1255 		for (pp_first = NULL;;) {
1256 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1257 
1258 			succ = pool_drain(&pp);
1259 			if (succ || pp == pp_first)
1260 				break;
1261 
1262 			if (pp_first == NULL)
1263 				pp_first = pp;
1264 		}
1265 
1266 		/*
1267 		 * Need to use PYEC on our bag of tricks.
1268 		 * Unfortunately, the wife just borrowed it.
1269 		 */
1270 
1271 		mutex_enter(&pdaemonmtx);
1272 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1273 		    uvmexp.paging == 0) {
1274 			kpause("pddlk", false, hz, &pdaemonmtx);
1275 		}
1276 	}
1277 
1278 	panic("you can swap out any time you like, but you can never leave");
1279 }
1280 
1281 void
uvm_kick_pdaemon()1282 uvm_kick_pdaemon()
1283 {
1284 
1285 	/*
1286 	 * Wake up the diabolical pagedaemon director if we are over
1287 	 * 90% of the memory limit.  This is a complete and utter
1288 	 * stetson-harrison decision which you are allowed to finetune.
1289 	 * Don't bother locking.  If we have some unflushed caches,
1290 	 * other waker-uppers will deal with the issue.
1291 	 */
1292 	if (NEED_PAGEDAEMON()) {
1293 		cv_signal(&pdaemoncv);
1294 	}
1295 }
1296 
1297 void *
rump_hypermalloc(size_t howmuch,int alignment,bool waitok,const char * wmsg)1298 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1299 {
1300 	const unsigned long thelimit =
1301 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1302 	unsigned long newmem;
1303 	void *rv;
1304 	int error;
1305 
1306 	uvm_kick_pdaemon(); /* ouch */
1307 
1308 	/* first we must be within the limit */
1309  limitagain:
1310 	if (thelimit != RUMPMEM_UNLIMITED) {
1311 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1312 		if (newmem > thelimit) {
1313 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1314 			if (!waitok) {
1315 				return NULL;
1316 			}
1317 			uvm_wait(wmsg);
1318 			goto limitagain;
1319 		}
1320 	}
1321 
1322 	/* second, we must get something from the backend */
1323  again:
1324 	error = rumpuser_malloc(howmuch, alignment, &rv);
1325 	if (__predict_false(error && waitok)) {
1326 		uvm_wait(wmsg);
1327 		goto again;
1328 	}
1329 
1330 	return rv;
1331 }
1332 
1333 void
rump_hyperfree(void * what,size_t size)1334 rump_hyperfree(void *what, size_t size)
1335 {
1336 
1337 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1338 		atomic_add_long(&curphysmem, -size);
1339 	}
1340 	rumpuser_free(what, size);
1341 }
1342 
1343 /*
1344  * UBC
1345  */
1346 
1347 #define PAGERFLAGS (PGO_SYNCIO | PGO_NOBLOCKALLOC | PGO_NOTIMESTAMP)
1348 
1349 void
ubc_zerorange(struct uvm_object * uobj,off_t off,size_t len,int flags)1350 ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags)
1351 {
1352 	struct vm_page **pgs;
1353 	int maxpages = MIN(32, round_page(len) >> PAGE_SHIFT);
1354 	int npages, i;
1355 
1356 	if (maxpages == 0)
1357 		return;
1358 
1359 	pgs = kmem_alloc(maxpages * sizeof(pgs), KM_SLEEP);
1360 	rw_enter(uobj->vmobjlock, RW_WRITER);
1361 	while (len) {
1362 		npages = MIN(maxpages, round_page(len) >> PAGE_SHIFT);
1363 		memset(pgs, 0, npages * sizeof(struct vm_page *));
1364 		(void)uobj->pgops->pgo_get(uobj, trunc_page(off),
1365 		    pgs, &npages, 0, VM_PROT_READ | VM_PROT_WRITE,
1366 		    0, PAGERFLAGS | PGO_PASTEOF);
1367 		KASSERT(npages > 0);
1368 
1369 		rw_enter(uobj->vmobjlock, RW_WRITER);
1370 		for (i = 0; i < npages; i++) {
1371 			struct vm_page *pg;
1372 			uint8_t *start;
1373 			size_t chunkoff, chunklen;
1374 
1375 			pg = pgs[i];
1376 			if (pg == NULL)
1377 				break;
1378 
1379 			KASSERT(pg->uobject != NULL);
1380 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1381 
1382 			chunkoff = off & PAGE_MASK;
1383 			chunklen = MIN(PAGE_SIZE - chunkoff, len);
1384 			start = (uint8_t *)pg->uanon + chunkoff;
1385 
1386 			memset(start, 0, chunklen);
1387 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1388 
1389 			off += chunklen;
1390 			len -= chunklen;
1391 		}
1392 		uvm_page_unbusy(pgs, npages);
1393 	}
1394 	rw_exit(uobj->vmobjlock);
1395 	kmem_free(pgs, maxpages * sizeof(pgs));
1396 }
1397 
1398 #define len2npages(off, len)						\
1399     ((round_page(off+len) - trunc_page(off)) >> PAGE_SHIFT)
1400 
1401 int
ubc_uiomove(struct uvm_object * uobj,struct uio * uio,vsize_t todo,int advice,int flags)1402 ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo,
1403 	int advice, int flags)
1404 {
1405 	struct vm_page **pgs;
1406 	int npages = len2npages(uio->uio_offset, todo);
1407 	size_t pgalloc;
1408 	int i, rv, pagerflags;
1409 	vm_prot_t prot;
1410 
1411 	pgalloc = npages * sizeof(pgs);
1412 	pgs = kmem_alloc(pgalloc, KM_SLEEP);
1413 
1414 	pagerflags = PAGERFLAGS;
1415 	if (flags & UBC_WRITE)
1416 		pagerflags |= PGO_PASTEOF;
1417 	if (flags & UBC_FAULTBUSY)
1418 		pagerflags |= PGO_OVERWRITE;
1419 
1420 	prot = VM_PROT_READ;
1421 	if (flags & UBC_WRITE)
1422 		prot |= VM_PROT_WRITE;
1423 
1424 	rw_enter(uobj->vmobjlock, RW_WRITER);
1425 	do {
1426 		npages = len2npages(uio->uio_offset, todo);
1427 		memset(pgs, 0, pgalloc);
1428 		rv = uobj->pgops->pgo_get(uobj, trunc_page(uio->uio_offset),
1429 		    pgs, &npages, 0, prot, 0, pagerflags);
1430 		if (rv)
1431 			goto out;
1432 
1433 		rw_enter(uobj->vmobjlock, RW_WRITER);
1434 		for (i = 0; i < npages; i++) {
1435 			struct vm_page *pg;
1436 			size_t xfersize;
1437 			off_t pageoff;
1438 
1439 			pg = pgs[i];
1440 			if (pg == NULL)
1441 				break;
1442 
1443 			KASSERT(pg->uobject != NULL);
1444 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1445 			pageoff = uio->uio_offset & PAGE_MASK;
1446 
1447 			xfersize = MIN(MIN(todo, PAGE_SIZE), PAGE_SIZE-pageoff);
1448 			KASSERT(xfersize > 0);
1449 			rv = uiomove((uint8_t *)pg->uanon + pageoff,
1450 			    xfersize, uio);
1451 			if (rv) {
1452 				uvm_page_unbusy(pgs, npages);
1453 				rw_exit(uobj->vmobjlock);
1454 				goto out;
1455 			}
1456 			if (uio->uio_rw == UIO_WRITE) {
1457 				pg->flags &= ~PG_FAKE;
1458 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1459 			}
1460 			todo -= xfersize;
1461 		}
1462 		uvm_page_unbusy(pgs, npages);
1463 	} while (todo);
1464 	rw_exit(uobj->vmobjlock);
1465 
1466  out:
1467 	kmem_free(pgs, pgalloc);
1468 	return rv;
1469 }
1470