1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/sysmacros.h>
33 #include <sys/mntent.h>
34 #include <sys/u8_textprep.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/errno.h>
41 #include <sys/atomic.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zfs_acl.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zfs_rlock.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_vnops.h>
48 #include <sys/zfs_ctldir.h>
49 #include <sys/dnode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zpl.h>
52 #endif /* _KERNEL */
53 
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dmu_tx.h>
57 #include <sys/zfs_refcount.h>
58 #include <sys/stat.h>
59 #include <sys/zap.h>
60 #include <sys/zfs_znode.h>
61 #include <sys/sa.h>
62 #include <sys/zfs_sa.h>
63 #include <sys/zfs_stat.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 /*
69  * Functions needed for userland (ie: libzpool) are not put under
70  * #ifdef_KERNEL; the rest of the functions have dependencies
71  * (such as VFS logic) that will not compile easily in userland.
72  */
73 #ifdef _KERNEL
74 
75 static kmem_cache_t *znode_cache = NULL;
76 static kmem_cache_t *znode_hold_cache = NULL;
77 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
78 
79 /*
80  * This is used by the test suite so that it can delay znodes from being
81  * freed in order to inspect the unlinked set.
82  */
83 static int zfs_unlink_suspend_progress = 0;
84 
85 /*
86  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
87  * z_rangelock. It will modify the offset and length of the lock to reflect
88  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
89  * called with the rangelock_t's rl_lock held, which avoids races.
90  */
91 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)92 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
93 {
94 	znode_t *zp = arg;
95 
96 	/*
97 	 * If in append mode, convert to writer and lock starting at the
98 	 * current end of file.
99 	 */
100 	if (new->lr_type == RL_APPEND) {
101 		new->lr_offset = zp->z_size;
102 		new->lr_type = RL_WRITER;
103 	}
104 
105 	/*
106 	 * If we need to grow the block size then lock the whole file range.
107 	 */
108 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
109 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
110 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
111 		new->lr_offset = 0;
112 		new->lr_length = UINT64_MAX;
113 	}
114 }
115 
116 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)117 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
118 {
119 	(void) arg, (void) kmflags;
120 	znode_t *zp = buf;
121 
122 	inode_init_once(ZTOI(zp));
123 	list_link_init(&zp->z_link_node);
124 
125 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
128 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
130 
131 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
132 
133 	zp->z_dirlocks = NULL;
134 	zp->z_acl_cached = NULL;
135 	zp->z_xattr_cached = NULL;
136 	zp->z_xattr_parent = 0;
137 	zp->z_sync_writes_cnt = 0;
138 	zp->z_async_writes_cnt = 0;
139 
140 	return (0);
141 }
142 
143 static void
zfs_znode_cache_destructor(void * buf,void * arg)144 zfs_znode_cache_destructor(void *buf, void *arg)
145 {
146 	(void) arg;
147 	znode_t *zp = buf;
148 
149 	ASSERT(!list_link_active(&zp->z_link_node));
150 	mutex_destroy(&zp->z_lock);
151 	rw_destroy(&zp->z_parent_lock);
152 	rw_destroy(&zp->z_name_lock);
153 	mutex_destroy(&zp->z_acl_lock);
154 	rw_destroy(&zp->z_xattr_lock);
155 	zfs_rangelock_fini(&zp->z_rangelock);
156 
157 	ASSERT3P(zp->z_dirlocks, ==, NULL);
158 	ASSERT3P(zp->z_acl_cached, ==, NULL);
159 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
160 
161 	ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
162 	ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
163 }
164 
165 static int
zfs_znode_hold_cache_constructor(void * buf,void * arg,int kmflags)166 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
167 {
168 	(void) arg, (void) kmflags;
169 	znode_hold_t *zh = buf;
170 
171 	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
172 	zh->zh_refcount = 0;
173 
174 	return (0);
175 }
176 
177 static void
zfs_znode_hold_cache_destructor(void * buf,void * arg)178 zfs_znode_hold_cache_destructor(void *buf, void *arg)
179 {
180 	(void) arg;
181 	znode_hold_t *zh = buf;
182 
183 	mutex_destroy(&zh->zh_lock);
184 }
185 
186 void
zfs_znode_init(void)187 zfs_znode_init(void)
188 {
189 	/*
190 	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
191 	 * backed by kmalloc() when on the Linux slab in order that any
192 	 * wait_on_bit() operations on the related inode operate properly.
193 	 */
194 	ASSERT(znode_cache == NULL);
195 	znode_cache = kmem_cache_create("zfs_znode_cache",
196 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
197 	    zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
198 
199 	ASSERT(znode_hold_cache == NULL);
200 	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
201 	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
202 	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
203 }
204 
205 void
zfs_znode_fini(void)206 zfs_znode_fini(void)
207 {
208 	/*
209 	 * Cleanup zcache
210 	 */
211 	if (znode_cache)
212 		kmem_cache_destroy(znode_cache);
213 	znode_cache = NULL;
214 
215 	if (znode_hold_cache)
216 		kmem_cache_destroy(znode_hold_cache);
217 	znode_hold_cache = NULL;
218 }
219 
220 /*
221  * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
222  * serialize access to a znode and its SA buffer while the object is being
223  * created or destroyed.  This kind of locking would normally reside in the
224  * znode itself but in this case that's impossible because the znode and SA
225  * buffer may not yet exist.  Therefore the locking is handled externally
226  * with an array of mutexes and AVLs trees which contain per-object locks.
227  *
228  * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
229  * in to the correct AVL tree and finally the per-object lock is held.  In
230  * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
231  * released, removed from the AVL tree and destroyed if there are no waiters.
232  *
233  * This scheme has two important properties:
234  *
235  * 1) No memory allocations are performed while holding one of the z_hold_locks.
236  *    This ensures evict(), which can be called from direct memory reclaim, will
237  *    never block waiting on a z_hold_locks which just happens to have hashed
238  *    to the same index.
239  *
240  * 2) All locks used to serialize access to an object are per-object and never
241  *    shared.  This minimizes lock contention without creating a large number
242  *    of dedicated locks.
243  *
244  * On the downside it does require znode_lock_t structures to be frequently
245  * allocated and freed.  However, because these are backed by a kmem cache
246  * and very short lived this cost is minimal.
247  */
248 int
zfs_znode_hold_compare(const void * a,const void * b)249 zfs_znode_hold_compare(const void *a, const void *b)
250 {
251 	const znode_hold_t *zh_a = (const znode_hold_t *)a;
252 	const znode_hold_t *zh_b = (const znode_hold_t *)b;
253 
254 	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
255 }
256 
257 static boolean_t __maybe_unused
zfs_znode_held(zfsvfs_t * zfsvfs,uint64_t obj)258 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
259 {
260 	znode_hold_t *zh, search;
261 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
262 	boolean_t held;
263 
264 	search.zh_obj = obj;
265 
266 	mutex_enter(&zfsvfs->z_hold_locks[i]);
267 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
268 	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
269 	mutex_exit(&zfsvfs->z_hold_locks[i]);
270 
271 	return (held);
272 }
273 
274 znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t * zfsvfs,uint64_t obj)275 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
276 {
277 	znode_hold_t *zh, *zh_new, search;
278 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
279 	boolean_t found = B_FALSE;
280 
281 	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
282 	search.zh_obj = obj;
283 
284 	mutex_enter(&zfsvfs->z_hold_locks[i]);
285 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
286 	if (likely(zh == NULL)) {
287 		zh = zh_new;
288 		zh->zh_obj = obj;
289 		avl_add(&zfsvfs->z_hold_trees[i], zh);
290 	} else {
291 		ASSERT3U(zh->zh_obj, ==, obj);
292 		found = B_TRUE;
293 	}
294 	zh->zh_refcount++;
295 	ASSERT3S(zh->zh_refcount, >, 0);
296 	mutex_exit(&zfsvfs->z_hold_locks[i]);
297 
298 	if (found == B_TRUE)
299 		kmem_cache_free(znode_hold_cache, zh_new);
300 
301 	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
302 	mutex_enter(&zh->zh_lock);
303 
304 	return (zh);
305 }
306 
307 void
zfs_znode_hold_exit(zfsvfs_t * zfsvfs,znode_hold_t * zh)308 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
309 {
310 	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
311 	boolean_t remove = B_FALSE;
312 
313 	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
314 	mutex_exit(&zh->zh_lock);
315 
316 	mutex_enter(&zfsvfs->z_hold_locks[i]);
317 	ASSERT3S(zh->zh_refcount, >, 0);
318 	if (--zh->zh_refcount == 0) {
319 		avl_remove(&zfsvfs->z_hold_trees[i], zh);
320 		remove = B_TRUE;
321 	}
322 	mutex_exit(&zfsvfs->z_hold_locks[i]);
323 
324 	if (remove == B_TRUE)
325 		kmem_cache_free(znode_hold_cache, zh);
326 }
327 
328 dev_t
zfs_cmpldev(uint64_t dev)329 zfs_cmpldev(uint64_t dev)
330 {
331 	return (dev);
332 }
333 
334 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)335 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
336     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
337 {
338 	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
339 
340 	mutex_enter(&zp->z_lock);
341 
342 	ASSERT(zp->z_sa_hdl == NULL);
343 	ASSERT(zp->z_acl_cached == NULL);
344 	if (sa_hdl == NULL) {
345 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
346 		    SA_HDL_SHARED, &zp->z_sa_hdl));
347 	} else {
348 		zp->z_sa_hdl = sa_hdl;
349 		sa_set_userp(sa_hdl, zp);
350 	}
351 
352 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
353 
354 	mutex_exit(&zp->z_lock);
355 }
356 
357 void
zfs_znode_dmu_fini(znode_t * zp)358 zfs_znode_dmu_fini(znode_t *zp)
359 {
360 	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
361 	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
362 
363 	sa_handle_destroy(zp->z_sa_hdl);
364 	zp->z_sa_hdl = NULL;
365 }
366 
367 /*
368  * Called by new_inode() to allocate a new inode.
369  */
370 int
zfs_inode_alloc(struct super_block * sb,struct inode ** ip)371 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
372 {
373 	znode_t *zp;
374 
375 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
376 	*ip = ZTOI(zp);
377 
378 	return (0);
379 }
380 
381 /*
382  * Called in multiple places when an inode should be destroyed.
383  */
384 void
zfs_inode_destroy(struct inode * ip)385 zfs_inode_destroy(struct inode *ip)
386 {
387 	znode_t *zp = ITOZ(ip);
388 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
389 
390 	mutex_enter(&zfsvfs->z_znodes_lock);
391 	if (list_link_active(&zp->z_link_node)) {
392 		list_remove(&zfsvfs->z_all_znodes, zp);
393 	}
394 	mutex_exit(&zfsvfs->z_znodes_lock);
395 
396 	if (zp->z_acl_cached) {
397 		zfs_acl_free(zp->z_acl_cached);
398 		zp->z_acl_cached = NULL;
399 	}
400 
401 	if (zp->z_xattr_cached) {
402 		nvlist_free(zp->z_xattr_cached);
403 		zp->z_xattr_cached = NULL;
404 	}
405 
406 	kmem_cache_free(znode_cache, zp);
407 }
408 
409 static void
zfs_inode_set_ops(zfsvfs_t * zfsvfs,struct inode * ip)410 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
411 {
412 	uint64_t rdev = 0;
413 
414 	switch (ip->i_mode & S_IFMT) {
415 	case S_IFREG:
416 		ip->i_op = &zpl_inode_operations;
417 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
418 		ip->i_fop = &zpl_file_operations.kabi_fops;
419 #else
420 		ip->i_fop = &zpl_file_operations;
421 #endif
422 		ip->i_mapping->a_ops = &zpl_address_space_operations;
423 		break;
424 
425 	case S_IFDIR:
426 #ifdef HAVE_RENAME2_OPERATIONS_WRAPPER
427 		ip->i_flags |= S_IOPS_WRAPPER;
428 		ip->i_op = &zpl_dir_inode_operations.ops;
429 #else
430 		ip->i_op = &zpl_dir_inode_operations;
431 #endif
432 		ip->i_fop = &zpl_dir_file_operations;
433 		ITOZ(ip)->z_zn_prefetch = B_TRUE;
434 		break;
435 
436 	case S_IFLNK:
437 		ip->i_op = &zpl_symlink_inode_operations;
438 		break;
439 
440 	/*
441 	 * rdev is only stored in a SA only for device files.
442 	 */
443 	case S_IFCHR:
444 	case S_IFBLK:
445 		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
446 		    sizeof (rdev));
447 		zfs_fallthrough;
448 	case S_IFIFO:
449 	case S_IFSOCK:
450 		init_special_inode(ip, ip->i_mode, rdev);
451 		ip->i_op = &zpl_special_inode_operations;
452 		break;
453 
454 	default:
455 		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
456 		    (u_longlong_t)ip->i_ino, ip->i_mode);
457 
458 		/* Assume the inode is a file and attempt to continue */
459 		ip->i_mode = S_IFREG | 0644;
460 		ip->i_op = &zpl_inode_operations;
461 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
462 		ip->i_fop = &zpl_file_operations.kabi_fops;
463 #else
464 		ip->i_fop = &zpl_file_operations;
465 #endif
466 		ip->i_mapping->a_ops = &zpl_address_space_operations;
467 		break;
468 	}
469 }
470 
471 static void
zfs_set_inode_flags(znode_t * zp,struct inode * ip)472 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
473 {
474 	/*
475 	 * Linux and Solaris have different sets of file attributes, so we
476 	 * restrict this conversion to the intersection of the two.
477 	 */
478 #ifdef HAVE_INODE_SET_FLAGS
479 	unsigned int flags = 0;
480 	if (zp->z_pflags & ZFS_IMMUTABLE)
481 		flags |= S_IMMUTABLE;
482 	if (zp->z_pflags & ZFS_APPENDONLY)
483 		flags |= S_APPEND;
484 
485 	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
486 #else
487 	if (zp->z_pflags & ZFS_IMMUTABLE)
488 		ip->i_flags |= S_IMMUTABLE;
489 	else
490 		ip->i_flags &= ~S_IMMUTABLE;
491 
492 	if (zp->z_pflags & ZFS_APPENDONLY)
493 		ip->i_flags |= S_APPEND;
494 	else
495 		ip->i_flags &= ~S_APPEND;
496 #endif
497 }
498 
499 /*
500  * Update the embedded inode given the znode.
501  */
502 void
zfs_znode_update_vfs(znode_t * zp)503 zfs_znode_update_vfs(znode_t *zp)
504 {
505 	struct inode	*ip;
506 	uint32_t	blksize;
507 	u_longlong_t	i_blocks;
508 
509 	ASSERT(zp != NULL);
510 	ip = ZTOI(zp);
511 
512 	/* Skip .zfs control nodes which do not exist on disk. */
513 	if (zfsctl_is_node(ip))
514 		return;
515 
516 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
517 
518 	spin_lock(&ip->i_lock);
519 	ip->i_mode = zp->z_mode;
520 	ip->i_blocks = i_blocks;
521 	i_size_write(ip, zp->z_size);
522 	spin_unlock(&ip->i_lock);
523 }
524 
525 
526 /*
527  * Construct a znode+inode and initialize.
528  *
529  * This does not do a call to dmu_set_user() that is
530  * up to the caller to do, in case you don't want to
531  * return the znode
532  */
533 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)534 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
535     dmu_object_type_t obj_type, sa_handle_t *hdl)
536 {
537 	znode_t	*zp;
538 	struct inode *ip;
539 	uint64_t mode;
540 	uint64_t parent;
541 	uint64_t tmp_gen;
542 	uint64_t links;
543 	uint64_t z_uid, z_gid;
544 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
545 	inode_timespec_t tmp_ts;
546 	uint64_t projid = ZFS_DEFAULT_PROJID;
547 	sa_bulk_attr_t bulk[12];
548 	int count = 0;
549 
550 	ASSERT(zfsvfs != NULL);
551 
552 	ip = new_inode(zfsvfs->z_sb);
553 	if (ip == NULL)
554 		return (NULL);
555 
556 	zp = ITOZ(ip);
557 	ASSERT(zp->z_dirlocks == NULL);
558 	ASSERT3P(zp->z_acl_cached, ==, NULL);
559 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
560 	zp->z_unlinked = B_FALSE;
561 	zp->z_atime_dirty = B_FALSE;
562 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
563 	zp->z_is_mapped = B_FALSE;
564 #endif
565 	zp->z_is_ctldir = B_FALSE;
566 	zp->z_suspended = B_FALSE;
567 	zp->z_sa_hdl = NULL;
568 	zp->z_mapcnt = 0;
569 	zp->z_id = db->db_object;
570 	zp->z_blksz = blksz;
571 	zp->z_seq = 0x7A4653;
572 	zp->z_sync_cnt = 0;
573 	zp->z_sync_writes_cnt = 0;
574 	zp->z_async_writes_cnt = 0;
575 
576 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
577 
578 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
579 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
580 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
581 	    &zp->z_size, 8);
582 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
583 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
584 	    &zp->z_pflags, 8);
585 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
586 	    &parent, 8);
587 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
588 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
589 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
590 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
591 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
592 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
593 
594 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
595 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
596 	    (zp->z_pflags & ZFS_PROJID) &&
597 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
598 		if (hdl == NULL)
599 			sa_handle_destroy(zp->z_sa_hdl);
600 		zp->z_sa_hdl = NULL;
601 		goto error;
602 	}
603 
604 	zp->z_projid = projid;
605 	zp->z_mode = ip->i_mode = mode;
606 	ip->i_generation = (uint32_t)tmp_gen;
607 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
608 	set_nlink(ip, (uint32_t)links);
609 	zfs_uid_write(ip, z_uid);
610 	zfs_gid_write(ip, z_gid);
611 	zfs_set_inode_flags(zp, ip);
612 
613 	/* Cache the xattr parent id */
614 	if (zp->z_pflags & ZFS_XATTR)
615 		zp->z_xattr_parent = parent;
616 
617 	ZFS_TIME_DECODE(&tmp_ts, atime);
618 	zpl_inode_set_atime_to_ts(ip, tmp_ts);
619 	ZFS_TIME_DECODE(&tmp_ts, mtime);
620 	zpl_inode_set_mtime_to_ts(ip, tmp_ts);
621 	ZFS_TIME_DECODE(&tmp_ts, ctime);
622 	zpl_inode_set_ctime_to_ts(ip, tmp_ts);
623 	ZFS_TIME_DECODE(&zp->z_btime, btime);
624 
625 	ip->i_ino = zp->z_id;
626 	zfs_znode_update_vfs(zp);
627 	zfs_inode_set_ops(zfsvfs, ip);
628 
629 	/*
630 	 * The only way insert_inode_locked() can fail is if the ip->i_ino
631 	 * number is already hashed for this super block.  This can never
632 	 * happen because the inode numbers map 1:1 with the object numbers.
633 	 *
634 	 * Exceptions include rolling back a mounted file system, either
635 	 * from the zfs rollback or zfs recv command.
636 	 *
637 	 * Active inodes are unhashed during the rollback, but since zrele
638 	 * can happen asynchronously, we can't guarantee they've been
639 	 * unhashed.  This can cause hash collisions in unlinked drain
640 	 * processing so do not hash unlinked znodes.
641 	 */
642 	if (links > 0)
643 		VERIFY3S(insert_inode_locked(ip), ==, 0);
644 
645 	mutex_enter(&zfsvfs->z_znodes_lock);
646 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
647 	mutex_exit(&zfsvfs->z_znodes_lock);
648 
649 	if (links > 0)
650 		unlock_new_inode(ip);
651 	return (zp);
652 
653 error:
654 	iput(ip);
655 	return (NULL);
656 }
657 
658 /*
659  * Safely mark an inode dirty.  Inodes which are part of a read-only
660  * file system or snapshot may not be dirtied.
661  */
662 void
zfs_mark_inode_dirty(struct inode * ip)663 zfs_mark_inode_dirty(struct inode *ip)
664 {
665 	zfsvfs_t *zfsvfs = ITOZSB(ip);
666 
667 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
668 		return;
669 
670 	mark_inode_dirty(ip);
671 }
672 
673 static uint64_t empty_xattr;
674 static uint64_t pad[4];
675 static zfs_acl_phys_t acl_phys;
676 /*
677  * Create a new DMU object to hold a zfs znode.
678  *
679  *	IN:	dzp	- parent directory for new znode
680  *		vap	- file attributes for new znode
681  *		tx	- dmu transaction id for zap operations
682  *		cr	- credentials of caller
683  *		flag	- flags:
684  *			  IS_ROOT_NODE	- new object will be root
685  *			  IS_TMPFILE	- new object is of O_TMPFILE
686  *			  IS_XATTR	- new object is an attribute
687  *		acl_ids	- ACL related attributes
688  *
689  *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
690  *
691  */
692 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)693 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
694     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
695 {
696 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
697 	uint64_t	mode, size, links, parent, pflags;
698 	uint64_t	projid = ZFS_DEFAULT_PROJID;
699 	uint64_t	rdev = 0;
700 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
701 	dmu_buf_t	*db;
702 	inode_timespec_t now;
703 	uint64_t	gen, obj;
704 	int		bonuslen;
705 	int		dnodesize;
706 	sa_handle_t	*sa_hdl;
707 	dmu_object_type_t obj_type;
708 	sa_bulk_attr_t	*sa_attrs;
709 	int		cnt = 0;
710 	zfs_acl_locator_cb_t locate = { 0 };
711 	znode_hold_t	*zh;
712 
713 	if (zfsvfs->z_replay) {
714 		obj = vap->va_nodeid;
715 		now = vap->va_ctime;		/* see zfs_replay_create() */
716 		gen = vap->va_nblocks;		/* ditto */
717 		dnodesize = vap->va_fsid;	/* ditto */
718 	} else {
719 		obj = 0;
720 		gethrestime(&now);
721 		gen = dmu_tx_get_txg(tx);
722 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
723 	}
724 
725 	if (dnodesize == 0)
726 		dnodesize = DNODE_MIN_SIZE;
727 
728 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
729 
730 	bonuslen = (obj_type == DMU_OT_SA) ?
731 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
732 
733 	/*
734 	 * Create a new DMU object.
735 	 */
736 	/*
737 	 * There's currently no mechanism for pre-reading the blocks that will
738 	 * be needed to allocate a new object, so we accept the small chance
739 	 * that there will be an i/o error and we will fail one of the
740 	 * assertions below.
741 	 */
742 	if (S_ISDIR(vap->va_mode)) {
743 		if (zfsvfs->z_replay) {
744 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
745 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
746 			    obj_type, bonuslen, dnodesize, tx));
747 		} else {
748 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
749 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
750 			    obj_type, bonuslen, dnodesize, tx);
751 		}
752 	} else {
753 		if (zfsvfs->z_replay) {
754 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
755 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
756 			    obj_type, bonuslen, dnodesize, tx));
757 		} else {
758 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
759 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
760 			    obj_type, bonuslen, dnodesize, tx);
761 		}
762 	}
763 
764 	zh = zfs_znode_hold_enter(zfsvfs, obj);
765 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
766 
767 	/*
768 	 * If this is the root, fix up the half-initialized parent pointer
769 	 * to reference the just-allocated physical data area.
770 	 */
771 	if (flag & IS_ROOT_NODE) {
772 		dzp->z_id = obj;
773 	}
774 
775 	/*
776 	 * If parent is an xattr, so am I.
777 	 */
778 	if (dzp->z_pflags & ZFS_XATTR) {
779 		flag |= IS_XATTR;
780 	}
781 
782 	if (zfsvfs->z_use_fuids)
783 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
784 	else
785 		pflags = 0;
786 
787 	if (S_ISDIR(vap->va_mode)) {
788 		size = 2;		/* contents ("." and "..") */
789 		links = 2;
790 	} else {
791 		size = 0;
792 		links = (flag & IS_TMPFILE) ? 0 : 1;
793 	}
794 
795 	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
796 		rdev = vap->va_rdev;
797 
798 	parent = dzp->z_id;
799 	mode = acl_ids->z_mode;
800 	if (flag & IS_XATTR)
801 		pflags |= ZFS_XATTR;
802 
803 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
804 		/*
805 		 * With ZFS_PROJID flag, we can easily know whether there is
806 		 * project ID stored on disk or not. See zfs_space_delta_cb().
807 		 */
808 		if (obj_type != DMU_OT_ZNODE &&
809 		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
810 			pflags |= ZFS_PROJID;
811 
812 		/*
813 		 * Inherit project ID from parent if required.
814 		 */
815 		projid = zfs_inherit_projid(dzp);
816 		if (dzp->z_pflags & ZFS_PROJINHERIT)
817 			pflags |= ZFS_PROJINHERIT;
818 	}
819 
820 	/*
821 	 * No execs denied will be determined when zfs_mode_compute() is called.
822 	 */
823 	pflags |= acl_ids->z_aclp->z_hints &
824 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
825 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
826 
827 	ZFS_TIME_ENCODE(&now, crtime);
828 	ZFS_TIME_ENCODE(&now, ctime);
829 
830 	if (vap->va_mask & ATTR_ATIME) {
831 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
832 	} else {
833 		ZFS_TIME_ENCODE(&now, atime);
834 	}
835 
836 	if (vap->va_mask & ATTR_MTIME) {
837 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
838 	} else {
839 		ZFS_TIME_ENCODE(&now, mtime);
840 	}
841 
842 	/* Now add in all of the "SA" attributes */
843 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
844 	    &sa_hdl));
845 
846 	/*
847 	 * Setup the array of attributes to be replaced/set on the new file
848 	 *
849 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
850 	 * in the old znode_phys_t format.  Don't change this ordering
851 	 */
852 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
853 
854 	if (obj_type == DMU_OT_ZNODE) {
855 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
856 		    NULL, &atime, 16);
857 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
858 		    NULL, &mtime, 16);
859 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
860 		    NULL, &ctime, 16);
861 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
862 		    NULL, &crtime, 16);
863 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
864 		    NULL, &gen, 8);
865 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
866 		    NULL, &mode, 8);
867 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
868 		    NULL, &size, 8);
869 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
870 		    NULL, &parent, 8);
871 	} else {
872 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
873 		    NULL, &mode, 8);
874 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
875 		    NULL, &size, 8);
876 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
877 		    NULL, &gen, 8);
878 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
879 		    NULL, &acl_ids->z_fuid, 8);
880 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
881 		    NULL, &acl_ids->z_fgid, 8);
882 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
883 		    NULL, &parent, 8);
884 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
885 		    NULL, &pflags, 8);
886 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
887 		    NULL, &atime, 16);
888 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
889 		    NULL, &mtime, 16);
890 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
891 		    NULL, &ctime, 16);
892 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
893 		    NULL, &crtime, 16);
894 	}
895 
896 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
897 
898 	if (obj_type == DMU_OT_ZNODE) {
899 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
900 		    &empty_xattr, 8);
901 	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
902 	    pflags & ZFS_PROJID) {
903 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
904 		    NULL, &projid, 8);
905 	}
906 	if (obj_type == DMU_OT_ZNODE ||
907 	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
908 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
909 		    NULL, &rdev, 8);
910 	}
911 	if (obj_type == DMU_OT_ZNODE) {
912 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
913 		    NULL, &pflags, 8);
914 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
915 		    &acl_ids->z_fuid, 8);
916 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
917 		    &acl_ids->z_fgid, 8);
918 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
919 		    sizeof (uint64_t) * 4);
920 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
921 		    &acl_phys, sizeof (zfs_acl_phys_t));
922 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
923 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
924 		    &acl_ids->z_aclp->z_acl_count, 8);
925 		locate.cb_aclp = acl_ids->z_aclp;
926 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
927 		    zfs_acl_data_locator, &locate,
928 		    acl_ids->z_aclp->z_acl_bytes);
929 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
930 		    acl_ids->z_fuid, acl_ids->z_fgid);
931 	}
932 
933 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
934 
935 	if (!(flag & IS_ROOT_NODE)) {
936 		/*
937 		 * The call to zfs_znode_alloc() may fail if memory is low
938 		 * via the call path: alloc_inode() -> inode_init_always() ->
939 		 * security_inode_alloc() -> inode_alloc_security().  Since
940 		 * the existing code is written such that zfs_mknode() can
941 		 * not fail retry until sufficient memory has been reclaimed.
942 		 */
943 		do {
944 			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
945 		} while (*zpp == NULL);
946 
947 		VERIFY(*zpp != NULL);
948 		VERIFY(dzp != NULL);
949 	} else {
950 		/*
951 		 * If we are creating the root node, the "parent" we
952 		 * passed in is the znode for the root.
953 		 */
954 		*zpp = dzp;
955 
956 		(*zpp)->z_sa_hdl = sa_hdl;
957 	}
958 
959 	(*zpp)->z_pflags = pflags;
960 	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
961 	(*zpp)->z_dnodesize = dnodesize;
962 	(*zpp)->z_projid = projid;
963 
964 	if (obj_type == DMU_OT_ZNODE ||
965 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
966 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
967 	}
968 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
969 	zfs_znode_hold_exit(zfsvfs, zh);
970 }
971 
972 /*
973  * Update in-core attributes.  It is assumed the caller will be doing an
974  * sa_bulk_update to push the changes out.
975  */
976 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)977 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
978 {
979 	xoptattr_t *xoap;
980 	boolean_t update_inode = B_FALSE;
981 
982 	xoap = xva_getxoptattr(xvap);
983 	ASSERT(xoap);
984 
985 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
986 		uint64_t times[2];
987 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
988 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
989 		    &times, sizeof (times), tx);
990 		XVA_SET_RTN(xvap, XAT_CREATETIME);
991 	}
992 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
993 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
994 		    zp->z_pflags, tx);
995 		XVA_SET_RTN(xvap, XAT_READONLY);
996 	}
997 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
998 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
999 		    zp->z_pflags, tx);
1000 		XVA_SET_RTN(xvap, XAT_HIDDEN);
1001 	}
1002 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1003 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1004 		    zp->z_pflags, tx);
1005 		XVA_SET_RTN(xvap, XAT_SYSTEM);
1006 	}
1007 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1008 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1009 		    zp->z_pflags, tx);
1010 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
1011 	}
1012 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1013 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1014 		    zp->z_pflags, tx);
1015 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1016 
1017 		update_inode = B_TRUE;
1018 	}
1019 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1020 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1021 		    zp->z_pflags, tx);
1022 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
1023 	}
1024 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1025 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1026 		    zp->z_pflags, tx);
1027 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1028 
1029 		update_inode = B_TRUE;
1030 	}
1031 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1032 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1033 		    zp->z_pflags, tx);
1034 		XVA_SET_RTN(xvap, XAT_NODUMP);
1035 	}
1036 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1037 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1038 		    zp->z_pflags, tx);
1039 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1040 	}
1041 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1042 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1043 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1044 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1045 	}
1046 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1047 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1048 		    zp->z_pflags, tx);
1049 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1050 	}
1051 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1052 		zfs_sa_set_scanstamp(zp, xvap, tx);
1053 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1054 	}
1055 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1056 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1057 		    zp->z_pflags, tx);
1058 		XVA_SET_RTN(xvap, XAT_REPARSE);
1059 	}
1060 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1061 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1062 		    zp->z_pflags, tx);
1063 		XVA_SET_RTN(xvap, XAT_OFFLINE);
1064 	}
1065 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1066 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1067 		    zp->z_pflags, tx);
1068 		XVA_SET_RTN(xvap, XAT_SPARSE);
1069 	}
1070 	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1071 		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1072 		    zp->z_pflags, tx);
1073 		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1074 	}
1075 
1076 	if (update_inode)
1077 		zfs_set_inode_flags(zp, ZTOI(zp));
1078 }
1079 
1080 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)1081 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1082 {
1083 	dmu_object_info_t doi;
1084 	dmu_buf_t	*db;
1085 	znode_t		*zp;
1086 	znode_hold_t	*zh;
1087 	int err;
1088 	sa_handle_t	*hdl;
1089 
1090 	*zpp = NULL;
1091 
1092 again:
1093 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1094 
1095 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1096 	if (err) {
1097 		zfs_znode_hold_exit(zfsvfs, zh);
1098 		return (err);
1099 	}
1100 
1101 	dmu_object_info_from_db(db, &doi);
1102 	if (doi.doi_bonus_type != DMU_OT_SA &&
1103 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1104 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1105 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1106 		sa_buf_rele(db, NULL);
1107 		zfs_znode_hold_exit(zfsvfs, zh);
1108 		return (SET_ERROR(EINVAL));
1109 	}
1110 
1111 	hdl = dmu_buf_get_user(db);
1112 	if (hdl != NULL) {
1113 		zp = sa_get_userdata(hdl);
1114 
1115 
1116 		/*
1117 		 * Since "SA" does immediate eviction we
1118 		 * should never find a sa handle that doesn't
1119 		 * know about the znode.
1120 		 */
1121 
1122 		ASSERT3P(zp, !=, NULL);
1123 
1124 		mutex_enter(&zp->z_lock);
1125 		ASSERT3U(zp->z_id, ==, obj_num);
1126 		/*
1127 		 * If zp->z_unlinked is set, the znode is already marked
1128 		 * for deletion and should not be discovered. Check this
1129 		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1130 		 *
1131 		 * If igrab() returns NULL the VFS has independently
1132 		 * determined the inode should be evicted and has
1133 		 * called iput_final() to start the eviction process.
1134 		 * The SA handle is still valid but because the VFS
1135 		 * requires that the eviction succeed we must drop
1136 		 * our locks and references to allow the eviction to
1137 		 * complete.  The zfs_zget() may then be retried.
1138 		 *
1139 		 * This unlikely case could be optimized by registering
1140 		 * a sops->drop_inode() callback.  The callback would
1141 		 * need to detect the active SA hold thereby informing
1142 		 * the VFS that this inode should not be evicted.
1143 		 */
1144 		if (igrab(ZTOI(zp)) == NULL) {
1145 			if (zp->z_unlinked)
1146 				err = SET_ERROR(ENOENT);
1147 			else
1148 				err = SET_ERROR(EAGAIN);
1149 		} else {
1150 			*zpp = zp;
1151 			err = 0;
1152 		}
1153 
1154 		mutex_exit(&zp->z_lock);
1155 		sa_buf_rele(db, NULL);
1156 		zfs_znode_hold_exit(zfsvfs, zh);
1157 
1158 		if (err == EAGAIN) {
1159 			/* inode might need this to finish evict */
1160 			cond_resched();
1161 			goto again;
1162 		}
1163 		return (err);
1164 	}
1165 
1166 	/*
1167 	 * Not found create new znode/vnode but only if file exists.
1168 	 *
1169 	 * There is a small window where zfs_vget() could
1170 	 * find this object while a file create is still in
1171 	 * progress.  This is checked for in zfs_znode_alloc()
1172 	 *
1173 	 * if zfs_znode_alloc() fails it will drop the hold on the
1174 	 * bonus buffer.
1175 	 */
1176 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1177 	    doi.doi_bonus_type, NULL);
1178 	if (zp == NULL) {
1179 		err = SET_ERROR(ENOENT);
1180 	} else {
1181 		*zpp = zp;
1182 	}
1183 	zfs_znode_hold_exit(zfsvfs, zh);
1184 	return (err);
1185 }
1186 
1187 int
zfs_rezget(znode_t * zp)1188 zfs_rezget(znode_t *zp)
1189 {
1190 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1191 	dmu_object_info_t doi;
1192 	dmu_buf_t *db;
1193 	uint64_t obj_num = zp->z_id;
1194 	uint64_t mode;
1195 	uint64_t links;
1196 	sa_bulk_attr_t bulk[11];
1197 	int err;
1198 	int count = 0;
1199 	uint64_t gen;
1200 	uint64_t z_uid, z_gid;
1201 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
1202 	inode_timespec_t tmp_ts;
1203 	uint64_t projid = ZFS_DEFAULT_PROJID;
1204 	znode_hold_t *zh;
1205 
1206 	/*
1207 	 * skip ctldir, otherwise they will always get invalidated. This will
1208 	 * cause funny behaviour for the mounted snapdirs. Especially for
1209 	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1210 	 * anyone automount it again as long as someone is still using the
1211 	 * detached mount.
1212 	 */
1213 	if (zp->z_is_ctldir)
1214 		return (0);
1215 
1216 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1217 
1218 	mutex_enter(&zp->z_acl_lock);
1219 	if (zp->z_acl_cached) {
1220 		zfs_acl_free(zp->z_acl_cached);
1221 		zp->z_acl_cached = NULL;
1222 	}
1223 	mutex_exit(&zp->z_acl_lock);
1224 
1225 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1226 	if (zp->z_xattr_cached) {
1227 		nvlist_free(zp->z_xattr_cached);
1228 		zp->z_xattr_cached = NULL;
1229 	}
1230 	rw_exit(&zp->z_xattr_lock);
1231 
1232 	ASSERT(zp->z_sa_hdl == NULL);
1233 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1234 	if (err) {
1235 		zfs_znode_hold_exit(zfsvfs, zh);
1236 		return (err);
1237 	}
1238 
1239 	dmu_object_info_from_db(db, &doi);
1240 	if (doi.doi_bonus_type != DMU_OT_SA &&
1241 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1242 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1243 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1244 		sa_buf_rele(db, NULL);
1245 		zfs_znode_hold_exit(zfsvfs, zh);
1246 		return (SET_ERROR(EINVAL));
1247 	}
1248 
1249 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1250 
1251 	/* reload cached values */
1252 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1253 	    &gen, sizeof (gen));
1254 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1255 	    &zp->z_size, sizeof (zp->z_size));
1256 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1257 	    &links, sizeof (links));
1258 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1259 	    &zp->z_pflags, sizeof (zp->z_pflags));
1260 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1261 	    &z_uid, sizeof (z_uid));
1262 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1263 	    &z_gid, sizeof (z_gid));
1264 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1265 	    &mode, sizeof (mode));
1266 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1267 	    &atime, 16);
1268 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1269 	    &mtime, 16);
1270 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1271 	    &ctime, 16);
1272 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
1273 
1274 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1275 		zfs_znode_dmu_fini(zp);
1276 		zfs_znode_hold_exit(zfsvfs, zh);
1277 		return (SET_ERROR(EIO));
1278 	}
1279 
1280 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1281 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1282 		    &projid, 8);
1283 		if (err != 0 && err != ENOENT) {
1284 			zfs_znode_dmu_fini(zp);
1285 			zfs_znode_hold_exit(zfsvfs, zh);
1286 			return (SET_ERROR(err));
1287 		}
1288 	}
1289 
1290 	zp->z_projid = projid;
1291 	zp->z_mode = ZTOI(zp)->i_mode = mode;
1292 	zfs_uid_write(ZTOI(zp), z_uid);
1293 	zfs_gid_write(ZTOI(zp), z_gid);
1294 
1295 	ZFS_TIME_DECODE(&tmp_ts, atime);
1296 	zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
1297 	ZFS_TIME_DECODE(&tmp_ts, mtime);
1298 	zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1299 	ZFS_TIME_DECODE(&tmp_ts, ctime);
1300 	zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1301 	ZFS_TIME_DECODE(&zp->z_btime, btime);
1302 
1303 	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1304 		zfs_znode_dmu_fini(zp);
1305 		zfs_znode_hold_exit(zfsvfs, zh);
1306 		return (SET_ERROR(EIO));
1307 	}
1308 
1309 	set_nlink(ZTOI(zp), (uint32_t)links);
1310 	zfs_set_inode_flags(zp, ZTOI(zp));
1311 
1312 	zp->z_blksz = doi.doi_data_block_size;
1313 	zp->z_atime_dirty = B_FALSE;
1314 	zfs_znode_update_vfs(zp);
1315 
1316 	/*
1317 	 * If the file has zero links, then it has been unlinked on the send
1318 	 * side and it must be in the received unlinked set.
1319 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1320 	 * stale data and to prevent automatic removal of the file in
1321 	 * zfs_zinactive().  The file will be removed either when it is removed
1322 	 * on the send side and the next incremental stream is received or
1323 	 * when the unlinked set gets processed.
1324 	 */
1325 	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1326 	if (zp->z_unlinked)
1327 		zfs_znode_dmu_fini(zp);
1328 
1329 	zfs_znode_hold_exit(zfsvfs, zh);
1330 
1331 	return (0);
1332 }
1333 
1334 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1335 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1336 {
1337 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1338 	objset_t *os = zfsvfs->z_os;
1339 	uint64_t obj = zp->z_id;
1340 	uint64_t acl_obj = zfs_external_acl(zp);
1341 	znode_hold_t *zh;
1342 
1343 	zh = zfs_znode_hold_enter(zfsvfs, obj);
1344 	if (acl_obj) {
1345 		VERIFY(!zp->z_is_sa);
1346 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1347 	}
1348 	VERIFY(0 == dmu_object_free(os, obj, tx));
1349 	zfs_znode_dmu_fini(zp);
1350 	zfs_znode_hold_exit(zfsvfs, zh);
1351 }
1352 
1353 void
zfs_zinactive(znode_t * zp)1354 zfs_zinactive(znode_t *zp)
1355 {
1356 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1357 	uint64_t z_id = zp->z_id;
1358 	znode_hold_t *zh;
1359 
1360 	ASSERT(zp->z_sa_hdl);
1361 
1362 	/*
1363 	 * Don't allow a zfs_zget() while were trying to release this znode.
1364 	 */
1365 	zh = zfs_znode_hold_enter(zfsvfs, z_id);
1366 
1367 	mutex_enter(&zp->z_lock);
1368 
1369 	/*
1370 	 * If this was the last reference to a file with no links, remove
1371 	 * the file from the file system unless the file system is mounted
1372 	 * read-only.  That can happen, for example, if the file system was
1373 	 * originally read-write, the file was opened, then unlinked and
1374 	 * the file system was made read-only before the file was finally
1375 	 * closed.  The file will remain in the unlinked set.
1376 	 */
1377 	if (zp->z_unlinked) {
1378 		ASSERT(!zfsvfs->z_issnap);
1379 		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1380 			mutex_exit(&zp->z_lock);
1381 			zfs_znode_hold_exit(zfsvfs, zh);
1382 			zfs_rmnode(zp);
1383 			return;
1384 		}
1385 	}
1386 
1387 	mutex_exit(&zp->z_lock);
1388 	zfs_znode_dmu_fini(zp);
1389 
1390 	zfs_znode_hold_exit(zfsvfs, zh);
1391 }
1392 
1393 #if defined(HAVE_INODE_TIMESPEC64_TIMES)
1394 #define	zfs_compare_timespec timespec64_compare
1395 #else
1396 #define	zfs_compare_timespec timespec_compare
1397 #endif
1398 
1399 /*
1400  * Determine whether the znode's atime must be updated.  The logic mostly
1401  * duplicates the Linux kernel's relatime_need_update() functionality.
1402  * This function is only called if the underlying filesystem actually has
1403  * atime updates enabled.
1404  */
1405 boolean_t
zfs_relatime_need_update(const struct inode * ip)1406 zfs_relatime_need_update(const struct inode *ip)
1407 {
1408 	inode_timespec_t now, tmp_atime, tmp_ts;
1409 
1410 	gethrestime(&now);
1411 	tmp_atime = zpl_inode_get_atime(ip);
1412 	/*
1413 	 * In relatime mode, only update the atime if the previous atime
1414 	 * is earlier than either the ctime or mtime or if at least a day
1415 	 * has passed since the last update of atime.
1416 	 */
1417 	tmp_ts = zpl_inode_get_mtime(ip);
1418 	if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
1419 		return (B_TRUE);
1420 
1421 	tmp_ts = zpl_inode_get_ctime(ip);
1422 	if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
1423 		return (B_TRUE);
1424 
1425 	if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
1426 		return (B_TRUE);
1427 
1428 	return (B_FALSE);
1429 }
1430 
1431 /*
1432  * Prepare to update znode time stamps.
1433  *
1434  *	IN:	zp	- znode requiring timestamp update
1435  *		flag	- ATTR_MTIME, ATTR_CTIME flags
1436  *
1437  *	OUT:	zp	- z_seq
1438  *		mtime	- new mtime
1439  *		ctime	- new ctime
1440  *
1441  *	Note: We don't update atime here, because we rely on Linux VFS to do
1442  *	atime updating.
1443  */
1444 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1445 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1446     uint64_t ctime[2])
1447 {
1448 	inode_timespec_t now, tmp_ts;
1449 
1450 	gethrestime(&now);
1451 
1452 	zp->z_seq++;
1453 
1454 	if (flag & ATTR_MTIME) {
1455 		ZFS_TIME_ENCODE(&now, mtime);
1456 		ZFS_TIME_DECODE(&tmp_ts, mtime);
1457 		zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1458 		if (ZTOZSB(zp)->z_use_fuids) {
1459 			zp->z_pflags |= (ZFS_ARCHIVE |
1460 			    ZFS_AV_MODIFIED);
1461 		}
1462 	}
1463 
1464 	if (flag & ATTR_CTIME) {
1465 		ZFS_TIME_ENCODE(&now, ctime);
1466 		ZFS_TIME_DECODE(&tmp_ts, ctime);
1467 		zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1468 		if (ZTOZSB(zp)->z_use_fuids)
1469 			zp->z_pflags |= ZFS_ARCHIVE;
1470 	}
1471 }
1472 
1473 /*
1474  * Grow the block size for a file.
1475  *
1476  *	IN:	zp	- znode of file to free data in.
1477  *		size	- requested block size
1478  *		tx	- open transaction.
1479  *
1480  * NOTE: this function assumes that the znode is write locked.
1481  */
1482 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1483 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1484 {
1485 	int		error;
1486 	u_longlong_t	dummy;
1487 
1488 	if (size <= zp->z_blksz)
1489 		return;
1490 	/*
1491 	 * If the file size is already greater than the current blocksize,
1492 	 * we will not grow.  If there is more than one block in a file,
1493 	 * the blocksize cannot change.
1494 	 */
1495 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1496 		return;
1497 
1498 	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1499 	    size, 0, tx);
1500 
1501 	if (error == ENOTSUP)
1502 		return;
1503 	ASSERT0(error);
1504 
1505 	/* What blocksize did we actually get? */
1506 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1507 }
1508 
1509 /*
1510  * Increase the file length
1511  *
1512  *	IN:	zp	- znode of file to free data in.
1513  *		end	- new end-of-file
1514  *
1515  *	RETURN:	0 on success, error code on failure
1516  */
1517 static int
zfs_extend(znode_t * zp,uint64_t end)1518 zfs_extend(znode_t *zp, uint64_t end)
1519 {
1520 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1521 	dmu_tx_t *tx;
1522 	zfs_locked_range_t *lr;
1523 	uint64_t newblksz;
1524 	int error;
1525 
1526 	/*
1527 	 * We will change zp_size, lock the whole file.
1528 	 */
1529 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1530 
1531 	/*
1532 	 * Nothing to do if file already at desired length.
1533 	 */
1534 	if (end <= zp->z_size) {
1535 		zfs_rangelock_exit(lr);
1536 		return (0);
1537 	}
1538 	tx = dmu_tx_create(zfsvfs->z_os);
1539 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1540 	zfs_sa_upgrade_txholds(tx, zp);
1541 	if (end > zp->z_blksz &&
1542 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1543 		/*
1544 		 * We are growing the file past the current block size.
1545 		 */
1546 		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1547 			/*
1548 			 * File's blocksize is already larger than the
1549 			 * "recordsize" property.  Only let it grow to
1550 			 * the next power of 2.
1551 			 */
1552 			ASSERT(!ISP2(zp->z_blksz));
1553 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1554 		} else {
1555 			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1556 		}
1557 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1558 	} else {
1559 		newblksz = 0;
1560 	}
1561 
1562 	error = dmu_tx_assign(tx, TXG_WAIT);
1563 	if (error) {
1564 		dmu_tx_abort(tx);
1565 		zfs_rangelock_exit(lr);
1566 		return (error);
1567 	}
1568 
1569 	if (newblksz)
1570 		zfs_grow_blocksize(zp, newblksz, tx);
1571 
1572 	zp->z_size = end;
1573 
1574 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1575 	    &zp->z_size, sizeof (zp->z_size), tx));
1576 
1577 	zfs_rangelock_exit(lr);
1578 
1579 	dmu_tx_commit(tx);
1580 
1581 	return (0);
1582 }
1583 
1584 /*
1585  * zfs_zero_partial_page - Modeled after update_pages() but
1586  * with different arguments and semantics for use by zfs_freesp().
1587  *
1588  * Zeroes a piece of a single page cache entry for zp at offset
1589  * start and length len.
1590  *
1591  * Caller must acquire a range lock on the file for the region
1592  * being zeroed in order that the ARC and page cache stay in sync.
1593  */
1594 static void
zfs_zero_partial_page(znode_t * zp,uint64_t start,uint64_t len)1595 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1596 {
1597 	struct address_space *mp = ZTOI(zp)->i_mapping;
1598 	struct page *pp;
1599 	int64_t	off;
1600 	void *pb;
1601 
1602 	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1603 
1604 	off = start & (PAGE_SIZE - 1);
1605 	start &= PAGE_MASK;
1606 
1607 	pp = find_lock_page(mp, start >> PAGE_SHIFT);
1608 	if (pp) {
1609 		if (mapping_writably_mapped(mp))
1610 			flush_dcache_page(pp);
1611 
1612 		pb = kmap(pp);
1613 		memset(pb + off, 0, len);
1614 		kunmap(pp);
1615 
1616 		if (mapping_writably_mapped(mp))
1617 			flush_dcache_page(pp);
1618 
1619 		mark_page_accessed(pp);
1620 		SetPageUptodate(pp);
1621 		ClearPageError(pp);
1622 		unlock_page(pp);
1623 		put_page(pp);
1624 	}
1625 }
1626 
1627 /*
1628  * Free space in a file.
1629  *
1630  *	IN:	zp	- znode of file to free data in.
1631  *		off	- start of section to free.
1632  *		len	- length of section to free.
1633  *
1634  *	RETURN:	0 on success, error code on failure
1635  */
1636 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1637 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1638 {
1639 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1640 	zfs_locked_range_t *lr;
1641 	int error;
1642 
1643 	/*
1644 	 * Lock the range being freed.
1645 	 */
1646 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1647 
1648 	/*
1649 	 * Nothing to do if file already at desired length.
1650 	 */
1651 	if (off >= zp->z_size) {
1652 		zfs_rangelock_exit(lr);
1653 		return (0);
1654 	}
1655 
1656 	if (off + len > zp->z_size)
1657 		len = zp->z_size - off;
1658 
1659 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1660 
1661 	/*
1662 	 * Zero partial page cache entries.  This must be done under a
1663 	 * range lock in order to keep the ARC and page cache in sync.
1664 	 */
1665 	if (zn_has_cached_data(zp, off, off + len - 1)) {
1666 		loff_t first_page, last_page, page_len;
1667 		loff_t first_page_offset, last_page_offset;
1668 
1669 		/* first possible full page in hole */
1670 		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1671 		/* last page of hole */
1672 		last_page = (off + len) >> PAGE_SHIFT;
1673 
1674 		/* offset of first_page */
1675 		first_page_offset = first_page << PAGE_SHIFT;
1676 		/* offset of last_page */
1677 		last_page_offset = last_page << PAGE_SHIFT;
1678 
1679 		/* truncate whole pages */
1680 		if (last_page_offset > first_page_offset) {
1681 			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1682 			    first_page_offset, last_page_offset - 1);
1683 		}
1684 
1685 		/* truncate sub-page ranges */
1686 		if (first_page > last_page) {
1687 			/* entire punched area within a single page */
1688 			zfs_zero_partial_page(zp, off, len);
1689 		} else {
1690 			/* beginning of punched area at the end of a page */
1691 			page_len  = first_page_offset - off;
1692 			if (page_len > 0)
1693 				zfs_zero_partial_page(zp, off, page_len);
1694 
1695 			/* end of punched area at the beginning of a page */
1696 			page_len = off + len - last_page_offset;
1697 			if (page_len > 0)
1698 				zfs_zero_partial_page(zp, last_page_offset,
1699 				    page_len);
1700 		}
1701 	}
1702 	zfs_rangelock_exit(lr);
1703 
1704 	return (error);
1705 }
1706 
1707 /*
1708  * Truncate a file
1709  *
1710  *	IN:	zp	- znode of file to free data in.
1711  *		end	- new end-of-file.
1712  *
1713  *	RETURN:	0 on success, error code on failure
1714  */
1715 static int
zfs_trunc(znode_t * zp,uint64_t end)1716 zfs_trunc(znode_t *zp, uint64_t end)
1717 {
1718 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1719 	dmu_tx_t *tx;
1720 	zfs_locked_range_t *lr;
1721 	int error;
1722 	sa_bulk_attr_t bulk[2];
1723 	int count = 0;
1724 
1725 	/*
1726 	 * We will change zp_size, lock the whole file.
1727 	 */
1728 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1729 
1730 	/*
1731 	 * Nothing to do if file already at desired length.
1732 	 */
1733 	if (end >= zp->z_size) {
1734 		zfs_rangelock_exit(lr);
1735 		return (0);
1736 	}
1737 
1738 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1739 	    DMU_OBJECT_END);
1740 	if (error) {
1741 		zfs_rangelock_exit(lr);
1742 		return (error);
1743 	}
1744 	tx = dmu_tx_create(zfsvfs->z_os);
1745 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1746 	zfs_sa_upgrade_txholds(tx, zp);
1747 	dmu_tx_mark_netfree(tx);
1748 	error = dmu_tx_assign(tx, TXG_WAIT);
1749 	if (error) {
1750 		dmu_tx_abort(tx);
1751 		zfs_rangelock_exit(lr);
1752 		return (error);
1753 	}
1754 
1755 	zp->z_size = end;
1756 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1757 	    NULL, &zp->z_size, sizeof (zp->z_size));
1758 
1759 	if (end == 0) {
1760 		zp->z_pflags &= ~ZFS_SPARSE;
1761 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1762 		    NULL, &zp->z_pflags, 8);
1763 	}
1764 	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1765 
1766 	dmu_tx_commit(tx);
1767 	zfs_rangelock_exit(lr);
1768 
1769 	return (0);
1770 }
1771 
1772 /*
1773  * Free space in a file
1774  *
1775  *	IN:	zp	- znode of file to free data in.
1776  *		off	- start of range
1777  *		len	- end of range (0 => EOF)
1778  *		flag	- current file open mode flags.
1779  *		log	- TRUE if this action should be logged
1780  *
1781  *	RETURN:	0 on success, error code on failure
1782  */
1783 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1784 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1785 {
1786 	dmu_tx_t *tx;
1787 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1788 	zilog_t *zilog = zfsvfs->z_log;
1789 	uint64_t mode;
1790 	uint64_t mtime[2], ctime[2];
1791 	sa_bulk_attr_t bulk[3];
1792 	int count = 0;
1793 	int error;
1794 
1795 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1796 	    sizeof (mode))) != 0)
1797 		return (error);
1798 
1799 	if (off > zp->z_size) {
1800 		error =  zfs_extend(zp, off+len);
1801 		if (error == 0 && log)
1802 			goto log;
1803 		goto out;
1804 	}
1805 
1806 	if (len == 0) {
1807 		error = zfs_trunc(zp, off);
1808 	} else {
1809 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1810 		    off + len > zp->z_size)
1811 			error = zfs_extend(zp, off+len);
1812 	}
1813 	if (error || !log)
1814 		goto out;
1815 log:
1816 	tx = dmu_tx_create(zfsvfs->z_os);
1817 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1818 	zfs_sa_upgrade_txholds(tx, zp);
1819 	error = dmu_tx_assign(tx, TXG_WAIT);
1820 	if (error) {
1821 		dmu_tx_abort(tx);
1822 		goto out;
1823 	}
1824 
1825 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1826 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1827 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1828 	    NULL, &zp->z_pflags, 8);
1829 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1830 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1831 	ASSERT(error == 0);
1832 
1833 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1834 
1835 	dmu_tx_commit(tx);
1836 
1837 	zfs_znode_update_vfs(zp);
1838 	error = 0;
1839 
1840 out:
1841 	/*
1842 	 * Truncate the page cache - for file truncate operations, use
1843 	 * the purpose-built API for truncations.  For punching operations,
1844 	 * the truncation is handled under a range lock in zfs_free_range.
1845 	 */
1846 	if (len == 0)
1847 		truncate_setsize(ZTOI(zp), off);
1848 	return (error);
1849 }
1850 
1851 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1852 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1853 {
1854 	struct super_block *sb;
1855 	zfsvfs_t	*zfsvfs;
1856 	uint64_t	moid, obj, sa_obj, version;
1857 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1858 	uint64_t	norm = 0;
1859 	nvpair_t	*elem;
1860 	int		size;
1861 	int		error;
1862 	int		i;
1863 	znode_t		*rootzp = NULL;
1864 	vattr_t		vattr;
1865 	znode_t		*zp;
1866 	zfs_acl_ids_t	acl_ids;
1867 
1868 	/*
1869 	 * First attempt to create master node.
1870 	 */
1871 	/*
1872 	 * In an empty objset, there are no blocks to read and thus
1873 	 * there can be no i/o errors (which we assert below).
1874 	 */
1875 	moid = MASTER_NODE_OBJ;
1876 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1877 	    DMU_OT_NONE, 0, tx);
1878 	ASSERT(error == 0);
1879 
1880 	/*
1881 	 * Set starting attributes.
1882 	 */
1883 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1884 	elem = NULL;
1885 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1886 		/* For the moment we expect all zpl props to be uint64_ts */
1887 		uint64_t val;
1888 		const char *name;
1889 
1890 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1891 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1892 		name = nvpair_name(elem);
1893 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1894 			if (val < version)
1895 				version = val;
1896 		} else {
1897 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1898 		}
1899 		ASSERT(error == 0);
1900 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1901 			norm = val;
1902 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1903 			sense = val;
1904 	}
1905 	ASSERT(version != 0);
1906 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1907 	ASSERT(error == 0);
1908 
1909 	/*
1910 	 * Create zap object used for SA attribute registration
1911 	 */
1912 
1913 	if (version >= ZPL_VERSION_SA) {
1914 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1915 		    DMU_OT_NONE, 0, tx);
1916 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1917 		ASSERT(error == 0);
1918 	} else {
1919 		sa_obj = 0;
1920 	}
1921 	/*
1922 	 * Create a delete queue.
1923 	 */
1924 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1925 
1926 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1927 	ASSERT(error == 0);
1928 
1929 	/*
1930 	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
1931 	 * to allow zfs_mknode to work.
1932 	 */
1933 	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1934 	vattr.va_mode = S_IFDIR|0755;
1935 	vattr.va_uid = crgetuid(cr);
1936 	vattr.va_gid = crgetgid(cr);
1937 
1938 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1939 	rootzp->z_unlinked = B_FALSE;
1940 	rootzp->z_atime_dirty = B_FALSE;
1941 	rootzp->z_is_sa = USE_SA(version, os);
1942 	rootzp->z_pflags = 0;
1943 
1944 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1945 	zfsvfs->z_os = os;
1946 	zfsvfs->z_parent = zfsvfs;
1947 	zfsvfs->z_version = version;
1948 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1949 	zfsvfs->z_use_sa = USE_SA(version, os);
1950 	zfsvfs->z_norm = norm;
1951 
1952 	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1953 	sb->s_fs_info = zfsvfs;
1954 
1955 	ZTOI(rootzp)->i_sb = sb;
1956 
1957 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1958 	    &zfsvfs->z_attr_table);
1959 
1960 	ASSERT(error == 0);
1961 
1962 	/*
1963 	 * Fold case on file systems that are always or sometimes case
1964 	 * insensitive.
1965 	 */
1966 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1967 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1968 
1969 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1970 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1971 	    offsetof(znode_t, z_link_node));
1972 
1973 	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1974 	zfsvfs->z_hold_size = size;
1975 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1976 	    KM_SLEEP);
1977 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1978 	for (i = 0; i != size; i++) {
1979 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1980 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1981 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1982 	}
1983 
1984 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1985 	    cr, NULL, &acl_ids, zfs_init_idmap));
1986 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1987 	ASSERT3P(zp, ==, rootzp);
1988 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1989 	ASSERT(error == 0);
1990 	zfs_acl_ids_free(&acl_ids);
1991 
1992 	atomic_set(&ZTOI(rootzp)->i_count, 0);
1993 	sa_handle_destroy(rootzp->z_sa_hdl);
1994 	kmem_cache_free(znode_cache, rootzp);
1995 
1996 	for (i = 0; i != size; i++) {
1997 		avl_destroy(&zfsvfs->z_hold_trees[i]);
1998 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1999 	}
2000 
2001 	mutex_destroy(&zfsvfs->z_znodes_lock);
2002 
2003 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
2004 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
2005 	kmem_free(sb, sizeof (struct super_block));
2006 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
2007 }
2008 #endif /* _KERNEL */
2009 
2010 static int
zfs_sa_setup(objset_t * osp,sa_attr_type_t ** sa_table)2011 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
2012 {
2013 	uint64_t sa_obj = 0;
2014 	int error;
2015 
2016 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
2017 	if (error != 0 && error != ENOENT)
2018 		return (error);
2019 
2020 	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
2021 	return (error);
2022 }
2023 
2024 static int
zfs_grab_sa_handle(objset_t * osp,uint64_t obj,sa_handle_t ** hdlp,dmu_buf_t ** db,const void * tag)2025 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
2026     dmu_buf_t **db, const void *tag)
2027 {
2028 	dmu_object_info_t doi;
2029 	int error;
2030 
2031 	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
2032 		return (error);
2033 
2034 	dmu_object_info_from_db(*db, &doi);
2035 	if ((doi.doi_bonus_type != DMU_OT_SA &&
2036 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
2037 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
2038 	    doi.doi_bonus_size < sizeof (znode_phys_t))) {
2039 		sa_buf_rele(*db, tag);
2040 		return (SET_ERROR(ENOTSUP));
2041 	}
2042 
2043 	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
2044 	if (error != 0) {
2045 		sa_buf_rele(*db, tag);
2046 		return (error);
2047 	}
2048 
2049 	return (0);
2050 }
2051 
2052 static void
zfs_release_sa_handle(sa_handle_t * hdl,dmu_buf_t * db,const void * tag)2053 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, const void *tag)
2054 {
2055 	sa_handle_destroy(hdl);
2056 	sa_buf_rele(db, tag);
2057 }
2058 
2059 /*
2060  * Given an object number, return its parent object number and whether
2061  * or not the object is an extended attribute directory.
2062  */
2063 static int
zfs_obj_to_pobj(objset_t * osp,sa_handle_t * hdl,sa_attr_type_t * sa_table,uint64_t * pobjp,int * is_xattrdir)2064 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
2065     uint64_t *pobjp, int *is_xattrdir)
2066 {
2067 	uint64_t parent;
2068 	uint64_t pflags;
2069 	uint64_t mode;
2070 	uint64_t parent_mode;
2071 	sa_bulk_attr_t bulk[3];
2072 	sa_handle_t *sa_hdl;
2073 	dmu_buf_t *sa_db;
2074 	int count = 0;
2075 	int error;
2076 
2077 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
2078 	    &parent, sizeof (parent));
2079 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
2080 	    &pflags, sizeof (pflags));
2081 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2082 	    &mode, sizeof (mode));
2083 
2084 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
2085 		return (error);
2086 
2087 	/*
2088 	 * When a link is removed its parent pointer is not changed and will
2089 	 * be invalid.  There are two cases where a link is removed but the
2090 	 * file stays around, when it goes to the delete queue and when there
2091 	 * are additional links.
2092 	 */
2093 	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
2094 	if (error != 0)
2095 		return (error);
2096 
2097 	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
2098 	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2099 	if (error != 0)
2100 		return (error);
2101 
2102 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
2103 
2104 	/*
2105 	 * Extended attributes can be applied to files, directories, etc.
2106 	 * Otherwise the parent must be a directory.
2107 	 */
2108 	if (!*is_xattrdir && !S_ISDIR(parent_mode))
2109 		return (SET_ERROR(EINVAL));
2110 
2111 	*pobjp = parent;
2112 
2113 	return (0);
2114 }
2115 
2116 /*
2117  * Given an object number, return some zpl level statistics
2118  */
2119 static int
zfs_obj_to_stats_impl(sa_handle_t * hdl,sa_attr_type_t * sa_table,zfs_stat_t * sb)2120 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2121     zfs_stat_t *sb)
2122 {
2123 	sa_bulk_attr_t bulk[4];
2124 	int count = 0;
2125 
2126 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2127 	    &sb->zs_mode, sizeof (sb->zs_mode));
2128 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2129 	    &sb->zs_gen, sizeof (sb->zs_gen));
2130 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2131 	    &sb->zs_links, sizeof (sb->zs_links));
2132 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2133 	    &sb->zs_ctime, sizeof (sb->zs_ctime));
2134 
2135 	return (sa_bulk_lookup(hdl, bulk, count));
2136 }
2137 
2138 static int
zfs_obj_to_path_impl(objset_t * osp,uint64_t obj,sa_handle_t * hdl,sa_attr_type_t * sa_table,char * buf,int len)2139 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2140     sa_attr_type_t *sa_table, char *buf, int len)
2141 {
2142 	sa_handle_t *sa_hdl;
2143 	sa_handle_t *prevhdl = NULL;
2144 	dmu_buf_t *prevdb = NULL;
2145 	dmu_buf_t *sa_db = NULL;
2146 	char *path = buf + len - 1;
2147 	int error;
2148 
2149 	*path = '\0';
2150 	sa_hdl = hdl;
2151 
2152 	uint64_t deleteq_obj;
2153 	VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
2154 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
2155 	error = zap_lookup_int(osp, deleteq_obj, obj);
2156 	if (error == 0) {
2157 		return (ESTALE);
2158 	} else if (error != ENOENT) {
2159 		return (error);
2160 	}
2161 
2162 	for (;;) {
2163 		uint64_t pobj = 0;
2164 		char component[MAXNAMELEN + 2];
2165 		size_t complen;
2166 		int is_xattrdir = 0;
2167 
2168 		if (prevdb) {
2169 			ASSERT(prevhdl != NULL);
2170 			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2171 		}
2172 
2173 		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2174 		    &is_xattrdir)) != 0)
2175 			break;
2176 
2177 		if (pobj == obj) {
2178 			if (path[0] != '/')
2179 				*--path = '/';
2180 			break;
2181 		}
2182 
2183 		component[0] = '/';
2184 		if (is_xattrdir) {
2185 			strcpy(component + 1, "<xattrdir>");
2186 		} else {
2187 			error = zap_value_search(osp, pobj, obj,
2188 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
2189 			if (error != 0)
2190 				break;
2191 		}
2192 
2193 		complen = strlen(component);
2194 		path -= complen;
2195 		ASSERT(path >= buf);
2196 		memcpy(path, component, complen);
2197 		obj = pobj;
2198 
2199 		if (sa_hdl != hdl) {
2200 			prevhdl = sa_hdl;
2201 			prevdb = sa_db;
2202 		}
2203 		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2204 		if (error != 0) {
2205 			sa_hdl = prevhdl;
2206 			sa_db = prevdb;
2207 			break;
2208 		}
2209 	}
2210 
2211 	if (sa_hdl != NULL && sa_hdl != hdl) {
2212 		ASSERT(sa_db != NULL);
2213 		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2214 	}
2215 
2216 	if (error == 0)
2217 		(void) memmove(buf, path, buf + len - path);
2218 
2219 	return (error);
2220 }
2221 
2222 int
zfs_obj_to_path(objset_t * osp,uint64_t obj,char * buf,int len)2223 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2224 {
2225 	sa_attr_type_t *sa_table;
2226 	sa_handle_t *hdl;
2227 	dmu_buf_t *db;
2228 	int error;
2229 
2230 	error = zfs_sa_setup(osp, &sa_table);
2231 	if (error != 0)
2232 		return (error);
2233 
2234 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2235 	if (error != 0)
2236 		return (error);
2237 
2238 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2239 
2240 	zfs_release_sa_handle(hdl, db, FTAG);
2241 	return (error);
2242 }
2243 
2244 int
zfs_obj_to_stats(objset_t * osp,uint64_t obj,zfs_stat_t * sb,char * buf,int len)2245 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2246     char *buf, int len)
2247 {
2248 	char *path = buf + len - 1;
2249 	sa_attr_type_t *sa_table;
2250 	sa_handle_t *hdl;
2251 	dmu_buf_t *db;
2252 	int error;
2253 
2254 	*path = '\0';
2255 
2256 	error = zfs_sa_setup(osp, &sa_table);
2257 	if (error != 0)
2258 		return (error);
2259 
2260 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2261 	if (error != 0)
2262 		return (error);
2263 
2264 	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2265 	if (error != 0) {
2266 		zfs_release_sa_handle(hdl, db, FTAG);
2267 		return (error);
2268 	}
2269 
2270 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2271 
2272 	zfs_release_sa_handle(hdl, db, FTAG);
2273 	return (error);
2274 }
2275 
2276 /*
2277  * Read a property stored within the master node.
2278  */
2279 int
zfs_get_zplprop(objset_t * os,zfs_prop_t prop,uint64_t * value)2280 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2281 {
2282 	uint64_t *cached_copy = NULL;
2283 
2284 	/*
2285 	 * Figure out where in the objset_t the cached copy would live, if it
2286 	 * is available for the requested property.
2287 	 */
2288 	if (os != NULL) {
2289 		switch (prop) {
2290 		case ZFS_PROP_VERSION:
2291 			cached_copy = &os->os_version;
2292 			break;
2293 		case ZFS_PROP_NORMALIZE:
2294 			cached_copy = &os->os_normalization;
2295 			break;
2296 		case ZFS_PROP_UTF8ONLY:
2297 			cached_copy = &os->os_utf8only;
2298 			break;
2299 		case ZFS_PROP_CASE:
2300 			cached_copy = &os->os_casesensitivity;
2301 			break;
2302 		default:
2303 			break;
2304 		}
2305 	}
2306 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2307 		*value = *cached_copy;
2308 		return (0);
2309 	}
2310 
2311 	/*
2312 	 * If the property wasn't cached, look up the file system's value for
2313 	 * the property. For the version property, we look up a slightly
2314 	 * different string.
2315 	 */
2316 	const char *pname;
2317 	int error = ENOENT;
2318 	if (prop == ZFS_PROP_VERSION)
2319 		pname = ZPL_VERSION_STR;
2320 	else
2321 		pname = zfs_prop_to_name(prop);
2322 
2323 	if (os != NULL) {
2324 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2325 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2326 	}
2327 
2328 	if (error == ENOENT) {
2329 		/* No value set, use the default value */
2330 		switch (prop) {
2331 		case ZFS_PROP_VERSION:
2332 			*value = ZPL_VERSION;
2333 			break;
2334 		case ZFS_PROP_NORMALIZE:
2335 		case ZFS_PROP_UTF8ONLY:
2336 			*value = 0;
2337 			break;
2338 		case ZFS_PROP_CASE:
2339 			*value = ZFS_CASE_SENSITIVE;
2340 			break;
2341 		case ZFS_PROP_ACLTYPE:
2342 			*value = ZFS_ACLTYPE_OFF;
2343 			break;
2344 		default:
2345 			return (error);
2346 		}
2347 		error = 0;
2348 	}
2349 
2350 	/*
2351 	 * If one of the methods for getting the property value above worked,
2352 	 * copy it into the objset_t's cache.
2353 	 */
2354 	if (error == 0 && cached_copy != NULL) {
2355 		*cached_copy = *value;
2356 	}
2357 
2358 	return (error);
2359 }
2360 
2361 #if defined(_KERNEL)
2362 EXPORT_SYMBOL(zfs_create_fs);
2363 EXPORT_SYMBOL(zfs_obj_to_path);
2364 
2365 /* CSTYLED */
2366 module_param(zfs_object_mutex_size, uint, 0644);
2367 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
2368 module_param(zfs_unlink_suspend_progress, int, 0644);
2369 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
2370 "(debug - leaks space into the unlinked set)");
2371 #endif
2372