xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision a7fbfdee)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, 2023, 2024, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
zio_init(void)152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
162 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
163 		size_t align, cflags, data_cflags;
164 		char name[32];
165 
166 		/*
167 		 * Create cache for each half-power of 2 size, starting from
168 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
169 		 * of ~7/8, sufficient for transient allocations mostly using
170 		 * these caches.
171 		 */
172 		size_t p2 = size;
173 		while (!ISP2(p2))
174 			p2 &= p2 - 1;
175 		if (!IS_P2ALIGNED(size, p2 / 2))
176 			continue;
177 
178 #ifndef _KERNEL
179 		/*
180 		 * If we are using watchpoints, put each buffer on its own page,
181 		 * to eliminate the performance overhead of trapping to the
182 		 * kernel when modifying a non-watched buffer that shares the
183 		 * page with a watched buffer.
184 		 */
185 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 			continue;
187 #endif
188 
189 		if (IS_P2ALIGNED(size, PAGESIZE))
190 			align = PAGESIZE;
191 		else
192 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
193 
194 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
195 		    KMC_NODEBUG : 0;
196 		data_cflags = KMC_NODEBUG;
197 		if (cflags == data_cflags) {
198 			/*
199 			 * Resulting kmem caches would be identical.
200 			 * Save memory by creating only one.
201 			 */
202 			(void) snprintf(name, sizeof (name),
203 			    "zio_buf_comb_%lu", (ulong_t)size);
204 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
205 			    NULL, NULL, NULL, NULL, NULL, cflags);
206 			zio_data_buf_cache[c] = zio_buf_cache[c];
207 			continue;
208 		}
209 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
210 		    (ulong_t)size);
211 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
212 		    NULL, NULL, NULL, NULL, NULL, cflags);
213 
214 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
215 		    (ulong_t)size);
216 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
217 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
218 	}
219 
220 	while (--c != 0) {
221 		ASSERT(zio_buf_cache[c] != NULL);
222 		if (zio_buf_cache[c - 1] == NULL)
223 			zio_buf_cache[c - 1] = zio_buf_cache[c];
224 
225 		ASSERT(zio_data_buf_cache[c] != NULL);
226 		if (zio_data_buf_cache[c - 1] == NULL)
227 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
228 	}
229 
230 	zio_inject_init();
231 
232 	lz4_init();
233 }
234 
235 void
zio_fini(void)236 zio_fini(void)
237 {
238 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
239 
240 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
241 	for (size_t i = 0; i < n; i++) {
242 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
243 			(void) printf("zio_fini: [%d] %llu != %llu\n",
244 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
245 			    (long long unsigned)zio_buf_cache_allocs[i],
246 			    (long long unsigned)zio_buf_cache_frees[i]);
247 	}
248 #endif
249 
250 	/*
251 	 * The same kmem cache can show up multiple times in both zio_buf_cache
252 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
253 	 * sort it out.
254 	 */
255 	for (size_t i = 0; i < n; i++) {
256 		kmem_cache_t *cache = zio_buf_cache[i];
257 		if (cache == NULL)
258 			continue;
259 		for (size_t j = i; j < n; j++) {
260 			if (cache == zio_buf_cache[j])
261 				zio_buf_cache[j] = NULL;
262 			if (cache == zio_data_buf_cache[j])
263 				zio_data_buf_cache[j] = NULL;
264 		}
265 		kmem_cache_destroy(cache);
266 	}
267 
268 	for (size_t i = 0; i < n; i++) {
269 		kmem_cache_t *cache = zio_data_buf_cache[i];
270 		if (cache == NULL)
271 			continue;
272 		for (size_t j = i; j < n; j++) {
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		VERIFY3P(zio_buf_cache[i], ==, NULL);
281 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
282 	}
283 
284 	kmem_cache_destroy(zio_link_cache);
285 	kmem_cache_destroy(zio_cache);
286 
287 	zio_inject_fini();
288 
289 	lz4_fini();
290 }
291 
292 /*
293  * ==========================================================================
294  * Allocate and free I/O buffers
295  * ==========================================================================
296  */
297 
298 #ifdef ZFS_DEBUG
299 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
300 #endif
301 
302 /*
303  * Use empty space after the buffer to detect overflows.
304  *
305  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
306  * allocations of different sizes may have some unused space after the data.
307  * Filling part of that space with a known pattern on allocation and checking
308  * it on free should allow us to detect some buffer overflows.
309  */
310 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)311 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
312 {
313 #ifdef ZFS_DEBUG
314 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
315 	ulong_t *canary = p + off / sizeof (ulong_t);
316 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
317 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
318 	    cache[c] == cache[c + 1])
319 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
320 	for (; off < asize; canary++, off += sizeof (ulong_t))
321 		*canary = zio_buf_canary;
322 #endif
323 }
324 
325 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)326 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
327 {
328 #ifdef ZFS_DEBUG
329 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
330 	ulong_t *canary = p + off / sizeof (ulong_t);
331 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
332 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
333 	    cache[c] == cache[c + 1])
334 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
335 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
336 		if (unlikely(*canary != zio_buf_canary)) {
337 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
338 			    p, size, (canary - p) * sizeof (ulong_t),
339 			    *canary, zio_buf_canary);
340 		}
341 	}
342 #endif
343 }
344 
345 /*
346  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
347  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
348  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
349  * excess / transient data in-core during a crashdump.
350  */
351 void *
zio_buf_alloc(size_t size)352 zio_buf_alloc(size_t size)
353 {
354 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
355 
356 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
357 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
358 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
359 #endif
360 
361 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
362 	zio_buf_put_canary(p, size, zio_buf_cache, c);
363 	return (p);
364 }
365 
366 /*
367  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
368  * crashdump if the kernel panics.  This exists so that we will limit the amount
369  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
370  * of kernel heap dumped to disk when the kernel panics)
371  */
372 void *
zio_data_buf_alloc(size_t size)373 zio_data_buf_alloc(size_t size)
374 {
375 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
376 
377 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
378 
379 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
380 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
381 	return (p);
382 }
383 
384 void
zio_buf_free(void * buf,size_t size)385 zio_buf_free(void *buf, size_t size)
386 {
387 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
388 
389 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
390 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
391 	atomic_add_64(&zio_buf_cache_frees[c], 1);
392 #endif
393 
394 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
395 	kmem_cache_free(zio_buf_cache[c], buf);
396 }
397 
398 void
zio_data_buf_free(void * buf,size_t size)399 zio_data_buf_free(void *buf, size_t size)
400 {
401 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
402 
403 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
404 
405 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
406 	kmem_cache_free(zio_data_buf_cache[c], buf);
407 }
408 
409 static void
zio_abd_free(void * abd,size_t size)410 zio_abd_free(void *abd, size_t size)
411 {
412 	(void) size;
413 	abd_free((abd_t *)abd);
414 }
415 
416 /*
417  * ==========================================================================
418  * Push and pop I/O transform buffers
419  * ==========================================================================
420  */
421 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)422 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
423     zio_transform_func_t *transform)
424 {
425 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
426 
427 	zt->zt_orig_abd = zio->io_abd;
428 	zt->zt_orig_size = zio->io_size;
429 	zt->zt_bufsize = bufsize;
430 	zt->zt_transform = transform;
431 
432 	zt->zt_next = zio->io_transform_stack;
433 	zio->io_transform_stack = zt;
434 
435 	zio->io_abd = data;
436 	zio->io_size = size;
437 }
438 
439 void
zio_pop_transforms(zio_t * zio)440 zio_pop_transforms(zio_t *zio)
441 {
442 	zio_transform_t *zt;
443 
444 	while ((zt = zio->io_transform_stack) != NULL) {
445 		if (zt->zt_transform != NULL)
446 			zt->zt_transform(zio,
447 			    zt->zt_orig_abd, zt->zt_orig_size);
448 
449 		if (zt->zt_bufsize != 0)
450 			abd_free(zio->io_abd);
451 
452 		zio->io_abd = zt->zt_orig_abd;
453 		zio->io_size = zt->zt_orig_size;
454 		zio->io_transform_stack = zt->zt_next;
455 
456 		kmem_free(zt, sizeof (zio_transform_t));
457 	}
458 }
459 
460 /*
461  * ==========================================================================
462  * I/O transform callbacks for subblocks, decompression, and decryption
463  * ==========================================================================
464  */
465 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)466 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
467 {
468 	ASSERT(zio->io_size > size);
469 
470 	if (zio->io_type == ZIO_TYPE_READ)
471 		abd_copy(data, zio->io_abd, size);
472 }
473 
474 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)475 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
476 {
477 	if (zio->io_error == 0) {
478 		void *tmp = abd_borrow_buf(data, size);
479 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
480 		    zio->io_abd, tmp, zio->io_size, size,
481 		    &zio->io_prop.zp_complevel);
482 		abd_return_buf_copy(data, tmp, size);
483 
484 		if (zio_injection_enabled && ret == 0)
485 			ret = zio_handle_fault_injection(zio, EINVAL);
486 
487 		if (ret != 0)
488 			zio->io_error = SET_ERROR(EIO);
489 	}
490 }
491 
492 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)493 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
494 {
495 	int ret;
496 	void *tmp;
497 	blkptr_t *bp = zio->io_bp;
498 	spa_t *spa = zio->io_spa;
499 	uint64_t dsobj = zio->io_bookmark.zb_objset;
500 	uint64_t lsize = BP_GET_LSIZE(bp);
501 	dmu_object_type_t ot = BP_GET_TYPE(bp);
502 	uint8_t salt[ZIO_DATA_SALT_LEN];
503 	uint8_t iv[ZIO_DATA_IV_LEN];
504 	uint8_t mac[ZIO_DATA_MAC_LEN];
505 	boolean_t no_crypt = B_FALSE;
506 
507 	ASSERT(BP_USES_CRYPT(bp));
508 	ASSERT3U(size, !=, 0);
509 
510 	if (zio->io_error != 0)
511 		return;
512 
513 	/*
514 	 * Verify the cksum of MACs stored in an indirect bp. It will always
515 	 * be possible to verify this since it does not require an encryption
516 	 * key.
517 	 */
518 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
519 		zio_crypt_decode_mac_bp(bp, mac);
520 
521 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
522 			/*
523 			 * We haven't decompressed the data yet, but
524 			 * zio_crypt_do_indirect_mac_checksum() requires
525 			 * decompressed data to be able to parse out the MACs
526 			 * from the indirect block. We decompress it now and
527 			 * throw away the result after we are finished.
528 			 */
529 			tmp = zio_buf_alloc(lsize);
530 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
531 			    zio->io_abd, tmp, zio->io_size, lsize,
532 			    &zio->io_prop.zp_complevel);
533 			if (ret != 0) {
534 				ret = SET_ERROR(EIO);
535 				goto error;
536 			}
537 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
538 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
539 			zio_buf_free(tmp, lsize);
540 		} else {
541 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
542 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
543 		}
544 		abd_copy(data, zio->io_abd, size);
545 
546 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
547 			ret = zio_handle_decrypt_injection(spa,
548 			    &zio->io_bookmark, ot, ECKSUM);
549 		}
550 		if (ret != 0)
551 			goto error;
552 
553 		return;
554 	}
555 
556 	/*
557 	 * If this is an authenticated block, just check the MAC. It would be
558 	 * nice to separate this out into its own flag, but when this was done,
559 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
560 	 * could make this a flag bit.
561 	 */
562 	if (BP_IS_AUTHENTICATED(bp)) {
563 		if (ot == DMU_OT_OBJSET) {
564 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
565 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
566 		} else {
567 			zio_crypt_decode_mac_bp(bp, mac);
568 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
569 			    zio->io_abd, size, mac);
570 			if (zio_injection_enabled && ret == 0) {
571 				ret = zio_handle_decrypt_injection(spa,
572 				    &zio->io_bookmark, ot, ECKSUM);
573 			}
574 		}
575 		abd_copy(data, zio->io_abd, size);
576 
577 		if (ret != 0)
578 			goto error;
579 
580 		return;
581 	}
582 
583 	zio_crypt_decode_params_bp(bp, salt, iv);
584 
585 	if (ot == DMU_OT_INTENT_LOG) {
586 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
587 		zio_crypt_decode_mac_zil(tmp, mac);
588 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
589 	} else {
590 		zio_crypt_decode_mac_bp(bp, mac);
591 	}
592 
593 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
594 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
595 	    zio->io_abd, &no_crypt);
596 	if (no_crypt)
597 		abd_copy(data, zio->io_abd, size);
598 
599 	if (ret != 0)
600 		goto error;
601 
602 	return;
603 
604 error:
605 	/* assert that the key was found unless this was speculative */
606 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
607 
608 	/*
609 	 * If there was a decryption / authentication error return EIO as
610 	 * the io_error. If this was not a speculative zio, create an ereport.
611 	 */
612 	if (ret == ECKSUM) {
613 		zio->io_error = SET_ERROR(EIO);
614 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
615 			spa_log_error(spa, &zio->io_bookmark,
616 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
617 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
618 			    spa, NULL, &zio->io_bookmark, zio, 0);
619 		}
620 	} else {
621 		zio->io_error = ret;
622 	}
623 }
624 
625 /*
626  * ==========================================================================
627  * I/O parent/child relationships and pipeline interlocks
628  * ==========================================================================
629  */
630 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)631 zio_walk_parents(zio_t *cio, zio_link_t **zl)
632 {
633 	list_t *pl = &cio->io_parent_list;
634 
635 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
636 	if (*zl == NULL)
637 		return (NULL);
638 
639 	ASSERT((*zl)->zl_child == cio);
640 	return ((*zl)->zl_parent);
641 }
642 
643 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)644 zio_walk_children(zio_t *pio, zio_link_t **zl)
645 {
646 	list_t *cl = &pio->io_child_list;
647 
648 	ASSERT(MUTEX_HELD(&pio->io_lock));
649 
650 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
651 	if (*zl == NULL)
652 		return (NULL);
653 
654 	ASSERT((*zl)->zl_parent == pio);
655 	return ((*zl)->zl_child);
656 }
657 
658 zio_t *
zio_unique_parent(zio_t * cio)659 zio_unique_parent(zio_t *cio)
660 {
661 	zio_link_t *zl = NULL;
662 	zio_t *pio = zio_walk_parents(cio, &zl);
663 
664 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
665 	return (pio);
666 }
667 
668 void
zio_add_child(zio_t * pio,zio_t * cio)669 zio_add_child(zio_t *pio, zio_t *cio)
670 {
671 	/*
672 	 * Logical I/Os can have logical, gang, or vdev children.
673 	 * Gang I/Os can have gang or vdev children.
674 	 * Vdev I/Os can only have vdev children.
675 	 * The following ASSERT captures all of these constraints.
676 	 */
677 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
678 
679 	/* Parent should not have READY stage if child doesn't have it. */
680 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
681 	    (cio->io_child_type != ZIO_CHILD_VDEV),
682 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
683 
684 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
685 	zl->zl_parent = pio;
686 	zl->zl_child = cio;
687 
688 	mutex_enter(&pio->io_lock);
689 	mutex_enter(&cio->io_lock);
690 
691 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
692 
693 	uint64_t *countp = pio->io_children[cio->io_child_type];
694 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
695 		countp[w] += !cio->io_state[w];
696 
697 	list_insert_head(&pio->io_child_list, zl);
698 	list_insert_head(&cio->io_parent_list, zl);
699 
700 	mutex_exit(&cio->io_lock);
701 	mutex_exit(&pio->io_lock);
702 }
703 
704 void
zio_add_child_first(zio_t * pio,zio_t * cio)705 zio_add_child_first(zio_t *pio, zio_t *cio)
706 {
707 	/*
708 	 * Logical I/Os can have logical, gang, or vdev children.
709 	 * Gang I/Os can have gang or vdev children.
710 	 * Vdev I/Os can only have vdev children.
711 	 * The following ASSERT captures all of these constraints.
712 	 */
713 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
714 
715 	/* Parent should not have READY stage if child doesn't have it. */
716 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
717 	    (cio->io_child_type != ZIO_CHILD_VDEV),
718 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
719 
720 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
721 	zl->zl_parent = pio;
722 	zl->zl_child = cio;
723 
724 	ASSERT(list_is_empty(&cio->io_parent_list));
725 	list_insert_head(&cio->io_parent_list, zl);
726 
727 	mutex_enter(&pio->io_lock);
728 
729 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
730 
731 	uint64_t *countp = pio->io_children[cio->io_child_type];
732 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
733 		countp[w] += !cio->io_state[w];
734 
735 	list_insert_head(&pio->io_child_list, zl);
736 
737 	mutex_exit(&pio->io_lock);
738 }
739 
740 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)741 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
742 {
743 	ASSERT(zl->zl_parent == pio);
744 	ASSERT(zl->zl_child == cio);
745 
746 	mutex_enter(&pio->io_lock);
747 	mutex_enter(&cio->io_lock);
748 
749 	list_remove(&pio->io_child_list, zl);
750 	list_remove(&cio->io_parent_list, zl);
751 
752 	mutex_exit(&cio->io_lock);
753 	mutex_exit(&pio->io_lock);
754 	kmem_cache_free(zio_link_cache, zl);
755 }
756 
757 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)758 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
759 {
760 	boolean_t waiting = B_FALSE;
761 
762 	mutex_enter(&zio->io_lock);
763 	ASSERT(zio->io_stall == NULL);
764 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
765 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
766 			continue;
767 
768 		uint64_t *countp = &zio->io_children[c][wait];
769 		if (*countp != 0) {
770 			zio->io_stage >>= 1;
771 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
772 			zio->io_stall = countp;
773 			waiting = B_TRUE;
774 			break;
775 		}
776 	}
777 	mutex_exit(&zio->io_lock);
778 	return (waiting);
779 }
780 
781 __attribute__((always_inline))
782 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)783 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
784     zio_t **next_to_executep)
785 {
786 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
787 	int *errorp = &pio->io_child_error[zio->io_child_type];
788 
789 	mutex_enter(&pio->io_lock);
790 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
791 		*errorp = zio_worst_error(*errorp, zio->io_error);
792 	pio->io_reexecute |= zio->io_reexecute;
793 	ASSERT3U(*countp, >, 0);
794 
795 	(*countp)--;
796 
797 	if (*countp == 0 && pio->io_stall == countp) {
798 		zio_taskq_type_t type =
799 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
800 		    ZIO_TASKQ_INTERRUPT;
801 		pio->io_stall = NULL;
802 		mutex_exit(&pio->io_lock);
803 
804 		/*
805 		 * If we can tell the caller to execute this parent next, do
806 		 * so. We do this if the parent's zio type matches the child's
807 		 * type, or if it's a zio_null() with no done callback, and so
808 		 * has no actual work to do. Otherwise dispatch the parent zio
809 		 * in its own taskq.
810 		 *
811 		 * Having the caller execute the parent when possible reduces
812 		 * locking on the zio taskq's, reduces context switch
813 		 * overhead, and has no recursion penalty.  Note that one
814 		 * read from disk typically causes at least 3 zio's: a
815 		 * zio_null(), the logical zio_read(), and then a physical
816 		 * zio.  When the physical ZIO completes, we are able to call
817 		 * zio_done() on all 3 of these zio's from one invocation of
818 		 * zio_execute() by returning the parent back to
819 		 * zio_execute().  Since the parent isn't executed until this
820 		 * thread returns back to zio_execute(), the caller should do
821 		 * so promptly.
822 		 *
823 		 * In other cases, dispatching the parent prevents
824 		 * overflowing the stack when we have deeply nested
825 		 * parent-child relationships, as we do with the "mega zio"
826 		 * of writes for spa_sync(), and the chain of ZIL blocks.
827 		 */
828 		if (next_to_executep != NULL && *next_to_executep == NULL &&
829 		    (pio->io_type == zio->io_type ||
830 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
831 			*next_to_executep = pio;
832 		} else {
833 			zio_taskq_dispatch(pio, type, B_FALSE);
834 		}
835 	} else {
836 		mutex_exit(&pio->io_lock);
837 	}
838 }
839 
840 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)841 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
842 {
843 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
844 		zio->io_error = zio->io_child_error[c];
845 }
846 
847 int
zio_bookmark_compare(const void * x1,const void * x2)848 zio_bookmark_compare(const void *x1, const void *x2)
849 {
850 	const zio_t *z1 = x1;
851 	const zio_t *z2 = x2;
852 
853 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
854 		return (-1);
855 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
856 		return (1);
857 
858 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
859 		return (-1);
860 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
861 		return (1);
862 
863 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
864 		return (-1);
865 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
866 		return (1);
867 
868 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
869 		return (-1);
870 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
871 		return (1);
872 
873 	if (z1 < z2)
874 		return (-1);
875 	if (z1 > z2)
876 		return (1);
877 
878 	return (0);
879 }
880 
881 /*
882  * ==========================================================================
883  * Create the various types of I/O (read, write, free, etc)
884  * ==========================================================================
885  */
886 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)887 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
888     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
889     void *private, zio_type_t type, zio_priority_t priority,
890     zio_flag_t flags, vdev_t *vd, uint64_t offset,
891     const zbookmark_phys_t *zb, enum zio_stage stage,
892     enum zio_stage pipeline)
893 {
894 	zio_t *zio;
895 
896 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
897 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
898 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
899 
900 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
901 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
902 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
903 
904 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
905 
906 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
907 	memset(zio, 0, sizeof (zio_t));
908 
909 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
910 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
911 
912 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
913 	    offsetof(zio_link_t, zl_parent_node));
914 	list_create(&zio->io_child_list, sizeof (zio_link_t),
915 	    offsetof(zio_link_t, zl_child_node));
916 	metaslab_trace_init(&zio->io_alloc_list);
917 
918 	if (vd != NULL)
919 		zio->io_child_type = ZIO_CHILD_VDEV;
920 	else if (flags & ZIO_FLAG_GANG_CHILD)
921 		zio->io_child_type = ZIO_CHILD_GANG;
922 	else if (flags & ZIO_FLAG_DDT_CHILD)
923 		zio->io_child_type = ZIO_CHILD_DDT;
924 	else
925 		zio->io_child_type = ZIO_CHILD_LOGICAL;
926 
927 	if (bp != NULL) {
928 		if (type != ZIO_TYPE_WRITE ||
929 		    zio->io_child_type == ZIO_CHILD_DDT) {
930 			zio->io_bp_copy = *bp;
931 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
932 		} else {
933 			zio->io_bp = (blkptr_t *)bp;
934 		}
935 		zio->io_bp_orig = *bp;
936 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
937 			zio->io_logical = zio;
938 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
939 			pipeline |= ZIO_GANG_STAGES;
940 	}
941 
942 	zio->io_spa = spa;
943 	zio->io_txg = txg;
944 	zio->io_done = done;
945 	zio->io_private = private;
946 	zio->io_type = type;
947 	zio->io_priority = priority;
948 	zio->io_vd = vd;
949 	zio->io_offset = offset;
950 	zio->io_orig_abd = zio->io_abd = data;
951 	zio->io_orig_size = zio->io_size = psize;
952 	zio->io_lsize = lsize;
953 	zio->io_orig_flags = zio->io_flags = flags;
954 	zio->io_orig_stage = zio->io_stage = stage;
955 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
956 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
957 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
958 
959 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
960 	    (pipeline & ZIO_STAGE_READY) == 0;
961 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
962 
963 	if (zb != NULL)
964 		zio->io_bookmark = *zb;
965 
966 	if (pio != NULL) {
967 		zio->io_metaslab_class = pio->io_metaslab_class;
968 		if (zio->io_logical == NULL)
969 			zio->io_logical = pio->io_logical;
970 		if (zio->io_child_type == ZIO_CHILD_GANG)
971 			zio->io_gang_leader = pio->io_gang_leader;
972 		zio_add_child_first(pio, zio);
973 	}
974 
975 	taskq_init_ent(&zio->io_tqent);
976 
977 	return (zio);
978 }
979 
980 void
zio_destroy(zio_t * zio)981 zio_destroy(zio_t *zio)
982 {
983 	metaslab_trace_fini(&zio->io_alloc_list);
984 	list_destroy(&zio->io_parent_list);
985 	list_destroy(&zio->io_child_list);
986 	mutex_destroy(&zio->io_lock);
987 	cv_destroy(&zio->io_cv);
988 	kmem_cache_free(zio_cache, zio);
989 }
990 
991 /*
992  * ZIO intended to be between others.  Provides synchronization at READY
993  * and DONE pipeline stages and calls the respective callbacks.
994  */
995 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)996 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
997     void *private, zio_flag_t flags)
998 {
999 	zio_t *zio;
1000 
1001 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1002 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1003 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1004 
1005 	return (zio);
1006 }
1007 
1008 /*
1009  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1010  * READY pipeline stage (is ready on creation), so it should not be used
1011  * as child of any ZIO that may need waiting for grandchildren READY stage
1012  * (any other ZIO type).
1013  */
1014 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1015 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1016 {
1017 	zio_t *zio;
1018 
1019 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1020 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1021 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1022 
1023 	return (zio);
1024 }
1025 
1026 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1027 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1028     enum blk_verify_flag blk_verify, const char *fmt, ...)
1029 {
1030 	va_list adx;
1031 	char buf[256];
1032 
1033 	va_start(adx, fmt);
1034 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1035 	va_end(adx);
1036 
1037 	zfs_dbgmsg("bad blkptr at %px: "
1038 	    "DVA[0]=%#llx/%#llx "
1039 	    "DVA[1]=%#llx/%#llx "
1040 	    "DVA[2]=%#llx/%#llx "
1041 	    "prop=%#llx "
1042 	    "pad=%#llx,%#llx "
1043 	    "phys_birth=%#llx "
1044 	    "birth=%#llx "
1045 	    "fill=%#llx "
1046 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1047 	    bp,
1048 	    (long long)bp->blk_dva[0].dva_word[0],
1049 	    (long long)bp->blk_dva[0].dva_word[1],
1050 	    (long long)bp->blk_dva[1].dva_word[0],
1051 	    (long long)bp->blk_dva[1].dva_word[1],
1052 	    (long long)bp->blk_dva[2].dva_word[0],
1053 	    (long long)bp->blk_dva[2].dva_word[1],
1054 	    (long long)bp->blk_prop,
1055 	    (long long)bp->blk_pad[0],
1056 	    (long long)bp->blk_pad[1],
1057 	    (long long)BP_GET_PHYSICAL_BIRTH(bp),
1058 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1059 	    (long long)bp->blk_fill,
1060 	    (long long)bp->blk_cksum.zc_word[0],
1061 	    (long long)bp->blk_cksum.zc_word[1],
1062 	    (long long)bp->blk_cksum.zc_word[2],
1063 	    (long long)bp->blk_cksum.zc_word[3]);
1064 	switch (blk_verify) {
1065 	case BLK_VERIFY_HALT:
1066 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1067 		break;
1068 	case BLK_VERIFY_LOG:
1069 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1070 		break;
1071 	case BLK_VERIFY_ONLY:
1072 		break;
1073 	}
1074 
1075 	return (1);
1076 }
1077 
1078 /*
1079  * Verify the block pointer fields contain reasonable values.  This means
1080  * it only contains known object types, checksum/compression identifiers,
1081  * block sizes within the maximum allowed limits, valid DVAs, etc.
1082  *
1083  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1084  * argument controls the behavior when an invalid field is detected.
1085  *
1086  * Values for blk_verify_flag:
1087  *   BLK_VERIFY_ONLY: evaluate the block
1088  *   BLK_VERIFY_LOG: evaluate the block and log problems
1089  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1090  *
1091  * Values for blk_config_flag:
1092  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1093  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1094  *   obtained for reader
1095  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1096  *   performance
1097  */
1098 boolean_t
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1099 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1100     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1101 {
1102 	int errors = 0;
1103 
1104 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1105 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1106 		    "blkptr at %px has invalid TYPE %llu",
1107 		    bp, (longlong_t)BP_GET_TYPE(bp));
1108 	}
1109 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1110 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1111 		    "blkptr at %px has invalid CHECKSUM %llu",
1112 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1113 	}
1114 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1115 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1116 		    "blkptr at %px has invalid COMPRESS %llu",
1117 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1118 	}
1119 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1120 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1121 		    "blkptr at %px has invalid LSIZE %llu",
1122 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1123 	}
1124 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1125 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1126 		    "blkptr at %px has invalid PSIZE %llu",
1127 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1128 	}
1129 
1130 	if (BP_IS_EMBEDDED(bp)) {
1131 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1132 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1133 			    "blkptr at %px has invalid ETYPE %llu",
1134 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Do not verify individual DVAs if the config is not trusted. This
1140 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1141 	 */
1142 	if (!spa->spa_trust_config)
1143 		return (errors == 0);
1144 
1145 	switch (blk_config) {
1146 	case BLK_CONFIG_HELD:
1147 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1148 		break;
1149 	case BLK_CONFIG_NEEDED:
1150 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1151 		break;
1152 	case BLK_CONFIG_SKIP:
1153 		return (errors == 0);
1154 	default:
1155 		panic("invalid blk_config %u", blk_config);
1156 	}
1157 
1158 	/*
1159 	 * Pool-specific checks.
1160 	 *
1161 	 * Note: it would be nice to verify that the logical birth
1162 	 * and physical birth are not too large.  However,
1163 	 * spa_freeze() allows the birth time of log blocks (and
1164 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1165 	 * large.
1166 	 */
1167 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1168 		const dva_t *dva = &bp->blk_dva[i];
1169 		uint64_t vdevid = DVA_GET_VDEV(dva);
1170 
1171 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1172 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1173 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1174 			    bp, i, (longlong_t)vdevid);
1175 			continue;
1176 		}
1177 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1178 		if (vd == NULL) {
1179 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1180 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1181 			    bp, i, (longlong_t)vdevid);
1182 			continue;
1183 		}
1184 		if (vd->vdev_ops == &vdev_hole_ops) {
1185 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1186 			    "blkptr at %px DVA %u has hole VDEV %llu",
1187 			    bp, i, (longlong_t)vdevid);
1188 			continue;
1189 		}
1190 		if (vd->vdev_ops == &vdev_missing_ops) {
1191 			/*
1192 			 * "missing" vdevs are valid during import, but we
1193 			 * don't have their detailed info (e.g. asize), so
1194 			 * we can't perform any more checks on them.
1195 			 */
1196 			continue;
1197 		}
1198 		uint64_t offset = DVA_GET_OFFSET(dva);
1199 		uint64_t asize = DVA_GET_ASIZE(dva);
1200 		if (DVA_GET_GANG(dva))
1201 			asize = vdev_gang_header_asize(vd);
1202 		if (offset + asize > vd->vdev_asize) {
1203 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1204 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1205 			    bp, i, (longlong_t)offset);
1206 		}
1207 	}
1208 	if (blk_config == BLK_CONFIG_NEEDED)
1209 		spa_config_exit(spa, SCL_VDEV, bp);
1210 
1211 	return (errors == 0);
1212 }
1213 
1214 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1215 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1216 {
1217 	(void) bp;
1218 	uint64_t vdevid = DVA_GET_VDEV(dva);
1219 
1220 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1221 		return (B_FALSE);
1222 
1223 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1224 	if (vd == NULL)
1225 		return (B_FALSE);
1226 
1227 	if (vd->vdev_ops == &vdev_hole_ops)
1228 		return (B_FALSE);
1229 
1230 	if (vd->vdev_ops == &vdev_missing_ops) {
1231 		return (B_FALSE);
1232 	}
1233 
1234 	uint64_t offset = DVA_GET_OFFSET(dva);
1235 	uint64_t asize = DVA_GET_ASIZE(dva);
1236 
1237 	if (DVA_GET_GANG(dva))
1238 		asize = vdev_gang_header_asize(vd);
1239 	if (offset + asize > vd->vdev_asize)
1240 		return (B_FALSE);
1241 
1242 	return (B_TRUE);
1243 }
1244 
1245 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1246 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1247     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1248     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1249 {
1250 	zio_t *zio;
1251 
1252 	zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1253 	    data, size, size, done, private,
1254 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1255 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1256 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1257 
1258 	return (zio);
1259 }
1260 
1261 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1262 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1263     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1264     zio_done_func_t *ready, zio_done_func_t *children_ready,
1265     zio_done_func_t *done, void *private, zio_priority_t priority,
1266     zio_flag_t flags, const zbookmark_phys_t *zb)
1267 {
1268 	zio_t *zio;
1269 
1270 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1271 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1272 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1273 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1274 	    DMU_OT_IS_VALID(zp->zp_type) &&
1275 	    zp->zp_level < 32 &&
1276 	    zp->zp_copies > 0 &&
1277 	    zp->zp_copies <= spa_max_replication(spa));
1278 
1279 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1280 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1281 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1282 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1283 
1284 	zio->io_ready = ready;
1285 	zio->io_children_ready = children_ready;
1286 	zio->io_prop = *zp;
1287 
1288 	/*
1289 	 * Data can be NULL if we are going to call zio_write_override() to
1290 	 * provide the already-allocated BP.  But we may need the data to
1291 	 * verify a dedup hit (if requested).  In this case, don't try to
1292 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1293 	 * dedup blocks need data as well so we also disable dedup in this
1294 	 * case.
1295 	 */
1296 	if (data == NULL &&
1297 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1298 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1299 	}
1300 
1301 	return (zio);
1302 }
1303 
1304 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1305 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1306     uint64_t size, zio_done_func_t *done, void *private,
1307     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1308 {
1309 	zio_t *zio;
1310 
1311 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1312 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1313 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1314 
1315 	return (zio);
1316 }
1317 
1318 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite,boolean_t brtwrite)1319 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1320     boolean_t brtwrite)
1321 {
1322 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1323 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1324 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1325 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1326 	ASSERT(!brtwrite || !nopwrite);
1327 
1328 	/*
1329 	 * We must reset the io_prop to match the values that existed
1330 	 * when the bp was first written by dmu_sync() keeping in mind
1331 	 * that nopwrite and dedup are mutually exclusive.
1332 	 */
1333 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1334 	zio->io_prop.zp_nopwrite = nopwrite;
1335 	zio->io_prop.zp_brtwrite = brtwrite;
1336 	zio->io_prop.zp_copies = copies;
1337 	zio->io_bp_override = bp;
1338 }
1339 
1340 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1341 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1342 {
1343 
1344 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1345 
1346 	/*
1347 	 * The check for EMBEDDED is a performance optimization.  We
1348 	 * process the free here (by ignoring it) rather than
1349 	 * putting it on the list and then processing it in zio_free_sync().
1350 	 */
1351 	if (BP_IS_EMBEDDED(bp))
1352 		return;
1353 
1354 	/*
1355 	 * Frees that are for the currently-syncing txg, are not going to be
1356 	 * deferred, and which will not need to do a read (i.e. not GANG or
1357 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1358 	 * in-memory list for later processing.
1359 	 *
1360 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1361 	 * when the log space map feature is disabled. [see relevant comment
1362 	 * in spa_sync_iterate_to_convergence()]
1363 	 */
1364 	if (BP_IS_GANG(bp) ||
1365 	    BP_GET_DEDUP(bp) ||
1366 	    txg != spa->spa_syncing_txg ||
1367 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1368 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1369 	    brt_maybe_exists(spa, bp)) {
1370 		metaslab_check_free(spa, bp);
1371 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1372 	} else {
1373 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1374 	}
1375 }
1376 
1377 /*
1378  * To improve performance, this function may return NULL if we were able
1379  * to do the free immediately.  This avoids the cost of creating a zio
1380  * (and linking it to the parent, etc).
1381  */
1382 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1383 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1384     zio_flag_t flags)
1385 {
1386 	ASSERT(!BP_IS_HOLE(bp));
1387 	ASSERT(spa_syncing_txg(spa) == txg);
1388 
1389 	if (BP_IS_EMBEDDED(bp))
1390 		return (NULL);
1391 
1392 	metaslab_check_free(spa, bp);
1393 	arc_freed(spa, bp);
1394 	dsl_scan_freed(spa, bp);
1395 
1396 	if (BP_IS_GANG(bp) ||
1397 	    BP_GET_DEDUP(bp) ||
1398 	    brt_maybe_exists(spa, bp)) {
1399 		/*
1400 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1401 		 * block header, the DDT or the BRT), so issue them
1402 		 * asynchronously so that this thread is not tied up.
1403 		 */
1404 		enum zio_stage stage =
1405 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1406 
1407 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1408 		    BP_GET_PSIZE(bp), NULL, NULL,
1409 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1410 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1411 	} else {
1412 		metaslab_free(spa, bp, txg, B_FALSE);
1413 		return (NULL);
1414 	}
1415 }
1416 
1417 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1418 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1419     zio_done_func_t *done, void *private, zio_flag_t flags)
1420 {
1421 	zio_t *zio;
1422 
1423 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1424 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1425 
1426 	if (BP_IS_EMBEDDED(bp))
1427 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1428 
1429 	/*
1430 	 * A claim is an allocation of a specific block.  Claims are needed
1431 	 * to support immediate writes in the intent log.  The issue is that
1432 	 * immediate writes contain committed data, but in a txg that was
1433 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1434 	 * the intent log claims all blocks that contain immediate write data
1435 	 * so that the SPA knows they're in use.
1436 	 *
1437 	 * All claims *must* be resolved in the first txg -- before the SPA
1438 	 * starts allocating blocks -- so that nothing is allocated twice.
1439 	 * If txg == 0 we just verify that the block is claimable.
1440 	 */
1441 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1442 	    spa_min_claim_txg(spa));
1443 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1444 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1445 
1446 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1447 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1448 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1449 	ASSERT0(zio->io_queued_timestamp);
1450 
1451 	return (zio);
1452 }
1453 
1454 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1455 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1456     zio_done_func_t *done, void *private, zio_priority_t priority,
1457     zio_flag_t flags, enum trim_flag trim_flags)
1458 {
1459 	zio_t *zio;
1460 
1461 	ASSERT0(vd->vdev_children);
1462 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1463 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1464 	ASSERT3U(size, !=, 0);
1465 
1466 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1467 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1468 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1469 	zio->io_trim_flags = trim_flags;
1470 
1471 	return (zio);
1472 }
1473 
1474 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1475 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1476     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1477     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1478 {
1479 	zio_t *zio;
1480 
1481 	ASSERT(vd->vdev_children == 0);
1482 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1483 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1484 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1485 
1486 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1487 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1488 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1489 
1490 	zio->io_prop.zp_checksum = checksum;
1491 
1492 	return (zio);
1493 }
1494 
1495 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1496 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1497     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1498     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1499 {
1500 	zio_t *zio;
1501 
1502 	ASSERT(vd->vdev_children == 0);
1503 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1504 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1505 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1506 
1507 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1508 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1509 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1510 
1511 	zio->io_prop.zp_checksum = checksum;
1512 
1513 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1514 		/*
1515 		 * zec checksums are necessarily destructive -- they modify
1516 		 * the end of the write buffer to hold the verifier/checksum.
1517 		 * Therefore, we must make a local copy in case the data is
1518 		 * being written to multiple places in parallel.
1519 		 */
1520 		abd_t *wbuf = abd_alloc_sametype(data, size);
1521 		abd_copy(wbuf, data, size);
1522 
1523 		zio_push_transform(zio, wbuf, size, size, NULL);
1524 	}
1525 
1526 	return (zio);
1527 }
1528 
1529 /*
1530  * Create a child I/O to do some work for us.
1531  */
1532 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1533 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1534     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1535     zio_flag_t flags, zio_done_func_t *done, void *private)
1536 {
1537 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1538 	zio_t *zio;
1539 
1540 	/*
1541 	 * vdev child I/Os do not propagate their error to the parent.
1542 	 * Therefore, for correct operation the caller *must* check for
1543 	 * and handle the error in the child i/o's done callback.
1544 	 * The only exceptions are i/os that we don't care about
1545 	 * (OPTIONAL or REPAIR).
1546 	 */
1547 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1548 	    done != NULL);
1549 
1550 	if (type == ZIO_TYPE_READ && bp != NULL) {
1551 		/*
1552 		 * If we have the bp, then the child should perform the
1553 		 * checksum and the parent need not.  This pushes error
1554 		 * detection as close to the leaves as possible and
1555 		 * eliminates redundant checksums in the interior nodes.
1556 		 */
1557 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1558 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1559 	}
1560 
1561 	if (vd->vdev_ops->vdev_op_leaf) {
1562 		ASSERT0(vd->vdev_children);
1563 		offset += VDEV_LABEL_START_SIZE;
1564 	}
1565 
1566 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1567 
1568 	/*
1569 	 * If we've decided to do a repair, the write is not speculative --
1570 	 * even if the original read was.
1571 	 */
1572 	if (flags & ZIO_FLAG_IO_REPAIR)
1573 		flags &= ~ZIO_FLAG_SPECULATIVE;
1574 
1575 	/*
1576 	 * If we're creating a child I/O that is not associated with a
1577 	 * top-level vdev, then the child zio is not an allocating I/O.
1578 	 * If this is a retried I/O then we ignore it since we will
1579 	 * have already processed the original allocating I/O.
1580 	 */
1581 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1582 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1583 		ASSERT(pio->io_metaslab_class != NULL);
1584 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1585 		ASSERT(type == ZIO_TYPE_WRITE);
1586 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1587 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1588 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1589 		    pio->io_child_type == ZIO_CHILD_GANG);
1590 
1591 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1592 	}
1593 
1594 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1595 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1596 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1597 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1598 
1599 	return (zio);
1600 }
1601 
1602 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1603 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1604     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1605     zio_done_func_t *done, void *private)
1606 {
1607 	zio_t *zio;
1608 
1609 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1610 
1611 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1612 	    data, size, size, done, private, type, priority,
1613 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1614 	    vd, offset, NULL,
1615 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1616 
1617 	return (zio);
1618 }
1619 
1620 
1621 /*
1622  * Send a flush command to the given vdev. Unlike most zio creation functions,
1623  * the flush zios are issued immediately. You can wait on pio to pause until
1624  * the flushes complete.
1625  */
1626 void
zio_flush(zio_t * pio,vdev_t * vd)1627 zio_flush(zio_t *pio, vdev_t *vd)
1628 {
1629 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1630 	    ZIO_FLAG_DONT_RETRY;
1631 
1632 	if (vd->vdev_nowritecache)
1633 		return;
1634 
1635 	if (vd->vdev_children == 0) {
1636 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1637 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1638 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1639 	} else {
1640 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1641 			zio_flush(pio, vd->vdev_child[c]);
1642 	}
1643 }
1644 
1645 void
zio_shrink(zio_t * zio,uint64_t size)1646 zio_shrink(zio_t *zio, uint64_t size)
1647 {
1648 	ASSERT3P(zio->io_executor, ==, NULL);
1649 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1650 	ASSERT3U(size, <=, zio->io_size);
1651 
1652 	/*
1653 	 * We don't shrink for raidz because of problems with the
1654 	 * reconstruction when reading back less than the block size.
1655 	 * Note, BP_IS_RAIDZ() assumes no compression.
1656 	 */
1657 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1658 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1659 		/* we are not doing a raw write */
1660 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1661 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1662 	}
1663 }
1664 
1665 /*
1666  * Round provided allocation size up to a value that can be allocated
1667  * by at least some vdev(s) in the pool with minimum or no additional
1668  * padding and without extra space usage on others
1669  */
1670 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1671 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1672 {
1673 	if (size > spa->spa_min_alloc)
1674 		return (roundup(size, spa->spa_gcd_alloc));
1675 	return (spa->spa_min_alloc);
1676 }
1677 
1678 /*
1679  * ==========================================================================
1680  * Prepare to read and write logical blocks
1681  * ==========================================================================
1682  */
1683 
1684 static zio_t *
zio_read_bp_init(zio_t * zio)1685 zio_read_bp_init(zio_t *zio)
1686 {
1687 	blkptr_t *bp = zio->io_bp;
1688 	uint64_t psize =
1689 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1690 
1691 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1692 
1693 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1694 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1695 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1696 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1697 		    psize, psize, zio_decompress);
1698 	}
1699 
1700 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1701 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1702 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1703 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1704 		    psize, psize, zio_decrypt);
1705 	}
1706 
1707 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1708 		int psize = BPE_GET_PSIZE(bp);
1709 		void *data = abd_borrow_buf(zio->io_abd, psize);
1710 
1711 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1712 		decode_embedded_bp_compressed(bp, data);
1713 		abd_return_buf_copy(zio->io_abd, data, psize);
1714 	} else {
1715 		ASSERT(!BP_IS_EMBEDDED(bp));
1716 	}
1717 
1718 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1719 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1720 
1721 	return (zio);
1722 }
1723 
1724 static zio_t *
zio_write_bp_init(zio_t * zio)1725 zio_write_bp_init(zio_t *zio)
1726 {
1727 	if (!IO_IS_ALLOCATING(zio))
1728 		return (zio);
1729 
1730 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1731 
1732 	if (zio->io_bp_override) {
1733 		blkptr_t *bp = zio->io_bp;
1734 		zio_prop_t *zp = &zio->io_prop;
1735 
1736 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1737 
1738 		*bp = *zio->io_bp_override;
1739 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1740 
1741 		if (zp->zp_brtwrite)
1742 			return (zio);
1743 
1744 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1745 
1746 		if (BP_IS_EMBEDDED(bp))
1747 			return (zio);
1748 
1749 		/*
1750 		 * If we've been overridden and nopwrite is set then
1751 		 * set the flag accordingly to indicate that a nopwrite
1752 		 * has already occurred.
1753 		 */
1754 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1755 			ASSERT(!zp->zp_dedup);
1756 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1757 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1758 			return (zio);
1759 		}
1760 
1761 		ASSERT(!zp->zp_nopwrite);
1762 
1763 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1764 			return (zio);
1765 
1766 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1767 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1768 
1769 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1770 		    !zp->zp_encrypt) {
1771 			BP_SET_DEDUP(bp, 1);
1772 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1773 			return (zio);
1774 		}
1775 
1776 		/*
1777 		 * We were unable to handle this as an override bp, treat
1778 		 * it as a regular write I/O.
1779 		 */
1780 		zio->io_bp_override = NULL;
1781 		*bp = zio->io_bp_orig;
1782 		zio->io_pipeline = zio->io_orig_pipeline;
1783 	}
1784 
1785 	return (zio);
1786 }
1787 
1788 static zio_t *
zio_write_compress(zio_t * zio)1789 zio_write_compress(zio_t *zio)
1790 {
1791 	spa_t *spa = zio->io_spa;
1792 	zio_prop_t *zp = &zio->io_prop;
1793 	enum zio_compress compress = zp->zp_compress;
1794 	blkptr_t *bp = zio->io_bp;
1795 	uint64_t lsize = zio->io_lsize;
1796 	uint64_t psize = zio->io_size;
1797 	uint32_t pass = 1;
1798 
1799 	/*
1800 	 * If our children haven't all reached the ready stage,
1801 	 * wait for them and then repeat this pipeline stage.
1802 	 */
1803 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1804 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1805 		return (NULL);
1806 	}
1807 
1808 	if (!IO_IS_ALLOCATING(zio))
1809 		return (zio);
1810 
1811 	if (zio->io_children_ready != NULL) {
1812 		/*
1813 		 * Now that all our children are ready, run the callback
1814 		 * associated with this zio in case it wants to modify the
1815 		 * data to be written.
1816 		 */
1817 		ASSERT3U(zp->zp_level, >, 0);
1818 		zio->io_children_ready(zio);
1819 	}
1820 
1821 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1822 	ASSERT(zio->io_bp_override == NULL);
1823 
1824 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1825 		/*
1826 		 * We're rewriting an existing block, which means we're
1827 		 * working on behalf of spa_sync().  For spa_sync() to
1828 		 * converge, it must eventually be the case that we don't
1829 		 * have to allocate new blocks.  But compression changes
1830 		 * the blocksize, which forces a reallocate, and makes
1831 		 * convergence take longer.  Therefore, after the first
1832 		 * few passes, stop compressing to ensure convergence.
1833 		 */
1834 		pass = spa_sync_pass(spa);
1835 
1836 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1837 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1838 		ASSERT(!BP_GET_DEDUP(bp));
1839 
1840 		if (pass >= zfs_sync_pass_dont_compress)
1841 			compress = ZIO_COMPRESS_OFF;
1842 
1843 		/* Make sure someone doesn't change their mind on overwrites */
1844 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1845 		    MIN(zp->zp_copies, spa_max_replication(spa))
1846 		    == BP_GET_NDVAS(bp));
1847 	}
1848 
1849 	/* If it's a compressed write that is not raw, compress the buffer. */
1850 	if (compress != ZIO_COMPRESS_OFF &&
1851 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1852 		void *cbuf = NULL;
1853 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1854 		    zp->zp_complevel);
1855 		if (psize == 0) {
1856 			compress = ZIO_COMPRESS_OFF;
1857 		} else if (psize >= lsize) {
1858 			compress = ZIO_COMPRESS_OFF;
1859 			if (cbuf != NULL)
1860 				zio_buf_free(cbuf, lsize);
1861 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1862 		    psize <= BPE_PAYLOAD_SIZE &&
1863 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1864 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1865 			encode_embedded_bp_compressed(bp,
1866 			    cbuf, compress, lsize, psize);
1867 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1868 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1869 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1870 			zio_buf_free(cbuf, lsize);
1871 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
1872 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1873 			ASSERT(spa_feature_is_active(spa,
1874 			    SPA_FEATURE_EMBEDDED_DATA));
1875 			return (zio);
1876 		} else {
1877 			/*
1878 			 * Round compressed size up to the minimum allocation
1879 			 * size of the smallest-ashift device, and zero the
1880 			 * tail. This ensures that the compressed size of the
1881 			 * BP (and thus compressratio property) are correct,
1882 			 * in that we charge for the padding used to fill out
1883 			 * the last sector.
1884 			 */
1885 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1886 			    psize);
1887 			if (rounded >= lsize) {
1888 				compress = ZIO_COMPRESS_OFF;
1889 				zio_buf_free(cbuf, lsize);
1890 				psize = lsize;
1891 			} else {
1892 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1893 				abd_take_ownership_of_buf(cdata, B_TRUE);
1894 				abd_zero_off(cdata, psize, rounded - psize);
1895 				psize = rounded;
1896 				zio_push_transform(zio, cdata,
1897 				    psize, lsize, NULL);
1898 			}
1899 		}
1900 
1901 		/*
1902 		 * We were unable to handle this as an override bp, treat
1903 		 * it as a regular write I/O.
1904 		 */
1905 		zio->io_bp_override = NULL;
1906 		*bp = zio->io_bp_orig;
1907 		zio->io_pipeline = zio->io_orig_pipeline;
1908 
1909 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1910 	    zp->zp_type == DMU_OT_DNODE) {
1911 		/*
1912 		 * The DMU actually relies on the zio layer's compression
1913 		 * to free metadnode blocks that have had all contained
1914 		 * dnodes freed. As a result, even when doing a raw
1915 		 * receive, we must check whether the block can be compressed
1916 		 * to a hole.
1917 		 */
1918 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1919 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1920 		if (psize == 0 || psize >= lsize)
1921 			compress = ZIO_COMPRESS_OFF;
1922 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1923 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1924 		/*
1925 		 * If we are raw receiving an encrypted dataset we should not
1926 		 * take this codepath because it will change the on-disk block
1927 		 * and decryption will fail.
1928 		 */
1929 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1930 		    lsize);
1931 
1932 		if (rounded != psize) {
1933 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1934 			abd_zero_off(cdata, psize, rounded - psize);
1935 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1936 			psize = rounded;
1937 			zio_push_transform(zio, cdata,
1938 			    psize, rounded, NULL);
1939 		}
1940 	} else {
1941 		ASSERT3U(psize, !=, 0);
1942 	}
1943 
1944 	/*
1945 	 * The final pass of spa_sync() must be all rewrites, but the first
1946 	 * few passes offer a trade-off: allocating blocks defers convergence,
1947 	 * but newly allocated blocks are sequential, so they can be written
1948 	 * to disk faster.  Therefore, we allow the first few passes of
1949 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1950 	 * There should only be a handful of blocks after pass 1 in any case.
1951 	 */
1952 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
1953 	    BP_GET_PSIZE(bp) == psize &&
1954 	    pass >= zfs_sync_pass_rewrite) {
1955 		VERIFY3U(psize, !=, 0);
1956 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1957 
1958 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1959 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1960 	} else {
1961 		BP_ZERO(bp);
1962 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1963 	}
1964 
1965 	if (psize == 0) {
1966 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
1967 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1968 			BP_SET_LSIZE(bp, lsize);
1969 			BP_SET_TYPE(bp, zp->zp_type);
1970 			BP_SET_LEVEL(bp, zp->zp_level);
1971 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1972 		}
1973 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1974 	} else {
1975 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1976 		BP_SET_LSIZE(bp, lsize);
1977 		BP_SET_TYPE(bp, zp->zp_type);
1978 		BP_SET_LEVEL(bp, zp->zp_level);
1979 		BP_SET_PSIZE(bp, psize);
1980 		BP_SET_COMPRESS(bp, compress);
1981 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1982 		BP_SET_DEDUP(bp, zp->zp_dedup);
1983 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1984 		if (zp->zp_dedup) {
1985 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1986 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1987 			ASSERT(!zp->zp_encrypt ||
1988 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1989 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1990 		}
1991 		if (zp->zp_nopwrite) {
1992 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1993 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1994 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1995 		}
1996 	}
1997 	return (zio);
1998 }
1999 
2000 static zio_t *
zio_free_bp_init(zio_t * zio)2001 zio_free_bp_init(zio_t *zio)
2002 {
2003 	blkptr_t *bp = zio->io_bp;
2004 
2005 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2006 		if (BP_GET_DEDUP(bp))
2007 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2008 	}
2009 
2010 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2011 
2012 	return (zio);
2013 }
2014 
2015 /*
2016  * ==========================================================================
2017  * Execute the I/O pipeline
2018  * ==========================================================================
2019  */
2020 
2021 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2022 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2023 {
2024 	spa_t *spa = zio->io_spa;
2025 	zio_type_t t = zio->io_type;
2026 	int flags = (cutinline ? TQ_FRONT : 0);
2027 
2028 	/*
2029 	 * If we're a config writer or a probe, the normal issue and
2030 	 * interrupt threads may all be blocked waiting for the config lock.
2031 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2032 	 */
2033 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2034 		t = ZIO_TYPE_NULL;
2035 
2036 	/*
2037 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2038 	 */
2039 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2040 		t = ZIO_TYPE_NULL;
2041 
2042 	/*
2043 	 * If this is a high priority I/O, then use the high priority taskq if
2044 	 * available.
2045 	 */
2046 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
2047 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
2048 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2049 		q++;
2050 
2051 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2052 
2053 	/*
2054 	 * NB: We are assuming that the zio can only be dispatched
2055 	 * to a single taskq at a time.  It would be a grievous error
2056 	 * to dispatch the zio to another taskq at the same time.
2057 	 */
2058 	ASSERT(taskq_empty_ent(&zio->io_tqent));
2059 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
2060 	    &zio->io_tqent, zio);
2061 }
2062 
2063 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2064 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2065 {
2066 	spa_t *spa = zio->io_spa;
2067 
2068 	taskq_t *tq = taskq_of_curthread();
2069 
2070 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2071 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2072 		uint_t i;
2073 		for (i = 0; i < tqs->stqs_count; i++) {
2074 			if (tqs->stqs_taskq[i] == tq)
2075 				return (B_TRUE);
2076 		}
2077 	}
2078 
2079 	return (B_FALSE);
2080 }
2081 
2082 static zio_t *
zio_issue_async(zio_t * zio)2083 zio_issue_async(zio_t *zio)
2084 {
2085 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2086 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2087 	return (NULL);
2088 }
2089 
2090 void
zio_interrupt(void * zio)2091 zio_interrupt(void *zio)
2092 {
2093 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2094 }
2095 
2096 void
zio_delay_interrupt(zio_t * zio)2097 zio_delay_interrupt(zio_t *zio)
2098 {
2099 	/*
2100 	 * The timeout_generic() function isn't defined in userspace, so
2101 	 * rather than trying to implement the function, the zio delay
2102 	 * functionality has been disabled for userspace builds.
2103 	 */
2104 
2105 #ifdef _KERNEL
2106 	/*
2107 	 * If io_target_timestamp is zero, then no delay has been registered
2108 	 * for this IO, thus jump to the end of this function and "skip" the
2109 	 * delay; issuing it directly to the zio layer.
2110 	 */
2111 	if (zio->io_target_timestamp != 0) {
2112 		hrtime_t now = gethrtime();
2113 
2114 		if (now >= zio->io_target_timestamp) {
2115 			/*
2116 			 * This IO has already taken longer than the target
2117 			 * delay to complete, so we don't want to delay it
2118 			 * any longer; we "miss" the delay and issue it
2119 			 * directly to the zio layer. This is likely due to
2120 			 * the target latency being set to a value less than
2121 			 * the underlying hardware can satisfy (e.g. delay
2122 			 * set to 1ms, but the disks take 10ms to complete an
2123 			 * IO request).
2124 			 */
2125 
2126 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2127 			    hrtime_t, now);
2128 
2129 			zio_interrupt(zio);
2130 		} else {
2131 			taskqid_t tid;
2132 			hrtime_t diff = zio->io_target_timestamp - now;
2133 			clock_t expire_at_tick = ddi_get_lbolt() +
2134 			    NSEC_TO_TICK(diff);
2135 
2136 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2137 			    hrtime_t, now, hrtime_t, diff);
2138 
2139 			if (NSEC_TO_TICK(diff) == 0) {
2140 				/* Our delay is less than a jiffy - just spin */
2141 				zfs_sleep_until(zio->io_target_timestamp);
2142 				zio_interrupt(zio);
2143 			} else {
2144 				/*
2145 				 * Use taskq_dispatch_delay() in the place of
2146 				 * OpenZFS's timeout_generic().
2147 				 */
2148 				tid = taskq_dispatch_delay(system_taskq,
2149 				    zio_interrupt, zio, TQ_NOSLEEP,
2150 				    expire_at_tick);
2151 				if (tid == TASKQID_INVALID) {
2152 					/*
2153 					 * Couldn't allocate a task.  Just
2154 					 * finish the zio without a delay.
2155 					 */
2156 					zio_interrupt(zio);
2157 				}
2158 			}
2159 		}
2160 		return;
2161 	}
2162 #endif
2163 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2164 	zio_interrupt(zio);
2165 }
2166 
2167 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2168 zio_deadman_impl(zio_t *pio, int ziodepth)
2169 {
2170 	zio_t *cio, *cio_next;
2171 	zio_link_t *zl = NULL;
2172 	vdev_t *vd = pio->io_vd;
2173 
2174 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2175 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2176 		zbookmark_phys_t *zb = &pio->io_bookmark;
2177 		uint64_t delta = gethrtime() - pio->io_timestamp;
2178 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2179 
2180 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2181 		    "delta=%llu queued=%llu io=%llu "
2182 		    "path=%s "
2183 		    "last=%llu type=%d "
2184 		    "priority=%d flags=0x%llx stage=0x%x "
2185 		    "pipeline=0x%x pipeline-trace=0x%x "
2186 		    "objset=%llu object=%llu "
2187 		    "level=%llu blkid=%llu "
2188 		    "offset=%llu size=%llu "
2189 		    "error=%d",
2190 		    ziodepth, pio, pio->io_timestamp,
2191 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2192 		    vd ? vd->vdev_path : "NULL",
2193 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2194 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2195 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2196 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2197 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2198 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2199 		    pio->io_error);
2200 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2201 		    pio->io_spa, vd, zb, pio, 0);
2202 
2203 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2204 		    taskq_empty_ent(&pio->io_tqent)) {
2205 			zio_interrupt(pio);
2206 		}
2207 	}
2208 
2209 	mutex_enter(&pio->io_lock);
2210 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2211 		cio_next = zio_walk_children(pio, &zl);
2212 		zio_deadman_impl(cio, ziodepth + 1);
2213 	}
2214 	mutex_exit(&pio->io_lock);
2215 }
2216 
2217 /*
2218  * Log the critical information describing this zio and all of its children
2219  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2220  */
2221 void
zio_deadman(zio_t * pio,const char * tag)2222 zio_deadman(zio_t *pio, const char *tag)
2223 {
2224 	spa_t *spa = pio->io_spa;
2225 	char *name = spa_name(spa);
2226 
2227 	if (!zfs_deadman_enabled || spa_suspended(spa))
2228 		return;
2229 
2230 	zio_deadman_impl(pio, 0);
2231 
2232 	switch (spa_get_deadman_failmode(spa)) {
2233 	case ZIO_FAILURE_MODE_WAIT:
2234 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2235 		break;
2236 
2237 	case ZIO_FAILURE_MODE_CONTINUE:
2238 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2239 		break;
2240 
2241 	case ZIO_FAILURE_MODE_PANIC:
2242 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2243 		break;
2244 	}
2245 }
2246 
2247 /*
2248  * Execute the I/O pipeline until one of the following occurs:
2249  * (1) the I/O completes; (2) the pipeline stalls waiting for
2250  * dependent child I/Os; (3) the I/O issues, so we're waiting
2251  * for an I/O completion interrupt; (4) the I/O is delegated by
2252  * vdev-level caching or aggregation; (5) the I/O is deferred
2253  * due to vdev-level queueing; (6) the I/O is handed off to
2254  * another thread.  In all cases, the pipeline stops whenever
2255  * there's no CPU work; it never burns a thread in cv_wait_io().
2256  *
2257  * There's no locking on io_stage because there's no legitimate way
2258  * for multiple threads to be attempting to process the same I/O.
2259  */
2260 static zio_pipe_stage_t *zio_pipeline[];
2261 
2262 /*
2263  * zio_execute() is a wrapper around the static function
2264  * __zio_execute() so that we can force  __zio_execute() to be
2265  * inlined.  This reduces stack overhead which is important
2266  * because __zio_execute() is called recursively in several zio
2267  * code paths.  zio_execute() itself cannot be inlined because
2268  * it is externally visible.
2269  */
2270 void
zio_execute(void * zio)2271 zio_execute(void *zio)
2272 {
2273 	fstrans_cookie_t cookie;
2274 
2275 	cookie = spl_fstrans_mark();
2276 	__zio_execute(zio);
2277 	spl_fstrans_unmark(cookie);
2278 }
2279 
2280 /*
2281  * Used to determine if in the current context the stack is sized large
2282  * enough to allow zio_execute() to be called recursively.  A minimum
2283  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2284  */
2285 static boolean_t
zio_execute_stack_check(zio_t * zio)2286 zio_execute_stack_check(zio_t *zio)
2287 {
2288 #if !defined(HAVE_LARGE_STACKS)
2289 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2290 
2291 	/* Executing in txg_sync_thread() context. */
2292 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2293 		return (B_TRUE);
2294 
2295 	/* Pool initialization outside of zio_taskq context. */
2296 	if (dp && spa_is_initializing(dp->dp_spa) &&
2297 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2298 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2299 		return (B_TRUE);
2300 #else
2301 	(void) zio;
2302 #endif /* HAVE_LARGE_STACKS */
2303 
2304 	return (B_FALSE);
2305 }
2306 
2307 __attribute__((always_inline))
2308 static inline void
__zio_execute(zio_t * zio)2309 __zio_execute(zio_t *zio)
2310 {
2311 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2312 
2313 	while (zio->io_stage < ZIO_STAGE_DONE) {
2314 		enum zio_stage pipeline = zio->io_pipeline;
2315 		enum zio_stage stage = zio->io_stage;
2316 
2317 		zio->io_executor = curthread;
2318 
2319 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2320 		ASSERT(ISP2(stage));
2321 		ASSERT(zio->io_stall == NULL);
2322 
2323 		do {
2324 			stage <<= 1;
2325 		} while ((stage & pipeline) == 0);
2326 
2327 		ASSERT(stage <= ZIO_STAGE_DONE);
2328 
2329 		/*
2330 		 * If we are in interrupt context and this pipeline stage
2331 		 * will grab a config lock that is held across I/O,
2332 		 * or may wait for an I/O that needs an interrupt thread
2333 		 * to complete, issue async to avoid deadlock.
2334 		 *
2335 		 * For VDEV_IO_START, we cut in line so that the io will
2336 		 * be sent to disk promptly.
2337 		 */
2338 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2339 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2340 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2341 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2342 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2343 			return;
2344 		}
2345 
2346 		/*
2347 		 * If the current context doesn't have large enough stacks
2348 		 * the zio must be issued asynchronously to prevent overflow.
2349 		 */
2350 		if (zio_execute_stack_check(zio)) {
2351 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2352 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2353 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2354 			return;
2355 		}
2356 
2357 		zio->io_stage = stage;
2358 		zio->io_pipeline_trace |= zio->io_stage;
2359 
2360 		/*
2361 		 * The zio pipeline stage returns the next zio to execute
2362 		 * (typically the same as this one), or NULL if we should
2363 		 * stop.
2364 		 */
2365 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2366 
2367 		if (zio == NULL)
2368 			return;
2369 	}
2370 }
2371 
2372 
2373 /*
2374  * ==========================================================================
2375  * Initiate I/O, either sync or async
2376  * ==========================================================================
2377  */
2378 int
zio_wait(zio_t * zio)2379 zio_wait(zio_t *zio)
2380 {
2381 	/*
2382 	 * Some routines, like zio_free_sync(), may return a NULL zio
2383 	 * to avoid the performance overhead of creating and then destroying
2384 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2385 	 * zio and ignore it.
2386 	 */
2387 	if (zio == NULL)
2388 		return (0);
2389 
2390 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2391 	int error;
2392 
2393 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2394 	ASSERT3P(zio->io_executor, ==, NULL);
2395 
2396 	zio->io_waiter = curthread;
2397 	ASSERT0(zio->io_queued_timestamp);
2398 	zio->io_queued_timestamp = gethrtime();
2399 
2400 	if (zio->io_type == ZIO_TYPE_WRITE) {
2401 		spa_select_allocator(zio);
2402 	}
2403 	__zio_execute(zio);
2404 
2405 	mutex_enter(&zio->io_lock);
2406 	while (zio->io_executor != NULL) {
2407 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2408 		    ddi_get_lbolt() + timeout);
2409 
2410 		if (zfs_deadman_enabled && error == -1 &&
2411 		    gethrtime() - zio->io_queued_timestamp >
2412 		    spa_deadman_ziotime(zio->io_spa)) {
2413 			mutex_exit(&zio->io_lock);
2414 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2415 			zio_deadman(zio, FTAG);
2416 			mutex_enter(&zio->io_lock);
2417 		}
2418 	}
2419 	mutex_exit(&zio->io_lock);
2420 
2421 	error = zio->io_error;
2422 	zio_destroy(zio);
2423 
2424 	return (error);
2425 }
2426 
2427 void
zio_nowait(zio_t * zio)2428 zio_nowait(zio_t *zio)
2429 {
2430 	/*
2431 	 * See comment in zio_wait().
2432 	 */
2433 	if (zio == NULL)
2434 		return;
2435 
2436 	ASSERT3P(zio->io_executor, ==, NULL);
2437 
2438 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2439 	    list_is_empty(&zio->io_parent_list)) {
2440 		zio_t *pio;
2441 
2442 		/*
2443 		 * This is a logical async I/O with no parent to wait for it.
2444 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2445 		 * will ensure they complete prior to unloading the pool.
2446 		 */
2447 		spa_t *spa = zio->io_spa;
2448 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2449 
2450 		zio_add_child(pio, zio);
2451 	}
2452 
2453 	ASSERT0(zio->io_queued_timestamp);
2454 	zio->io_queued_timestamp = gethrtime();
2455 	if (zio->io_type == ZIO_TYPE_WRITE) {
2456 		spa_select_allocator(zio);
2457 	}
2458 	__zio_execute(zio);
2459 }
2460 
2461 /*
2462  * ==========================================================================
2463  * Reexecute, cancel, or suspend/resume failed I/O
2464  * ==========================================================================
2465  */
2466 
2467 static void
zio_reexecute(void * arg)2468 zio_reexecute(void *arg)
2469 {
2470 	zio_t *pio = arg;
2471 	zio_t *cio, *cio_next, *gio;
2472 
2473 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2474 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2475 	ASSERT(pio->io_gang_leader == NULL);
2476 	ASSERT(pio->io_gang_tree == NULL);
2477 
2478 	mutex_enter(&pio->io_lock);
2479 	pio->io_flags = pio->io_orig_flags;
2480 	pio->io_stage = pio->io_orig_stage;
2481 	pio->io_pipeline = pio->io_orig_pipeline;
2482 	pio->io_reexecute = 0;
2483 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2484 	pio->io_pipeline_trace = 0;
2485 	pio->io_error = 0;
2486 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2487 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2488 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2489 	zio_link_t *zl = NULL;
2490 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2491 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2492 			gio->io_children[pio->io_child_type][w] +=
2493 			    !pio->io_state[w];
2494 		}
2495 	}
2496 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2497 		pio->io_child_error[c] = 0;
2498 
2499 	if (IO_IS_ALLOCATING(pio))
2500 		BP_ZERO(pio->io_bp);
2501 
2502 	/*
2503 	 * As we reexecute pio's children, new children could be created.
2504 	 * New children go to the head of pio's io_child_list, however,
2505 	 * so we will (correctly) not reexecute them.  The key is that
2506 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2507 	 * cannot be affected by any side effects of reexecuting 'cio'.
2508 	 */
2509 	zl = NULL;
2510 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2511 		cio_next = zio_walk_children(pio, &zl);
2512 		mutex_exit(&pio->io_lock);
2513 		zio_reexecute(cio);
2514 		mutex_enter(&pio->io_lock);
2515 	}
2516 	mutex_exit(&pio->io_lock);
2517 
2518 	/*
2519 	 * Now that all children have been reexecuted, execute the parent.
2520 	 * We don't reexecute "The Godfather" I/O here as it's the
2521 	 * responsibility of the caller to wait on it.
2522 	 */
2523 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2524 		pio->io_queued_timestamp = gethrtime();
2525 		__zio_execute(pio);
2526 	}
2527 }
2528 
2529 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2530 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2531 {
2532 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2533 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2534 		    "failure and the failure mode property for this pool "
2535 		    "is set to panic.", spa_name(spa));
2536 
2537 	if (reason != ZIO_SUSPEND_MMP) {
2538 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2539 		    "I/O failure and has been suspended.\n", spa_name(spa));
2540 	}
2541 
2542 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2543 	    NULL, NULL, 0);
2544 
2545 	mutex_enter(&spa->spa_suspend_lock);
2546 
2547 	if (spa->spa_suspend_zio_root == NULL)
2548 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2549 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2550 		    ZIO_FLAG_GODFATHER);
2551 
2552 	spa->spa_suspended = reason;
2553 
2554 	if (zio != NULL) {
2555 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2556 		ASSERT(zio != spa->spa_suspend_zio_root);
2557 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2558 		ASSERT(zio_unique_parent(zio) == NULL);
2559 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2560 		zio_add_child(spa->spa_suspend_zio_root, zio);
2561 	}
2562 
2563 	mutex_exit(&spa->spa_suspend_lock);
2564 }
2565 
2566 int
zio_resume(spa_t * spa)2567 zio_resume(spa_t *spa)
2568 {
2569 	zio_t *pio;
2570 
2571 	/*
2572 	 * Reexecute all previously suspended i/o.
2573 	 */
2574 	mutex_enter(&spa->spa_suspend_lock);
2575 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2576 	cv_broadcast(&spa->spa_suspend_cv);
2577 	pio = spa->spa_suspend_zio_root;
2578 	spa->spa_suspend_zio_root = NULL;
2579 	mutex_exit(&spa->spa_suspend_lock);
2580 
2581 	if (pio == NULL)
2582 		return (0);
2583 
2584 	zio_reexecute(pio);
2585 	return (zio_wait(pio));
2586 }
2587 
2588 void
zio_resume_wait(spa_t * spa)2589 zio_resume_wait(spa_t *spa)
2590 {
2591 	mutex_enter(&spa->spa_suspend_lock);
2592 	while (spa_suspended(spa))
2593 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2594 	mutex_exit(&spa->spa_suspend_lock);
2595 }
2596 
2597 /*
2598  * ==========================================================================
2599  * Gang blocks.
2600  *
2601  * A gang block is a collection of small blocks that looks to the DMU
2602  * like one large block.  When zio_dva_allocate() cannot find a block
2603  * of the requested size, due to either severe fragmentation or the pool
2604  * being nearly full, it calls zio_write_gang_block() to construct the
2605  * block from smaller fragments.
2606  *
2607  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2608  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2609  * an indirect block: it's an array of block pointers.  It consumes
2610  * only one sector and hence is allocatable regardless of fragmentation.
2611  * The gang header's bps point to its gang members, which hold the data.
2612  *
2613  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2614  * as the verifier to ensure uniqueness of the SHA256 checksum.
2615  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2616  * not the gang header.  This ensures that data block signatures (needed for
2617  * deduplication) are independent of how the block is physically stored.
2618  *
2619  * Gang blocks can be nested: a gang member may itself be a gang block.
2620  * Thus every gang block is a tree in which root and all interior nodes are
2621  * gang headers, and the leaves are normal blocks that contain user data.
2622  * The root of the gang tree is called the gang leader.
2623  *
2624  * To perform any operation (read, rewrite, free, claim) on a gang block,
2625  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2626  * in the io_gang_tree field of the original logical i/o by recursively
2627  * reading the gang leader and all gang headers below it.  This yields
2628  * an in-core tree containing the contents of every gang header and the
2629  * bps for every constituent of the gang block.
2630  *
2631  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2632  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2633  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2634  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2635  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2636  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2637  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2638  * of the gang header plus zio_checksum_compute() of the data to update the
2639  * gang header's blk_cksum as described above.
2640  *
2641  * The two-phase assemble/issue model solves the problem of partial failure --
2642  * what if you'd freed part of a gang block but then couldn't read the
2643  * gang header for another part?  Assembling the entire gang tree first
2644  * ensures that all the necessary gang header I/O has succeeded before
2645  * starting the actual work of free, claim, or write.  Once the gang tree
2646  * is assembled, free and claim are in-memory operations that cannot fail.
2647  *
2648  * In the event that a gang write fails, zio_dva_unallocate() walks the
2649  * gang tree to immediately free (i.e. insert back into the space map)
2650  * everything we've allocated.  This ensures that we don't get ENOSPC
2651  * errors during repeated suspend/resume cycles due to a flaky device.
2652  *
2653  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2654  * the gang tree, we won't modify the block, so we can safely defer the free
2655  * (knowing that the block is still intact).  If we *can* assemble the gang
2656  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2657  * each constituent bp and we can allocate a new block on the next sync pass.
2658  *
2659  * In all cases, the gang tree allows complete recovery from partial failure.
2660  * ==========================================================================
2661  */
2662 
2663 static void
zio_gang_issue_func_done(zio_t * zio)2664 zio_gang_issue_func_done(zio_t *zio)
2665 {
2666 	abd_free(zio->io_abd);
2667 }
2668 
2669 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2670 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2671     uint64_t offset)
2672 {
2673 	if (gn != NULL)
2674 		return (pio);
2675 
2676 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2677 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2678 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2679 	    &pio->io_bookmark));
2680 }
2681 
2682 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2683 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2684     uint64_t offset)
2685 {
2686 	zio_t *zio;
2687 
2688 	if (gn != NULL) {
2689 		abd_t *gbh_abd =
2690 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2691 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2692 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2693 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2694 		    &pio->io_bookmark);
2695 		/*
2696 		 * As we rewrite each gang header, the pipeline will compute
2697 		 * a new gang block header checksum for it; but no one will
2698 		 * compute a new data checksum, so we do that here.  The one
2699 		 * exception is the gang leader: the pipeline already computed
2700 		 * its data checksum because that stage precedes gang assembly.
2701 		 * (Presently, nothing actually uses interior data checksums;
2702 		 * this is just good hygiene.)
2703 		 */
2704 		if (gn != pio->io_gang_leader->io_gang_tree) {
2705 			abd_t *buf = abd_get_offset(data, offset);
2706 
2707 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2708 			    buf, BP_GET_PSIZE(bp));
2709 
2710 			abd_free(buf);
2711 		}
2712 		/*
2713 		 * If we are here to damage data for testing purposes,
2714 		 * leave the GBH alone so that we can detect the damage.
2715 		 */
2716 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2717 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2718 	} else {
2719 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2720 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2721 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2722 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2723 	}
2724 
2725 	return (zio);
2726 }
2727 
2728 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2729 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2730     uint64_t offset)
2731 {
2732 	(void) gn, (void) data, (void) offset;
2733 
2734 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2735 	    ZIO_GANG_CHILD_FLAGS(pio));
2736 	if (zio == NULL) {
2737 		zio = zio_null(pio, pio->io_spa,
2738 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2739 	}
2740 	return (zio);
2741 }
2742 
2743 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2744 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2745     uint64_t offset)
2746 {
2747 	(void) gn, (void) data, (void) offset;
2748 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2749 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2750 }
2751 
2752 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2753 	NULL,
2754 	zio_read_gang,
2755 	zio_rewrite_gang,
2756 	zio_free_gang,
2757 	zio_claim_gang,
2758 	NULL
2759 };
2760 
2761 static void zio_gang_tree_assemble_done(zio_t *zio);
2762 
2763 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)2764 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2765 {
2766 	zio_gang_node_t *gn;
2767 
2768 	ASSERT(*gnpp == NULL);
2769 
2770 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2771 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2772 	*gnpp = gn;
2773 
2774 	return (gn);
2775 }
2776 
2777 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2778 zio_gang_node_free(zio_gang_node_t **gnpp)
2779 {
2780 	zio_gang_node_t *gn = *gnpp;
2781 
2782 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2783 		ASSERT(gn->gn_child[g] == NULL);
2784 
2785 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2786 	kmem_free(gn, sizeof (*gn));
2787 	*gnpp = NULL;
2788 }
2789 
2790 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2791 zio_gang_tree_free(zio_gang_node_t **gnpp)
2792 {
2793 	zio_gang_node_t *gn = *gnpp;
2794 
2795 	if (gn == NULL)
2796 		return;
2797 
2798 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2799 		zio_gang_tree_free(&gn->gn_child[g]);
2800 
2801 	zio_gang_node_free(gnpp);
2802 }
2803 
2804 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2805 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2806 {
2807 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2808 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2809 
2810 	ASSERT(gio->io_gang_leader == gio);
2811 	ASSERT(BP_IS_GANG(bp));
2812 
2813 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2814 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2815 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2816 }
2817 
2818 static void
zio_gang_tree_assemble_done(zio_t * zio)2819 zio_gang_tree_assemble_done(zio_t *zio)
2820 {
2821 	zio_t *gio = zio->io_gang_leader;
2822 	zio_gang_node_t *gn = zio->io_private;
2823 	blkptr_t *bp = zio->io_bp;
2824 
2825 	ASSERT(gio == zio_unique_parent(zio));
2826 	ASSERT(list_is_empty(&zio->io_child_list));
2827 
2828 	if (zio->io_error)
2829 		return;
2830 
2831 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2832 	if (BP_SHOULD_BYTESWAP(bp))
2833 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2834 
2835 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2836 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2837 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2838 
2839 	abd_free(zio->io_abd);
2840 
2841 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2842 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2843 		if (!BP_IS_GANG(gbp))
2844 			continue;
2845 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2846 	}
2847 }
2848 
2849 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)2850 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2851     uint64_t offset)
2852 {
2853 	zio_t *gio = pio->io_gang_leader;
2854 	zio_t *zio;
2855 
2856 	ASSERT(BP_IS_GANG(bp) == !!gn);
2857 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2858 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2859 
2860 	/*
2861 	 * If you're a gang header, your data is in gn->gn_gbh.
2862 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2863 	 */
2864 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2865 
2866 	if (gn != NULL) {
2867 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2868 
2869 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2870 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2871 			if (BP_IS_HOLE(gbp))
2872 				continue;
2873 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2874 			    offset);
2875 			offset += BP_GET_PSIZE(gbp);
2876 		}
2877 	}
2878 
2879 	if (gn == gio->io_gang_tree)
2880 		ASSERT3U(gio->io_size, ==, offset);
2881 
2882 	if (zio != pio)
2883 		zio_nowait(zio);
2884 }
2885 
2886 static zio_t *
zio_gang_assemble(zio_t * zio)2887 zio_gang_assemble(zio_t *zio)
2888 {
2889 	blkptr_t *bp = zio->io_bp;
2890 
2891 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2892 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2893 
2894 	zio->io_gang_leader = zio;
2895 
2896 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2897 
2898 	return (zio);
2899 }
2900 
2901 static zio_t *
zio_gang_issue(zio_t * zio)2902 zio_gang_issue(zio_t *zio)
2903 {
2904 	blkptr_t *bp = zio->io_bp;
2905 
2906 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2907 		return (NULL);
2908 	}
2909 
2910 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2911 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2912 
2913 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2914 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2915 		    0);
2916 	else
2917 		zio_gang_tree_free(&zio->io_gang_tree);
2918 
2919 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2920 
2921 	return (zio);
2922 }
2923 
2924 static void
zio_gang_inherit_allocator(zio_t * pio,zio_t * cio)2925 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
2926 {
2927 	cio->io_allocator = pio->io_allocator;
2928 }
2929 
2930 static void
zio_write_gang_member_ready(zio_t * zio)2931 zio_write_gang_member_ready(zio_t *zio)
2932 {
2933 	zio_t *pio = zio_unique_parent(zio);
2934 	dva_t *cdva = zio->io_bp->blk_dva;
2935 	dva_t *pdva = pio->io_bp->blk_dva;
2936 	uint64_t asize;
2937 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2938 
2939 	if (BP_IS_HOLE(zio->io_bp))
2940 		return;
2941 
2942 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2943 
2944 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2945 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2946 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2947 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2948 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2949 
2950 	mutex_enter(&pio->io_lock);
2951 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2952 		ASSERT(DVA_GET_GANG(&pdva[d]));
2953 		asize = DVA_GET_ASIZE(&pdva[d]);
2954 		asize += DVA_GET_ASIZE(&cdva[d]);
2955 		DVA_SET_ASIZE(&pdva[d], asize);
2956 	}
2957 	mutex_exit(&pio->io_lock);
2958 }
2959 
2960 static void
zio_write_gang_done(zio_t * zio)2961 zio_write_gang_done(zio_t *zio)
2962 {
2963 	/*
2964 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2965 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2966 	 * check for it here as it is cleared in zio_ready.
2967 	 */
2968 	if (zio->io_abd != NULL)
2969 		abd_free(zio->io_abd);
2970 }
2971 
2972 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)2973 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2974 {
2975 	spa_t *spa = pio->io_spa;
2976 	blkptr_t *bp = pio->io_bp;
2977 	zio_t *gio = pio->io_gang_leader;
2978 	zio_t *zio;
2979 	zio_gang_node_t *gn, **gnpp;
2980 	zio_gbh_phys_t *gbh;
2981 	abd_t *gbh_abd;
2982 	uint64_t txg = pio->io_txg;
2983 	uint64_t resid = pio->io_size;
2984 	uint64_t lsize;
2985 	int copies = gio->io_prop.zp_copies;
2986 	zio_prop_t zp;
2987 	int error;
2988 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2989 
2990 	/*
2991 	 * If one copy was requested, store 2 copies of the GBH, so that we
2992 	 * can still traverse all the data (e.g. to free or scrub) even if a
2993 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2994 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2995 	 */
2996 	int gbh_copies = copies;
2997 	if (gbh_copies == 1) {
2998 		gbh_copies = MIN(2, spa_max_replication(spa));
2999 	}
3000 
3001 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
3002 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
3003 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3004 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3005 		ASSERT(has_data);
3006 
3007 		flags |= METASLAB_ASYNC_ALLOC;
3008 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3009 		    mca_alloc_slots, pio));
3010 
3011 		/*
3012 		 * The logical zio has already placed a reservation for
3013 		 * 'copies' allocation slots but gang blocks may require
3014 		 * additional copies. These additional copies
3015 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
3016 		 * since metaslab_class_throttle_reserve() always allows
3017 		 * additional reservations for gang blocks.
3018 		 */
3019 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3020 		    pio->io_allocator, pio, flags));
3021 	}
3022 
3023 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3024 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3025 	    &pio->io_alloc_list, pio, pio->io_allocator);
3026 	if (error) {
3027 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3028 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3029 			ASSERT(has_data);
3030 
3031 			/*
3032 			 * If we failed to allocate the gang block header then
3033 			 * we remove any additional allocation reservations that
3034 			 * we placed here. The original reservation will
3035 			 * be removed when the logical I/O goes to the ready
3036 			 * stage.
3037 			 */
3038 			metaslab_class_throttle_unreserve(mc,
3039 			    gbh_copies - copies, pio->io_allocator, pio);
3040 		}
3041 
3042 		pio->io_error = error;
3043 		return (pio);
3044 	}
3045 
3046 	if (pio == gio) {
3047 		gnpp = &gio->io_gang_tree;
3048 	} else {
3049 		gnpp = pio->io_private;
3050 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3051 	}
3052 
3053 	gn = zio_gang_node_alloc(gnpp);
3054 	gbh = gn->gn_gbh;
3055 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3056 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3057 
3058 	/*
3059 	 * Create the gang header.
3060 	 */
3061 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3062 	    zio_write_gang_done, NULL, pio->io_priority,
3063 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3064 
3065 	zio_gang_inherit_allocator(pio, zio);
3066 
3067 	/*
3068 	 * Create and nowait the gang children.
3069 	 */
3070 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3071 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3072 		    SPA_MINBLOCKSIZE);
3073 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3074 
3075 		zp.zp_checksum = gio->io_prop.zp_checksum;
3076 		zp.zp_compress = ZIO_COMPRESS_OFF;
3077 		zp.zp_complevel = gio->io_prop.zp_complevel;
3078 		zp.zp_type = DMU_OT_NONE;
3079 		zp.zp_level = 0;
3080 		zp.zp_copies = gio->io_prop.zp_copies;
3081 		zp.zp_dedup = B_FALSE;
3082 		zp.zp_dedup_verify = B_FALSE;
3083 		zp.zp_nopwrite = B_FALSE;
3084 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3085 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3086 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3087 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3088 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3089 
3090 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3091 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3092 		    resid) : NULL, lsize, lsize, &zp,
3093 		    zio_write_gang_member_ready, NULL,
3094 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3095 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3096 
3097 		zio_gang_inherit_allocator(zio, cio);
3098 
3099 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3100 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3101 			ASSERT(has_data);
3102 
3103 			/*
3104 			 * Gang children won't throttle but we should
3105 			 * account for their work, so reserve an allocation
3106 			 * slot for them here.
3107 			 */
3108 			VERIFY(metaslab_class_throttle_reserve(mc,
3109 			    zp.zp_copies, cio->io_allocator, cio, flags));
3110 		}
3111 		zio_nowait(cio);
3112 	}
3113 
3114 	/*
3115 	 * Set pio's pipeline to just wait for zio to finish.
3116 	 */
3117 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3118 
3119 	zio_nowait(zio);
3120 
3121 	return (pio);
3122 }
3123 
3124 /*
3125  * The zio_nop_write stage in the pipeline determines if allocating a
3126  * new bp is necessary.  The nopwrite feature can handle writes in
3127  * either syncing or open context (i.e. zil writes) and as a result is
3128  * mutually exclusive with dedup.
3129  *
3130  * By leveraging a cryptographically secure checksum, such as SHA256, we
3131  * can compare the checksums of the new data and the old to determine if
3132  * allocating a new block is required.  Note that our requirements for
3133  * cryptographic strength are fairly weak: there can't be any accidental
3134  * hash collisions, but we don't need to be secure against intentional
3135  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3136  * to write the file to begin with, and triggering an incorrect (hash
3137  * collision) nopwrite is no worse than simply writing to the file.
3138  * That said, there are no known attacks against the checksum algorithms
3139  * used for nopwrite, assuming that the salt and the checksums
3140  * themselves remain secret.
3141  */
3142 static zio_t *
zio_nop_write(zio_t * zio)3143 zio_nop_write(zio_t *zio)
3144 {
3145 	blkptr_t *bp = zio->io_bp;
3146 	blkptr_t *bp_orig = &zio->io_bp_orig;
3147 	zio_prop_t *zp = &zio->io_prop;
3148 
3149 	ASSERT(BP_IS_HOLE(bp));
3150 	ASSERT(BP_GET_LEVEL(bp) == 0);
3151 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3152 	ASSERT(zp->zp_nopwrite);
3153 	ASSERT(!zp->zp_dedup);
3154 	ASSERT(zio->io_bp_override == NULL);
3155 	ASSERT(IO_IS_ALLOCATING(zio));
3156 
3157 	/*
3158 	 * Check to see if the original bp and the new bp have matching
3159 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3160 	 * If they don't then just continue with the pipeline which will
3161 	 * allocate a new bp.
3162 	 */
3163 	if (BP_IS_HOLE(bp_orig) ||
3164 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3165 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3166 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3167 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3168 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3169 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3170 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3171 		return (zio);
3172 
3173 	/*
3174 	 * If the checksums match then reset the pipeline so that we
3175 	 * avoid allocating a new bp and issuing any I/O.
3176 	 */
3177 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3178 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3179 		    ZCHECKSUM_FLAG_NOPWRITE);
3180 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3181 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3182 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3183 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3184 
3185 		/*
3186 		 * If we're overwriting a block that is currently on an
3187 		 * indirect vdev, then ignore the nopwrite request and
3188 		 * allow a new block to be allocated on a concrete vdev.
3189 		 */
3190 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3191 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3192 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3193 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3194 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3195 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3196 				return (zio);
3197 			}
3198 		}
3199 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3200 
3201 		*bp = *bp_orig;
3202 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3203 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3204 	}
3205 
3206 	return (zio);
3207 }
3208 
3209 /*
3210  * ==========================================================================
3211  * Block Reference Table
3212  * ==========================================================================
3213  */
3214 static zio_t *
zio_brt_free(zio_t * zio)3215 zio_brt_free(zio_t *zio)
3216 {
3217 	blkptr_t *bp;
3218 
3219 	bp = zio->io_bp;
3220 
3221 	if (BP_GET_LEVEL(bp) > 0 ||
3222 	    BP_IS_METADATA(bp) ||
3223 	    !brt_maybe_exists(zio->io_spa, bp)) {
3224 		return (zio);
3225 	}
3226 
3227 	if (!brt_entry_decref(zio->io_spa, bp)) {
3228 		/*
3229 		 * This isn't the last reference, so we cannot free
3230 		 * the data yet.
3231 		 */
3232 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3233 	}
3234 
3235 	return (zio);
3236 }
3237 
3238 /*
3239  * ==========================================================================
3240  * Dedup
3241  * ==========================================================================
3242  */
3243 static void
zio_ddt_child_read_done(zio_t * zio)3244 zio_ddt_child_read_done(zio_t *zio)
3245 {
3246 	blkptr_t *bp = zio->io_bp;
3247 	ddt_entry_t *dde = zio->io_private;
3248 	ddt_phys_t *ddp;
3249 	zio_t *pio = zio_unique_parent(zio);
3250 
3251 	mutex_enter(&pio->io_lock);
3252 	ddp = ddt_phys_select(dde, bp);
3253 	if (zio->io_error == 0)
3254 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3255 
3256 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3257 		dde->dde_repair_abd = zio->io_abd;
3258 	else
3259 		abd_free(zio->io_abd);
3260 	mutex_exit(&pio->io_lock);
3261 }
3262 
3263 static zio_t *
zio_ddt_read_start(zio_t * zio)3264 zio_ddt_read_start(zio_t *zio)
3265 {
3266 	blkptr_t *bp = zio->io_bp;
3267 
3268 	ASSERT(BP_GET_DEDUP(bp));
3269 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3270 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3271 
3272 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3273 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3274 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3275 		ddt_phys_t *ddp = dde->dde_phys;
3276 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3277 		blkptr_t blk;
3278 
3279 		ASSERT(zio->io_vsd == NULL);
3280 		zio->io_vsd = dde;
3281 
3282 		if (ddp_self == NULL)
3283 			return (zio);
3284 
3285 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3286 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3287 				continue;
3288 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3289 			    &blk);
3290 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3291 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3292 			    zio->io_size, zio_ddt_child_read_done, dde,
3293 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3294 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3295 		}
3296 		return (zio);
3297 	}
3298 
3299 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3300 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3301 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3302 
3303 	return (zio);
3304 }
3305 
3306 static zio_t *
zio_ddt_read_done(zio_t * zio)3307 zio_ddt_read_done(zio_t *zio)
3308 {
3309 	blkptr_t *bp = zio->io_bp;
3310 
3311 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3312 		return (NULL);
3313 	}
3314 
3315 	ASSERT(BP_GET_DEDUP(bp));
3316 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3317 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3318 
3319 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3320 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3321 		ddt_entry_t *dde = zio->io_vsd;
3322 		if (ddt == NULL) {
3323 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3324 			return (zio);
3325 		}
3326 		if (dde == NULL) {
3327 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3328 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3329 			return (NULL);
3330 		}
3331 		if (dde->dde_repair_abd != NULL) {
3332 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3333 			    zio->io_size);
3334 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3335 		}
3336 		ddt_repair_done(ddt, dde);
3337 		zio->io_vsd = NULL;
3338 	}
3339 
3340 	ASSERT(zio->io_vsd == NULL);
3341 
3342 	return (zio);
3343 }
3344 
3345 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3346 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3347 {
3348 	spa_t *spa = zio->io_spa;
3349 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3350 
3351 	ASSERT(!(zio->io_bp_override && do_raw));
3352 
3353 	/*
3354 	 * Note: we compare the original data, not the transformed data,
3355 	 * because when zio->io_bp is an override bp, we will not have
3356 	 * pushed the I/O transforms.  That's an important optimization
3357 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3358 	 * However, we should never get a raw, override zio so in these
3359 	 * cases we can compare the io_abd directly. This is useful because
3360 	 * it allows us to do dedup verification even if we don't have access
3361 	 * to the original data (for instance, if the encryption keys aren't
3362 	 * loaded).
3363 	 */
3364 
3365 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3366 		zio_t *lio = dde->dde_lead_zio[p];
3367 
3368 		if (lio != NULL && do_raw) {
3369 			return (lio->io_size != zio->io_size ||
3370 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3371 		} else if (lio != NULL) {
3372 			return (lio->io_orig_size != zio->io_orig_size ||
3373 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3374 		}
3375 	}
3376 
3377 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3378 		ddt_phys_t *ddp = &dde->dde_phys[p];
3379 
3380 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3381 			blkptr_t blk = *zio->io_bp;
3382 			uint64_t psize;
3383 			abd_t *tmpabd;
3384 			int error;
3385 
3386 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3387 			psize = BP_GET_PSIZE(&blk);
3388 
3389 			if (psize != zio->io_size)
3390 				return (B_TRUE);
3391 
3392 			ddt_exit(ddt);
3393 
3394 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3395 
3396 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3397 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3398 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3399 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3400 
3401 			if (error == 0) {
3402 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3403 					error = SET_ERROR(ENOENT);
3404 			}
3405 
3406 			abd_free(tmpabd);
3407 			ddt_enter(ddt);
3408 			return (error != 0);
3409 		} else if (ddp->ddp_phys_birth != 0) {
3410 			arc_buf_t *abuf = NULL;
3411 			arc_flags_t aflags = ARC_FLAG_WAIT;
3412 			blkptr_t blk = *zio->io_bp;
3413 			int error;
3414 
3415 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3416 
3417 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3418 				return (B_TRUE);
3419 
3420 			ddt_exit(ddt);
3421 
3422 			error = arc_read(NULL, spa, &blk,
3423 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3424 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3425 			    &aflags, &zio->io_bookmark);
3426 
3427 			if (error == 0) {
3428 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3429 				    zio->io_orig_size) != 0)
3430 					error = SET_ERROR(ENOENT);
3431 				arc_buf_destroy(abuf, &abuf);
3432 			}
3433 
3434 			ddt_enter(ddt);
3435 			return (error != 0);
3436 		}
3437 	}
3438 
3439 	return (B_FALSE);
3440 }
3441 
3442 static void
zio_ddt_child_write_ready(zio_t * zio)3443 zio_ddt_child_write_ready(zio_t *zio)
3444 {
3445 	int p = zio->io_prop.zp_copies;
3446 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3447 	ddt_entry_t *dde = zio->io_private;
3448 	ddt_phys_t *ddp = &dde->dde_phys[p];
3449 	zio_t *pio;
3450 
3451 	if (zio->io_error)
3452 		return;
3453 
3454 	ddt_enter(ddt);
3455 
3456 	ASSERT(dde->dde_lead_zio[p] == zio);
3457 
3458 	ddt_phys_fill(ddp, zio->io_bp);
3459 
3460 	zio_link_t *zl = NULL;
3461 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3462 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3463 
3464 	ddt_exit(ddt);
3465 }
3466 
3467 static void
zio_ddt_child_write_done(zio_t * zio)3468 zio_ddt_child_write_done(zio_t *zio)
3469 {
3470 	int p = zio->io_prop.zp_copies;
3471 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3472 	ddt_entry_t *dde = zio->io_private;
3473 	ddt_phys_t *ddp = &dde->dde_phys[p];
3474 
3475 	ddt_enter(ddt);
3476 
3477 	ASSERT(ddp->ddp_refcnt == 0);
3478 	ASSERT(dde->dde_lead_zio[p] == zio);
3479 	dde->dde_lead_zio[p] = NULL;
3480 
3481 	if (zio->io_error == 0) {
3482 		zio_link_t *zl = NULL;
3483 		while (zio_walk_parents(zio, &zl) != NULL)
3484 			ddt_phys_addref(ddp);
3485 	} else {
3486 		ddt_phys_clear(ddp);
3487 	}
3488 
3489 	ddt_exit(ddt);
3490 }
3491 
3492 static zio_t *
zio_ddt_write(zio_t * zio)3493 zio_ddt_write(zio_t *zio)
3494 {
3495 	spa_t *spa = zio->io_spa;
3496 	blkptr_t *bp = zio->io_bp;
3497 	uint64_t txg = zio->io_txg;
3498 	zio_prop_t *zp = &zio->io_prop;
3499 	int p = zp->zp_copies;
3500 	zio_t *cio = NULL;
3501 	ddt_t *ddt = ddt_select(spa, bp);
3502 	ddt_entry_t *dde;
3503 	ddt_phys_t *ddp;
3504 
3505 	ASSERT(BP_GET_DEDUP(bp));
3506 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3507 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3508 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3509 
3510 	ddt_enter(ddt);
3511 	dde = ddt_lookup(ddt, bp, B_TRUE);
3512 	ddp = &dde->dde_phys[p];
3513 
3514 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3515 		/*
3516 		 * If we're using a weak checksum, upgrade to a strong checksum
3517 		 * and try again.  If we're already using a strong checksum,
3518 		 * we can't resolve it, so just convert to an ordinary write.
3519 		 * (And automatically e-mail a paper to Nature?)
3520 		 */
3521 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3522 		    ZCHECKSUM_FLAG_DEDUP)) {
3523 			zp->zp_checksum = spa_dedup_checksum(spa);
3524 			zio_pop_transforms(zio);
3525 			zio->io_stage = ZIO_STAGE_OPEN;
3526 			BP_ZERO(bp);
3527 		} else {
3528 			zp->zp_dedup = B_FALSE;
3529 			BP_SET_DEDUP(bp, B_FALSE);
3530 		}
3531 		ASSERT(!BP_GET_DEDUP(bp));
3532 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3533 		ddt_exit(ddt);
3534 		return (zio);
3535 	}
3536 
3537 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3538 		if (ddp->ddp_phys_birth != 0)
3539 			ddt_bp_fill(ddp, bp, txg);
3540 		if (dde->dde_lead_zio[p] != NULL)
3541 			zio_add_child(zio, dde->dde_lead_zio[p]);
3542 		else
3543 			ddt_phys_addref(ddp);
3544 	} else if (zio->io_bp_override) {
3545 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3546 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3547 		ddt_phys_fill(ddp, bp);
3548 		ddt_phys_addref(ddp);
3549 	} else {
3550 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3551 		    zio->io_orig_size, zio->io_orig_size, zp,
3552 		    zio_ddt_child_write_ready, NULL,
3553 		    zio_ddt_child_write_done, dde, zio->io_priority,
3554 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3555 
3556 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3557 		dde->dde_lead_zio[p] = cio;
3558 	}
3559 
3560 	ddt_exit(ddt);
3561 
3562 	zio_nowait(cio);
3563 
3564 	return (zio);
3565 }
3566 
3567 static ddt_entry_t *freedde; /* for debugging */
3568 
3569 static zio_t *
zio_ddt_free(zio_t * zio)3570 zio_ddt_free(zio_t *zio)
3571 {
3572 	spa_t *spa = zio->io_spa;
3573 	blkptr_t *bp = zio->io_bp;
3574 	ddt_t *ddt = ddt_select(spa, bp);
3575 	ddt_entry_t *dde;
3576 	ddt_phys_t *ddp;
3577 
3578 	ASSERT(BP_GET_DEDUP(bp));
3579 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3580 
3581 	ddt_enter(ddt);
3582 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3583 	if (dde) {
3584 		ddp = ddt_phys_select(dde, bp);
3585 		if (ddp)
3586 			ddt_phys_decref(ddp);
3587 	}
3588 	ddt_exit(ddt);
3589 
3590 	return (zio);
3591 }
3592 
3593 /*
3594  * ==========================================================================
3595  * Allocate and free blocks
3596  * ==========================================================================
3597  */
3598 
3599 static zio_t *
zio_io_to_allocate(spa_t * spa,int allocator)3600 zio_io_to_allocate(spa_t *spa, int allocator)
3601 {
3602 	zio_t *zio;
3603 
3604 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3605 
3606 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3607 	if (zio == NULL)
3608 		return (NULL);
3609 
3610 	ASSERT(IO_IS_ALLOCATING(zio));
3611 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3612 
3613 	/*
3614 	 * Try to place a reservation for this zio. If we're unable to
3615 	 * reserve then we throttle.
3616 	 */
3617 	ASSERT3U(zio->io_allocator, ==, allocator);
3618 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3619 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3620 		return (NULL);
3621 	}
3622 
3623 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3624 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3625 
3626 	return (zio);
3627 }
3628 
3629 static zio_t *
zio_dva_throttle(zio_t * zio)3630 zio_dva_throttle(zio_t *zio)
3631 {
3632 	spa_t *spa = zio->io_spa;
3633 	zio_t *nio;
3634 	metaslab_class_t *mc;
3635 
3636 	/* locate an appropriate allocation class */
3637 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3638 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3639 
3640 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3641 	    !mc->mc_alloc_throttle_enabled ||
3642 	    zio->io_child_type == ZIO_CHILD_GANG ||
3643 	    zio->io_flags & ZIO_FLAG_NODATA) {
3644 		return (zio);
3645 	}
3646 
3647 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3648 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3649 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3650 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3651 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3652 
3653 	int allocator = zio->io_allocator;
3654 	zio->io_metaslab_class = mc;
3655 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3656 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3657 	nio = zio_io_to_allocate(spa, allocator);
3658 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3659 	return (nio);
3660 }
3661 
3662 static void
zio_allocate_dispatch(spa_t * spa,int allocator)3663 zio_allocate_dispatch(spa_t *spa, int allocator)
3664 {
3665 	zio_t *zio;
3666 
3667 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3668 	zio = zio_io_to_allocate(spa, allocator);
3669 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3670 	if (zio == NULL)
3671 		return;
3672 
3673 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3674 	ASSERT0(zio->io_error);
3675 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3676 }
3677 
3678 static zio_t *
zio_dva_allocate(zio_t * zio)3679 zio_dva_allocate(zio_t *zio)
3680 {
3681 	spa_t *spa = zio->io_spa;
3682 	metaslab_class_t *mc;
3683 	blkptr_t *bp = zio->io_bp;
3684 	int error;
3685 	int flags = 0;
3686 
3687 	if (zio->io_gang_leader == NULL) {
3688 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3689 		zio->io_gang_leader = zio;
3690 	}
3691 
3692 	ASSERT(BP_IS_HOLE(bp));
3693 	ASSERT0(BP_GET_NDVAS(bp));
3694 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3695 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3696 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3697 
3698 	if (zio->io_flags & ZIO_FLAG_NODATA)
3699 		flags |= METASLAB_DONT_THROTTLE;
3700 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3701 		flags |= METASLAB_GANG_CHILD;
3702 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3703 		flags |= METASLAB_ASYNC_ALLOC;
3704 
3705 	/*
3706 	 * if not already chosen, locate an appropriate allocation class
3707 	 */
3708 	mc = zio->io_metaslab_class;
3709 	if (mc == NULL) {
3710 		mc = spa_preferred_class(spa, zio->io_size,
3711 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3712 		    zio->io_prop.zp_zpl_smallblk);
3713 		zio->io_metaslab_class = mc;
3714 	}
3715 
3716 	/*
3717 	 * Try allocating the block in the usual metaslab class.
3718 	 * If that's full, allocate it in the normal class.
3719 	 * If that's full, allocate as a gang block,
3720 	 * and if all are full, the allocation fails (which shouldn't happen).
3721 	 *
3722 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3723 	 * preserve unfragmented slog space, which is critical for decent
3724 	 * sync write performance.  If a log allocation fails, we will fall
3725 	 * back to spa_sync() which is abysmal for performance.
3726 	 */
3727 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3728 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3729 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3730 	    &zio->io_alloc_list, zio, zio->io_allocator);
3731 
3732 	/*
3733 	 * Fallback to normal class when an alloc class is full
3734 	 */
3735 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3736 		/*
3737 		 * If throttling, transfer reservation over to normal class.
3738 		 * The io_allocator slot can remain the same even though we
3739 		 * are switching classes.
3740 		 */
3741 		if (mc->mc_alloc_throttle_enabled &&
3742 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3743 			metaslab_class_throttle_unreserve(mc,
3744 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3745 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3746 
3747 			VERIFY(metaslab_class_throttle_reserve(
3748 			    spa_normal_class(spa),
3749 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3750 			    flags | METASLAB_MUST_RESERVE));
3751 		}
3752 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3753 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3754 			zfs_dbgmsg("%s: metaslab allocation failure, "
3755 			    "trying normal class: zio %px, size %llu, error %d",
3756 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3757 			    error);
3758 		}
3759 
3760 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3761 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3762 		    &zio->io_alloc_list, zio, zio->io_allocator);
3763 	}
3764 
3765 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3766 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3767 			zfs_dbgmsg("%s: metaslab allocation failure, "
3768 			    "trying ganging: zio %px, size %llu, error %d",
3769 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3770 			    error);
3771 		}
3772 		return (zio_write_gang_block(zio, mc));
3773 	}
3774 	if (error != 0) {
3775 		if (error != ENOSPC ||
3776 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3777 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3778 			    "size %llu, error %d",
3779 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3780 			    error);
3781 		}
3782 		zio->io_error = error;
3783 	}
3784 
3785 	return (zio);
3786 }
3787 
3788 static zio_t *
zio_dva_free(zio_t * zio)3789 zio_dva_free(zio_t *zio)
3790 {
3791 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3792 
3793 	return (zio);
3794 }
3795 
3796 static zio_t *
zio_dva_claim(zio_t * zio)3797 zio_dva_claim(zio_t *zio)
3798 {
3799 	int error;
3800 
3801 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3802 	if (error)
3803 		zio->io_error = error;
3804 
3805 	return (zio);
3806 }
3807 
3808 /*
3809  * Undo an allocation.  This is used by zio_done() when an I/O fails
3810  * and we want to give back the block we just allocated.
3811  * This handles both normal blocks and gang blocks.
3812  */
3813 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)3814 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3815 {
3816 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
3817 	ASSERT(zio->io_bp_override == NULL);
3818 
3819 	if (!BP_IS_HOLE(bp)) {
3820 		metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
3821 		    B_TRUE);
3822 	}
3823 
3824 	if (gn != NULL) {
3825 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3826 			zio_dva_unallocate(zio, gn->gn_child[g],
3827 			    &gn->gn_gbh->zg_blkptr[g]);
3828 		}
3829 	}
3830 }
3831 
3832 /*
3833  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3834  */
3835 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)3836 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3837     uint64_t size, boolean_t *slog)
3838 {
3839 	int error = 1;
3840 	zio_alloc_list_t io_alloc_list;
3841 
3842 	ASSERT(txg > spa_syncing_txg(spa));
3843 
3844 	metaslab_trace_init(&io_alloc_list);
3845 
3846 	/*
3847 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3848 	 * Fill in the obvious ones before calling into metaslab_alloc().
3849 	 */
3850 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3851 	BP_SET_PSIZE(new_bp, size);
3852 	BP_SET_LEVEL(new_bp, 0);
3853 
3854 	/*
3855 	 * When allocating a zil block, we don't have information about
3856 	 * the final destination of the block except the objset it's part
3857 	 * of, so we just hash the objset ID to pick the allocator to get
3858 	 * some parallelism.
3859 	 */
3860 	int flags = METASLAB_ZIL;
3861 	int allocator = (uint_t)cityhash4(0, 0, 0,
3862 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3863 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3864 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3865 	*slog = (error == 0);
3866 	if (error != 0) {
3867 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3868 		    new_bp, 1, txg, NULL, flags,
3869 		    &io_alloc_list, NULL, allocator);
3870 	}
3871 	if (error != 0) {
3872 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3873 		    new_bp, 1, txg, NULL, flags,
3874 		    &io_alloc_list, NULL, allocator);
3875 	}
3876 	metaslab_trace_fini(&io_alloc_list);
3877 
3878 	if (error == 0) {
3879 		BP_SET_LSIZE(new_bp, size);
3880 		BP_SET_PSIZE(new_bp, size);
3881 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3882 		BP_SET_CHECKSUM(new_bp,
3883 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3884 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3885 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3886 		BP_SET_LEVEL(new_bp, 0);
3887 		BP_SET_DEDUP(new_bp, 0);
3888 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3889 
3890 		/*
3891 		 * encrypted blocks will require an IV and salt. We generate
3892 		 * these now since we will not be rewriting the bp at
3893 		 * rewrite time.
3894 		 */
3895 		if (os->os_encrypted) {
3896 			uint8_t iv[ZIO_DATA_IV_LEN];
3897 			uint8_t salt[ZIO_DATA_SALT_LEN];
3898 
3899 			BP_SET_CRYPT(new_bp, B_TRUE);
3900 			VERIFY0(spa_crypt_get_salt(spa,
3901 			    dmu_objset_id(os), salt));
3902 			VERIFY0(zio_crypt_generate_iv(iv));
3903 
3904 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3905 		}
3906 	} else {
3907 		zfs_dbgmsg("%s: zil block allocation failure: "
3908 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3909 		    error);
3910 	}
3911 
3912 	return (error);
3913 }
3914 
3915 /*
3916  * ==========================================================================
3917  * Read and write to physical devices
3918  * ==========================================================================
3919  */
3920 
3921 /*
3922  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3923  * stops after this stage and will resume upon I/O completion.
3924  * However, there are instances where the vdev layer may need to
3925  * continue the pipeline when an I/O was not issued. Since the I/O
3926  * that was sent to the vdev layer might be different than the one
3927  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3928  * force the underlying vdev layers to call either zio_execute() or
3929  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3930  */
3931 static zio_t *
zio_vdev_io_start(zio_t * zio)3932 zio_vdev_io_start(zio_t *zio)
3933 {
3934 	vdev_t *vd = zio->io_vd;
3935 	uint64_t align;
3936 	spa_t *spa = zio->io_spa;
3937 
3938 	zio->io_delay = 0;
3939 
3940 	ASSERT(zio->io_error == 0);
3941 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3942 
3943 	if (vd == NULL) {
3944 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3945 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3946 
3947 		/*
3948 		 * The mirror_ops handle multiple DVAs in a single BP.
3949 		 */
3950 		vdev_mirror_ops.vdev_op_io_start(zio);
3951 		return (NULL);
3952 	}
3953 
3954 	ASSERT3P(zio->io_logical, !=, zio);
3955 	if (zio->io_type == ZIO_TYPE_WRITE) {
3956 		ASSERT(spa->spa_trust_config);
3957 
3958 		/*
3959 		 * Note: the code can handle other kinds of writes,
3960 		 * but we don't expect them.
3961 		 */
3962 		if (zio->io_vd->vdev_noalloc) {
3963 			ASSERT(zio->io_flags &
3964 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3965 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3966 		}
3967 	}
3968 
3969 	align = 1ULL << vd->vdev_top->vdev_ashift;
3970 
3971 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3972 	    P2PHASE(zio->io_size, align) != 0) {
3973 		/* Transform logical writes to be a full physical block size. */
3974 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3975 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3976 		ASSERT(vd == vd->vdev_top);
3977 		if (zio->io_type == ZIO_TYPE_WRITE) {
3978 			abd_copy(abuf, zio->io_abd, zio->io_size);
3979 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3980 		}
3981 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3982 	}
3983 
3984 	/*
3985 	 * If this is not a physical io, make sure that it is properly aligned
3986 	 * before proceeding.
3987 	 */
3988 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3989 		ASSERT0(P2PHASE(zio->io_offset, align));
3990 		ASSERT0(P2PHASE(zio->io_size, align));
3991 	} else {
3992 		/*
3993 		 * For physical writes, we allow 512b aligned writes and assume
3994 		 * the device will perform a read-modify-write as necessary.
3995 		 */
3996 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3997 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3998 	}
3999 
4000 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4001 
4002 	/*
4003 	 * If this is a repair I/O, and there's no self-healing involved --
4004 	 * that is, we're just resilvering what we expect to resilver --
4005 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4006 	 * This prevents spurious resilvering.
4007 	 *
4008 	 * There are a few ways that we can end up creating these spurious
4009 	 * resilver i/os:
4010 	 *
4011 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4012 	 * dirty DTL.  The mirror code will issue resilver writes to
4013 	 * each DVA, including the one(s) that are not on vdevs with dirty
4014 	 * DTLs.
4015 	 *
4016 	 * 2. With nested replication, which happens when we have a
4017 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4018 	 * For example, given mirror(replacing(A+B), C), it's likely that
4019 	 * only A is out of date (it's the new device). In this case, we'll
4020 	 * read from C, then use the data to resilver A+B -- but we don't
4021 	 * actually want to resilver B, just A. The top-level mirror has no
4022 	 * way to know this, so instead we just discard unnecessary repairs
4023 	 * as we work our way down the vdev tree.
4024 	 *
4025 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4026 	 * The same logic applies to any form of nested replication: ditto
4027 	 * + mirror, RAID-Z + replacing, etc.
4028 	 *
4029 	 * However, indirect vdevs point off to other vdevs which may have
4030 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4031 	 * will be properly bypassed instead.
4032 	 *
4033 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4034 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4035 	 * used, its spare blocks need to be written to but the leaf vdev's
4036 	 * of such blocks can have empty DTL_PARTIAL.
4037 	 *
4038 	 * There seemed no clean way to allow such writes while bypassing
4039 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4040 	 * for correctness.
4041 	 */
4042 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4043 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4044 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4045 	    vd->vdev_ops != &vdev_indirect_ops &&
4046 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4047 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4048 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4049 		zio_vdev_io_bypass(zio);
4050 		return (zio);
4051 	}
4052 
4053 	/*
4054 	 * Select the next best leaf I/O to process.  Distributed spares are
4055 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4056 	 * applying the dRAID mapping.
4057 	 */
4058 	if (vd->vdev_ops->vdev_op_leaf &&
4059 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4060 	    (zio->io_type == ZIO_TYPE_READ ||
4061 	    zio->io_type == ZIO_TYPE_WRITE ||
4062 	    zio->io_type == ZIO_TYPE_TRIM)) {
4063 
4064 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4065 			/*
4066 			 * "no-op" injections return success, but do no actual
4067 			 * work. Just skip the remaining vdev stages.
4068 			 */
4069 			zio_vdev_io_bypass(zio);
4070 			zio_interrupt(zio);
4071 			return (NULL);
4072 		}
4073 
4074 		if ((zio = vdev_queue_io(zio)) == NULL)
4075 			return (NULL);
4076 
4077 		if (!vdev_accessible(vd, zio)) {
4078 			zio->io_error = SET_ERROR(ENXIO);
4079 			zio_interrupt(zio);
4080 			return (NULL);
4081 		}
4082 		zio->io_delay = gethrtime();
4083 	}
4084 
4085 	vd->vdev_ops->vdev_op_io_start(zio);
4086 	return (NULL);
4087 }
4088 
4089 static zio_t *
zio_vdev_io_done(zio_t * zio)4090 zio_vdev_io_done(zio_t *zio)
4091 {
4092 	vdev_t *vd = zio->io_vd;
4093 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4094 	boolean_t unexpected_error = B_FALSE;
4095 
4096 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4097 		return (NULL);
4098 	}
4099 
4100 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4101 	    zio->io_type == ZIO_TYPE_WRITE ||
4102 	    zio->io_type == ZIO_TYPE_FLUSH ||
4103 	    zio->io_type == ZIO_TYPE_TRIM);
4104 
4105 	if (zio->io_delay)
4106 		zio->io_delay = gethrtime() - zio->io_delay;
4107 
4108 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4109 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4110 		if (zio->io_type != ZIO_TYPE_FLUSH)
4111 			vdev_queue_io_done(zio);
4112 
4113 		if (zio_injection_enabled && zio->io_error == 0)
4114 			zio->io_error = zio_handle_device_injections(vd, zio,
4115 			    EIO, EILSEQ);
4116 
4117 		if (zio_injection_enabled && zio->io_error == 0)
4118 			zio->io_error = zio_handle_label_injection(zio, EIO);
4119 
4120 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4121 		    zio->io_type != ZIO_TYPE_TRIM) {
4122 			if (!vdev_accessible(vd, zio)) {
4123 				zio->io_error = SET_ERROR(ENXIO);
4124 			} else {
4125 				unexpected_error = B_TRUE;
4126 			}
4127 		}
4128 	}
4129 
4130 	ops->vdev_op_io_done(zio);
4131 
4132 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4133 		VERIFY(vdev_probe(vd, zio) == NULL);
4134 
4135 	return (zio);
4136 }
4137 
4138 /*
4139  * This function is used to change the priority of an existing zio that is
4140  * currently in-flight. This is used by the arc to upgrade priority in the
4141  * event that a demand read is made for a block that is currently queued
4142  * as a scrub or async read IO. Otherwise, the high priority read request
4143  * would end up having to wait for the lower priority IO.
4144  */
4145 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4146 zio_change_priority(zio_t *pio, zio_priority_t priority)
4147 {
4148 	zio_t *cio, *cio_next;
4149 	zio_link_t *zl = NULL;
4150 
4151 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4152 
4153 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4154 		vdev_queue_change_io_priority(pio, priority);
4155 	} else {
4156 		pio->io_priority = priority;
4157 	}
4158 
4159 	mutex_enter(&pio->io_lock);
4160 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4161 		cio_next = zio_walk_children(pio, &zl);
4162 		zio_change_priority(cio, priority);
4163 	}
4164 	mutex_exit(&pio->io_lock);
4165 }
4166 
4167 /*
4168  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4169  * disk, and use that to finish the checksum ereport later.
4170  */
4171 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4172 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4173     const abd_t *good_buf)
4174 {
4175 	/* no processing needed */
4176 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4177 }
4178 
4179 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4180 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4181 {
4182 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4183 
4184 	abd_copy(abd, zio->io_abd, zio->io_size);
4185 
4186 	zcr->zcr_cbinfo = zio->io_size;
4187 	zcr->zcr_cbdata = abd;
4188 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4189 	zcr->zcr_free = zio_abd_free;
4190 }
4191 
4192 static zio_t *
zio_vdev_io_assess(zio_t * zio)4193 zio_vdev_io_assess(zio_t *zio)
4194 {
4195 	vdev_t *vd = zio->io_vd;
4196 
4197 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4198 		return (NULL);
4199 	}
4200 
4201 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4202 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4203 
4204 	if (zio->io_vsd != NULL) {
4205 		zio->io_vsd_ops->vsd_free(zio);
4206 		zio->io_vsd = NULL;
4207 	}
4208 
4209 	if (zio_injection_enabled && zio->io_error == 0)
4210 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4211 
4212 	/*
4213 	 * If the I/O failed, determine whether we should attempt to retry it.
4214 	 *
4215 	 * On retry, we cut in line in the issue queue, since we don't want
4216 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4217 	 */
4218 	if (zio->io_error && vd == NULL &&
4219 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4220 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4221 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4222 		zio->io_error = 0;
4223 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4224 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4225 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4226 		    zio_requeue_io_start_cut_in_line);
4227 		return (NULL);
4228 	}
4229 
4230 	/*
4231 	 * If we got an error on a leaf device, convert it to ENXIO
4232 	 * if the device is not accessible at all.
4233 	 */
4234 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4235 	    !vdev_accessible(vd, zio))
4236 		zio->io_error = SET_ERROR(ENXIO);
4237 
4238 	/*
4239 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4240 	 * set vdev_cant_write so that we stop trying to allocate from it.
4241 	 */
4242 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4243 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4244 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4245 		    "cant_write=TRUE due to write failure with ENXIO",
4246 		    zio);
4247 		vd->vdev_cant_write = B_TRUE;
4248 	}
4249 
4250 	/*
4251 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4252 	 * attempts will ever succeed. In this case we set a persistent
4253 	 * boolean flag so that we don't bother with it in the future.
4254 	 */
4255 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4256 	    zio->io_type == ZIO_TYPE_FLUSH && vd != NULL)
4257 		vd->vdev_nowritecache = B_TRUE;
4258 
4259 	if (zio->io_error)
4260 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4261 
4262 	return (zio);
4263 }
4264 
4265 void
zio_vdev_io_reissue(zio_t * zio)4266 zio_vdev_io_reissue(zio_t *zio)
4267 {
4268 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4269 	ASSERT(zio->io_error == 0);
4270 
4271 	zio->io_stage >>= 1;
4272 }
4273 
4274 void
zio_vdev_io_redone(zio_t * zio)4275 zio_vdev_io_redone(zio_t *zio)
4276 {
4277 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4278 
4279 	zio->io_stage >>= 1;
4280 }
4281 
4282 void
zio_vdev_io_bypass(zio_t * zio)4283 zio_vdev_io_bypass(zio_t *zio)
4284 {
4285 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4286 	ASSERT(zio->io_error == 0);
4287 
4288 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4289 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4290 }
4291 
4292 /*
4293  * ==========================================================================
4294  * Encrypt and store encryption parameters
4295  * ==========================================================================
4296  */
4297 
4298 
4299 /*
4300  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4301  * managing the storage of encryption parameters and passing them to the
4302  * lower-level encryption functions.
4303  */
4304 static zio_t *
zio_encrypt(zio_t * zio)4305 zio_encrypt(zio_t *zio)
4306 {
4307 	zio_prop_t *zp = &zio->io_prop;
4308 	spa_t *spa = zio->io_spa;
4309 	blkptr_t *bp = zio->io_bp;
4310 	uint64_t psize = BP_GET_PSIZE(bp);
4311 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4312 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4313 	void *enc_buf = NULL;
4314 	abd_t *eabd = NULL;
4315 	uint8_t salt[ZIO_DATA_SALT_LEN];
4316 	uint8_t iv[ZIO_DATA_IV_LEN];
4317 	uint8_t mac[ZIO_DATA_MAC_LEN];
4318 	boolean_t no_crypt = B_FALSE;
4319 
4320 	/* the root zio already encrypted the data */
4321 	if (zio->io_child_type == ZIO_CHILD_GANG)
4322 		return (zio);
4323 
4324 	/* only ZIL blocks are re-encrypted on rewrite */
4325 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4326 		return (zio);
4327 
4328 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4329 		BP_SET_CRYPT(bp, B_FALSE);
4330 		return (zio);
4331 	}
4332 
4333 	/* if we are doing raw encryption set the provided encryption params */
4334 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4335 		ASSERT0(BP_GET_LEVEL(bp));
4336 		BP_SET_CRYPT(bp, B_TRUE);
4337 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4338 		if (ot != DMU_OT_OBJSET)
4339 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4340 
4341 		/* dnode blocks must be written out in the provided byteorder */
4342 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4343 		    ot == DMU_OT_DNODE) {
4344 			void *bswap_buf = zio_buf_alloc(psize);
4345 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4346 
4347 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4348 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4349 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4350 			    psize);
4351 
4352 			abd_take_ownership_of_buf(babd, B_TRUE);
4353 			zio_push_transform(zio, babd, psize, psize, NULL);
4354 		}
4355 
4356 		if (DMU_OT_IS_ENCRYPTED(ot))
4357 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4358 		return (zio);
4359 	}
4360 
4361 	/* indirect blocks only maintain a cksum of the lower level MACs */
4362 	if (BP_GET_LEVEL(bp) > 0) {
4363 		BP_SET_CRYPT(bp, B_TRUE);
4364 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4365 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4366 		    mac));
4367 		zio_crypt_encode_mac_bp(bp, mac);
4368 		return (zio);
4369 	}
4370 
4371 	/*
4372 	 * Objset blocks are a special case since they have 2 256-bit MACs
4373 	 * embedded within them.
4374 	 */
4375 	if (ot == DMU_OT_OBJSET) {
4376 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4377 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4378 		BP_SET_CRYPT(bp, B_TRUE);
4379 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4380 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4381 		return (zio);
4382 	}
4383 
4384 	/* unencrypted object types are only authenticated with a MAC */
4385 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4386 		BP_SET_CRYPT(bp, B_TRUE);
4387 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4388 		    zio->io_abd, psize, mac));
4389 		zio_crypt_encode_mac_bp(bp, mac);
4390 		return (zio);
4391 	}
4392 
4393 	/*
4394 	 * Later passes of sync-to-convergence may decide to rewrite data
4395 	 * in place to avoid more disk reallocations. This presents a problem
4396 	 * for encryption because this constitutes rewriting the new data with
4397 	 * the same encryption key and IV. However, this only applies to blocks
4398 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4399 	 * MOS. We assert that the zio is allocating or an intent log write
4400 	 * to enforce this.
4401 	 */
4402 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4403 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4404 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4405 	ASSERT3U(psize, !=, 0);
4406 
4407 	enc_buf = zio_buf_alloc(psize);
4408 	eabd = abd_get_from_buf(enc_buf, psize);
4409 	abd_take_ownership_of_buf(eabd, B_TRUE);
4410 
4411 	/*
4412 	 * For an explanation of what encryption parameters are stored
4413 	 * where, see the block comment in zio_crypt.c.
4414 	 */
4415 	if (ot == DMU_OT_INTENT_LOG) {
4416 		zio_crypt_decode_params_bp(bp, salt, iv);
4417 	} else {
4418 		BP_SET_CRYPT(bp, B_TRUE);
4419 	}
4420 
4421 	/* Perform the encryption. This should not fail */
4422 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4423 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4424 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4425 
4426 	/* encode encryption metadata into the bp */
4427 	if (ot == DMU_OT_INTENT_LOG) {
4428 		/*
4429 		 * ZIL blocks store the MAC in the embedded checksum, so the
4430 		 * transform must always be applied.
4431 		 */
4432 		zio_crypt_encode_mac_zil(enc_buf, mac);
4433 		zio_push_transform(zio, eabd, psize, psize, NULL);
4434 	} else {
4435 		BP_SET_CRYPT(bp, B_TRUE);
4436 		zio_crypt_encode_params_bp(bp, salt, iv);
4437 		zio_crypt_encode_mac_bp(bp, mac);
4438 
4439 		if (no_crypt) {
4440 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4441 			abd_free(eabd);
4442 		} else {
4443 			zio_push_transform(zio, eabd, psize, psize, NULL);
4444 		}
4445 	}
4446 
4447 	return (zio);
4448 }
4449 
4450 /*
4451  * ==========================================================================
4452  * Generate and verify checksums
4453  * ==========================================================================
4454  */
4455 static zio_t *
zio_checksum_generate(zio_t * zio)4456 zio_checksum_generate(zio_t *zio)
4457 {
4458 	blkptr_t *bp = zio->io_bp;
4459 	enum zio_checksum checksum;
4460 
4461 	if (bp == NULL) {
4462 		/*
4463 		 * This is zio_write_phys().
4464 		 * We're either generating a label checksum, or none at all.
4465 		 */
4466 		checksum = zio->io_prop.zp_checksum;
4467 
4468 		if (checksum == ZIO_CHECKSUM_OFF)
4469 			return (zio);
4470 
4471 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4472 	} else {
4473 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4474 			ASSERT(!IO_IS_ALLOCATING(zio));
4475 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4476 		} else {
4477 			checksum = BP_GET_CHECKSUM(bp);
4478 		}
4479 	}
4480 
4481 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4482 
4483 	return (zio);
4484 }
4485 
4486 static zio_t *
zio_checksum_verify(zio_t * zio)4487 zio_checksum_verify(zio_t *zio)
4488 {
4489 	zio_bad_cksum_t info;
4490 	blkptr_t *bp = zio->io_bp;
4491 	int error;
4492 
4493 	ASSERT(zio->io_vd != NULL);
4494 
4495 	if (bp == NULL) {
4496 		/*
4497 		 * This is zio_read_phys().
4498 		 * We're either verifying a label checksum, or nothing at all.
4499 		 */
4500 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4501 			return (zio);
4502 
4503 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4504 	}
4505 
4506 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4507 		zio->io_error = error;
4508 		if (error == ECKSUM &&
4509 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4510 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4511 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4512 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4513 			(void) zfs_ereport_start_checksum(zio->io_spa,
4514 			    zio->io_vd, &zio->io_bookmark, zio,
4515 			    zio->io_offset, zio->io_size, &info);
4516 		}
4517 	}
4518 
4519 	return (zio);
4520 }
4521 
4522 /*
4523  * Called by RAID-Z to ensure we don't compute the checksum twice.
4524  */
4525 void
zio_checksum_verified(zio_t * zio)4526 zio_checksum_verified(zio_t *zio)
4527 {
4528 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4529 }
4530 
4531 /*
4532  * ==========================================================================
4533  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4534  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4535  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4536  * indicate errors that are specific to one I/O, and most likely permanent.
4537  * Any other error is presumed to be worse because we weren't expecting it.
4538  * ==========================================================================
4539  */
4540 int
zio_worst_error(int e1,int e2)4541 zio_worst_error(int e1, int e2)
4542 {
4543 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4544 	int r1, r2;
4545 
4546 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4547 		if (e1 == zio_error_rank[r1])
4548 			break;
4549 
4550 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4551 		if (e2 == zio_error_rank[r2])
4552 			break;
4553 
4554 	return (r1 > r2 ? e1 : e2);
4555 }
4556 
4557 /*
4558  * ==========================================================================
4559  * I/O completion
4560  * ==========================================================================
4561  */
4562 static zio_t *
zio_ready(zio_t * zio)4563 zio_ready(zio_t *zio)
4564 {
4565 	blkptr_t *bp = zio->io_bp;
4566 	zio_t *pio, *pio_next;
4567 	zio_link_t *zl = NULL;
4568 
4569 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4570 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4571 		return (NULL);
4572 	}
4573 
4574 	if (zio->io_ready) {
4575 		ASSERT(IO_IS_ALLOCATING(zio));
4576 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
4577 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
4578 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4579 
4580 		zio->io_ready(zio);
4581 	}
4582 
4583 #ifdef ZFS_DEBUG
4584 	if (bp != NULL && bp != &zio->io_bp_copy)
4585 		zio->io_bp_copy = *bp;
4586 #endif
4587 
4588 	if (zio->io_error != 0) {
4589 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4590 
4591 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4592 			ASSERT(IO_IS_ALLOCATING(zio));
4593 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4594 			ASSERT(zio->io_metaslab_class != NULL);
4595 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
4596 
4597 			/*
4598 			 * We were unable to allocate anything, unreserve and
4599 			 * issue the next I/O to allocate.
4600 			 */
4601 			metaslab_class_throttle_unreserve(
4602 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4603 			    zio->io_allocator, zio);
4604 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4605 		}
4606 	}
4607 
4608 	mutex_enter(&zio->io_lock);
4609 	zio->io_state[ZIO_WAIT_READY] = 1;
4610 	pio = zio_walk_parents(zio, &zl);
4611 	mutex_exit(&zio->io_lock);
4612 
4613 	/*
4614 	 * As we notify zio's parents, new parents could be added.
4615 	 * New parents go to the head of zio's io_parent_list, however,
4616 	 * so we will (correctly) not notify them.  The remainder of zio's
4617 	 * io_parent_list, from 'pio_next' onward, cannot change because
4618 	 * all parents must wait for us to be done before they can be done.
4619 	 */
4620 	for (; pio != NULL; pio = pio_next) {
4621 		pio_next = zio_walk_parents(zio, &zl);
4622 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4623 	}
4624 
4625 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4626 		if (bp != NULL && BP_IS_GANG(bp)) {
4627 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4628 		} else {
4629 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4630 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4631 		}
4632 	}
4633 
4634 	if (zio_injection_enabled &&
4635 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4636 		zio_handle_ignored_writes(zio);
4637 
4638 	return (zio);
4639 }
4640 
4641 /*
4642  * Update the allocation throttle accounting.
4643  */
4644 static void
zio_dva_throttle_done(zio_t * zio)4645 zio_dva_throttle_done(zio_t *zio)
4646 {
4647 	zio_t *lio __maybe_unused = zio->io_logical;
4648 	zio_t *pio = zio_unique_parent(zio);
4649 	vdev_t *vd = zio->io_vd;
4650 	int flags = METASLAB_ASYNC_ALLOC;
4651 
4652 	ASSERT3P(zio->io_bp, !=, NULL);
4653 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4654 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4655 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4656 	ASSERT(vd != NULL);
4657 	ASSERT3P(vd, ==, vd->vdev_top);
4658 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4659 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4660 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4661 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4662 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4663 
4664 	/*
4665 	 * Parents of gang children can have two flavors -- ones that
4666 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4667 	 * and ones that allocated the constituent blocks. The allocation
4668 	 * throttle needs to know the allocating parent zio so we must find
4669 	 * it here.
4670 	 */
4671 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4672 		/*
4673 		 * If our parent is a rewrite gang child then our grandparent
4674 		 * would have been the one that performed the allocation.
4675 		 */
4676 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4677 			pio = zio_unique_parent(pio);
4678 		flags |= METASLAB_GANG_CHILD;
4679 	}
4680 
4681 	ASSERT(IO_IS_ALLOCATING(pio));
4682 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
4683 	ASSERT3P(zio, !=, zio->io_logical);
4684 	ASSERT(zio->io_logical != NULL);
4685 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4686 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4687 	ASSERT(zio->io_metaslab_class != NULL);
4688 
4689 	mutex_enter(&pio->io_lock);
4690 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4691 	    pio->io_allocator, B_TRUE);
4692 	mutex_exit(&pio->io_lock);
4693 
4694 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4695 	    pio->io_allocator, pio);
4696 
4697 	/*
4698 	 * Call into the pipeline to see if there is more work that
4699 	 * needs to be done. If there is work to be done it will be
4700 	 * dispatched to another taskq thread.
4701 	 */
4702 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4703 }
4704 
4705 static zio_t *
zio_done(zio_t * zio)4706 zio_done(zio_t *zio)
4707 {
4708 	/*
4709 	 * Always attempt to keep stack usage minimal here since
4710 	 * we can be called recursively up to 19 levels deep.
4711 	 */
4712 	const uint64_t psize = zio->io_size;
4713 	zio_t *pio, *pio_next;
4714 	zio_link_t *zl = NULL;
4715 
4716 	/*
4717 	 * If our children haven't all completed,
4718 	 * wait for them and then repeat this pipeline stage.
4719 	 */
4720 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4721 		return (NULL);
4722 	}
4723 
4724 	/*
4725 	 * If the allocation throttle is enabled, then update the accounting.
4726 	 * We only track child I/Os that are part of an allocating async
4727 	 * write. We must do this since the allocation is performed
4728 	 * by the logical I/O but the actual write is done by child I/Os.
4729 	 */
4730 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4731 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4732 		ASSERT(zio->io_metaslab_class != NULL);
4733 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4734 		zio_dva_throttle_done(zio);
4735 	}
4736 
4737 	/*
4738 	 * If the allocation throttle is enabled, verify that
4739 	 * we have decremented the refcounts for every I/O that was throttled.
4740 	 */
4741 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4742 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4743 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4744 		ASSERT(zio->io_bp != NULL);
4745 		ASSERT(ZIO_HAS_ALLOCATOR(zio));
4746 
4747 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4748 		    zio->io_allocator);
4749 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4750 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4751 	}
4752 
4753 
4754 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4755 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4756 			ASSERT(zio->io_children[c][w] == 0);
4757 
4758 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4759 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4760 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4761 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4762 		    sizeof (blkptr_t)) == 0 ||
4763 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4764 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4765 		    zio->io_bp_override == NULL &&
4766 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4767 			ASSERT3U(zio->io_prop.zp_copies, <=,
4768 			    BP_GET_NDVAS(zio->io_bp));
4769 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4770 			    (BP_COUNT_GANG(zio->io_bp) ==
4771 			    BP_GET_NDVAS(zio->io_bp)));
4772 		}
4773 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4774 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4775 	}
4776 
4777 	/*
4778 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4779 	 */
4780 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4781 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4782 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4783 
4784 	/*
4785 	 * If the I/O on the transformed data was successful, generate any
4786 	 * checksum reports now while we still have the transformed data.
4787 	 */
4788 	if (zio->io_error == 0) {
4789 		while (zio->io_cksum_report != NULL) {
4790 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4791 			uint64_t align = zcr->zcr_align;
4792 			uint64_t asize = P2ROUNDUP(psize, align);
4793 			abd_t *adata = zio->io_abd;
4794 
4795 			if (adata != NULL && asize != psize) {
4796 				adata = abd_alloc(asize, B_TRUE);
4797 				abd_copy(adata, zio->io_abd, psize);
4798 				abd_zero_off(adata, psize, asize - psize);
4799 			}
4800 
4801 			zio->io_cksum_report = zcr->zcr_next;
4802 			zcr->zcr_next = NULL;
4803 			zcr->zcr_finish(zcr, adata);
4804 			zfs_ereport_free_checksum(zcr);
4805 
4806 			if (adata != NULL && asize != psize)
4807 				abd_free(adata);
4808 		}
4809 	}
4810 
4811 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4812 
4813 	vdev_stat_update(zio, psize);
4814 
4815 	/*
4816 	 * If this I/O is attached to a particular vdev is slow, exceeding
4817 	 * 30 seconds to complete, post an error described the I/O delay.
4818 	 * We ignore these errors if the device is currently unavailable.
4819 	 */
4820 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4821 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4822 			/*
4823 			 * We want to only increment our slow IO counters if
4824 			 * the IO is valid (i.e. not if the drive is removed).
4825 			 *
4826 			 * zfs_ereport_post() will also do these checks, but
4827 			 * it can also ratelimit and have other failures, so we
4828 			 * need to increment the slow_io counters independent
4829 			 * of it.
4830 			 */
4831 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4832 			    zio->io_spa, zio->io_vd, zio)) {
4833 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4834 				zio->io_vd->vdev_stat.vs_slow_ios++;
4835 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4836 
4837 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4838 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4839 				    zio, 0);
4840 			}
4841 		}
4842 	}
4843 
4844 	if (zio->io_error) {
4845 		/*
4846 		 * If this I/O is attached to a particular vdev,
4847 		 * generate an error message describing the I/O failure
4848 		 * at the block level.  We ignore these errors if the
4849 		 * device is currently unavailable.
4850 		 */
4851 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4852 		    !vdev_is_dead(zio->io_vd)) {
4853 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4854 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4855 			if (ret != EALREADY) {
4856 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4857 				if (zio->io_type == ZIO_TYPE_READ)
4858 					zio->io_vd->vdev_stat.vs_read_errors++;
4859 				else if (zio->io_type == ZIO_TYPE_WRITE)
4860 					zio->io_vd->vdev_stat.vs_write_errors++;
4861 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4862 			}
4863 		}
4864 
4865 		if ((zio->io_error == EIO || !(zio->io_flags &
4866 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4867 		    zio == zio->io_logical) {
4868 			/*
4869 			 * For logical I/O requests, tell the SPA to log the
4870 			 * error and generate a logical data ereport.
4871 			 */
4872 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4873 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
4874 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4875 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4876 		}
4877 	}
4878 
4879 	if (zio->io_error && zio == zio->io_logical) {
4880 		/*
4881 		 * Determine whether zio should be reexecuted.  This will
4882 		 * propagate all the way to the root via zio_notify_parent().
4883 		 */
4884 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4885 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4886 
4887 		if (IO_IS_ALLOCATING(zio) &&
4888 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4889 			if (zio->io_error != ENOSPC)
4890 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4891 			else
4892 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4893 		}
4894 
4895 		if ((zio->io_type == ZIO_TYPE_READ ||
4896 		    zio->io_type == ZIO_TYPE_FREE) &&
4897 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4898 		    zio->io_error == ENXIO &&
4899 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4900 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4901 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4902 
4903 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4904 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4905 
4906 		/*
4907 		 * Here is a possibly good place to attempt to do
4908 		 * either combinatorial reconstruction or error correction
4909 		 * based on checksums.  It also might be a good place
4910 		 * to send out preliminary ereports before we suspend
4911 		 * processing.
4912 		 */
4913 	}
4914 
4915 	/*
4916 	 * If there were logical child errors, they apply to us now.
4917 	 * We defer this until now to avoid conflating logical child
4918 	 * errors with errors that happened to the zio itself when
4919 	 * updating vdev stats and reporting FMA events above.
4920 	 */
4921 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4922 
4923 	if ((zio->io_error || zio->io_reexecute) &&
4924 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4925 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4926 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4927 
4928 	zio_gang_tree_free(&zio->io_gang_tree);
4929 
4930 	/*
4931 	 * Godfather I/Os should never suspend.
4932 	 */
4933 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4934 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4935 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4936 
4937 	if (zio->io_reexecute) {
4938 		/*
4939 		 * This is a logical I/O that wants to reexecute.
4940 		 *
4941 		 * Reexecute is top-down.  When an i/o fails, if it's not
4942 		 * the root, it simply notifies its parent and sticks around.
4943 		 * The parent, seeing that it still has children in zio_done(),
4944 		 * does the same.  This percolates all the way up to the root.
4945 		 * The root i/o will reexecute or suspend the entire tree.
4946 		 *
4947 		 * This approach ensures that zio_reexecute() honors
4948 		 * all the original i/o dependency relationships, e.g.
4949 		 * parents not executing until children are ready.
4950 		 */
4951 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4952 
4953 		zio->io_gang_leader = NULL;
4954 
4955 		mutex_enter(&zio->io_lock);
4956 		zio->io_state[ZIO_WAIT_DONE] = 1;
4957 		mutex_exit(&zio->io_lock);
4958 
4959 		/*
4960 		 * "The Godfather" I/O monitors its children but is
4961 		 * not a true parent to them. It will track them through
4962 		 * the pipeline but severs its ties whenever they get into
4963 		 * trouble (e.g. suspended). This allows "The Godfather"
4964 		 * I/O to return status without blocking.
4965 		 */
4966 		zl = NULL;
4967 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4968 		    pio = pio_next) {
4969 			zio_link_t *remove_zl = zl;
4970 			pio_next = zio_walk_parents(zio, &zl);
4971 
4972 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4973 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4974 				zio_remove_child(pio, zio, remove_zl);
4975 				/*
4976 				 * This is a rare code path, so we don't
4977 				 * bother with "next_to_execute".
4978 				 */
4979 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4980 				    NULL);
4981 			}
4982 		}
4983 
4984 		if ((pio = zio_unique_parent(zio)) != NULL) {
4985 			/*
4986 			 * We're not a root i/o, so there's nothing to do
4987 			 * but notify our parent.  Don't propagate errors
4988 			 * upward since we haven't permanently failed yet.
4989 			 */
4990 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4991 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4992 			/*
4993 			 * This is a rare code path, so we don't bother with
4994 			 * "next_to_execute".
4995 			 */
4996 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4997 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4998 			/*
4999 			 * We'd fail again if we reexecuted now, so suspend
5000 			 * until conditions improve (e.g. device comes online).
5001 			 */
5002 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5003 		} else {
5004 			/*
5005 			 * Reexecution is potentially a huge amount of work.
5006 			 * Hand it off to the otherwise-unused claim taskq.
5007 			 */
5008 			ASSERT(taskq_empty_ent(&zio->io_tqent));
5009 			spa_taskq_dispatch_ent(zio->io_spa,
5010 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5011 			    zio_reexecute, zio, 0, &zio->io_tqent, NULL);
5012 		}
5013 		return (NULL);
5014 	}
5015 
5016 	ASSERT(list_is_empty(&zio->io_child_list));
5017 	ASSERT(zio->io_reexecute == 0);
5018 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5019 
5020 	/*
5021 	 * Report any checksum errors, since the I/O is complete.
5022 	 */
5023 	while (zio->io_cksum_report != NULL) {
5024 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5025 		zio->io_cksum_report = zcr->zcr_next;
5026 		zcr->zcr_next = NULL;
5027 		zcr->zcr_finish(zcr, NULL);
5028 		zfs_ereport_free_checksum(zcr);
5029 	}
5030 
5031 	/*
5032 	 * It is the responsibility of the done callback to ensure that this
5033 	 * particular zio is no longer discoverable for adoption, and as
5034 	 * such, cannot acquire any new parents.
5035 	 */
5036 	if (zio->io_done)
5037 		zio->io_done(zio);
5038 
5039 	mutex_enter(&zio->io_lock);
5040 	zio->io_state[ZIO_WAIT_DONE] = 1;
5041 	mutex_exit(&zio->io_lock);
5042 
5043 	/*
5044 	 * We are done executing this zio.  We may want to execute a parent
5045 	 * next.  See the comment in zio_notify_parent().
5046 	 */
5047 	zio_t *next_to_execute = NULL;
5048 	zl = NULL;
5049 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5050 		zio_link_t *remove_zl = zl;
5051 		pio_next = zio_walk_parents(zio, &zl);
5052 		zio_remove_child(pio, zio, remove_zl);
5053 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5054 	}
5055 
5056 	if (zio->io_waiter != NULL) {
5057 		mutex_enter(&zio->io_lock);
5058 		zio->io_executor = NULL;
5059 		cv_broadcast(&zio->io_cv);
5060 		mutex_exit(&zio->io_lock);
5061 	} else {
5062 		zio_destroy(zio);
5063 	}
5064 
5065 	return (next_to_execute);
5066 }
5067 
5068 /*
5069  * ==========================================================================
5070  * I/O pipeline definition
5071  * ==========================================================================
5072  */
5073 static zio_pipe_stage_t *zio_pipeline[] = {
5074 	NULL,
5075 	zio_read_bp_init,
5076 	zio_write_bp_init,
5077 	zio_free_bp_init,
5078 	zio_issue_async,
5079 	zio_write_compress,
5080 	zio_encrypt,
5081 	zio_checksum_generate,
5082 	zio_nop_write,
5083 	zio_brt_free,
5084 	zio_ddt_read_start,
5085 	zio_ddt_read_done,
5086 	zio_ddt_write,
5087 	zio_ddt_free,
5088 	zio_gang_assemble,
5089 	zio_gang_issue,
5090 	zio_dva_throttle,
5091 	zio_dva_allocate,
5092 	zio_dva_free,
5093 	zio_dva_claim,
5094 	zio_ready,
5095 	zio_vdev_io_start,
5096 	zio_vdev_io_done,
5097 	zio_vdev_io_assess,
5098 	zio_checksum_verify,
5099 	zio_done
5100 };
5101 
5102 
5103 
5104 
5105 /*
5106  * Compare two zbookmark_phys_t's to see which we would reach first in a
5107  * pre-order traversal of the object tree.
5108  *
5109  * This is simple in every case aside from the meta-dnode object. For all other
5110  * objects, we traverse them in order (object 1 before object 2, and so on).
5111  * However, all of these objects are traversed while traversing object 0, since
5112  * the data it points to is the list of objects.  Thus, we need to convert to a
5113  * canonical representation so we can compare meta-dnode bookmarks to
5114  * non-meta-dnode bookmarks.
5115  *
5116  * We do this by calculating "equivalents" for each field of the zbookmark.
5117  * zbookmarks outside of the meta-dnode use their own object and level, and
5118  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5119  * blocks this bookmark refers to) by multiplying their blkid by their span
5120  * (the number of L0 blocks contained within one block at their level).
5121  * zbookmarks inside the meta-dnode calculate their object equivalent
5122  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5123  * level + 1<<31 (any value larger than a level could ever be) for their level.
5124  * This causes them to always compare before a bookmark in their object
5125  * equivalent, compare appropriately to bookmarks in other objects, and to
5126  * compare appropriately to other bookmarks in the meta-dnode.
5127  */
5128 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5129 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5130     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5131 {
5132 	/*
5133 	 * These variables represent the "equivalent" values for the zbookmark,
5134 	 * after converting zbookmarks inside the meta dnode to their
5135 	 * normal-object equivalents.
5136 	 */
5137 	uint64_t zb1obj, zb2obj;
5138 	uint64_t zb1L0, zb2L0;
5139 	uint64_t zb1level, zb2level;
5140 
5141 	if (zb1->zb_object == zb2->zb_object &&
5142 	    zb1->zb_level == zb2->zb_level &&
5143 	    zb1->zb_blkid == zb2->zb_blkid)
5144 		return (0);
5145 
5146 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5147 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5148 
5149 	/*
5150 	 * BP_SPANB calculates the span in blocks.
5151 	 */
5152 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5153 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5154 
5155 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5156 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5157 		zb1L0 = 0;
5158 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5159 	} else {
5160 		zb1obj = zb1->zb_object;
5161 		zb1level = zb1->zb_level;
5162 	}
5163 
5164 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5165 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5166 		zb2L0 = 0;
5167 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5168 	} else {
5169 		zb2obj = zb2->zb_object;
5170 		zb2level = zb2->zb_level;
5171 	}
5172 
5173 	/* Now that we have a canonical representation, do the comparison. */
5174 	if (zb1obj != zb2obj)
5175 		return (zb1obj < zb2obj ? -1 : 1);
5176 	else if (zb1L0 != zb2L0)
5177 		return (zb1L0 < zb2L0 ? -1 : 1);
5178 	else if (zb1level != zb2level)
5179 		return (zb1level > zb2level ? -1 : 1);
5180 	/*
5181 	 * This can (theoretically) happen if the bookmarks have the same object
5182 	 * and level, but different blkids, if the block sizes are not the same.
5183 	 * There is presently no way to change the indirect block sizes
5184 	 */
5185 	return (0);
5186 }
5187 
5188 /*
5189  *  This function checks the following: given that last_block is the place that
5190  *  our traversal stopped last time, does that guarantee that we've visited
5191  *  every node under subtree_root?  Therefore, we can't just use the raw output
5192  *  of zbookmark_compare.  We have to pass in a modified version of
5193  *  subtree_root; by incrementing the block id, and then checking whether
5194  *  last_block is before or equal to that, we can tell whether or not having
5195  *  visited last_block implies that all of subtree_root's children have been
5196  *  visited.
5197  */
5198 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5199 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5200     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5201 {
5202 	zbookmark_phys_t mod_zb = *subtree_root;
5203 	mod_zb.zb_blkid++;
5204 	ASSERT0(last_block->zb_level);
5205 
5206 	/* The objset_phys_t isn't before anything. */
5207 	if (dnp == NULL)
5208 		return (B_FALSE);
5209 
5210 	/*
5211 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5212 	 * data block size in sectors, because that variable is only used if
5213 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5214 	 * know without examining it what object it refers to, and there's no
5215 	 * harm in passing in this value in other cases, we always pass it in.
5216 	 *
5217 	 * We pass in 0 for the indirect block size shift because zb2 must be
5218 	 * level 0.  The indirect block size is only used to calculate the span
5219 	 * of the bookmark, but since the bookmark must be level 0, the span is
5220 	 * always 1, so the math works out.
5221 	 *
5222 	 * If you make changes to how the zbookmark_compare code works, be sure
5223 	 * to make sure that this code still works afterwards.
5224 	 */
5225 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5226 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5227 	    last_block) <= 0);
5228 }
5229 
5230 /*
5231  * This function is similar to zbookmark_subtree_completed(), but returns true
5232  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5233  */
5234 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5235 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5236     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5237 {
5238 	ASSERT0(last_block->zb_level);
5239 	if (dnp == NULL)
5240 		return (B_FALSE);
5241 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5242 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5243 	    last_block) >= 0);
5244 }
5245 
5246 EXPORT_SYMBOL(zio_type_name);
5247 EXPORT_SYMBOL(zio_buf_alloc);
5248 EXPORT_SYMBOL(zio_data_buf_alloc);
5249 EXPORT_SYMBOL(zio_buf_free);
5250 EXPORT_SYMBOL(zio_data_buf_free);
5251 
5252 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5253 	"Max I/O completion time (milliseconds) before marking it as slow");
5254 
5255 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5256 	"Prioritize requeued I/O");
5257 
5258 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5259 	"Defer frees starting in this pass");
5260 
5261 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5262 	"Don't compress starting in this pass");
5263 
5264 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5265 	"Rewrite new bps starting in this pass");
5266 
5267 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5268 	"Throttle block allocations in the ZIO pipeline");
5269 
5270 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5271 	"Log all slow ZIOs, not just those with vdevs");
5272