1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2017, Intel Corporation.
25  * Copyright (c) 2024, Klara Inc.
26  */
27 
28 /*
29  * ZFS fault injection
30  *
31  * To handle fault injection, we keep track of a series of zinject_record_t
32  * structures which describe which logical block(s) should be injected with a
33  * fault.  These are kept in a global list.  Each record corresponds to a given
34  * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
35  * or exported while the injection record exists.
36  *
37  * Device level injection is done using the 'zi_guid' field.  If this is set, it
38  * means that the error is destined for a particular device, not a piece of
39  * data.
40  *
41  * This is a rather poor data structure and algorithm, but we don't expect more
42  * than a few faults at any one time, so it should be sufficient for our needs.
43  */
44 
45 #include <sys/arc.h>
46 #include <sys/zio.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/dsl_dataset.h>
51 #include <sys/fs/zfs.h>
52 
53 uint32_t zio_injection_enabled = 0;
54 
55 /*
56  * Data describing each zinject handler registered on the system, and
57  * contains the list node linking the handler in the global zinject
58  * handler list.
59  */
60 typedef struct inject_handler {
61 	int			zi_id;
62 	spa_t			*zi_spa;
63 	char			*zi_spa_name; /* ZINJECT_DELAY_IMPORT only */
64 	zinject_record_t	zi_record;
65 	uint64_t		*zi_lanes;
66 	int			zi_next_lane;
67 	list_node_t		zi_link;
68 } inject_handler_t;
69 
70 /*
71  * List of all zinject handlers registered on the system, protected by
72  * the inject_lock defined below.
73  */
74 static list_t inject_handlers;
75 
76 /*
77  * This protects insertion into, and traversal of, the inject handler
78  * list defined above; as well as the inject_delay_count. Any time a
79  * handler is inserted or removed from the list, this lock should be
80  * taken as a RW_WRITER; and any time traversal is done over the list
81  * (without modification to it) this lock should be taken as a RW_READER.
82  */
83 static krwlock_t inject_lock;
84 
85 /*
86  * This holds the number of zinject delay handlers that have been
87  * registered on the system. It is protected by the inject_lock defined
88  * above. Thus modifications to this count must be a RW_WRITER of the
89  * inject_lock, and reads of this count must be (at least) a RW_READER
90  * of the lock.
91  */
92 static int inject_delay_count = 0;
93 
94 /*
95  * This lock is used only in zio_handle_io_delay(), refer to the comment
96  * in that function for more details.
97  */
98 static kmutex_t inject_delay_mtx;
99 
100 /*
101  * Used to assign unique identifying numbers to each new zinject handler.
102  */
103 static int inject_next_id = 1;
104 
105 /*
106  * Test if the requested frequency was triggered
107  */
108 static boolean_t
freq_triggered(uint32_t frequency)109 freq_triggered(uint32_t frequency)
110 {
111 	/*
112 	 * zero implies always (100%)
113 	 */
114 	if (frequency == 0)
115 		return (B_TRUE);
116 
117 	/*
118 	 * Note: we still handle legacy (unscaled) frequency values
119 	 */
120 	uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
121 
122 	return (random_in_range(maximum) < frequency);
123 }
124 
125 /*
126  * Returns true if the given record matches the I/O in progress.
127  */
128 static boolean_t
zio_match_handler(const zbookmark_phys_t * zb,uint64_t type,int dva,zinject_record_t * record,int error)129 zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
130     zinject_record_t *record, int error)
131 {
132 	/*
133 	 * Check for a match against the MOS, which is based on type
134 	 */
135 	if (zb->zb_objset == DMU_META_OBJSET &&
136 	    record->zi_objset == DMU_META_OBJSET &&
137 	    record->zi_object == DMU_META_DNODE_OBJECT) {
138 		if (record->zi_type == DMU_OT_NONE ||
139 		    type == record->zi_type)
140 			return (freq_triggered(record->zi_freq));
141 		else
142 			return (B_FALSE);
143 	}
144 
145 	/*
146 	 * Check for an exact match.
147 	 */
148 	if (zb->zb_objset == record->zi_objset &&
149 	    zb->zb_object == record->zi_object &&
150 	    zb->zb_level == record->zi_level &&
151 	    zb->zb_blkid >= record->zi_start &&
152 	    zb->zb_blkid <= record->zi_end &&
153 	    (record->zi_dvas == 0 ||
154 	    (dva != ZI_NO_DVA && (record->zi_dvas & (1ULL << dva)))) &&
155 	    error == record->zi_error) {
156 		return (freq_triggered(record->zi_freq));
157 	}
158 
159 	return (B_FALSE);
160 }
161 
162 /*
163  * Panic the system when a config change happens in the function
164  * specified by tag.
165  */
166 void
zio_handle_panic_injection(spa_t * spa,const char * tag,uint64_t type)167 zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type)
168 {
169 	inject_handler_t *handler;
170 
171 	rw_enter(&inject_lock, RW_READER);
172 
173 	for (handler = list_head(&inject_handlers); handler != NULL;
174 	    handler = list_next(&inject_handlers, handler)) {
175 
176 		if (spa != handler->zi_spa)
177 			continue;
178 
179 		if (handler->zi_record.zi_type == type &&
180 		    strcmp(tag, handler->zi_record.zi_func) == 0)
181 			panic("Panic requested in function %s\n", tag);
182 	}
183 
184 	rw_exit(&inject_lock);
185 }
186 
187 /*
188  * Inject a decryption failure. Decryption failures can occur in
189  * both the ARC and the ZIO layers.
190  */
191 int
zio_handle_decrypt_injection(spa_t * spa,const zbookmark_phys_t * zb,uint64_t type,int error)192 zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
193     uint64_t type, int error)
194 {
195 	int ret = 0;
196 	inject_handler_t *handler;
197 
198 	rw_enter(&inject_lock, RW_READER);
199 
200 	for (handler = list_head(&inject_handlers); handler != NULL;
201 	    handler = list_next(&inject_handlers, handler)) {
202 
203 		if (spa != handler->zi_spa ||
204 		    handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
205 			continue;
206 
207 		if (zio_match_handler(zb, type, ZI_NO_DVA,
208 		    &handler->zi_record, error)) {
209 			ret = error;
210 			break;
211 		}
212 	}
213 
214 	rw_exit(&inject_lock);
215 	return (ret);
216 }
217 
218 /*
219  * If this is a physical I/O for a vdev child determine which DVA it is
220  * for. We iterate backwards through the DVAs matching on the offset so
221  * that we end up with ZI_NO_DVA (-1) if we don't find a match.
222  */
223 static int
zio_match_dva(zio_t * zio)224 zio_match_dva(zio_t *zio)
225 {
226 	int i = ZI_NO_DVA;
227 
228 	if (zio->io_bp != NULL && zio->io_vd != NULL &&
229 	    zio->io_child_type == ZIO_CHILD_VDEV) {
230 		for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
231 			dva_t *dva = &zio->io_bp->blk_dva[i];
232 			uint64_t off = DVA_GET_OFFSET(dva);
233 			vdev_t *vd = vdev_lookup_top(zio->io_spa,
234 			    DVA_GET_VDEV(dva));
235 
236 			/* Compensate for vdev label added to leaves */
237 			if (zio->io_vd->vdev_ops->vdev_op_leaf)
238 				off += VDEV_LABEL_START_SIZE;
239 
240 			if (zio->io_vd == vd && zio->io_offset == off)
241 				break;
242 		}
243 	}
244 
245 	return (i);
246 }
247 
248 
249 /*
250  * Determine if the I/O in question should return failure.  Returns the errno
251  * to be returned to the caller.
252  */
253 int
zio_handle_fault_injection(zio_t * zio,int error)254 zio_handle_fault_injection(zio_t *zio, int error)
255 {
256 	int ret = 0;
257 	inject_handler_t *handler;
258 
259 	/*
260 	 * Ignore I/O not associated with any logical data.
261 	 */
262 	if (zio->io_logical == NULL)
263 		return (0);
264 
265 	/*
266 	 * Currently, we only support fault injection on reads.
267 	 */
268 	if (zio->io_type != ZIO_TYPE_READ)
269 		return (0);
270 
271 	/*
272 	 * A rebuild I/O has no checksum to verify.
273 	 */
274 	if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
275 		return (0);
276 
277 	rw_enter(&inject_lock, RW_READER);
278 
279 	for (handler = list_head(&inject_handlers); handler != NULL;
280 	    handler = list_next(&inject_handlers, handler)) {
281 		if (zio->io_spa != handler->zi_spa ||
282 		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
283 			continue;
284 
285 		/* If this handler matches, return the specified error */
286 		if (zio_match_handler(&zio->io_logical->io_bookmark,
287 		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
288 		    zio_match_dva(zio), &handler->zi_record, error)) {
289 			ret = error;
290 			break;
291 		}
292 	}
293 
294 	rw_exit(&inject_lock);
295 
296 	return (ret);
297 }
298 
299 /*
300  * Determine if the zio is part of a label update and has an injection
301  * handler associated with that portion of the label. Currently, we
302  * allow error injection in either the nvlist or the uberblock region of
303  * of the vdev label.
304  */
305 int
zio_handle_label_injection(zio_t * zio,int error)306 zio_handle_label_injection(zio_t *zio, int error)
307 {
308 	inject_handler_t *handler;
309 	vdev_t *vd = zio->io_vd;
310 	uint64_t offset = zio->io_offset;
311 	int label;
312 	int ret = 0;
313 
314 	if (offset >= VDEV_LABEL_START_SIZE &&
315 	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
316 		return (0);
317 
318 	rw_enter(&inject_lock, RW_READER);
319 
320 	for (handler = list_head(&inject_handlers); handler != NULL;
321 	    handler = list_next(&inject_handlers, handler)) {
322 		uint64_t start = handler->zi_record.zi_start;
323 		uint64_t end = handler->zi_record.zi_end;
324 
325 		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
326 			continue;
327 
328 		/*
329 		 * The injection region is the relative offsets within a
330 		 * vdev label. We must determine the label which is being
331 		 * updated and adjust our region accordingly.
332 		 */
333 		label = vdev_label_number(vd->vdev_psize, offset);
334 		start = vdev_label_offset(vd->vdev_psize, label, start);
335 		end = vdev_label_offset(vd->vdev_psize, label, end);
336 
337 		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
338 		    (offset >= start && offset <= end)) {
339 			ret = error;
340 			break;
341 		}
342 	}
343 	rw_exit(&inject_lock);
344 	return (ret);
345 }
346 
347 static int
zio_inject_bitflip_cb(void * data,size_t len,void * private)348 zio_inject_bitflip_cb(void *data, size_t len, void *private)
349 {
350 	zio_t *zio = private;
351 	uint8_t *buffer = data;
352 	uint_t byte = random_in_range(len);
353 
354 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
355 
356 	/* flip a single random bit in an abd data buffer */
357 	buffer[byte] ^= 1 << random_in_range(8);
358 
359 	return (1);	/* stop after first flip */
360 }
361 
362 static int
zio_handle_device_injection_impl(vdev_t * vd,zio_t * zio,int err1,int err2)363 zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
364 {
365 	inject_handler_t *handler;
366 	int ret = 0;
367 
368 	/*
369 	 * We skip over faults in the labels unless it's during device open
370 	 * (i.e. zio == NULL) or a device flush (offset is meaningless)
371 	 */
372 	if (zio != NULL && zio->io_type != ZIO_TYPE_FLUSH) {
373 		uint64_t offset = zio->io_offset;
374 
375 		if (offset < VDEV_LABEL_START_SIZE ||
376 		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
377 			return (0);
378 	}
379 
380 	rw_enter(&inject_lock, RW_READER);
381 
382 	for (handler = list_head(&inject_handlers); handler != NULL;
383 	    handler = list_next(&inject_handlers, handler)) {
384 
385 		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
386 			continue;
387 
388 		if (vd->vdev_guid == handler->zi_record.zi_guid) {
389 			if (handler->zi_record.zi_failfast &&
390 			    (zio == NULL || (zio->io_flags &
391 			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
392 				continue;
393 			}
394 
395 			/* Handle type specific I/O failures */
396 			if (zio != NULL &&
397 			    handler->zi_record.zi_iotype != ZIO_TYPES &&
398 			    handler->zi_record.zi_iotype != zio->io_type)
399 				continue;
400 
401 			if (handler->zi_record.zi_error == err1 ||
402 			    handler->zi_record.zi_error == err2) {
403 				/*
404 				 * limit error injection if requested
405 				 */
406 				if (!freq_triggered(handler->zi_record.zi_freq))
407 					continue;
408 
409 				/*
410 				 * For a failed open, pretend like the device
411 				 * has gone away.
412 				 */
413 				if (err1 == ENXIO)
414 					vd->vdev_stat.vs_aux =
415 					    VDEV_AUX_OPEN_FAILED;
416 
417 				/*
418 				 * Treat these errors as if they had been
419 				 * retried so that all the appropriate stats
420 				 * and FMA events are generated.
421 				 */
422 				if (!handler->zi_record.zi_failfast &&
423 				    zio != NULL)
424 					zio->io_flags |= ZIO_FLAG_IO_RETRY;
425 
426 				/*
427 				 * EILSEQ means flip a bit after a read
428 				 */
429 				if (handler->zi_record.zi_error == EILSEQ) {
430 					if (zio == NULL)
431 						break;
432 
433 					/* locate buffer data and flip a bit */
434 					(void) abd_iterate_func(zio->io_abd, 0,
435 					    zio->io_size, zio_inject_bitflip_cb,
436 					    zio);
437 					break;
438 				}
439 
440 				ret = handler->zi_record.zi_error;
441 				break;
442 			}
443 			if (handler->zi_record.zi_error == ENXIO) {
444 				ret = SET_ERROR(EIO);
445 				break;
446 			}
447 		}
448 	}
449 
450 	rw_exit(&inject_lock);
451 
452 	return (ret);
453 }
454 
455 int
zio_handle_device_injection(vdev_t * vd,zio_t * zio,int error)456 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
457 {
458 	return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
459 }
460 
461 int
zio_handle_device_injections(vdev_t * vd,zio_t * zio,int err1,int err2)462 zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
463 {
464 	return (zio_handle_device_injection_impl(vd, zio, err1, err2));
465 }
466 
467 /*
468  * Simulate hardware that ignores cache flushes.  For requested number
469  * of seconds nix the actual writing to disk.
470  */
471 void
zio_handle_ignored_writes(zio_t * zio)472 zio_handle_ignored_writes(zio_t *zio)
473 {
474 	inject_handler_t *handler;
475 
476 	rw_enter(&inject_lock, RW_READER);
477 
478 	for (handler = list_head(&inject_handlers); handler != NULL;
479 	    handler = list_next(&inject_handlers, handler)) {
480 
481 		/* Ignore errors not destined for this pool */
482 		if (zio->io_spa != handler->zi_spa ||
483 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
484 			continue;
485 
486 		/*
487 		 * Positive duration implies # of seconds, negative
488 		 * a number of txgs
489 		 */
490 		if (handler->zi_record.zi_timer == 0) {
491 			if (handler->zi_record.zi_duration > 0)
492 				handler->zi_record.zi_timer = ddi_get_lbolt64();
493 			else
494 				handler->zi_record.zi_timer = zio->io_txg;
495 		}
496 
497 		/* Have a "problem" writing 60% of the time */
498 		if (random_in_range(100) < 60)
499 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
500 		break;
501 	}
502 
503 	rw_exit(&inject_lock);
504 }
505 
506 void
spa_handle_ignored_writes(spa_t * spa)507 spa_handle_ignored_writes(spa_t *spa)
508 {
509 	inject_handler_t *handler;
510 
511 	if (zio_injection_enabled == 0)
512 		return;
513 
514 	rw_enter(&inject_lock, RW_READER);
515 
516 	for (handler = list_head(&inject_handlers); handler != NULL;
517 	    handler = list_next(&inject_handlers, handler)) {
518 
519 		if (spa != handler->zi_spa ||
520 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
521 			continue;
522 
523 		if (handler->zi_record.zi_duration > 0) {
524 			VERIFY(handler->zi_record.zi_timer == 0 ||
525 			    ddi_time_after64(
526 			    (int64_t)handler->zi_record.zi_timer +
527 			    handler->zi_record.zi_duration * hz,
528 			    ddi_get_lbolt64()));
529 		} else {
530 			/* duration is negative so the subtraction here adds */
531 			VERIFY(handler->zi_record.zi_timer == 0 ||
532 			    handler->zi_record.zi_timer -
533 			    handler->zi_record.zi_duration >=
534 			    spa_syncing_txg(spa));
535 		}
536 	}
537 
538 	rw_exit(&inject_lock);
539 }
540 
541 hrtime_t
zio_handle_io_delay(zio_t * zio)542 zio_handle_io_delay(zio_t *zio)
543 {
544 	vdev_t *vd = zio->io_vd;
545 	inject_handler_t *min_handler = NULL;
546 	hrtime_t min_target = 0;
547 
548 	rw_enter(&inject_lock, RW_READER);
549 
550 	/*
551 	 * inject_delay_count is a subset of zio_injection_enabled that
552 	 * is only incremented for delay handlers. These checks are
553 	 * mainly added to remind the reader why we're not explicitly
554 	 * checking zio_injection_enabled like the other functions.
555 	 */
556 	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
557 	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
558 
559 	/*
560 	 * If there aren't any inject delay handlers registered, then we
561 	 * can short circuit and simply return 0 here. A value of zero
562 	 * informs zio_delay_interrupt() that this request should not be
563 	 * delayed. This short circuit keeps us from acquiring the
564 	 * inject_delay_mutex unnecessarily.
565 	 */
566 	if (inject_delay_count == 0) {
567 		rw_exit(&inject_lock);
568 		return (0);
569 	}
570 
571 	/*
572 	 * Each inject handler has a number of "lanes" associated with
573 	 * it. Each lane is able to handle requests independently of one
574 	 * another, and at a latency defined by the inject handler
575 	 * record's zi_timer field. Thus if a handler in configured with
576 	 * a single lane with a 10ms latency, it will delay requests
577 	 * such that only a single request is completed every 10ms. So,
578 	 * if more than one request is attempted per each 10ms interval,
579 	 * the average latency of the requests will be greater than
580 	 * 10ms; but if only a single request is submitted each 10ms
581 	 * interval the average latency will be 10ms.
582 	 *
583 	 * We need to acquire this mutex to prevent multiple concurrent
584 	 * threads being assigned to the same lane of a given inject
585 	 * handler. The mutex allows us to perform the following two
586 	 * operations atomically:
587 	 *
588 	 *	1. determine the minimum handler and minimum target
589 	 *	   value of all the possible handlers
590 	 *	2. update that minimum handler's lane array
591 	 *
592 	 * Without atomicity, two (or more) threads could pick the same
593 	 * lane in step (1), and then conflict with each other in step
594 	 * (2). This could allow a single lane handler to process
595 	 * multiple requests simultaneously, which shouldn't be possible.
596 	 */
597 	mutex_enter(&inject_delay_mtx);
598 
599 	for (inject_handler_t *handler = list_head(&inject_handlers);
600 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
601 		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
602 			continue;
603 
604 		if (!freq_triggered(handler->zi_record.zi_freq))
605 			continue;
606 
607 		if (vd->vdev_guid != handler->zi_record.zi_guid)
608 			continue;
609 
610 		/* also match on I/O type (e.g., -T read) */
611 		if (handler->zi_record.zi_iotype != ZIO_TYPES &&
612 		    handler->zi_record.zi_iotype != zio->io_type) {
613 			continue;
614 		}
615 
616 		/*
617 		 * Defensive; should never happen as the array allocation
618 		 * occurs prior to inserting this handler on the list.
619 		 */
620 		ASSERT3P(handler->zi_lanes, !=, NULL);
621 
622 		/*
623 		 * This should never happen, the zinject command should
624 		 * prevent a user from setting an IO delay with zero lanes.
625 		 */
626 		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
627 
628 		ASSERT3U(handler->zi_record.zi_nlanes, >,
629 		    handler->zi_next_lane);
630 
631 		/*
632 		 * We want to issue this IO to the lane that will become
633 		 * idle the soonest, so we compare the soonest this
634 		 * specific handler can complete the IO with all other
635 		 * handlers, to find the lowest value of all possible
636 		 * lanes. We then use this lane to submit the request.
637 		 *
638 		 * Since each handler has a constant value for its
639 		 * delay, we can just use the "next" lane for that
640 		 * handler; as it will always be the lane with the
641 		 * lowest value for that particular handler (i.e. the
642 		 * lane that will become idle the soonest). This saves a
643 		 * scan of each handler's lanes array.
644 		 *
645 		 * There's two cases to consider when determining when
646 		 * this specific IO request should complete. If this
647 		 * lane is idle, we want to "submit" the request now so
648 		 * it will complete after zi_timer milliseconds. Thus,
649 		 * we set the target to now + zi_timer.
650 		 *
651 		 * If the lane is busy, we want this request to complete
652 		 * zi_timer milliseconds after the lane becomes idle.
653 		 * Since the 'zi_lanes' array holds the time at which
654 		 * each lane will become idle, we use that value to
655 		 * determine when this request should complete.
656 		 */
657 		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
658 		hrtime_t busy = handler->zi_record.zi_timer +
659 		    handler->zi_lanes[handler->zi_next_lane];
660 		hrtime_t target = MAX(idle, busy);
661 
662 		if (min_handler == NULL) {
663 			min_handler = handler;
664 			min_target = target;
665 			continue;
666 		}
667 
668 		ASSERT3P(min_handler, !=, NULL);
669 		ASSERT3U(min_target, !=, 0);
670 
671 		/*
672 		 * We don't yet increment the "next lane" variable since
673 		 * we still might find a lower value lane in another
674 		 * handler during any remaining iterations. Once we're
675 		 * sure we've selected the absolute minimum, we'll claim
676 		 * the lane and increment the handler's "next lane"
677 		 * field below.
678 		 */
679 
680 		if (target < min_target) {
681 			min_handler = handler;
682 			min_target = target;
683 		}
684 	}
685 
686 	/*
687 	 * 'min_handler' will be NULL if no IO delays are registered for
688 	 * this vdev, otherwise it will point to the handler containing
689 	 * the lane that will become idle the soonest.
690 	 */
691 	if (min_handler != NULL) {
692 		ASSERT3U(min_target, !=, 0);
693 		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
694 
695 		/*
696 		 * If we've used all possible lanes for this handler,
697 		 * loop back and start using the first lane again;
698 		 * otherwise, just increment the lane index.
699 		 */
700 		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
701 		    min_handler->zi_record.zi_nlanes;
702 	}
703 
704 	mutex_exit(&inject_delay_mtx);
705 	rw_exit(&inject_lock);
706 
707 	return (min_target);
708 }
709 
710 static void
zio_handle_pool_delay(spa_t * spa,hrtime_t elapsed,zinject_type_t command)711 zio_handle_pool_delay(spa_t *spa, hrtime_t elapsed, zinject_type_t command)
712 {
713 	inject_handler_t *handler;
714 	hrtime_t delay = 0;
715 	int id = 0;
716 
717 	rw_enter(&inject_lock, RW_READER);
718 
719 	for (handler = list_head(&inject_handlers);
720 	    handler != NULL && handler->zi_record.zi_cmd == command;
721 	    handler = list_next(&inject_handlers, handler)) {
722 		ASSERT3P(handler->zi_spa_name, !=, NULL);
723 		if (strcmp(spa_name(spa), handler->zi_spa_name) == 0) {
724 			uint64_t pause =
725 			    SEC2NSEC(handler->zi_record.zi_duration);
726 			if (pause > elapsed) {
727 				delay = pause - elapsed;
728 			}
729 			id = handler->zi_id;
730 			break;
731 		}
732 	}
733 
734 	rw_exit(&inject_lock);
735 
736 	if (delay) {
737 		if (command == ZINJECT_DELAY_IMPORT) {
738 			spa_import_progress_set_notes(spa, "injecting %llu "
739 			    "sec delay", (u_longlong_t)NSEC2SEC(delay));
740 		}
741 		zfs_sleep_until(gethrtime() + delay);
742 	}
743 	if (id) {
744 		/* all done with this one-shot handler */
745 		zio_clear_fault(id);
746 	}
747 }
748 
749 /*
750  * For testing, inject a delay during an import
751  */
752 void
zio_handle_import_delay(spa_t * spa,hrtime_t elapsed)753 zio_handle_import_delay(spa_t *spa, hrtime_t elapsed)
754 {
755 	zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_IMPORT);
756 }
757 
758 /*
759  * For testing, inject a delay during an export
760  */
761 void
zio_handle_export_delay(spa_t * spa,hrtime_t elapsed)762 zio_handle_export_delay(spa_t *spa, hrtime_t elapsed)
763 {
764 	zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_EXPORT);
765 }
766 
767 static int
zio_calculate_range(const char * pool,zinject_record_t * record)768 zio_calculate_range(const char *pool, zinject_record_t *record)
769 {
770 	dsl_pool_t *dp;
771 	dsl_dataset_t *ds;
772 	objset_t *os = NULL;
773 	dnode_t *dn = NULL;
774 	int error;
775 
776 	/*
777 	 * Obtain the dnode for object using pool, objset, and object
778 	 */
779 	error = dsl_pool_hold(pool, FTAG, &dp);
780 	if (error)
781 		return (error);
782 
783 	error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
784 	dsl_pool_rele(dp, FTAG);
785 	if (error)
786 		return (error);
787 
788 	error = dmu_objset_from_ds(ds, &os);
789 	dsl_dataset_rele(ds, FTAG);
790 	if (error)
791 		return (error);
792 
793 	error = dnode_hold(os, record->zi_object, FTAG, &dn);
794 	if (error)
795 		return (error);
796 
797 	/*
798 	 * Translate the range into block IDs
799 	 */
800 	if (record->zi_start != 0 || record->zi_end != -1ULL) {
801 		record->zi_start >>= dn->dn_datablkshift;
802 		record->zi_end >>= dn->dn_datablkshift;
803 	}
804 	if (record->zi_level > 0) {
805 		if (record->zi_level >= dn->dn_nlevels) {
806 			dnode_rele(dn, FTAG);
807 			return (SET_ERROR(EDOM));
808 		}
809 
810 		if (record->zi_start != 0 || record->zi_end != 0) {
811 			int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
812 
813 			for (int level = record->zi_level; level > 0; level--) {
814 				record->zi_start >>= shift;
815 				record->zi_end >>= shift;
816 			}
817 		}
818 	}
819 
820 	dnode_rele(dn, FTAG);
821 	return (0);
822 }
823 
824 static boolean_t
zio_pool_handler_exists(const char * name,zinject_type_t command)825 zio_pool_handler_exists(const char *name, zinject_type_t command)
826 {
827 	boolean_t exists = B_FALSE;
828 
829 	rw_enter(&inject_lock, RW_READER);
830 	for (inject_handler_t *handler = list_head(&inject_handlers);
831 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
832 		if (command != handler->zi_record.zi_cmd)
833 			continue;
834 
835 		const char *pool = (handler->zi_spa_name != NULL) ?
836 		    handler->zi_spa_name : spa_name(handler->zi_spa);
837 		if (strcmp(name, pool) == 0) {
838 			exists = B_TRUE;
839 			break;
840 		}
841 	}
842 	rw_exit(&inject_lock);
843 
844 	return (exists);
845 }
846 /*
847  * Create a new handler for the given record.  We add it to the list, adding
848  * a reference to the spa_t in the process.  We increment zio_injection_enabled,
849  * which is the switch to trigger all fault injection.
850  */
851 int
zio_inject_fault(char * name,int flags,int * id,zinject_record_t * record)852 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
853 {
854 	inject_handler_t *handler;
855 	int error;
856 	spa_t *spa;
857 
858 	/*
859 	 * If this is pool-wide metadata, make sure we unload the corresponding
860 	 * spa_t, so that the next attempt to load it will trigger the fault.
861 	 * We call spa_reset() to unload the pool appropriately.
862 	 */
863 	if (flags & ZINJECT_UNLOAD_SPA)
864 		if ((error = spa_reset(name)) != 0)
865 			return (error);
866 
867 	if (record->zi_cmd == ZINJECT_DELAY_IO) {
868 		/*
869 		 * A value of zero for the number of lanes or for the
870 		 * delay time doesn't make sense.
871 		 */
872 		if (record->zi_timer == 0 || record->zi_nlanes == 0)
873 			return (SET_ERROR(EINVAL));
874 
875 		/*
876 		 * The number of lanes is directly mapped to the size of
877 		 * an array used by the handler. Thus, to ensure the
878 		 * user doesn't trigger an allocation that's "too large"
879 		 * we cap the number of lanes here.
880 		 */
881 		if (record->zi_nlanes >= UINT16_MAX)
882 			return (SET_ERROR(EINVAL));
883 	}
884 
885 	/*
886 	 * If the supplied range was in bytes -- calculate the actual blkid
887 	 */
888 	if (flags & ZINJECT_CALC_RANGE) {
889 		error = zio_calculate_range(name, record);
890 		if (error != 0)
891 			return (error);
892 	}
893 
894 	if (!(flags & ZINJECT_NULL)) {
895 		/*
896 		 * Pool delays for import or export don't take an
897 		 * injection reference on the spa. Instead they
898 		 * rely on matching by name.
899 		 */
900 		if (record->zi_cmd == ZINJECT_DELAY_IMPORT ||
901 		    record->zi_cmd == ZINJECT_DELAY_EXPORT) {
902 			if (record->zi_duration <= 0)
903 				return (SET_ERROR(EINVAL));
904 			/*
905 			 * Only one import | export delay handler per pool.
906 			 */
907 			if (zio_pool_handler_exists(name, record->zi_cmd))
908 				return (SET_ERROR(EEXIST));
909 
910 			mutex_enter(&spa_namespace_lock);
911 			boolean_t has_spa = spa_lookup(name) != NULL;
912 			mutex_exit(&spa_namespace_lock);
913 
914 			if (record->zi_cmd == ZINJECT_DELAY_IMPORT && has_spa)
915 				return (SET_ERROR(EEXIST));
916 			if (record->zi_cmd == ZINJECT_DELAY_EXPORT && !has_spa)
917 				return (SET_ERROR(ENOENT));
918 			spa = NULL;
919 		} else {
920 			/*
921 			 * spa_inject_ref() will add an injection reference,
922 			 * which will prevent the pool from being removed
923 			 * from the namespace while still allowing it to be
924 			 * unloaded.
925 			 */
926 			if ((spa = spa_inject_addref(name)) == NULL)
927 				return (SET_ERROR(ENOENT));
928 		}
929 
930 		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
931 		handler->zi_spa = spa;	/* note: can be NULL */
932 		handler->zi_record = *record;
933 
934 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
935 			handler->zi_lanes = kmem_zalloc(
936 			    sizeof (*handler->zi_lanes) *
937 			    handler->zi_record.zi_nlanes, KM_SLEEP);
938 			handler->zi_next_lane = 0;
939 		} else {
940 			handler->zi_lanes = NULL;
941 			handler->zi_next_lane = 0;
942 		}
943 
944 		if (handler->zi_spa == NULL)
945 			handler->zi_spa_name = spa_strdup(name);
946 		else
947 			handler->zi_spa_name = NULL;
948 
949 		rw_enter(&inject_lock, RW_WRITER);
950 
951 		/*
952 		 * We can't move this increment into the conditional
953 		 * above because we need to hold the RW_WRITER lock of
954 		 * inject_lock, and we don't want to hold that while
955 		 * allocating the handler's zi_lanes array.
956 		 */
957 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
958 			ASSERT3S(inject_delay_count, >=, 0);
959 			inject_delay_count++;
960 			ASSERT3S(inject_delay_count, >, 0);
961 		}
962 
963 		*id = handler->zi_id = inject_next_id++;
964 		list_insert_tail(&inject_handlers, handler);
965 		atomic_inc_32(&zio_injection_enabled);
966 
967 		rw_exit(&inject_lock);
968 	}
969 
970 	/*
971 	 * Flush the ARC, so that any attempts to read this data will end up
972 	 * going to the ZIO layer.  Note that this is a little overkill, but
973 	 * we don't have the necessary ARC interfaces to do anything else, and
974 	 * fault injection isn't a performance critical path.
975 	 */
976 	if (flags & ZINJECT_FLUSH_ARC)
977 		/*
978 		 * We must use FALSE to ensure arc_flush returns, since
979 		 * we're not preventing concurrent ARC insertions.
980 		 */
981 		arc_flush(NULL, FALSE);
982 
983 	return (0);
984 }
985 
986 /*
987  * Returns the next record with an ID greater than that supplied to the
988  * function.  Used to iterate over all handlers in the system.
989  */
990 int
zio_inject_list_next(int * id,char * name,size_t buflen,zinject_record_t * record)991 zio_inject_list_next(int *id, char *name, size_t buflen,
992     zinject_record_t *record)
993 {
994 	inject_handler_t *handler;
995 	int ret;
996 
997 	mutex_enter(&spa_namespace_lock);
998 	rw_enter(&inject_lock, RW_READER);
999 
1000 	for (handler = list_head(&inject_handlers); handler != NULL;
1001 	    handler = list_next(&inject_handlers, handler))
1002 		if (handler->zi_id > *id)
1003 			break;
1004 
1005 	if (handler) {
1006 		*record = handler->zi_record;
1007 		*id = handler->zi_id;
1008 		ASSERT(handler->zi_spa || handler->zi_spa_name);
1009 		if (handler->zi_spa != NULL)
1010 			(void) strlcpy(name, spa_name(handler->zi_spa), buflen);
1011 		else
1012 			(void) strlcpy(name, handler->zi_spa_name, buflen);
1013 		ret = 0;
1014 	} else {
1015 		ret = SET_ERROR(ENOENT);
1016 	}
1017 
1018 	rw_exit(&inject_lock);
1019 	mutex_exit(&spa_namespace_lock);
1020 
1021 	return (ret);
1022 }
1023 
1024 /*
1025  * Clear the fault handler with the given identifier, or return ENOENT if none
1026  * exists.
1027  */
1028 int
zio_clear_fault(int id)1029 zio_clear_fault(int id)
1030 {
1031 	inject_handler_t *handler;
1032 
1033 	rw_enter(&inject_lock, RW_WRITER);
1034 
1035 	for (handler = list_head(&inject_handlers); handler != NULL;
1036 	    handler = list_next(&inject_handlers, handler))
1037 		if (handler->zi_id == id)
1038 			break;
1039 
1040 	if (handler == NULL) {
1041 		rw_exit(&inject_lock);
1042 		return (SET_ERROR(ENOENT));
1043 	}
1044 
1045 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1046 		ASSERT3S(inject_delay_count, >, 0);
1047 		inject_delay_count--;
1048 		ASSERT3S(inject_delay_count, >=, 0);
1049 	}
1050 
1051 	list_remove(&inject_handlers, handler);
1052 	rw_exit(&inject_lock);
1053 
1054 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1055 		ASSERT3P(handler->zi_lanes, !=, NULL);
1056 		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
1057 		    handler->zi_record.zi_nlanes);
1058 	} else {
1059 		ASSERT3P(handler->zi_lanes, ==, NULL);
1060 	}
1061 
1062 	if (handler->zi_spa_name != NULL)
1063 		spa_strfree(handler->zi_spa_name);
1064 
1065 	if (handler->zi_spa != NULL)
1066 		spa_inject_delref(handler->zi_spa);
1067 	kmem_free(handler, sizeof (inject_handler_t));
1068 	atomic_dec_32(&zio_injection_enabled);
1069 
1070 	return (0);
1071 }
1072 
1073 void
zio_inject_init(void)1074 zio_inject_init(void)
1075 {
1076 	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
1077 	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
1078 	list_create(&inject_handlers, sizeof (inject_handler_t),
1079 	    offsetof(inject_handler_t, zi_link));
1080 }
1081 
1082 void
zio_inject_fini(void)1083 zio_inject_fini(void)
1084 {
1085 	list_destroy(&inject_handlers);
1086 	mutex_destroy(&inject_delay_mtx);
1087 	rw_destroy(&inject_lock);
1088 }
1089 
1090 #if defined(_KERNEL)
1091 EXPORT_SYMBOL(zio_injection_enabled);
1092 EXPORT_SYMBOL(zio_inject_fault);
1093 EXPORT_SYMBOL(zio_inject_list_next);
1094 EXPORT_SYMBOL(zio_clear_fault);
1095 EXPORT_SYMBOL(zio_handle_fault_injection);
1096 EXPORT_SYMBOL(zio_handle_device_injection);
1097 EXPORT_SYMBOL(zio_handle_label_injection);
1098 #endif
1099