1 /////////////////////////////////////////////////////////////////////////
2 // $Id: instr.h 14086 2021-01-30 08:35:35Z sshwarts $
3 /////////////////////////////////////////////////////////////////////////
4 //
5 //   Copyright (c) 2016-2017 Stanislav Shwartsman
6 //          Written by Stanislav Shwartsman [sshwarts at sourceforge net]
7 //
8 //  This library is free software; you can redistribute it and/or
9 //  modify it under the terms of the GNU Lesser General Public
10 //  License as published by the Free Software Foundation; either
11 //  version 2 of the License, or (at your option) any later version.
12 //
13 //  This library is distributed in the hope that it will be useful,
14 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
15 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 //  Lesser General Public License for more details.
17 //
18 //  You should have received a copy of the GNU Lesser General Public
19 //  License along with this library; if not, write to the Free Software
20 //  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
21 //
22 /////////////////////////////////////////////////////////////////////////
23 
24 #ifndef BX_INSTR_H
25 #define BX_INSTR_H
26 
27 extern bx_address bx_asize_mask[];
28 
29 const char *get_bx_opcode_name(Bit16u ia_opcode);
30 const char *get_intel_disasm_opcode_name(Bit16u ia_opcode);
31 const char *get_gas_disasm_opcode_name(Bit16u ia_opcode);
32 
33 class BX_CPU_C;
34 class bxInstruction_c;
35 
36 #ifndef BX_STANDALONE_DECODER
37 
38 // <TAG-TYPE-EXECUTEPTR-START>
39 #if BX_USE_CPU_SMF
40 typedef void (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *);
41 #else
42 typedef void (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
43 #endif
44 // <TAG-TYPE-EXECUTEPTR-END>
45 
46 #endif
47 
48 // <TAG-CLASS-INSTRUCTION-START>
49 class bxInstruction_c {
50 public:
51 
52 #ifndef BX_STANDALONE_DECODER
53   // Function pointers; a function to resolve the modRM address
54   // given the current state of the CPU and the instruction data,
55   // and a function to execute the instruction after resolving
56   // the memory address (if any).
57   BxExecutePtr_tR execute1;
58 
59   union {
60     BxExecutePtr_tR execute2;
61     bxInstruction_c *next;
62   } handlers;
63 #endif
64 
65   struct {
66     // 15...0 opcode
67     Bit16u ia_opcode;
68 
69     //  7...4 (unused)
70     //  3...0 ilen (0..15)
71     Bit8u ilen;
72 
73 #define BX_LOCK_PREFIX_USED 1
74     //  7...6 lockUsed, repUsed (0=none, 1=0xF0, 2=0xF2, 3=0xF3)
75     //  5...5 extend8bit
76     //  4...4 mod==c0 (modrm)
77     //  3...3 os64
78     //  2...2 os32
79     //  1...1 as64
80     //  0...0 as32
81     Bit8u metaInfo1;
82   } metaInfo;
83 
84   enum {
85     BX_INSTR_METADATA_DST   = 0,
86     BX_INSTR_METADATA_SRC1  = 1,
87     BX_INSTR_METADATA_SRC2  = 2,
88     BX_INSTR_METADATA_SRC3  = 3,
89     BX_INSTR_METADATA_CET_SEGOVERRIDE = 3, // share src3
90     BX_INSTR_METADATA_SEG   = 4,
91     BX_INSTR_METADATA_BASE  = 5,
92     BX_INSTR_METADATA_INDEX = 6,
93     BX_INSTR_METADATA_SCALE = 7
94   };
95 
96   // using 5-bit field for registers (16 regs in 64-bit, RIP, NIL)
97   Bit8u metaData[8];
98 
99   union {
100     // Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
101     struct {
102       union {
103         Bit32u Id;
104         Bit16u Iw[2];
105         // use Ib[3] as EVEX mask register
106         // use Ib[2] as AVX attributes
107         //     7..5 (unused)
108         //     4..4 VEX.W
109         //     3..3 Broadcast/RC/SAE control (EVEX.b)
110         //     2..2 Zeroing/Merging mask (EVEX.z)
111         //     1..0 Round control
112         // use Ib[1] as AVX VL
113         Bit8u  Ib[4];
114       };
115       union {
116         Bit16u displ16u; // for 16-bit modrm forms
117         Bit32u displ32u; // for 32-bit modrm forms
118 
119         Bit32u Id2;
120         Bit16u Iw2[2];
121         Bit8u  Ib2[4];
122       };
123     } modRMForm;
124 
125 #if BX_SUPPORT_X86_64
126     struct {
127       Bit64u   Iq;  // for MOV Rx,imm64
128     } IqForm;
129 #endif
130   };
131 
132 #ifdef BX_INSTR_STORE_OPCODE_BYTES
133   Bit8u opcode_bytes[16];
134 
get_opcode_bytes(void)135   BX_CPP_INLINE const Bit8u* get_opcode_bytes(void) const {
136     return opcode_bytes;
137   }
138 
set_opcode_bytes(const Bit8u * opcode)139   BX_CPP_INLINE void set_opcode_bytes(const Bit8u *opcode) {
140     memcpy(opcode_bytes, opcode, ilen());
141   }
142 #endif
143 
144 #ifndef BX_STANDALONE_DECODER
execute2(void)145   BX_CPP_INLINE BxExecutePtr_tR execute2(void) const {
146     return handlers.execute2;
147   }
148 #endif
149 
seg(void)150   BX_CPP_INLINE unsigned seg(void) const {
151     return metaData[BX_INSTR_METADATA_SEG];
152   }
setSeg(unsigned val)153   BX_CPP_INLINE void setSeg(unsigned val) {
154     metaData[BX_INSTR_METADATA_SEG] = val;
155   }
156 
157 #if BX_SUPPORT_CET
segOverrideCet(void)158   BX_CPP_INLINE unsigned segOverrideCet(void) const {
159     return metaData[BX_INSTR_METADATA_CET_SEGOVERRIDE];
160   }
setCetSegOverride(unsigned val)161   BX_CPP_INLINE void setCetSegOverride(unsigned val) {
162     metaData[BX_INSTR_METADATA_CET_SEGOVERRIDE] = val;
163   }
164 #endif
165 
setFoo(unsigned foo)166   BX_CPP_INLINE void setFoo(unsigned foo) {
167     // none of x87 instructions has immediate
168     modRMForm.Iw[0] = foo;
169   }
foo()170   BX_CPP_INLINE unsigned foo() const {
171     return modRMForm.Iw[0];
172   }
b1()173   BX_CPP_INLINE unsigned b1() const {
174     return modRMForm.Iw[0] >> 8;
175   }
176 
setSibScale(unsigned scale)177   BX_CPP_INLINE void setSibScale(unsigned scale) {
178     metaData[BX_INSTR_METADATA_SCALE] = scale;
179   }
sibScale()180   BX_CPP_INLINE unsigned sibScale() const {
181     return metaData[BX_INSTR_METADATA_SCALE];
182   }
setSibIndex(unsigned index)183   BX_CPP_INLINE void setSibIndex(unsigned index) {
184     metaData[BX_INSTR_METADATA_INDEX] = index;
185   }
sibIndex()186   BX_CPP_INLINE unsigned sibIndex() const {
187     return metaData[BX_INSTR_METADATA_INDEX];
188   }
setSibBase(unsigned base)189   BX_CPP_INLINE void setSibBase(unsigned base) {
190     metaData[BX_INSTR_METADATA_BASE] = base;
191   }
sibBase()192   BX_CPP_INLINE unsigned sibBase() const {
193     return metaData[BX_INSTR_METADATA_BASE];
194   }
displ32s()195   BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; }
displ16s()196   BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; }
Id()197   BX_CPP_INLINE Bit32u Id() const  { return modRMForm.Id; }
Iw()198   BX_CPP_INLINE Bit16u Iw() const  { return modRMForm.Iw[0]; }
Ib()199   BX_CPP_INLINE Bit8u  Ib() const  { return modRMForm.Ib[0]; }
Id2()200   BX_CPP_INLINE Bit16u Id2() const { return modRMForm.Id2; }
Iw2()201   BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2[0]; }
Ib2()202   BX_CPP_INLINE Bit8u  Ib2() const { return modRMForm.Ib2[0]; }
203 #if BX_SUPPORT_X86_64
Iq()204   BX_CPP_INLINE Bit64u Iq() const  { return IqForm.Iq; }
205 #endif
206 
207   // Info in the metaInfo field.
208   // Note: the 'L' at the end of certain flags, means the value returned
209   // is for Logical comparisons, eg if (i->os32L() && i->as32L()).  If you
210   // want a bool value, use os32B() etc.  This makes for smaller
211   // code, when a strict 0 or 1 is not necessary.
init(unsigned os32,unsigned as32,unsigned os64,unsigned as64)212   BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64)
213   {
214     metaInfo.metaInfo1 = (os32<<2) | (os64<<3) | (as32<<0) | (as64<<1);
215   }
216 
os32L(void)217   BX_CPP_INLINE unsigned os32L(void) const {
218     return metaInfo.metaInfo1 & (1<<2);
219   }
setOs32B(unsigned bit)220   BX_CPP_INLINE void setOs32B(unsigned bit) {
221     metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<2)) | (bit<<2);
222   }
assertOs32(void)223   BX_CPP_INLINE void assertOs32(void) {
224     metaInfo.metaInfo1 |= (1<<2);
225   }
226 
227 #if BX_SUPPORT_X86_64
os64L(void)228   BX_CPP_INLINE unsigned os64L(void) const {
229     return metaInfo.metaInfo1 & (1<<3);
230   }
assertOs64(void)231   BX_CPP_INLINE void assertOs64(void) {
232     metaInfo.metaInfo1 |= (1<<3);
233   }
234 #else
os64L(void)235   BX_CPP_INLINE unsigned os64L(void) const { return 0; }
236 #endif
osize(void)237   BX_CPP_INLINE unsigned osize(void) const {
238     return (metaInfo.metaInfo1 >> 2) & 0x3;
239   }
240 
as32L(void)241   BX_CPP_INLINE unsigned as32L(void) const {
242     return metaInfo.metaInfo1 & 0x1;
243   }
setAs32B(unsigned bit)244   BX_CPP_INLINE void setAs32B(unsigned bit) {
245     metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~0x1) | (bit);
246   }
247 
248 #if BX_SUPPORT_X86_64
as64L(void)249   BX_CPP_INLINE unsigned as64L(void) const {
250     return metaInfo.metaInfo1 & (1<<1);
251   }
clearAs64(void)252   BX_CPP_INLINE void clearAs64(void) {
253     metaInfo.metaInfo1 &= ~(1<<1);
254   }
255 #else
as64L(void)256   BX_CPP_INLINE unsigned as64L(void) const { return 0; }
257 #endif
258 
asize(void)259   BX_CPP_INLINE unsigned asize(void) const {
260     return metaInfo.metaInfo1 & 0x3;
261   }
asize_mask(void)262   BX_CPP_INLINE bx_address asize_mask(void) const {
263     return bx_asize_mask[asize()];
264   }
265 
266 #if BX_SUPPORT_X86_64
extend8bitL(void)267   BX_CPP_INLINE unsigned extend8bitL(void) const {
268     return metaInfo.metaInfo1 & (1<<5);
269   }
assertExtend8bit(void)270   BX_CPP_INLINE void assertExtend8bit(void) {
271     metaInfo.metaInfo1 |= (1<<5);
272   }
273 #endif
274 
ilen(void)275   BX_CPP_INLINE unsigned ilen(void) const {
276     return metaInfo.ilen;
277   }
setILen(unsigned ilen)278   BX_CPP_INLINE void setILen(unsigned ilen) {
279     metaInfo.ilen = ilen;
280   }
281 
getIaOpcode(void)282   BX_CPP_INLINE unsigned getIaOpcode(void) const {
283     return metaInfo.ia_opcode;
284   }
setIaOpcode(Bit16u op)285   BX_CPP_INLINE void setIaOpcode(Bit16u op) {
286     metaInfo.ia_opcode = op;
287   }
getIaOpcodeName(void)288   BX_CPP_INLINE const char* getIaOpcodeName(void) const {
289     return get_bx_opcode_name(getIaOpcode());
290   }
getIaOpcodeNameShort(void)291   BX_CPP_INLINE const char* getIaOpcodeNameShort(void) const {
292     return get_bx_opcode_name(getIaOpcode()) + /*"BX_IA_"*/ 6;
293   }
294 
repUsedL(void)295   BX_CPP_INLINE unsigned repUsedL(void) const {
296     return metaInfo.metaInfo1 >> 7;
297   }
lockRepUsedValue(void)298   BX_CPP_INLINE unsigned lockRepUsedValue(void) const {
299     return metaInfo.metaInfo1 >> 6;
300   }
setLockRepUsed(unsigned value)301   BX_CPP_INLINE void setLockRepUsed(unsigned value) {
302     metaInfo.metaInfo1 = (metaInfo.metaInfo1 & 0x3f) | (value << 6);
303   }
304 
setLock(void)305   BX_CPP_INLINE void setLock(void) {
306     setLockRepUsed(BX_LOCK_PREFIX_USED);
307   }
getLock(void)308   BX_CPP_INLINE bool getLock(void) const {
309     return lockRepUsedValue() == BX_LOCK_PREFIX_USED;
310   }
311 
getVL(void)312   BX_CPP_INLINE unsigned getVL(void) const {
313 #if BX_SUPPORT_AVX
314     return modRMForm.Ib[1];
315 #else
316     return 0;
317 #endif
318   }
setVL(unsigned value)319   BX_CPP_INLINE void setVL(unsigned value) {
320     modRMForm.Ib[1] = value;
321   }
322 
323 #if BX_SUPPORT_AVX
setVexW(unsigned bit)324   BX_CPP_INLINE void setVexW(unsigned bit) {
325     modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<4)) | (bit<<4);
326   }
getVexW(void)327   BX_CPP_INLINE unsigned getVexW(void) const {
328     return modRMForm.Ib[2] & (1 << 4);
329   }
330 #else
getVexW(void)331   BX_CPP_INLINE unsigned getVexW(void) const { return 0; }
332 #endif
333 
334 #if BX_SUPPORT_EVEX
setOpmask(unsigned reg)335   BX_CPP_INLINE void setOpmask(unsigned reg) {
336     modRMForm.Ib[3] = reg;
337   }
opmask(void)338   BX_CPP_INLINE unsigned opmask(void) const {
339     return modRMForm.Ib[3];
340   }
341 
setEvexb(unsigned bit)342   BX_CPP_INLINE void setEvexb(unsigned bit) {
343     modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<3)) | (bit<<3);
344   }
getEvexb(void)345   BX_CPP_INLINE unsigned getEvexb(void) const {
346     return modRMForm.Ib[2] & (1 << 3);
347   }
348 
setZeroMasking(unsigned bit)349   BX_CPP_INLINE void setZeroMasking(unsigned bit) {
350     modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<2)) | (bit<<2);
351   }
isZeroMasking(void)352   BX_CPP_INLINE unsigned isZeroMasking(void) const {
353     return modRMForm.Ib[2] & (1 << 2);
354   }
355 
setRC(unsigned rc)356   BX_CPP_INLINE void setRC(unsigned rc) {
357     modRMForm.Ib[2] = (modRMForm.Ib[2] & ~0x3) | rc;
358   }
getRC(void)359   BX_CPP_INLINE unsigned getRC(void) const {
360     return modRMForm.Ib[2] & 0x3;
361   }
362 #endif
363 
setSrcReg(unsigned src,unsigned reg)364   BX_CPP_INLINE void setSrcReg(unsigned src, unsigned reg) {
365     metaData[src] = reg;
366   }
getSrcReg(unsigned src)367   BX_CPP_INLINE unsigned getSrcReg(unsigned src) const {
368     return metaData[src];
369   }
370 
dst()371   BX_CPP_INLINE unsigned dst() const {
372     return metaData[BX_INSTR_METADATA_DST];
373   }
374 
src1()375   BX_CPP_INLINE unsigned src1() const {
376     return metaData[BX_INSTR_METADATA_SRC1];
377   }
src2()378   BX_CPP_INLINE unsigned src2() const {
379     return metaData[BX_INSTR_METADATA_SRC2];
380   }
src3()381   BX_CPP_INLINE unsigned src3() const {
382     return metaData[BX_INSTR_METADATA_SRC3];
383   }
384 
src()385   BX_CPP_INLINE unsigned src() const { return src1(); }
386 
modC0()387   BX_CPP_INLINE unsigned modC0() const
388   {
389     // This is a cheaper way to test for modRM instructions where
390     // the mod field is 0xc0.  FetchDecode flags this condition since
391     // it is quite common to be tested for.
392     return metaInfo.metaInfo1 & (1<<4);
393   }
assertModC0()394   BX_CPP_INLINE void assertModC0()
395   {
396     metaInfo.metaInfo1 |= (1<<4);
397   }
398 
399 #if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS && BX_ENABLE_TRACE_LINKING && !defined(BX_STANDALONE_DECODER)
getNextTrace(Bit32u currTraceLinkTimeStamp)400   BX_CPP_INLINE bxInstruction_c* getNextTrace(Bit32u currTraceLinkTimeStamp) {
401     if (currTraceLinkTimeStamp > modRMForm.Id2) handlers.next = NULL;
402     return handlers.next;
403   }
setNextTrace(bxInstruction_c * iptr,Bit32u traceLinkTimeStamp)404   BX_CPP_INLINE void setNextTrace(bxInstruction_c* iptr, Bit32u traceLinkTimeStamp) {
405     handlers.next = iptr;
406     modRMForm.Id2 = traceLinkTimeStamp;
407   }
408 #endif
409 
410 };
411 // <TAG-CLASS-INSTRUCTION-END>
412 
413 enum BxDisasmStyle {
414   BX_DISASM_INTEL,
415   BX_DISASM_GAS
416 };
417 
418 extern char* disasm(const Bit8u *opcode, bool is_32, bool is_64, char *disbufptr, bxInstruction_c *i, bx_address cs_base, bx_address rip, BxDisasmStyle style = BX_DISASM_INTEL);
419 
420 #endif
421