1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
2
3<!--Converted with LaTeX2HTML 2018.3 (Released July 19, 2018) -->
4<HTML lang="EN">
5<HEAD>
6<TITLE>HEALPix conventions</TITLE>
7<META NAME="description" CONTENT="HEALPix conventions">
8<META NAME="keywords" CONTENT="intro">
9<META NAME="resource-type" CONTENT="document">
10<META NAME="distribution" CONTENT="global">
11
12<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
13<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
14<META NAME="Generator" CONTENT="LaTeX2HTML v2018.3">
15   <link rel='apple-touch-icon' sizes='180x180' href='images/favicons/apple-touch-icon.png?v=2017'>
16   <link rel='icon' type='image/png' sizes='32x32' href='images/favicons/favicon-32x32.png?v=2017'>
17   <link rel='icon' type='image/png' sizes='16x16' href='images/favicons/favicon-16x16.png?v=2017'>
18   <link rel='manifest' href='images/favicons/manifest.json?v=2017'>
19   <link rel='mask-icon' href='images/favicons/safari-pinned-tab.svg?v=2017' color='#5bbad5'>
20   <link rel='shortcut icon' href='images/favicons/favicon.ico?v=2017'>
21   <meta name='apple-mobile-web-app-title' content='HEALPix'>
22   <meta name='application-name' content='HEALPix'>
23   <meta name='msapplication-config' content='images/favicons/browserconfig.xml?v=2017'>
24   <meta name='theme-color' content='#ffffff'>
25
26<LINK REL="STYLESHEET" HREF="intro.css">
27
28<LINK REL="next" HREF="intro_Pixel_window_functions.htm">
29<LINK REL="previous" HREF="intro_HEALPix_Software_Package.htm">
30<LINK REL="next" HREF="intro_Pixel_window_functions.htm">
31</HEAD>
32
33<body text="#000000" bgcolor="#FFFFFA">
34
35<DIV CLASS="navigation"><!--Navigation Panel-->
36<A
37 HREF="intro_HEALPix_Software_Package.htm">
38<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
39<A
40 HREF="intro_Introduction_HEALPix.htm">
41<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
42<A
43 HREF="intro_Pixel_window_functions.htm">
44<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
45<A ID="tex2html97"
46  HREF="intro_TABLE_CONTENTS.htm">
47<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
48<BR>
49<B> Previous:</B> <A
50 HREF="intro_HEALPix_Software_Package.htm">The HEALPix Software Package</A>
51
52<B>Up:</B> <A
53 HREF="intro_Introduction_HEALPix.htm">Introduction to HEALPix</A>
54
55<B> Next:</B> <A
56 HREF="intro_Pixel_window_functions.htm">Pixel window functions</A>
57<B> Top:</B> <a href="main.htm">Main Page</a></DIV>
58<!--End of Navigation Panel-->
59<!--Table of Child-Links-->
60<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
61
62<UL CLASS="ChildLinks">
63<LI><A ID="tex2html99"
64  HREF="intro_HEALPix_conventions.htm#SECTION610">Angular power spectrum conventions</A>
65<LI><A ID="tex2html100"
66  HREF="intro_HEALPix_conventions.htm#SECTION620"><b>HEALPix</b> and Boltzmann codes</A>
67<UL>
68<LI><A ID="tex2html101"
69  HREF="intro_HEALPix_conventions.htm#SECTION621">CMBFAST</A>
70<LI><A ID="tex2html102"
71  HREF="intro_HEALPix_conventions.htm#SECTION622">CAMB and CLASS</A>
72</UL>
73<BR>
74<LI><A ID="tex2html103"
75  HREF="intro_HEALPix_conventions.htm#SECTION630">Polarisation convention</A>
76<UL>
77<LI><A ID="tex2html104"
78  HREF="intro_HEALPix_conventions.htm#SECTION631">Internal convention</A>
79<LI><A ID="tex2html105"
80  HREF="intro_HEALPix_conventions.htm#SECTION632">Relation to previous releases</A>
81<LI><A ID="tex2html106"
82  HREF="intro_HEALPix_conventions.htm#SECTION633">Relation with IAU convention</A>
83<LI><A ID="tex2html107"
84  HREF="intro_HEALPix_conventions.htm#SECTION634">How <b>HEALPix</b> deals with these discrepancies: <SPAN  CLASS="texttt">POLCCONV</SPAN> keyword</A>
85</UL>
86<BR>
87<LI><A ID="tex2html108"
88  HREF="intro_HEALPix_conventions.htm#SECTION640">Spherical harmonic conventions</A>
89</UL>
90<!--End of Table of Child-Links-->
91<HR>
92
93<H1><A ID="SECTION600"></A>
94<A ID="sec:conventions"></A>
95<BR>
96<b>HEALPix</b> conventions
97</H1>A bandlimited function <SPAN CLASS="MATH"><I>f</I></SPAN> on the sphere can
98be expanded in spherical harmonics, <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img11.png"
99 ALT="$Y_{\ell m}$"></SPAN>,
100as
101<BR>
102<DIV ALIGN="CENTER"><A ID="eq:alms"></A>
103<!-- MATH
104 \begin{eqnarray}
105f({ \gamma})&\myequal &\sum_{\ell =0}^{\ell_{\mathrm{max}}}\sum_{m}a_{\ell m}Y_{\ell m}(\gamma),
106\end{eqnarray}
107 -->
108<SPAN CLASS="MATH">
109<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
110<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img12.png"
111 ALT="$\displaystyle f({ \gamma})$"></TD>
112<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
113 ALT="$\textstyle \myequal $"></TD>
114<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 6.06ex; vertical-align: -2.66ex; " SRC="intro_img14.png"
115 ALT="$\displaystyle \sum_{\ell =0}^{\ell_{\mathrm{max}}}\sum_{m}a_{\ell m}Y_{\ell m}(\gamma),$"></TD>
116<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
117(<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
118</TABLE>
119</SPAN></DIV>
120<BR CLEAR="ALL"><P></P>
121where <SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.55ex; " SRC="intro_img15.png"
122 ALT="${{\gamma}}$"></SPAN> denotes a unit vector pointing at polar angle <!-- MATH
123 $\theta\in[0,\pi]$
124 -->
125<SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img16.png"
126 ALT="$\theta\in[0,\pi]$"></SPAN> and
127azimuth <!-- MATH
128 $\phi\in[0,2\pi)$
129 -->
130<SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img17.png"
131 ALT="$\phi\in[0,2\pi)$"></SPAN>. Here we have assumed that there is insignificant signal power in modes
132with <!-- MATH
133 $\ell>\ell_{\mathrm{max}}$
134 -->
135<SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img18.png"
136 ALT="$\ell&gt;\ell_{\mathrm{max}}$"></SPAN> and introduce the  notation that all sums over <SPAN CLASS="MATH"><I>m</I></SPAN> run from
137<!-- MATH
138 $-\ell_{\mathrm{max}}$
139 -->
140<SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img19.png"
141 ALT="$-\ell_{\mathrm{max}}$"></SPAN> to <!-- MATH
142 $\ell_{\mathrm{max}}$
143 -->
144<SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img20.png"
145 ALT="$\ell_{\mathrm{max}}$"></SPAN> but all quantities with index <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img21.png"
146 ALT="${\ell m}$"></SPAN> vanish
147for <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.16ex; " SRC="intro_img22.png"
148 ALT="$m&gt;\ell$"></SPAN>. Our conventions for <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img11.png"
149 ALT="$Y_{\ell m}$"></SPAN> are defined in subsection
150<A HREF="#sphericalstuff">A.4</A> below.
151
152<P>
153Pixelating <SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img23.png"
154 ALT="$f({\gamma})$"></SPAN> corresponds to sampling it at <!-- MATH
155 $N_{\mathrm{pix}}$
156 -->
157<SPAN CLASS="MATH"><I>N</I><SUB>pix</SUB></SPAN>
158 locations <SPAN CLASS="MATH"><IMG STYLE="height: 1.75ex; vertical-align: -0.75ex; " SRC="intro_img24.png"
159 ALT="$\gamma_{p}$"></SPAN>, <!-- MATH
160 $p\in[0,N_{\mathrm{pix}}-1]$
161 -->
162<SPAN CLASS="MATH"><IMG STYLE="height: 2.45ex; vertical-align: -0.75ex; " SRC="intro_img25.png"
163 ALT="$p\in[0,N_{\mathrm{pix}}-1]$"></SPAN>. The sample
164function values <SPAN CLASS="MATH"><I>f</I><SUB><i>p</i></SUB></SPAN> can then be used
165to estimate  <SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.45ex; " SRC="intro_img26.png"
166 ALT="$a_{\ell m}$"></SPAN>. A straightforward estimator is
167<BR>
168<DIV ALIGN="CENTER"><A ID="eq:hata"></A>
169<!-- MATH
170 \begin{eqnarray}
171\hat{a}_{\ell m}&\myequal & \frac{4\pi}{N_{\mathrm{pix}}}\sum_{p=0}^{N_{\mathrm{pix}}-1}
172  Y^\ast_{\ell m}(\gamma_p) f(\gamma_p),
173\end{eqnarray}
174 -->
175<SPAN CLASS="MATH">
176<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
177<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img27.png"
178 ALT="$\displaystyle \hat{a}_{\ell m}$"></TD>
179<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
180 ALT="$\textstyle \myequal $"></TD>
181<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 6.47ex; vertical-align: -2.88ex; " SRC="intro_img28.png"
182 ALT="$\displaystyle \frac{4\pi}{N_{\mathrm{pix}}}\sum_{p=0}^{N_{\mathrm{pix}}-1}
183Y^\ast_{\ell m}(\gamma_p) f(\gamma_p),$"></TD>
184<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
185(<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
186</TABLE>
187</SPAN></DIV>
188<BR CLEAR="ALL"><P></P>
189where the superscript star denotes complex  conjugation, and an equal weight was assumed for each pixel. This
190zeroth order estimator, as well as  higher order  estimators, are implemented in the
191Fortran90 facility <A HREF="./fac_anafast.htm#fac:anafast"><SPAN  CLASS="texttt">anafast</SPAN></A>, included in the
192package.
193
194<P>
195
196<H2><A ID="SECTION610">
197Angular power spectrum conventions</A>
198</H2>
199These <!-- MATH
200 $\hat{a}_{\ell m}$
201 -->
202<SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img29.png"
203 ALT="$\hat{a}_{\ell m}$"></SPAN> can be used to compute estimates of the angular power spectrum
204 <SPAN CLASS="MATH"><IMG STYLE="height: 2.62ex; vertical-align: -0.45ex; " SRC="intro_img30.png"
205 ALT="$\hat{C}_\ell$"></SPAN> as
206<BR>
207<DIV ALIGN="CENTER"><A ID="eq:hatC"></A>
208<!-- MATH
209 \begin{eqnarray}
210\hat{C}_\ell&\myequal &\frac{1}{2\ell +1}\sum_{m} \vert\hat{a}_{\ell m}\vert^2.
211\end{eqnarray}
212 -->
213<SPAN CLASS="MATH">
214<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
215<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.62ex; vertical-align: -0.45ex; " SRC="intro_img31.png"
216 ALT="$\displaystyle \hat{C}_\ell$"></TD>
217<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
218 ALT="$\textstyle \myequal $"></TD>
219<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.30ex; vertical-align: -2.42ex; " SRC="intro_img32.png"
220 ALT="$\displaystyle \frac{1}{2\ell +1}\sum_{m} \vert\hat{a}_{\ell m}\vert^2.$"></TD>
221<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
222(<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
223</TABLE>
224</SPAN></DIV>
225<BR CLEAR="ALL"><P></P>
226Equations (<A HREF="#eq:hata">5</A>) and (<A HREF="#eq:hatC">6</A>) above do not consider the impact of a pixel masking or weighting
227<!-- MATH
228 $f(\gamma_p) \longrightarrow f(\gamma_p) w(\gamma_p)$
229 -->
230<SPAN CLASS="MATH"><IMG STYLE="height: 2.45ex; vertical-align: -0.75ex; " SRC="intro_img33.png"
231 ALT="$f(\gamma_p) \longrightarrow f(\gamma_p) w(\gamma_p)$"></SPAN>
232on the power spectrum estimation of <SPAN CLASS="MATH"><I>f</I></SPAN>, which is described in
233<A
234 HREF="intro_Bibliography.htm#whg2001">Wandelt, Hivon &amp; G&#243;rski (2001)</A>
235and addressed in
236<A
237 HREF="intro_Bibliography.htm#master">Hivon et&nbsp;al. (2002)</A>, <A
238 HREF="intro_Bibliography.htm#polspice">Chon et&nbsp;al. (2004)</A>, <A
239 HREF="intro_Bibliography.htm#xspect">Tristram et&nbsp;al. (2005)</A>, <A
240 HREF="intro_Bibliography.htm#xfaster">Rocha et&nbsp;al. (2009)</A> and
241<A
242 HREF="intro_Bibliography.htm#planck2015-11">Planck 2015-XI (2015)</A>
243among others.
244
245<P>
246The <b>HEALPix</b> package contains the Fortran90 facility
247<A HREF="./fac_synfast.htm#fac:synfast"><SPAN  CLASS="texttt">synfast</SPAN></A>,
248which takes as input a power spectrum <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img34.png"
249 ALT="$C_\ell$"></SPAN> and generates a realisation of
250<SPAN CLASS="MATH"><IMG STYLE="height: 2.45ex; vertical-align: -0.75ex; " SRC="intro_img35.png"
251 ALT="$f(\gamma_p)$"></SPAN>
252on the <b>HEALPix</b> grid.  The convention for power spectrum input into
253<SPAN  CLASS="texttt">synfast</SPAN> is straightforward: each <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img34.png"
254 ALT="$C_\ell$"></SPAN> is just the expected
255variance of the <SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.45ex; " SRC="intro_img26.png"
256 ALT="$a_{\ell m}$"></SPAN> at that <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img36.png"
257 ALT="$\ell$"></SPAN>.
258
259<P>
260<BLOCKQUOTE>
261<SPAN  CLASS="textbf">Example</SPAN>: The spherical harmonic coefficient <SPAN CLASS="MATH"><I>a</I><SUB>00</SUB></SPAN> is the
262integral of the <!-- MATH
263 $f(\gamma)/\sqrt{4 \pi}$
264 -->
265<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.68ex; " SRC="intro_img37.png"
266 ALT="$f(\gamma)/\sqrt{4 \pi}$"></SPAN> over the sphere. To
267obtain realisations of functions which have <SPAN CLASS="MATH"><I>a</I><SUB>00</SUB></SPAN> distributed as a Gaussian
268with zero mean and variance 1, set <SPAN CLASS="MATH"><I>C</I><SUB><i>0</i></SUB></SPAN> to 1.  The value of the
269synthesised function at each pixel will
270be Gaussian distributed with mean zero and variance <SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img38.png"
271 ALT="$1/(4\pi)$"></SPAN>.
272As required,  the integral of <SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img39.png"
273 ALT="$f(\gamma)$"></SPAN> over the full <SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.10ex; " SRC="intro_img40.png"
274 ALT="$4\pi$"></SPAN>
275solid angle of the sphere has zero mean and variance <SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.10ex; " SRC="intro_img40.png"
276 ALT="$4\pi$"></SPAN>.
277
278</BLOCKQUOTE>
279Note that this definition implies the standard result that the total power
280at the angular wavenumber <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img36.png"
281 ALT="$\ell$"></SPAN> is <!-- MATH
282 $(2\ell+1)C_\ell$
283 -->
284<SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img41.png"
285 ALT="$(2\ell+1)C_\ell$"></SPAN>, because there are
286<SPAN CLASS="MATH"><IMG STYLE="height: 1.81ex; vertical-align: -0.28ex; " SRC="intro_img42.png"
287 ALT="$2\ell+1$"></SPAN> modes for each  <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img36.png"
288 ALT="$\ell$"></SPAN>.
289
290<P>
291This defines unambiguously how the <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img34.png"
292 ALT="$C_\ell$"></SPAN> have to be defined given the
293units of the physical  quantity <SPAN CLASS="MATH"><I>f</I></SPAN>. In  cosmic
294microwave background research,
295popular choices for simulated maps are
296<DL COMPACT><DT><DD><IMG WIDTH="14" HEIGHT="14" SRC="greenball.png" ALT="*">
297 <SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img43.png"
298 ALT="$\Delta T/T $"></SPAN>, a dimensionless quantity measuring relative
299fluctuations about the average CMB temperature.
300<DT><DD><IMG WIDTH="14" HEIGHT="14" SRC="greenball.png" ALT="*">
301 The absolute quantity <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img44.png"
302 ALT="$\Delta T$"></SPAN> in <SPAN CLASS="MATH"><IMG STYLE="height: 2.16ex; vertical-align: -0.55ex; " SRC="intro_img45.png"
303 ALT="$\mu K$"></SPAN> or <SPAN CLASS="MATH"><I>K</I></SPAN>.
304</DL>
305
306<P>
307
308<H2><A ID="SECTION620">
309<b>HEALPix</b> and Boltzmann codes</A>
310</H2>
311
312<H3><A ID="SECTION621"></A>
313<A ID="subsec:cmbfast"></A>
314<BR>
315CMBFAST
316</H3>
317A widely used  solver of the Boltzmann equations for the computation
318of theoretical predictions of the spectrum of CMB anisotropy used to be CMBFAST
319(<A ID="tex2html13"
320  HREF="https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm"><SPAN  CLASS="texttt">https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm</SPAN></A>).
321
322<P>
323CMBFAST made its outputs in ASCII files, which instead
324of <SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img46.png"
325 ALT="$C_{X,\ell}$"></SPAN> contain quantities defined as
326<BR>
327<DIV ALIGN="CENTER">
328
329<!-- MATH
330 \begin{eqnarray}
331D_{X,\ell}&\myequal &\frac{\ell(\ell+1)}{(2\pi)T_{CMB}^2}C_{X,\ell},
332\end{eqnarray}
333 -->
334<SPAN CLASS="MATH">
335<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
336<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img47.png"
337 ALT="$\displaystyle D_{X,\ell}$"></TD>
338<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
339 ALT="$\textstyle \myequal $"></TD>
340<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.54ex; vertical-align: -2.27ex; " SRC="intro_img48.png"
341 ALT="$\displaystyle \frac{\ell(\ell+1)}{(2\pi)T_{CMB}^2}C_{X,\ell},$"></TD>
342<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
343(<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
344</TABLE>
345</SPAN></DIV>
346<BR CLEAR="ALL"><P></P>
347where <!-- MATH
348 $T_{CMB}=2.726K$
349 -->
350<SPAN CLASS="MATH"><I>T</I><SUB><I>CMB</I></SUB>=2.726<I>K</I></SPAN> is the temperature of the CMB today and <SPAN CLASS="MATH"><I>X</I></SPAN> stands for T,
351E, B or C (see &#167;&nbsp;<A HREF="#subsec:pol">A.3</A>).
352
353<P>
354The version 4.0 of CMBFAST also created a FITS file containing the power spectra
355<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img46.png"
356 ALT="$C_{X,\ell}$"></SPAN>, designed for interface with <b>HEALPix</b>. The spectra for polarization were renormalized to match the
357normalization used in <b>HEALPix</b>&nbsp;1.1, which was different from the one used by
358CMBFAST and by <b>HEALPix</b>&nbsp;1.2 (see &#167;&nbsp;<A HREF="#subsub:relatoldversion">A.3.2</A> for details).
359
360<P>
361A later version of CMBFAST (4.2, released in Feb. 2003) generated FITS files containing
362<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img46.png"
363 ALT="$C_{X,\ell}$"></SPAN>, with the same convention for polarization as the one used
364internally. It therefore matches the convention adopted by <b>HEALPix</b> in its
365version 1.2.
366
367<P>
368For backward compatibility, we provide an IDL code
369(<A HREF="./idl_convert_oldhpx2cmbfast.htm#idl:convert_oldhpx2cmbfast"><SPAN  CLASS="texttt">convert_oldhpx2cmbfast</SPAN></A>)
370to change the normalization of existing FITS files created with CMBFAST 4.0.
371When created with the correct normalization (with CMBFAST 4.2)
372or set to the correct normalization (using <SPAN  CLASS="texttt">convert_oldhpx2cmbfast</SPAN>), the FITS file will include a
373specific keyword (<SPAN  CLASS="texttt">POLNORM = CMBFAST</SPAN>) in their header to identify them.
374The map simulation code
375<A HREF="./fac_synfast.htm#fac:synfast"><SPAN  CLASS="texttt">synfast</SPAN></A>
376will issue a warning if the input power
377spectrum file does not contain the keyword <SPAN  CLASS="texttt">POLNORM</SPAN>, but no attempt will
378be made to renormalize the power spectrum. If the keyword is present, it will be
379inherited by the simulated map.
380
381<P>
382
383<H3><A ID="SECTION622">
384CAMB and CLASS</A>
385</H3>
386Newer and actively maintained Boltzmann codes currently include
387<SPAN  CLASS="texttt">camb</SPAN> and <SPAN  CLASS="texttt">class</SPAN>:
388<DL COMPACT><DT><DD><IMG WIDTH="14" HEIGHT="14" SRC="greenball.png" ALT="*">
389 <SPAN  CLASS="texttt">camb</SPAN> (<A ID="tex2html14"
390  HREF="https://camb.info"><SPAN  CLASS="texttt">https://camb.info</SPAN></A>)
391is written in Fortran 90 with a python wrapper, and can optionally output into FITS files
392the <SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img49.png"
393 ALT="$C_X(\ell)$"></SPAN> power spectra in [K]<SPAN CLASS="MATH"><SUP><i>2</i></SUP></SPAN> in a format directly usable by <b>HEALPix</b>;
394<BR><DT><DD><IMG WIDTH="14" HEIGHT="14" SRC="greenball.png" ALT="*">
395 <SPAN  CLASS="texttt">class</SPAN> (<A ID="tex2html15"
396  HREF="http://class-code.net"><SPAN  CLASS="texttt">http://class-code.net</SPAN></A>)
397is written in C and C++, and only outputs <!-- MATH
398 $\frac{\ell(\ell+1)}{2\pi}C_X(\ell)$
399 -->
400<SPAN CLASS="MATH"><IMG STYLE="height: 3.09ex; vertical-align: -0.90ex; " SRC="intro_img50.png"
401 ALT="$\frac{\ell(\ell+1)}{2\pi}C_X(\ell)$"></SPAN> in plain text files
402(optionally in [<SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.55ex; " SRC="intro_img51.png"
403 ALT="$\mu$"></SPAN>K]<SPAN CLASS="MATH"><SUP><i>2</i></SUP></SPAN> and in a order of columns for polarized spectra matching the one of <SPAN  CLASS="texttt">camb</SPAN>).
404</DL>
405Both codes are parallelized for faster computations and provide fine control of the output accuracy.
406
407<P>
408
409<H2><A ID="SECTION630"></A>
410<A ID="subsec:pol"></A>
411<BR>
412Polarisation convention
413</H2>
414
415<P>
416
417<DIV class="CENTER"><A ID="fig:orthpol"></A><A ID="1058"></A>
418<TABLE>
419<CAPTION class="BOTTOM"><STRONG>Figure 4:</STRONG>
420Orthographic projection of a fake full sky for temperature (color
421coded) and polarization (represented by the rods). All the input Spherical
422Harmonics coefficients are set to 0, except for
423<!-- MATH
424 $a_{21}^{TEMP}=\ -\ a_{2-1}^{TEMP}=1$
425 -->
426<SPAN CLASS="MATH"><IMG STYLE="height: 2.51ex; vertical-align: -0.83ex; " SRC="intro_img52.png"
427 ALT="$a_{21}^{TEMP}=\ -\ a_{2-1}^{TEMP}=1$"></SPAN> and
428<!-- MATH
429 $a_{21}^{GRAD}=\ -\ a_{2-1}^{GRAD}=1$
430 -->
431<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.83ex; " SRC="intro_img53.png"
432 ALT="$a_{21}^{GRAD}=\ -\ a_{2-1}^{GRAD}=1$"></SPAN></CAPTION>
433<TR><TD>
434<DIV CLASS="centerline" ID="par4244" ALIGN="CENTER">
435<IMG STYLE=""
436 SRC="./plot_orthpolrot.png"
437 ALT="Image plot_orthpolrot"></DIV>
438
439<P></TD></TR>
440</TABLE>
441</DIV>
442
443<P>
444
445<H3><A ID="SECTION631">
446Internal convention</A>
447</H3>
448Starting with version 1.20 (released in Feb 2003),<b>HEALPix</b> uses the same
449conventions as CMBFAST for the sign and normalization of the polarization power
450spectra, as exposed below (adapted from <A
451 HREF="intro_Bibliography.htm#zalda">Zaldarriaga (1998)</A>). How this relates to
452what was used in previous releases is exposed in&nbsp;<A HREF="#subsub:relatoldversion">A.3.2</A>.
453
454<P>
455<BLOCKQUOTE>
456<SMALL CLASS="FOOTNOTESIZE">The CMB radiation field is described by a <!-- MATH
457 $2\, \times \, 2$
458 -->
459<SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.29ex; " SRC="intro_img54.png"
460 ALT="$2\, \times \, 2$"></SPAN>
461intensity tensor
462<SPAN CLASS="MATH"><I>I</I><SUB><I>ij</I></SUB></SPAN>
463(<A
464 HREF="intro_Bibliography.htm#chandra">Chandrasekhar, 1960</A>). The Stokes parameters <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> are defined as
465<!-- MATH
466 $Q=(I_{11}-I_{22})/4$
467 -->
468<SPAN CLASS="MATH"><I>Q</I>=(<I>I</I><SUB>11</SUB>-<I>I</I><SUB>22</SUB>)/4</SPAN> and <SPAN CLASS="MATH"><I>U</I>=<I>I</I><SUB>12</SUB>/2</SPAN>, while the temperature anisotropy
469is given by <!-- MATH
470 $T=(I_{11}+I_{22})/4$
471 -->
472<SPAN CLASS="MATH"><I>T</I>=(<I>I</I><SUB>11</SUB>+<I>I</I><SUB>22</SUB>)/4</SPAN>. The fourth Stokes parameter <SPAN CLASS="MATH"><I>V</I></SPAN> that
473describes circular polarization is not necessary in standard cosmological
474models because it cannot be generated through the process of Thomson
475scattering. While the temperature is a scalar quantity <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> are
476not. They depend on the direction of observation <SPAN CLASS="MATH"><B>n</B></SPAN>
477and on the two axis <!-- MATH
478 $(\textbf{e}_{1}, \textbf{e}_{2})$
479 -->
480<SPAN CLASS="MATH">(<B>e</B><SUB>1</SUB>, <B>e</B><SUB>2</SUB>)</SPAN>
481perpendicular to <SPAN CLASS="MATH"><B>n</B></SPAN> used to define them. If for a given
482<SPAN CLASS="MATH"><B>n</B></SPAN> the axes <!-- MATH
483 $(\textbf{e}_{1}, \textbf{e}_{2})$
484 -->
485<SPAN CLASS="MATH">(<B>e</B><SUB>1</SUB>, <B>e</B><SUB>2</SUB>)</SPAN> are rotated by an angle
486<SPAN CLASS="MATH"><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img55.png"
487 ALT="$\psi$"></SPAN> such that
488<!-- MATH
489 ${\textbf{e}_{1}}^{\prime}=\cos \psi \ {\textbf{e}_{1}}+\sin\psi \ {\textbf{e}_{2}}$
490 -->
491<SPAN CLASS="MATH"><IMG STYLE="height: 2.21ex; vertical-align: -0.55ex; " SRC="intro_img56.png"
492 ALT="${\textbf{e}_{1}}^{\prime}=\cos \psi \ {\textbf{e}_{1}}+\sin\psi \ {\textbf{e}_{2}} $"></SPAN>
493and <!-- MATH
494 ${\textbf{e}_{2}}^{\prime}=-\sin \psi \ {\textbf{e}_{1}}+\cos\psi \ {\textbf{e}_{2}}$
495 -->
496<SPAN CLASS="MATH"><IMG STYLE="height: 2.21ex; vertical-align: -0.55ex; " SRC="intro_img57.png"
497 ALT="${\textbf{e}_{2}}^{\prime}=-\sin \psi \ {\textbf{e}_{1}}+\cos\psi \ {\textbf{e}_{2}} $"></SPAN>
498the Stokes parameters change as
499</SMALL></BLOCKQUOTE>
500<BR>
501<DIV ALIGN="CENTER"><A ID="QUtrans"></A>
502<!-- MATH
503 \begin{eqnarray}
504Q^{\prime}&\myequal &\cos 2\psi \  Q + \sin 2\psi \ U \nonumber   \\
505  U^{\prime}&\myequal &-\sin 2\psi \ Q + \cos 2\psi \ U
506\end{eqnarray}
507 -->
508<SPAN CLASS="MATH">
509<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
510<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.55ex; " SRC="intro_img58.png"
511 ALT="$\displaystyle Q^{\prime}$"></TD>
512<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
513 ALT="$\textstyle \myequal $"></TD>
514<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img59.png"
515 ALT="$\displaystyle \cos 2\psi \ Q + \sin 2\psi \ U$"></TD>
516<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
517&nbsp;</TD></TR>
518<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 1.87ex; vertical-align: -0.10ex; " SRC="intro_img60.png"
519 ALT="$\displaystyle U^{\prime}$"></TD>
520<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
521 ALT="$\textstyle \myequal $"></TD>
522<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img61.png"
523 ALT="$\displaystyle -\sin 2\psi \ Q + \cos 2\psi \ U$"></TD>
524<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
525(<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
526</TABLE>
527</SPAN></DIV>
528<BR CLEAR="ALL"><P></P><BLOCKQUOTE></BLOCKQUOTE>
529<P>
530<BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">To analyze the CMB temperature on the sky, it is natural to
531expand it in spherical harmonics. These are not appropriate
532for polarization, because
533the two combinations <SPAN CLASS="MATH"><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img62.png"
534 ALT="$Q\pm iU$"></SPAN> are quantities of spin <SPAN CLASS="MATH"><IMG STYLE="height: 1.57ex; vertical-align: -0.29ex; " SRC="intro_img63.png"
535 ALT="$\pm 2$"></SPAN>
536(<A
537 HREF="intro_Bibliography.htm#goldberg">Goldberg, 1967</A>). They
538should be expanded in spin-weighted harmonics <!-- MATH
539 $\, _{\pm2}Y_l^m$
540 -->
541<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.67ex; " SRC="intro_img64.png"
542 ALT="$\, _{\pm2}Y_l^m$"></SPAN>
543(<A ID="tex2html109" target="contents"
544  HREF="intro_Bibliography.htm#longspin">Seljak &amp; Zaldarriaga, 1997</A>; <A ID="tex2html110" target="contents"
545  HREF="intro_Bibliography.htm#spinlong">Zaldarriaga&nbsp;&amp;&nbsp;Seljak, 1997</A>),
546</SMALL></BLOCKQUOTE>
547<BR>
548<DIV ALIGN="CENTER"><A ID="Pexpansion"></A>
549<!-- MATH
550 \begin{eqnarray}
551T(\textbf{n})&\myequal &\sum_{lm} a_{T,lm} Y_{lm}(\textbf{n}) \nonumber \\
552  (Q+iU)(\textbf{n})&\myequal &\sum_{lm}
553  a_{2,lm}\;_2Y_{lm}(\textbf{n}) \nonumber   \\
554  (Q-iU)(\textbf{n})&\myequal &\sum_{lm}
555  a_{-2,lm}\;_{-2}Y_{lm}(\textbf{n}).
556\end{eqnarray}
557 -->
558<SPAN CLASS="MATH">
559<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
560<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>T</I>(<B>n</B>)</TD>
561<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
562 ALT="$\textstyle \myequal $"></TD>
563<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img65.png"
564 ALT="$\displaystyle \sum_{lm} a_{T,lm} Y_{lm}(\textbf{n})$"></TD>
565<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
566&nbsp;</TD></TR>
567<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT">(<I>Q</I>+<I>iU</I>)(<B>n</B>)</TD>
568<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
569 ALT="$\textstyle \myequal $"></TD>
570<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img66.png"
571 ALT="$\displaystyle \sum_{lm}
572a_{2,lm}\;_2Y_{lm}(\textbf{n})$"></TD>
573<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
574&nbsp;</TD></TR>
575<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT">(<I>Q</I>-<I>iU</I>)(<B>n</B>)</TD>
576<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
577 ALT="$\textstyle \myequal $"></TD>
578<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img67.png"
579 ALT="$\displaystyle \sum_{lm}
580a_{-2,lm}\;_{-2}Y_{lm}(\textbf{n}).$"></TD>
581<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
582(<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
583</TABLE>
584</SPAN></DIV>
585<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
586To perform this expansion, <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> in equation (<A HREF="#Pexpansion">9</A>)
587are measured relative to <!-- MATH
588 $(\textbf{e}_{1}, \textbf{e}_{2})=(\textbf{e}_\theta , \textbf{e}_\phi )$
589 -->
590<SPAN CLASS="MATH"><IMG STYLE="height: 2.45ex; vertical-align: -0.75ex; " SRC="intro_img68.png"
591 ALT="$(\textbf{e}_{1}, \textbf{e}_{2})=(\textbf{e}_\theta , \textbf{e}_\phi )$"></SPAN>, the unit vectors of the spherical coordinate system.
592Where <!-- MATH
593 $\textbf{e}_\theta$
594 -->
595<SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.45ex; " SRC="intro_img69.png"
596 ALT="$\textbf{e}_\theta $"></SPAN> is tangent to the local meridian and directed from North
597to South, and <!-- MATH
598 $\textbf{e}_\phi$
599 -->
600<SPAN CLASS="MATH"><IMG STYLE="height: 1.75ex; vertical-align: -0.75ex; " SRC="intro_img70.png"
601 ALT="$\textbf{e}_\phi $"></SPAN> is tangent to the local parallel, and directed from
602West to East.
603The coefficients <!-- MATH
604 $_{\pm 2}a_{lm}$
605 -->
606<SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.61ex; " SRC="intro_img71.png"
607 ALT="$_{\pm 2}a_{lm}$"></SPAN>
608are observable on the sky and their power spectra
609can be
610predicted for different cosmological models. Instead of <!-- MATH
611 $_{\pm 2}a_{lm}$
612 -->
613<SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.61ex; " SRC="intro_img71.png"
614 ALT="$_{\pm 2}a_{lm}$"></SPAN>
615it is convenient
616to use their linear combinations
617</SMALL></BLOCKQUOTE>
618<BR>
619<DIV ALIGN="CENTER">
620
621<!-- MATH
622 \begin{eqnarray}
623a_{E,lm}&\myequal &-(a_{2,lm}+a_{-2,lm})/2  \nonumber   \\
624a_{B,lm}&\myequal &-(a_{2,lm}-a_{-2,lm})/2i,
625\end{eqnarray}
626 -->
627<SPAN CLASS="MATH">
628<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
629<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>a</I><SUB><I>E</I>,<I>lm</I></SUB></TD>
630<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
631 ALT="$\textstyle \myequal $"></TD>
632<TD ALIGN="LEFT" WIDTH="50%" NOWRAP>-(<I>a</I><SUB>2,<I>lm</I></SUB>+<I>a</I><SUB>-2,<I>lm</I></SUB>)/2</TD>
633<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
634&nbsp;</TD></TR>
635<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>a</I><SUB><I>B</I>,<I>lm</I></SUB></TD>
636<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
637 ALT="$\textstyle \myequal $"></TD>
638<TD ALIGN="LEFT" WIDTH="50%" NOWRAP>-(<I>a</I><SUB>2,<I>lm</I></SUB>-<I>a</I><SUB>-2,<I>lm</I></SUB>)/2<I>i</I>,</TD>
639<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
640(<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
641</TABLE>
642</SPAN></DIV>
643<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
644which transform differently
645under parity.
646Four power spectra are needed to
647characterize fluctuations in a gaussian theory,
648the autocorrelation between
649<SPAN CLASS="MATH"><I>T</I></SPAN>, <SPAN CLASS="MATH"><I>E</I></SPAN> and <SPAN CLASS="MATH"><I>B</I></SPAN> and the cross correlation of <SPAN CLASS="MATH"><I>E</I></SPAN> and <SPAN CLASS="MATH"><I>T</I></SPAN>.
650Because of parity considerations the cross-correlations
651between <SPAN CLASS="MATH"><I>B</I></SPAN> and the
652other quantities vanish and one is left with
653</SMALL></BLOCKQUOTE>
654<BR>
655<DIV ALIGN="CENTER"><A ID="Cls"></A>
656<!-- MATH
657 \begin{eqnarray}
658\langle a_{X,lm}^{*}
659  a_{X,lm^\prime}\rangle &\myequal & \delta_{m,m^\prime}C_{Xl}
660  \quad
661  \langle a_{T,lm}^{*}a_{E,lm}\rangle=\delta_{m,m^\prime}C_{Cl},
662\end{eqnarray}
663 -->
664<SPAN CLASS="MATH">
665<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
666<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.62ex; vertical-align: -0.97ex; " SRC="intro_img72.png"
667 ALT="$\displaystyle \langle a_{X,lm}^{*}
668a_{X,lm^\prime}\rangle$"></TD>
669<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
670 ALT="$\textstyle \myequal $"></TD>
671<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.62ex; vertical-align: -0.97ex; " SRC="intro_img73.png"
672 ALT="$\displaystyle \delta_{m,m^\prime}C_{Xl}
673\quad
674\langle a_{T,lm}^{*}a_{E,lm}\rangle=\delta_{m,m^\prime}C_{Cl},$"></TD>
675<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
676(<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
677</TABLE>
678</SPAN></DIV>
679<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
680where
681<SPAN CLASS="MATH"><I>X</I></SPAN> stands for <SPAN CLASS="MATH"><I>T</I></SPAN>, <SPAN CLASS="MATH"><I>E</I></SPAN> or <SPAN CLASS="MATH"><I>B</I></SPAN>, <!-- MATH
682 $\langle\cdots \rangle$
683 -->
684<SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img74.png"
685 ALT="$\langle\cdots \rangle$"></SPAN>
686means ensemble average and <SPAN CLASS="MATH"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img75.png"
687 ALT="$\delta_{i,j}$"></SPAN> is the Kronecker delta.
688</SMALL></BLOCKQUOTE>
689<P>
690<BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">We can rewrite
691equation (<A HREF="#Pexpansion">9</A>) as
692</SMALL></BLOCKQUOTE>
693<BR>
694<DIV ALIGN="CENTER"><A ID="Pexpansion2"></A>
695<!-- MATH
696 \begin{eqnarray}
697T(\textbf{n})&\myequal &\sum_{lm} a_{T,lm} Y_{lm}(\textbf{n}) \nonumber \\
698 Q(\textbf{n})&\myequal &-\sum_{lm} a_{E,lm} X_{1,lm}
699   +i a_{B,lm}X_{2,lm} \nonumber \\
700 U(\textbf{n})&\myequal &-\sum_{lm} a_{B,lm} X_{1,lm}-i a_{E,lm} X_{2,lm}
701
702\end{eqnarray}
703 -->
704<SPAN CLASS="MATH">
705<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
706<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>T</I>(<B>n</B>)</TD>
707<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
708 ALT="$\textstyle \myequal $"></TD>
709<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img65.png"
710 ALT="$\displaystyle \sum_{lm} a_{T,lm} Y_{lm}(\textbf{n})$"></TD>
711<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
712&nbsp;</TD></TR>
713<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>Q</I>(<B>n</B>)</TD>
714<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
715 ALT="$\textstyle \myequal $"></TD>
716<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img76.png"
717 ALT="$\displaystyle -\sum_{lm} a_{E,lm} X_{1,lm}
718+i a_{B,lm}X_{2,lm}$"></TD>
719<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
720&nbsp;</TD></TR>
721<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><I>U</I>(<B>n</B>)</TD>
722<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
723 ALT="$\textstyle \myequal $"></TD>
724<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.37ex; vertical-align: -2.66ex; " SRC="intro_img77.png"
725 ALT="$\displaystyle -\sum_{lm} a_{B,lm} X_{1,lm}-i a_{E,lm} X_{2,lm}$"></TD>
726<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
727(<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
728</TABLE>
729</SPAN></DIV>
730<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
731where we have introduced
732<!-- MATH
733 $X_{1,lm}(\textbf{n})=(\;_2Y_{lm}+\;_{-2}Y_{lm})/2$
734 -->
735<SPAN CLASS="MATH"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img78.png"
736 ALT="$X_{1,lm}(\textbf{n})=(\;_2Y_{lm}+\;_{-2}Y_{lm})/2$"></SPAN>
737and <!-- MATH
738 $X_{2,lm}(\textbf{n})=(\;_2Y_{lm}-\;_{-2}Y_{lm})/ 2$
739 -->
740<SPAN CLASS="MATH"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img79.png"
741 ALT="$X_{2,lm}(\textbf{n})=(\;_2Y_{lm}-\;_{-2}Y_{lm})/ 2$"></SPAN>.
742They satisfy <!-- MATH
743 $Y^{*}_{lm} = (-1)^m Y_{l-m}$
744 -->
745<SPAN CLASS="MATH"><I>Y</I><SUP>*</SUP><SUB><I>lm</I></SUB> = (-1)<SUP><i>m</i></SUP> <I>Y</I><SUB><I>l</I>-<I>m</I></SUB></SPAN>,
746<!-- MATH
747 $X^{*}_{1,lm}=(-1)^m X_{1,l-m}$
748 -->
749<SPAN CLASS="MATH"><I>X</I><SUP>*</SUP><SUB>1,<I>lm</I></SUB>=(-1)<SUP><i>m</i></SUP> <I>X</I><SUB>1,<I>l</I>-<I>m</I></SUB></SPAN> and
750<!-- MATH
751 $X^*_{2,lm}=(-1)^{m+1}X_{2,l-m}$
752 -->
753<SPAN CLASS="MATH"><I>X</I><SUP><i>*</i></SUP><SUB>2,<I>lm</I></SUB>=(-1)<SUP><I>m</I>+1</SUP><I>X</I><SUB>2,<I>l</I>-<I>m</I></SUB></SPAN> which
754together with <!-- MATH
755 $a_{T,lm}=(-1)^m a_{T,l-m}^*$
756 -->
757<SPAN CLASS="MATH"><I>a</I><SUB><I>T</I>,<I>lm</I></SUB>=(-1)<SUP><i>m</i></SUP> <I>a</I><SUB><I>T</I>,<I>l</I>-<I>m</I></SUB><SUP><i>*</i></SUP></SPAN>, <!-- MATH
758 $a_{E,lm}=(-1)^m a_{E,l-m}^*$
759 -->
760<SPAN CLASS="MATH"><I>a</I><SUB><I>E</I>,<I>lm</I></SUB>=(-1)<SUP><i>m</i></SUP> <I>a</I><SUB><I>E</I>,<I>l</I>-<I>m</I></SUB><SUP><i>*</i></SUP></SPAN> and
761<!-- MATH
762 $a_{B,lm}=(-1)^m a_{B,l-m}^*$
763 -->
764<SPAN CLASS="MATH"><I>a</I><SUB><I>B</I>,<I>lm</I></SUB>=(-1)<SUP><i>m</i></SUP> <I>a</I><SUB><I>B</I>,<I>l</I>-<I>m</I></SUB><SUP><i>*</i></SUP></SPAN> make <SPAN CLASS="MATH"><I>T</I></SPAN>, <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> real.
765</SMALL></BLOCKQUOTE>
766<P>
767<BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">In fact <!-- MATH
768 $X_{1,lm}(\textbf{n})$
769 -->
770<SPAN CLASS="MATH"><I>X</I><SUB>1,<I>lm</I></SUB>(<B>n</B>)</SPAN> and <!-- MATH
771 $X_{2,lm}(\textbf{n})$
772 -->
773<SPAN CLASS="MATH"><I>X</I><SUB>2,<I>lm</I></SUB>(<B>n</B>)</SPAN> have the form,
774<!-- MATH
775 ${X_{1,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{1,lm}(\theta)\ e^{im\phi}}$
776 -->
777<SPAN CLASS="MATH"><IMG STYLE="height: 3.56ex; vertical-align: -1.17ex; " SRC="intro_img80.png"
778 ALT="${X_{1,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{1,lm}(\theta)\ e^{im\phi}}$"></SPAN>
779and <!-- MATH
780 ${X_{2,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{2,lm}(\theta)\ e^{im\phi}}$
781 -->
782<SPAN CLASS="MATH"><IMG STYLE="height: 3.56ex; vertical-align: -1.17ex; " SRC="intro_img81.png"
783 ALT="${X_{2,lm}(\textbf{n})=\sqrt{(2l+1) / 4\pi} F_{2,lm}(\theta)\ e^{im\phi}}$"></SPAN>,
784<!-- MATH
785 ${F_{(1,2),lm}(\theta)}$
786 -->
787<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.85ex; " SRC="intro_img82.png"
788 ALT="${F_{(1,2),lm}(\theta)}$"></SPAN> can be calculated in terms of Legendre
789polynomials (<A
790 HREF="intro_Bibliography.htm#kks">Kamionkowski et&nbsp;al., 1997</A>)
791</SMALL></BLOCKQUOTE>
792<BR>
793<DIV ALIGN="CENTER"><A ID="def:basis"></A>
794<!-- MATH
795 \begin{eqnarray}
796F_{1,lm}(\theta)&\myequal &  N_{lm}
797\left[ -\left({l-m^2 \over \sin^2\theta}
798+{1 \over 2}l(l-1)\right)P_l^m(\cos \theta)
799+(l+m) {\cos \theta \over \sin^2 \theta}
800P_{l-1}^m(\cos\theta)\right] \nonumber \\
801F_{2,lm}(\theta)&\myequal &  N_{lm}{m \over
802\sin^2 \theta}
803[ -(l-1)\cos \theta P_l^m(\cos \theta)+(l+m) P_{l-1}^m(\cos\theta)],
804\end{eqnarray}
805 -->
806<SPAN CLASS="MATH">
807<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
808<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img83.png"
809 ALT="$\displaystyle F_{1,lm}(\theta)$"></TD>
810<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
811 ALT="$\textstyle \myequal $"></TD>
812<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.83ex; vertical-align: -2.42ex; " SRC="intro_img84.png"
813 ALT="$\displaystyle N_{lm}
814\left[ -\left({l-m^2 \over \sin^2\theta}
815+{1 \over 2}l(l-...
816... \theta)
817+(l+m) {\cos \theta \over \sin^2 \theta}
818P_{l-1}^m(\cos\theta)\right]$"></TD>
819<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
820&nbsp;</TD></TR>
821<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img85.png"
822 ALT="$\displaystyle F_{2,lm}(\theta)$"></TD>
823<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
824 ALT="$\textstyle \myequal $"></TD>
825<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.25ex; vertical-align: -1.69ex; " SRC="intro_img86.png"
826 ALT="$\displaystyle N_{lm}{m \over
827\sin^2 \theta}
828[ -(l-1)\cos \theta P_l^m(\cos \theta)+(l+m) P_{l-1}^m(\cos\theta)],$"></TD>
829<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
830(<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
831</TABLE>
832</SPAN></DIV>
833<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
834where
835</SMALL></BLOCKQUOTE>
836<BR>
837<DIV ALIGN="CENTER">
838
839<!-- MATH
840 \begin{eqnarray}
841N_{lm}(\theta)&\myequal & 2 \sqrt{(l-2)!(l-m)! \over (l+2)!(l+m)!}.
842\end{eqnarray}
843 -->
844<SPAN CLASS="MATH">
845<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
846<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img87.png"
847 ALT="$\displaystyle N_{lm}(\theta)$"></TD>
848<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
849 ALT="$\textstyle \myequal $"></TD>
850<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 7.05ex; vertical-align: -2.81ex; " SRC="intro_img88.png"
851 ALT="$\displaystyle 2 \sqrt{(l-2)!(l-m)! \over (l+2)!(l+m)!}.$"></TD>
852<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
853(<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
854</TABLE>
855</SPAN></DIV>
856<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
857Note that <!-- MATH
858 $F_{2,lm}(\theta)=0$
859 -->
860<SPAN CLASS="MATH"><IMG STYLE="height: 2.39ex; vertical-align: -0.75ex; " SRC="intro_img89.png"
861 ALT="$F_{2,lm}(\theta)=0$"></SPAN> if <SPAN CLASS="MATH"><I>m</I>=0</SPAN>, as it  must to make the
862Stokes parameters real.
863</SMALL></BLOCKQUOTE>
864<P>
865<BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">The correlation functions between 2 points on the sky (noted 1 and 2) separated
866by an angle <SPAN CLASS="MATH"><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img90.png"
867 ALT="$\beta$"></SPAN>
868can be calculated using equations (<A HREF="#Cls">11</A>)
869and (<A HREF="#Pexpansion2">12</A>). However, as pointed out in <A
870 HREF="intro_Bibliography.htm#kks">Kamionkowski et&nbsp;al. (1997)</A>, the
871natural coordinate system to express the correlations is one in which
872<!-- MATH
873 $\textbf{e}_{1}$
874 -->
875<SPAN CLASS="MATH"><B>e</B><SUB>1</SUB></SPAN> vectors at each point are tangent to the great circle
876connecting these 2 points, with the <!-- MATH
877 $\textbf{e}_{2}$
878 -->
879<SPAN CLASS="MATH"><B>e</B><SUB>2</SUB></SPAN> vectors being perpendicular to
880the <!-- MATH
881 $\textbf{e}_{1}$
882 -->
883<SPAN CLASS="MATH"><B>e</B><SUB>1</SUB></SPAN> vectors.  With this choice of reference frames, and using
884the addition theorem for the spin harmonics (<A
885 HREF="intro_Bibliography.htm#primer">Hu &amp; White, 1997</A>),
886</SMALL></BLOCKQUOTE>
887<BR>
888<DIV ALIGN="CENTER"><A ID="addtheo"></A>
889<!-- MATH
890 \begin{eqnarray}
891\sum_m \;_{s_1} Y_{lm}^*(\textbf{n}_1)
892\;_{s_2} Y_{lm}(\textbf{n}_2)&\myequal &\sqrt{2l+1 \over 4 \pi}
893\;_{s_2} Y_{l-s_1}(\beta,\psi_1)e^{-is_2\psi_2}
894\end{eqnarray}
895 -->
896<SPAN CLASS="MATH">
897<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
898<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 4.14ex; vertical-align: -2.42ex; " SRC="intro_img91.png"
899 ALT="$\displaystyle \sum_m \;_{s_1} Y_{lm}^*(\textbf{n}_1)
900\;_{s_2} Y_{lm}(\textbf{n}_2)$"></TD>
901<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
902 ALT="$\textstyle \myequal $"></TD>
903<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.83ex; vertical-align: -2.00ex; " SRC="intro_img92.png"
904 ALT="$\displaystyle \sqrt{2l+1 \over 4 \pi}
905\;_{s_2} Y_{l-s_1}(\beta,\psi_1)e^{-is_2\psi_2}$"></TD>
906<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
907(<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
908</TABLE>
909</SPAN></DIV>
910<BR CLEAR="ALL"><P></P><BLOCKQUOTE></BLOCKQUOTE>
911<P>
912<BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">we have (<A
913 HREF="intro_Bibliography.htm#kks">Kamionkowski et&nbsp;al., 1997</A>)
914</SMALL></BLOCKQUOTE>
915<BR>
916<DIV ALIGN="CENTER"><A ID="QUr"></A>
917<!-- MATH
918 \begin{eqnarray}
919\langle T_1T_2 \rangle&\myequal &\sum_l {2l+1 \over 4 \pi}
920C_{Tl} P_l(\cos \beta) \nonumber \\
921\langle Q_{r}(1)Q_{r}(2) \rangle&\myequal &\sum_l {2l+1 \over 4 \pi} [C_{El}
922F_{1,l2}(\beta)-C_{Bl} F_{2,l2}(\beta)]  \nonumber \\
923\langle U_{r}(1)U_{r}(2) \rangle&\myequal &\sum_l {2l+1 \over 4 \pi}
924[C_{Bl} F_{1,l2}(\beta)-C_{El} F_{2,l2}(\beta) ] \nonumber \\
925\langle T(1)Q_{r}(2)
926\rangle&\myequal & - \sum_l {2l+1 \over 4 \pi} C_{Cl} F_{1,l0}(\beta)\nonumber \\
927\langle T(1)U_{r}(2) \rangle&\myequal &0.
928\end{eqnarray}
929 -->
930<SPAN CLASS="MATH">
931<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
932<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img93.png"
933 ALT="$\displaystyle \langle T_1T_2 \rangle$"></TD>
934<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
935 ALT="$\textstyle \myequal $"></TD>
936<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img94.png"
937 ALT="$\displaystyle \sum_l {2l+1 \over 4 \pi}
938C_{Tl} P_l(\cos \beta)$"></TD>
939<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
940&nbsp;</TD></TR>
941<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img95.png"
942 ALT="$\displaystyle \langle Q_{r}(1)Q_{r}(2) \rangle$"></TD>
943<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
944 ALT="$\textstyle \myequal $"></TD>
945<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img96.png"
946 ALT="$\displaystyle \sum_l {2l+1 \over 4 \pi} [C_{El}
947F_{1,l2}(\beta)-C_{Bl} F_{2,l2}(\beta)]$"></TD>
948<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
949&nbsp;</TD></TR>
950<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img97.png"
951 ALT="$\displaystyle \langle U_{r}(1)U_{r}(2) \rangle$"></TD>
952<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
953 ALT="$\textstyle \myequal $"></TD>
954<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img98.png"
955 ALT="$\displaystyle \sum_l {2l+1 \over 4 \pi}
956[C_{Bl} F_{1,l2}(\beta)-C_{El} F_{2,l2}(\beta) ]$"></TD>
957<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
958&nbsp;</TD></TR>
959<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img99.png"
960 ALT="$\displaystyle \langle T(1)Q_{r}(2)
961\rangle$"></TD>
962<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
963 ALT="$\textstyle \myequal $"></TD>
964<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img100.png"
965 ALT="$\displaystyle - \sum_l {2l+1 \over 4 \pi} C_{Cl} F_{1,l0}(\beta)$"></TD>
966<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
967&nbsp;</TD></TR>
968<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img101.png"
969 ALT="$\displaystyle \langle T(1)U_{r}(2) \rangle$"></TD>
970<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
971 ALT="$\textstyle \myequal $"></TD>
972<TD ALIGN="LEFT" WIDTH="50%" NOWRAP>0.</TD>
973<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
974(<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
975</TABLE>
976</SPAN></DIV>
977<BR CLEAR="ALL"><P></P><BLOCKQUOTE><SMALL CLASS="FOOTNOTESIZE">
978The subscript <SPAN CLASS="MATH"><I>r</I></SPAN>
979here indicate that the Stokes parameters are measured in this
980particular coordinate system.
981We can use the transformation laws in equation (<A HREF="#QUtrans">8</A>)
982to write <SPAN CLASS="MATH">(<I>Q</I>,<I>U</I>)</SPAN> in terms of <SPAN CLASS="MATH">(<I>Q</I><SUB><i>r</i></SUB>,<I>U</I><SUB><i>r</i></SUB>)</SPAN>.
983</SMALL>
984</BLOCKQUOTE>
985<P>
986Using the fact that, when <!-- MATH
987 $\beta \rightarrow 0$
988 -->
989<SPAN CLASS="MATH"><IMG STYLE="height: 2.10ex; vertical-align: -0.55ex; " SRC="intro_img102.png"
990 ALT="$\beta \rightarrow 0$"></SPAN>, <!-- MATH
991 $P_\ell(\cos\beta) \rightarrow 1$
992 -->
993<SPAN CLASS="MATH"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img103.png"
994 ALT="$P_\ell(\cos\beta) \rightarrow 1$"></SPAN> and <!-- MATH
995 $P_\ell^2(\cos
996\beta) \rightarrow \sin^2 \beta \frac{(\ell+2)!}{8 (\ell-2)!}$
997 -->
998<SPAN CLASS="MATH"><IMG STYLE="height: 3.50ex; vertical-align: -1.28ex; " SRC="intro_img104.png"
999 ALT="$P_\ell^2(\cos
1000\beta) \rightarrow \sin^2 \beta \frac{(\ell+2)!}{8 (\ell-2)!}$"></SPAN>,
1001the definitions above imply that the variances of the temperature and
1002polarization are related to the power spectra by
1003<BR>
1004<DIV ALIGN="CENTER"><A ID="var"></A>
1005<!-- MATH
1006 \begin{eqnarray}
1007\langle TT \rangle&\myequal &\sum_\ell {2\ell+1 \over 4 \pi}
1008C_{T\ell}  \nonumber \\
1009\langle QQ \rangle + \langle UU\rangle &\myequal &\sum_l {2\ell+1 \over 4 \pi} \left(C_{E\ell}
1010+C_{B\ell}\right)  \nonumber \\
1011\langle TQ\rangle = \langle TU\rangle&\myequal & 0.
1012\end{eqnarray}
1013 -->
1014<SPAN CLASS="MATH">
1015<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1016<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img105.png"
1017 ALT="$\displaystyle \langle TT \rangle$"></TD>
1018<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1019 ALT="$\textstyle \myequal $"></TD>
1020<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img106.png"
1021 ALT="$\displaystyle \sum_\ell {2\ell+1 \over 4 \pi}
1022C_{T\ell}$"></TD>
1023<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1024&nbsp;</TD></TR>
1025<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img107.png"
1026 ALT="$\displaystyle \langle QQ \rangle + \langle UU\rangle$"></TD>
1027<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1028 ALT="$\textstyle \myequal $"></TD>
1029<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.65ex; vertical-align: -2.66ex; " SRC="intro_img108.png"
1030 ALT="$\displaystyle \sum_l {2\ell+1 \over 4 \pi} \left(C_{E\ell}
1031+C_{B\ell}\right)$"></TD>
1032<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1033&nbsp;</TD></TR>
1034<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img109.png"
1035 ALT="$\displaystyle \langle TQ\rangle = \langle TU\rangle$"></TD>
1036<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1037 ALT="$\textstyle \myequal $"></TD>
1038<TD ALIGN="LEFT" WIDTH="50%" NOWRAP>0.</TD>
1039<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1040(<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
1041</TABLE>
1042</SPAN></DIV>
1043<BR CLEAR="ALL"><P></P>
1044
1045<P>
1046It is also worth noting that with these conventions, the cross power <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img110.png"
1047 ALT="$C_{C\ell}$"></SPAN>
1048for scalar perturbations
1049must be positive at low <SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img36.png"
1050 ALT="$\ell$"></SPAN>, in order to produce <EM>at large scales</EM> a radial pattern of
1051polarization around cold temperature spots (and a tangential pattern around hot
1052spots) as it is expected from scalar perturbations (<A
1053 HREF="intro_Bibliography.htm#crco">Crittenden et&nbsp;al., 1995</A>).
1054
1055<P>
1056Note that Eq.&nbsp;(<A HREF="#Pexpansion2">12</A>) implies that, if the Stokes parameters are
1057rotated <EM>everywhere</EM> via
1058<BR>
1059<DIV ALIGN="CENTER"><A ID="eq:rotateQU"></A>
1060<!-- MATH
1061 \begin{eqnarray}
1062\left(\begin{array}{c}
1063	Q'\\U'
1064\end{array}\right) =
1065\left(\begin{array}{c c}
1066  	\cos2\psi & \sin2\psi \\
1067	-\sin2\psi & \cos2\psi
1068\end{array} \right)
1069\left(\begin{array}{c}
1070	Q\\U
1071\end{array} \right),%\nonumber
1072\end{eqnarray}
1073 -->
1074<SPAN CLASS="MATH">
1075<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1076<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 5.83ex; vertical-align: -2.42ex; " SRC="intro_img111.png"
1077 ALT="$\displaystyle \left(\begin{array}{c}
1078Q'\\  U'
1079\end{array}\right) =
1080\left(\be...
1081...array} \right)
1082\left(\begin{array}{c}
1083Q\\  U
1084\end{array} \right),%\nonumber
1085$"></TD>
1086<TD>&nbsp;</TD>
1087<TD>&nbsp;</TD>
1088<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1089(<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
1090</TABLE>
1091</SPAN></DIV>
1092<BR CLEAR="ALL"><P></P>
1093then the polarized <SPAN CLASS="MATH"><IMG STYLE="height: 1.46ex; vertical-align: -0.45ex; " SRC="intro_img26.png"
1094 ALT="$a_{\ell m}$"></SPAN> coefficients are submittted to the same rotation
1095<BR>
1096<DIV ALIGN="CENTER"><A ID="eq:rotateEB"></A>
1097<!-- MATH
1098 \begin{eqnarray}
1099\left(\begin{array}{c}
1100	a_{E,\ell m}'\\a_{B,\ell m}'
1101\end{array}\right) =
1102\left(\begin{array}{c c}
1103	\cos2\psi & \sin2\psi \\
1104	-\sin2\psi & \cos2\psi
1105\end{array} \right)
1106\left(\begin{array}{c}
1107	a_{E,\ell m}\\a_{B,\ell m}
1108\end{array} \right).%\nonumber
1109\end{eqnarray}
1110 -->
1111<SPAN CLASS="MATH">
1112<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1113<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 5.83ex; vertical-align: -2.42ex; " SRC="intro_img112.png"
1114 ALT="$\displaystyle \left(\begin{array}{c}
1115a_{E,\ell m}'\\  a_{B,\ell m}'
1116\end{arra...
1117...\begin{array}{c}
1118a_{E,\ell m}\\  a_{B,\ell m}
1119\end{array} \right).%\nonumber
1120$"></TD>
1121<TD>&nbsp;</TD>
1122<TD>&nbsp;</TD>
1123<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1124(<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
1125</TABLE>
1126</SPAN></DIV>
1127<BR CLEAR="ALL"><P></P>
1128
1129<P>
1130Finally, with these conventions, a polarization with (<SPAN CLASS="MATH"><I>Q</I>&gt;0,<I>U</I>=0</SPAN>) will be along the
1131North-South axis, and (<SPAN CLASS="MATH"><I>Q</I>=0,<I>U</I>&gt;0</SPAN>) will be along a North-West to South-East axis
1132(see Fig.&nbsp;<A HREF="#fig:reftqu">5</A>)
1133<P>
1134
1135<H3><A ID="SECTION632"></A>
1136<A ID="subsub:relatoldversion"></A>
1137<BR>
1138Relation to previous releases
1139</H3>Even though it was stated otherwise in the documention, <b>HEALPix</b> used a different
1140convention for the polarization in its previous releases. The tensor harmonics approach
1141(<A
1142 HREF="intro_Bibliography.htm#kks">Kamionkowski et&nbsp;al. (1997)</A>, hereafter KKS) was used, instead of
1143the current spin weighted spherical harmonics. These two approaches differ by
1144the normalisation and sign of the basis functions used, which in turns change
1145the normalisation of the power spectra.
1146Table 1 summarize the relations between the CMB power spectra in the different
1147releases.
1148See &#167;&nbsp;<A HREF="#subsec:cmbfast">A.2.1</A> about the interface between <b>HEALPix</b> and CMBFAST.
1149
1150<P>
1151<TABLE   STYLE="width:100%;">
1152<TR><TD>
1153<SMALL CLASS="SMALL">Table 1: Relation between CMB power spectra conventions used in HEALPix, CMBFAST and
1154KKS. The power spectra on the same row are equal.</SMALL>
1155<TABLE CELLPADDING=3 BORDER="1">
1156<TR><TD ALIGN="LEFT" VALIGN="TOP" WIDTH=94>Component</TD>
1157<TD ALIGN="CENTER"><b>HEALPix</b> <SPAN CLASS="MATH"><IMG STYLE="height: 1.87ex; vertical-align: -0.41ex; " SRC="intro_img113.png"
1158 ALT="$\ge$"></SPAN> 1.2<A ID="tex2html17"
1159  HREF="#footmp620"><SUP><SPAN CLASS="arabic">1</SPAN></SUP></A></TD>
1160<TD ALIGN="CENTER">CMBFAST</TD>
1161<TD ALIGN="CENTER">KKS</TD>
1162<TD ALIGN="CENTER"><b>HEALPix</b> <SPAN CLASS="MATH"><IMG STYLE="height: 1.87ex; vertical-align: -0.41ex; " SRC="intro_img114.png"
1163 ALT="$\le$"></SPAN> 1.1<A ID="tex2html18"
1164  HREF="#footmp621"><SUP><SPAN CLASS="arabic">2</SPAN></SUP></A></TD>
1165</TR>
1166<TR><TD ALIGN="LEFT" VALIGN="TOP" WIDTH=94>Temperature</TD>
1167<TD ALIGN="CENTER"><!-- MATH
1168 $C_{\ell}^{\mathrm{TEMP}}$
1169 -->
1170<SPAN CLASS="MATH"><IMG STYLE="height: 2.51ex; vertical-align: -0.67ex; " SRC="intro_img115.png"
1171 ALT="$C_{\ell}^{\mathrm{TEMP}} $"></SPAN></TD>
1172<TD ALIGN="CENTER"><!-- MATH
1173 $C_{\mathrm{T},\ell}$
1174 -->
1175<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img116.png"
1176 ALT="$C_{\mathrm{T},\ell} $"></SPAN></TD>
1177<TD ALIGN="CENTER"><!-- MATH
1178 $C_{\ell}^{\mathrm{T}}$
1179 -->
1180<SPAN CLASS="MATH"><IMG STYLE="height: 2.51ex; vertical-align: -0.67ex; " SRC="intro_img117.png"
1181 ALT="$C_{\ell}^{\mathrm{T}} $"></SPAN></TD>
1182<TD ALIGN="CENTER"><!-- MATH
1183 $C_{\ell}^{\mathrm{TEMP}}$
1184 -->
1185<SPAN CLASS="MATH"><IMG STYLE="height: 2.51ex; vertical-align: -0.67ex; " SRC="intro_img115.png"
1186 ALT="$C_{\ell}^{\mathrm{TEMP}} $"></SPAN></TD>
1187</TR>
1188<TR><TD ALIGN="LEFT" VALIGN="TOP" WIDTH=94>Electric or Gradient</TD>
1189<TD ALIGN="CENTER"><!-- MATH
1190 $C_{\ell}^{\mathrm{GRAD}}$
1191 -->
1192<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img118.png"
1193 ALT="$C_{\ell}^{\mathrm{GRAD}} $"></SPAN></TD>
1194<TD ALIGN="CENTER"><!-- MATH
1195 $C_{\mathrm{E},\ell}$
1196 -->
1197<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img119.png"
1198 ALT="$C_{\mathrm{E},\ell} $"></SPAN></TD>
1199<TD ALIGN="CENTER"><!-- MATH
1200 $2C_{\ell}^{\mathrm{G}}$
1201 -->
1202<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img120.png"
1203 ALT="$2C_{\ell}^{\mathrm{G}} $"></SPAN></TD>
1204<TD ALIGN="CENTER"><!-- MATH
1205 $2C_{\ell}^{\mathrm{GRAD}}$
1206 -->
1207<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img121.png"
1208 ALT="$2C_{\ell}^{\mathrm{GRAD}} $"></SPAN></TD>
1209</TR>
1210<TR><TD ALIGN="LEFT" VALIGN="TOP" WIDTH=94>Magnetic or Curl</TD>
1211<TD ALIGN="CENTER"><!-- MATH
1212 $C_{\ell}^{\mathrm{CURL}}$
1213 -->
1214<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img122.png"
1215 ALT="$C_{\ell}^{\mathrm{CURL}} $"></SPAN></TD>
1216<TD ALIGN="CENTER"><!-- MATH
1217 $C_{\mathrm{B},\ell}$
1218 -->
1219<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img123.png"
1220 ALT="$C_{\mathrm{B},\ell} $"></SPAN></TD>
1221<TD ALIGN="CENTER"><!-- MATH
1222 $2C_{\ell}^{\mathrm{C}}$
1223 -->
1224<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img124.png"
1225 ALT="$2C_{\ell}^{\mathrm{C}} $"></SPAN></TD>
1226<TD ALIGN="CENTER"><!-- MATH
1227 $2C_{\ell}^{\mathrm{CURL}}$
1228 -->
1229<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img125.png"
1230 ALT="$2C_{\ell}^{\mathrm{CURL}} $"></SPAN></TD>
1231</TR>
1232<TR><TD ALIGN="LEFT" VALIGN="TOP" WIDTH=94>Temp.-Electric cross correlation</TD>
1233<TD ALIGN="CENTER"><!-- MATH
1234 $C_{\ell}^{\mathrm{T-GRAD}}\rule[.3cm]{0cm}{.2cm}$
1235 -->
1236<SPAN CLASS="MATH"><IMG STYLE="height: 2.68ex; vertical-align: -0.68ex; " SRC="intro_img126.png"
1237 ALT="$C_{\ell}^{\mathrm{T-GRAD}}\rule[.3cm]{0cm}{.2cm}$"></SPAN></TD>
1238<TD ALIGN="CENTER"><!-- MATH
1239 $C_{\mathrm{C},\ell}$
1240 -->
1241<SPAN CLASS="MATH"><IMG STYLE="height: 2.27ex; vertical-align: -0.75ex; " SRC="intro_img127.png"
1242 ALT="$C_{\mathrm{C},\ell} $"></SPAN></TD>
1243<TD ALIGN="CENTER"><SPAN CLASS="MATH"><IMG STYLE="height: 2.39ex; vertical-align: -0.43ex; " SRC="intro_img128.png"
1244 ALT="$-\sqrt{2}$"></SPAN> <!-- MATH
1245 $C_{\ell}^{\mathrm{TG}}$
1246 -->
1247<SPAN CLASS="MATH"><IMG STYLE="height: 2.56ex; vertical-align: -0.67ex; " SRC="intro_img129.png"
1248 ALT="$C_{\ell}^{\mathrm{TG}} $"></SPAN></TD>
1249<TD ALIGN="CENTER"><!-- MATH
1250 $\sqrt{2}C_{\ell}^{\mathrm{T-GRAD}}$
1251 -->
1252<SPAN CLASS="MATH"><IMG STYLE="height: 2.68ex; vertical-align: -0.68ex; " SRC="intro_img130.png"
1253 ALT="$\sqrt{2}C_{\ell}^{\mathrm{T-GRAD}} $"></SPAN></TD>
1254</TR>
1255</TABLE></TD></TR>
1256<TR CLASS="LEFT">
1257<TD><DL>
1258<DD><A ID="footmp620"><SUP><SPAN CLASS="arabic">1</SPAN></SUP></A> Version 1.2 (Feb 2003) or more recent of <b>HEALPix</b> package
1259</DD>
1260
1261<DD><A ID="footmp621"><SUP><SPAN CLASS="arabic">2</SPAN></SUP></A> Version 1.1 or older of <b>HEALPix</b> package
1262</DD>
1263</DL></TD></TR>
1264</TABLE>
1265
1266<P>
1267Introducing the matrices
1268<BR>
1269<DIV ALIGN="CENTER">
1270
1271<!-- MATH
1272 \begin{eqnarray}
1273M_{\ell m} &\myequal & \left(
1274  \begin{array}{cc}	X_{1,\ell m}  & i X_{2,\ell m} \\
1275    -i X_{2,\ell m} & X_{1,\ell m}
1276  \end{array}
1277  \right)
1278
1279\end{eqnarray}
1280 -->
1281<SPAN CLASS="MATH">
1282<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1283<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img131.png"
1284 ALT="$\displaystyle M_{\ell m}$"></TD>
1285<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1286 ALT="$\textstyle \myequal $"></TD>
1287<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.83ex; vertical-align: -2.42ex; " SRC="intro_img132.png"
1288 ALT="$\displaystyle \left(
1289\begin{array}{cc} X_{1,\ell m} &amp; i X_{2,\ell m} \\
1290-i X_{2,\ell m} &amp; X_{1,\ell m}
1291\end{array} \right)$"></TD>
1292<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1293(<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
1294</TABLE>
1295</SPAN></DIV>
1296<BR CLEAR="ALL"><P></P>
1297where the basis functions <SPAN CLASS="MATH"><I>X</I><SUB><i>1</i></SUB></SPAN> and <SPAN CLASS="MATH"><I>X</I><SUB><i>2</i></SUB></SPAN> have been defined in
1298Eqs.&nbsp;(<A HREF="#def:basis">13</A>) and above,
1299the decomposition in spherical harmonics coefficients (<A HREF="#Pexpansion2">12</A>) of a
1300given map of the Stokes parameter
1301<SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> can be written in the case of <b>HEALPix</b> 1.2 as
1302<BR>
1303<DIV ALIGN="CENTER"><A ID="QU:12"></A>
1304<!-- MATH
1305 \begin{eqnarray}
1306\phantom{1.2}{
1307\left(
1308\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1309\right)
1310} &\myequal & \sum_{\ell m} M_{\ell m} {
1311\left(
1312\begin{array}{c} -a_{\ell m}^{\mathrm{GRAD}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\-a_{\ell m}^{\mathrm{CURL}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1313\right)
1314}.
1315\end{eqnarray}
1316 -->
1317<SPAN CLASS="MATH">
1318<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1319<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img133.png"
1320 ALT="$\displaystyle \phantom{1.2}{
1321\left(
1322\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\...
1323...}{.2cm}\\  U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1324}$"></TD>
1325<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1326 ALT="$\textstyle \myequal $"></TD>
1327<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img134.png"
1328 ALT="$\displaystyle \sum_{\ell m} M_{\ell m} {
1329\left(
1330\begin{array}{c} -a_{\ell m}^{...
1331...thrm{CURL}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1332}.$"></TD>
1333<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1334(<SPAN CLASS="arabic">21</SPAN>)</TD></TR>
1335</TABLE>
1336</SPAN></DIV>
1337<BR CLEAR="ALL"><P></P>
1338
1339<P>
1340For KKS, with the same definition of <SPAN CLASS="MATH"><I>M</I></SPAN>, the decomposition reads
1341<BR>
1342<DIV ALIGN="CENTER"><A ID="QU:KKS"></A>
1343<!-- MATH
1344 \begin{eqnarray}
1345{
1346\left(
1347\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\-U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1348\right)
1349} &\myequal & \sum_{\ell m} M_{\ell m} {
1350\left(
1351\begin{array}{c} \sqrt{2}a_{\mathrm{E},\ell m} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\\sqrt{2}a_{\mathrm{B},\ell m} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1352\right)
1353},
1354
1355\end{eqnarray}
1356 -->
1357<SPAN CLASS="MATH">
1358<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1359<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img135.png"
1360 ALT="$\displaystyle {
1361\left(
1362\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\  -U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1363}$"></TD>
1364<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1365 ALT="$\textstyle \myequal $"></TD>
1366<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img136.png"
1367 ALT="$\displaystyle \sum_{\ell m} M_{\ell m} {
1368\left(
1369\begin{array}{c} \sqrt{2}a_{\m...
1370...{B},\ell m} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1371},$"></TD>
1372<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1373(<SPAN CLASS="arabic">22</SPAN>)</TD></TR>
1374</TABLE>
1375</SPAN></DIV>
1376<BR CLEAR="ALL"><P></P>
1377whereas in <b>HEALPix</b> 1.1 it was
1378<BR>
1379<DIV ALIGN="CENTER"><A ID="QU:11"></A>
1380<!-- MATH
1381 \begin{eqnarray}
1382\phantom{1.1}{
1383\left(
1384\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1385\right)
1386}&\myequal &\sum_{\ell m} M_{\ell m} {
1387\left(
1388\begin{array}{c} -\sqrt{2}a_{\ell m}^{\mathrm{GRAD}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\\\sqrt{2}a_{\ell m}^{\mathrm{CURL}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}
1389\right)
1390}.
1391
1392\end{eqnarray}
1393 -->
1394<SPAN CLASS="MATH">
1395<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1396<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img137.png"
1397 ALT="$\displaystyle \phantom{1.1}{
1398\left(
1399\begin{array}{c} Q \rule[.3cm]{0cm}{.2cm}\...
1400...}{.2cm}\\  U \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1401}$"></TD>
1402<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1403 ALT="$\textstyle \myequal $"></TD>
1404<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 8.22ex; vertical-align: -3.92ex; " SRC="intro_img138.png"
1405 ALT="$\displaystyle \sum_{\ell m} M_{\ell m} {
1406\left(
1407\begin{array}{c} -\sqrt{2}a_{\...
1408...thrm{CURL}} \rule[.3cm]{0cm}{.2cm}\rule[-.3cm]{0cm}{.2cm}\end{array}\right)
1409}.$"></TD>
1410<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1411(<SPAN CLASS="arabic">23</SPAN>)</TD></TR>
1412</TABLE>
1413</SPAN></DIV>
1414<BR CLEAR="ALL"><P></P>
1415The difference between KKS and 1.1 was due to an error of sign on one the basis functions.
1416
1417<P>
1418
1419<H3><A ID="SECTION633">
1420Relation with IAU convention</A>
1421</H3>
1422In a cartesian referential with axes <SPAN CLASS="MATH"><I>x</I></SPAN> and <SPAN CLASS="MATH"><I>y</I></SPAN>, the Stokes parameters for
1423linear polarisation are defined such that <SPAN CLASS="MATH">+<I>Q</I></SPAN> is aligned with <SPAN CLASS="MATH">+<I>x</I></SPAN>, <SPAN CLASS="MATH">-<I>Q</I></SPAN> with <SPAN CLASS="MATH">+<I>y</I></SPAN> and <SPAN CLASS="MATH">+<I>U</I></SPAN> with the
1424bisectrix of <SPAN CLASS="MATH">+<I>x</I></SPAN> and <SPAN CLASS="MATH">+<I>y</I></SPAN>. Although this definition is universally accepted,
1425some confusion may still arise from the relation of
1426this local cartesian system to the global spherical one, as described below
1427(<A
1428 HREF="intro_Bibliography.htm#hamakerleahy">Hamaker &amp; Leahy, 2003</A>), and as illustrated in Fig.&nbsp;<A HREF="#fig:reftqu">5</A>.
1429<P>
1430
1431<DIV class="CENTER"><A ID="fig:reftqu"></A><A ID="intro:fig:reftqu"></A><A ID="1072"></A>
1432<TABLE>
1433<CAPTION class="BOTTOM"><STRONG>Figure 5:</STRONG>
1434Coordinate conventions for <b>HEALPix</b> (<EM>lhs</EM> panels) and IAU (<EM>rhs</EM> panels). The
1435  upper panels illustrate how the spherical coordinates are measured, and the
1436  lower panel how the <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> Stokes parameters are identified in the
1437  tangential plan.
1438</CAPTION>
1439<TR><TD>
1440<DIV CLASS="centerline" ID="par4474" ALIGN="CENTER">
1441<IMG STYLE=""
1442 SRC="./merge_reftqu.png"
1443 ALT="Image merge_reftqu"></DIV>
1444
1445<P></TD></TR>
1446</TABLE>
1447</DIV>
1448
1449<P>
1450The polarization conventions defined by the International Astronomical Union
1451(<A
1452 HREF="intro_Bibliography.htm#iau74">IAU, 1974</A>) are summarized in <A
1453 HREF="intro_Bibliography.htm#hambreg">Hamaker &amp; Bregman (1996)</A>. They define at each point on the
1454celestial sphere a cartesian referential with the <SPAN CLASS="MATH"><I>x</I></SPAN> and <SPAN CLASS="MATH"><I>y</I></SPAN> axes pointing
1455respectively toward the North and East, and the <SPAN CLASS="MATH"><I>z</I></SPAN>
1456axis along the line of sight pointing toward the observer (ie, inwards) for a
1457right-handed system.
1458
1459<P>
1460On the other hand, following the mathematical and CMB litterature tradition,
1461<b>HEALPix</b> defines a cartesian referential with the <SPAN CLASS="MATH"><I>x</I></SPAN> and <SPAN CLASS="MATH"><I>y</I></SPAN> axes pointing
1462respectively toward the <EM>South</EM> and East, and the <SPAN CLASS="MATH"><I>z</I></SPAN> axis along the line of sight
1463pointing away from the observer (ie, <EM>outwards</EM>) for a right-handed
1464system. The <EM>Planck</EM> CMB mission follows the same convention (<A
1465 HREF="intro_Bibliography.htm#ansari">Ansari et&nbsp;al., 2003</A>).
1466
1467<P>
1468The consequence of this definition discrepency is a change of sign of <SPAN CLASS="MATH"><I>U</I></SPAN>,
1469which, if not accounted for, jeopardizes the calculation of the Electric and Magnetic  CMB
1470polarisation power spectra.
1471
1472<P>
1473
1474<H3><A ID="SECTION634"></A>
1475<A ID="intro:polcconv"></A>
1476<BR>
1477How <b>HEALPix</b> deals with these discrepancies: <SPAN  CLASS="texttt">POLCCONV</SPAN> keyword
1478</H3>
1479The FITS keyword <SPAN  CLASS="texttt">POLCCONV</SPAN> has been introduced in <b>HEALPix</b> 2.0 to describe the
1480polarisation coordinate convention applied to the data contained in the file.
1481Its value is either <SPAN  CLASS="texttt">'COSMO'</SPAN> for files following the HEALPix/CMB/<EM>Planck</EM> convention
1482(default for sky map synthetized with HEALPix routine <A HREF="./fac_synfast.htm#fac:synfast"><SPAN  CLASS="texttt">synfast</SPAN></A>)
1483or <SPAN  CLASS="texttt">'IAU'</SPAN> for those
1484following the IAU convention, as defined above. Absence of this keyword is
1485interpreted as meaning <SPAN  CLASS="texttt">'COSMO'</SPAN> (as it is the case for WMAP maps).
1486
1487<P>
1488Starting with <b>HEALPix</b> 3.40, when dealing with a polarized (full-sky or cut-sky) signal map,
1489<BR>- the F90 subroutine <A HREF="./sub_input_map.htm#sub:input_map"><SPAN  CLASS="texttt">input_map</SPAN></A> in its default mode,
1490<BR>- the F90 facilities calling it and dealing with the <SPAN CLASS="MATH"><I>I</I></SPAN>, <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> Stokes parameters as a whole, <EM>ie</EM>
1491<A HREF="./fac_anafast.htm#fac:anafast"><SPAN  CLASS="texttt">anafast</SPAN></A> and
1492<A HREF="./fac_smoothing.htm#fac:smoothing"><SPAN  CLASS="texttt">smoothing</SPAN></A>,
1493<BR>- as well as their IDL wrappers
1494<A HREF="./idl_ianafast.htm#idl:ianafast"><SPAN  CLASS="texttt">ianafast</SPAN></A> and
1495<A HREF="./idl_ismoothing.htm#idl:ismoothing"><SPAN  CLASS="texttt">ismoothing</SPAN></A>,
1496<BR>- the IDL visualisation routines
1497<A HREF="./idl_mollview.htm#idl:mollview"><SPAN  CLASS="texttt">azeqview</SPAN>, <SPAN  CLASS="texttt">cartview</SPAN>, <SPAN  CLASS="texttt">gnomview</SPAN>, <SPAN  CLASS="texttt">mollview</SPAN> and <SPAN  CLASS="texttt">orthview</SPAN></A>
1498called with
1499<A HREF="./idl_mollview.htm#idl:mollview:polarization"><SPAN  CLASS="texttt">Polarization=2</SPAN> or <SPAN  CLASS="texttt">3</SPAN></A>,
1500<BR>- and all C++ facilities (and the input routine <SPAN  CLASS="texttt">read_Healpix_map_from_fits</SPAN>)
1501<BR>
1502will all
1503<BR>- issue an error message and
1504crash if <SPAN  CLASS="texttt">POLCCONV</SPAN> is explicitely set to a value different from <SPAN  CLASS="texttt">'COSMO'</SPAN> and <SPAN  CLASS="texttt">'IAU'</SPAN>,
1505<BR>- issue a warning (except in C++), and <EM>swap the sign of the <SPAN CLASS="MATH"><I>U</I></SPAN> polarisation</EM> stored into memory if the FITS file being read contains <SPAN  CLASS="texttt">POLCCONV='IAU'</SPAN>,
1506<BR>- issue a warning (except in C++) if the keyword <SPAN  CLASS="texttt">POLCCONV</SPAN> is totally absent, and then carry on with the original data,
1507<BR>- or work silently with the original data if <SPAN  CLASS="texttt">POLCCONV='COSMO'</SPAN>.
1508<BR>
1509On the other hand, and as in previous releases, routines treating or showing
1510each of <SPAN CLASS="MATH"><I>I</I></SPAN>, <SPAN CLASS="MATH"><I>Q</I></SPAN> and <SPAN CLASS="MATH"><I>U</I></SPAN> fields separately,
1511such as the F90 facilities
1512<A HREF="./fac_median_filter.htm#fac:median_filter"><SPAN  CLASS="texttt">median_filter</SPAN></A>,
1513<A HREF="./fac_ud_grade.htm#fac:ud_grade"><SPAN  CLASS="texttt">ud_grade</SPAN></A>, or
1514<A HREF="./fac_map2gif.htm#fac:map2gif"><SPAN  CLASS="texttt">map2gif</SPAN></A>
1515as well as their IDL counterparts
1516<A HREF="./idl_median_filter.htm#idl:median_filter"><SPAN  CLASS="texttt">median_filter</SPAN></A>,
1517<A HREF="./idl_ud_grade.htm#idl:ud_grade"><SPAN  CLASS="texttt">ud_grade</SPAN></A>, or
1518<A HREF="./idl_mollview.htm#idl:mollview"><SPAN  CLASS="texttt">mollview</SPAN> et al</A> run with
1519<A HREF="./idl_mollview.htm#idl:mollview:polarization"><SPAN  CLASS="texttt">Polarization=0</SPAN> or <SPAN  CLASS="texttt">1</SPAN></A> will
1520ignore the value of <SPAN  CLASS="texttt">POLCCONV</SPAN> (copying it unchanged into their output files, when applicable)
1521and preserve the sign of <SPAN CLASS="MATH"><I>U</I></SPAN>.
1522
1523<P>
1524Finally,
1525the IDL subroutine <A HREF="./idl_change_polcconv.htm#idl:change_polcconv"><SPAN  CLASS="texttt">change_polcconv.pro</SPAN></A>
1526and the Python facility <SPAN  CLASS="texttt">change_polcconv.py</SPAN> are
1527provided to add the  <SPAN  CLASS="texttt">POLCCONV</SPAN> keyword or
1528change/update its value and swap the sign of the <SPAN CLASS="MATH"><I>U</I></SPAN> Stokes parameter, when applicable, in
1529an existing FITS file.
1530
1531<P>
1532
1533<H2><A ID="SECTION640"></A>
1534<A ID="sphericalstuff"></A>
1535<BR>
1536Spherical harmonic conventions
1537</H2>
1538
1539<P>
1540The Spherical Harmonics are defined as
1541<BR>
1542<DIV ALIGN="CENTER"><A ID="eq:ylm_def"></A>
1543<!-- MATH
1544 \begin{eqnarray}
1545Y_{\ell m}(\theta,\phi) &\myequal & \lambda_{\ell m}(\cos\theta) e^{{i}
1546	m\phi}
1547\end{eqnarray}
1548 -->
1549<SPAN CLASS="MATH">
1550<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1551<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img139.png"
1552 ALT="$\displaystyle Y_{\ell m}(\theta,\phi)$"></TD>
1553<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1554 ALT="$\textstyle \myequal $"></TD>
1555<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.62ex; vertical-align: -0.68ex; " SRC="intro_img140.png"
1556 ALT="$\displaystyle \lambda_{\ell m}(\cos\theta) e^{{i}
1557m\phi}$"></TD>
1558<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1559(<SPAN CLASS="arabic">24</SPAN>)</TD></TR>
1560</TABLE>
1561</SPAN></DIV>
1562<BR CLEAR="ALL"><P></P>
1563where
1564<BR>
1565<DIV ALIGN="CENTER"><A ID="eq:lam_def"></A>
1566<!-- MATH
1567 \begin{eqnarray}
1568\lambda_{\ell m}(x) &\myequal & \sqrt{ \frac{2\ell+1}{4\pi}
1569	\frac{(\ell-m)!}{(\ell+m)!} } P_{\ell m}(x), \quad\textrm{for~}
1570	m\ge 0\\
1571\lambda_{\ell m} &\myequal & (-1)^m \lambda_{\ell |m|}, \quad\textrm{for~}
1572	m <  0, \nonumber \\
1573\lambda_{\ell m} &\myequal & 0, \quad\textrm{for}\, |m| > \ell.\nonumber
1574\end{eqnarray}
1575 -->
1576<SPAN CLASS="MATH">
1577<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1578<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img141.png"
1579 ALT="$\displaystyle \lambda_{\ell m}(x)$"></TD>
1580<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1581 ALT="$\textstyle \myequal $"></TD>
1582<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 7.05ex; vertical-align: -2.81ex; " SRC="intro_img142.png"
1583 ALT="$\displaystyle \sqrt{ \frac{2\ell+1}{4\pi}
1584\frac{(\ell-m)!}{(\ell+m)!} } P_{\ell m}(x), \quad\textrm{for~}
1585m\ge 0$"></TD>
1586<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1587(<SPAN CLASS="arabic">25</SPAN>)</TD></TR>
1588<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img143.png"
1589 ALT="$\displaystyle \lambda_{\ell m}$"></TD>
1590<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1591 ALT="$\textstyle \myequal $"></TD>
1592<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.56ex; vertical-align: -0.85ex; " SRC="intro_img144.png"
1593 ALT="$\displaystyle (-1)^m \lambda_{\ell \vert m\vert}, \quad\textrm{for~}
1594m &lt; 0,$"></TD>
1595<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1596&nbsp;</TD></TR>
1597<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img143.png"
1598 ALT="$\displaystyle \lambda_{\ell m}$"></TD>
1599<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1600 ALT="$\textstyle \myequal $"></TD>
1601<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img145.png"
1602 ALT="$\displaystyle 0, \quad\textrm{for}\, \vert m\vert &gt; \ell.$"></TD>
1603<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1604&nbsp;</TD></TR>
1605</TABLE>
1606</SPAN></DIV>
1607<BR CLEAR="ALL"><P></P>
1608
1609<P>
1610Introducing <!-- MATH
1611 $x\equiv\cos\theta$
1612 -->
1613<SPAN CLASS="MATH"><IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="intro_img146.png"
1614 ALT="$x\equiv\cos\theta$"></SPAN>, the associated Legendre Polynomials <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img147.png"
1615 ALT="$P_{\ell m}$"></SPAN>
1616solve the differential equation
1617<BR>
1618<DIV ALIGN="CENTER"><A ID="eq:diff_eq"></A>
1619<!-- MATH
1620 \begin{eqnarray}
1621(1-x^2)\frac{d^2}{dx^2}P_{\ell m} - 2x \frac{d}{dx}P_{\ell m}
1622	+ \left(\ell(\ell+1) - \frac{m^2}{1-x^2}\right) P_{\ell m} &\myequal & 0.
1623\end{eqnarray}
1624 -->
1625<SPAN CLASS="MATH">
1626<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1627<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 5.83ex; vertical-align: -2.42ex; " SRC="intro_img148.png"
1628 ALT="$\displaystyle (1-x^2)\frac{d^2}{dx^2}P_{\ell m} - 2x \frac{d}{dx}P_{\ell m}
1629+ \left(\ell(\ell+1) - \frac{m^2}{1-x^2}\right) P_{\ell m}$"></TD>
1630<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1631 ALT="$\textstyle \myequal $"></TD>
1632<TD ALIGN="LEFT" WIDTH="50%" NOWRAP>0.</TD>
1633<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1634(<SPAN CLASS="arabic">26</SPAN>)</TD></TR>
1635</TABLE>
1636</SPAN></DIV>
1637<BR CLEAR="ALL"><P></P>
1638They are related to the ordinary Legendre Polynomials <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img149.png"
1639 ALT="$P_\ell$"></SPAN> by
1640<BR>
1641<DIV ALIGN="CENTER"><A ID="eq:legendreass"></A>
1642<!-- MATH
1643 \begin{eqnarray}
1644P_{\ell m} &\myequal & (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_{\ell}(x),
1645\end{eqnarray}
1646 -->
1647<SPAN CLASS="MATH">
1648<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1649<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img150.png"
1650 ALT="$\displaystyle P_{\ell m}$"></TD>
1651<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1652 ALT="$\textstyle \myequal $"></TD>
1653<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 4.84ex; vertical-align: -1.69ex; " SRC="intro_img151.png"
1654 ALT="$\displaystyle (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_{\ell}(x),$"></TD>
1655<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1656(<SPAN CLASS="arabic">27</SPAN>)</TD></TR>
1657</TABLE>
1658</SPAN></DIV>
1659<BR CLEAR="ALL"><P></P>
1660which are given by the Rodrigues formula
1661<BR>
1662<DIV ALIGN="CENTER"><A ID="eq:rodrigues"></A>
1663<!-- MATH
1664 \begin{eqnarray}
1665P_{\ell}(x) &\myequal & \frac{1}{2^\ell \ell!}\frac{d^\ell}{dx^\ell} (x^2-1)^\ell.
1666\end{eqnarray}
1667 -->
1668<SPAN CLASS="MATH">
1669<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
1670<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="intro_img152.png"
1671 ALT="$\displaystyle P_{\ell}(x)$"></TD>
1672<TD ALIGN="CENTER" NOWRAP><IMG STYLE="height: 0.58ex; vertical-align: -0.10ex; " SRC="intro_img13.png"
1673 ALT="$\textstyle \myequal $"></TD>
1674<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG STYLE="height: 5.13ex; vertical-align: -1.69ex; " SRC="intro_img153.png"
1675 ALT="$\displaystyle \frac{1}{2^\ell \ell!}\frac{d^\ell}{dx^\ell} (x^2-1)^\ell.$"></TD>
1676<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
1677(<SPAN CLASS="arabic">28</SPAN>)</TD></TR>
1678</TABLE>
1679</SPAN></DIV>
1680<BR CLEAR="ALL"><P></P>
1681
1682<P>
1683Note that our <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img11.png"
1684 ALT="$Y_{\ell m}$"></SPAN> are identical to those of <A
1685 HREF="intro_Bibliography.htm#edmonds">Edmonds (1957)</A>,
1686even though our definition of the <SPAN CLASS="MATH"><IMG STYLE="height: 2.04ex; vertical-align: -0.45ex; " SRC="intro_img147.png"
1687 ALT="$P_{\ell m}$"></SPAN> differ from his by a factor
1688<SPAN CLASS="MATH">(-1)<SUP><i>m</i></SUP></SPAN> (<I>a.k.a.</I> Condon-Shortley phase).
1689
1690<P>
1691
1692<DIV CLASS="navigation"><HR>
1693<!--Navigation Panel-->
1694<A
1695 HREF="intro_HEALPix_Software_Package.htm">
1696<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
1697<A
1698 HREF="intro_Introduction_HEALPix.htm">
1699<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
1700<A
1701 HREF="intro_Pixel_window_functions.htm">
1702<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
1703<A ID="tex2html97"
1704  HREF="intro_TABLE_CONTENTS.htm">
1705<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
1706<BR>
1707<B> Previous:</B> <A
1708 HREF="intro_HEALPix_Software_Package.htm">The HEALPix Software Package</A>
1709
1710<B>Up:</B> <A
1711 HREF="intro_Introduction_HEALPix.htm">Introduction to HEALPix</A>
1712
1713<B> Next:</B> <A
1714 HREF="intro_Pixel_window_functions.htm">Pixel window functions</A>
1715<B> Top:</B> <a href="main.htm">Main Page</a></DIV>
1716<!--End of Navigation Panel-->
1717<ADDRESS>
1718Version 3.50, 2018-12-10
1719</ADDRESS>
1720</BODY>
1721</HTML>
1722